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This paper examines hedging in Greek stock index futures market. The focus is on
various techniques to estimate constant or time-varying hedge ratios. For both
available stock index futures contracts of the Athens Derivatives Exchange
(ADEX), a variety of econometric models are employed to derive and estimate
underlying hedge ratios. Standard OLS regressions, simple and vector error correc-
tion models, as well as multivariate generalized autoregressive heteroscedasticity
(M-GARCH) models are employed to estimate corresponding hedge ratios that
can be employed in hedging (viewed as risk management). In both cases for Greek
stock index futures, M-GARCH models (capturing time-variation) provide best
hedging ratios, in line with similar findings in the literature. These models are
strongly recommended to risk managers dealing with Greek stock index futures.

I . INTRODUCTION

The main objective of hedging (i.e. risk management1) is

controversial, and there is no clear view on the purpose of

hedging. Nevertheless hedging is the most important func-

tion of futures markets (that is trading in index futures),

the origin of the term is unclear. Hedging uses futures

markets to reduce risk of a cash market position, see

Working (1953). In general, hedge is the action taken by

a buyer or seller to protect his/her business or assets against

a change in prices. It is the act of reducing uncertain in

value fluctuations of financial portfolios by combining a

portfolio of risky assets with a position in a financial

instrument, which is highly negatively correlated with the

portfolio. Thus, the objective is that positive (negative) in

value fluctuations of the portfolio will be off-set by negative

(positive) in value fluctuations of the hedging instrument.

Early investigations of hedging include Working (1953),

Johnson (1960), Stein (1961) and Ederington (1979). There

are three goals of hedging:2 risk minimization, profit

maximization, and the portfolio approach, see Rutledge

(1972). Risk minimization is the traditional view of hedg-

ing, where hedgers are risk averse and want to eliminate all

price risk incurred in their portfolios. It refers to risk reduc-

tion. In other words, initial asset and security, used to off-

set the risk of the asset, are of equal magnitude. An

alternative view of risk minimization is profit maximiza-

tion. Working (1953) argues that the objective of a hedge

is to make profit (or to maximize profit) from movements

of futures and spot contracts. That is, a profit can be made

by speculation on the basis.3 He also explains that hedgers

function like speculators and argues that hedging is done in

expectation of a change in spot–futures relation. In addi-

tion, he argues that a hedge may be viewed as a spread

*Corresponding author. E-mail: Christos.Floros@port.ac.uk
1Hedging is concerned with the management of risk, see Johnson (1960).
2 Sharda and Musser (1986) argue that there are four goals of hedging, namely: risk, transaction costs, margin payments, and margin
opportunity costs.
3Hedging is carried out to eliminate/reduce the risks associated with price fluctuations and profit from movements in the basis. The basis
is the key point for hedgers to ‘watch’.
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between the futures contract (standard unit of trading for

futures) and the corresponding spot asset. In addition,

Houthakker (1968) argues that traders hedge not to reduce

risk, but to increase profit. Furthermore, Johnson (1960),

Stein (1961), and Ederington (1979) argue that the classic

role of futures markets is that they facilitate hedging. In

other words, ‘[futures markets] allow those who deal in

a commodity to transfer the risk of price changes in that

commodity to speculators more willing to bear such risks’

(Ederington, 1979, p. 157). The previously mentioned

authors also argue that the main objective of hedging is

to minimize the risk (variance) of the portfolio (overall

position), and point out that a portfolio approach to hedg-

ing is superior to both the traditional view of hedging

(i.e. risk minimization) and Working’s profit maximization.

Also Wu et al. (1990) discuss that the objective of hedging

is to create a portfolio with reduced risk. Furthermore,

Howard and D’ Antonio (1984) argue that the hedger’s

objective is to optimize the risk-return trade-off. Ghosh

(1993, p. 743) states that ‘the objective of hedging is to

minimise the risk of the portfolio for a given level of return’,

while Duffie (1989, p. 201) argues that the essence of

futures hedging is ‘the adoption of a futures position that,

on average, generates profits when the market value of the

given commitment is lower than expected, and generates

losses when the market value of the commitment is higher

than expected ’. Also, Moschini and Myers (2002, p. 1)

point out that ‘hedging reduces risk because cash and futures

prices for the same commodity tend to move together, so that

changes in the value of a cash position are offset by changes

in the value of an opposite futures position’.

Stock index futures contracts can be used to hedge the

risk. According to Hull (2000, p. 66), an index futures

hedge leads to the value of the hedged position growing

at close to the risk-free interest rate. Hedging with index

futures removes the risk arising from market moves and

leaves the hedger exposed only to the performance of the

portfolio relative to the market. When the relationship

between the cash price and the price of a futures contract

is very close, the hedge is more effective. However, because

this relationship is usually not perfect (spot and futures

positions do not match perfectly), the hedge is a cross-

hedge. In this case, the hedger should trade the right

number of futures contract to control the risk.

In general, hedging reduces risk and allows greater

flexibility in planning. It does not interface with normal

business operations, and permits easier and greater financ-

ing. Hedging is carried out to (i) eliminate risk due to

adverse price fluctuation, (ii) reduce risk due to adverse

price moves, (iii) profit from changes in the basis,

and (iv) maximize expected return for a given risk and

minimize risk for a stated return. Numerous studies have

addressed the efficiency of stock index futures markets in

risk management and hedging. As mentioned above, when

futures prices tend to move together, hedging reduces risk.

However, because cash and futures prices are not perfectly

correlated, determination of the optimal hedge ratio4

is required. First, Ederington (1979), Johnson (1960) and

Stein (1961) suggest that the hedge ratio should be the

optimal hedge ratio (i.e. the minimum variance hedge

ratio). That is, the optimal amount of futures bought or

sold expressed as a proportion of the cash position. Also,

the hedge ratio is referred to as the naive hedge ratio (when

the cash and futures position have similar characteristics).

The naive hedge ratio reduces the risk optimally only in the

absence of risk (i.e. when the change of the basis is zero),

and it is a static risk management strategy. In addition, it is

important for the hedger to be able to identify the number

of contracts needed to hedge his/her portfolio. For this, the

hedge ratio will be used, so the right number of futures

contracts minimizing risk can be chosen. Therefore, the

hedge ratio5 is the number of futures contracts bought,

or sold, divided by the number of spot contracts whose

risk is being hedged. For a commodity, the hedge ratio is

the number of futures contracts to hold for a given posi-

tion. For a portfolio, the use of Minimum Variance Hedge

Ratio (MVHR) is required, as it aims to minimize portfolio

risk by finding the value of futures position that reduces

the variability of price changes of a hedged position, see

Johnson (1960). The MVHR assumes that hedgers have

a mean-variance utility function with infinite risk-aversion.

Ederington (1979) assumes constant (time-independent)

covariance between prices to show that the MVHR is the

ratio of the covariance of futures price (or price change)

and spot price (or price change) to the variance of futures

price (or price change). This ratio is the optimal hedge

ratio for any unbiased futures market. So, if the futures

market is unbiased, the MVHR is the optimal hedge

ratio for any risk averse producer regardless of the degree

of risk aversion.

Several measures have been proposed for the hedge

ratio. First, the hedge ratio (HR) is estimated from an

OLS regression of cash on futures prices. The method is

introduced by Ederington (1979), and Anderson and

Danthine (1980). It is proved that the MVHR is the

slope coefficient of this OLS regression, see Ederington

(1979). More recent studies have extended the OLS regres-

sion specification, see Myers and Thompson (1989),

and Howard and D’ Antonio (1991). Howard and

D’ Antonio (1984, 1987) derive a hedge ratio, which is

4 The portfolio approach to hedging permits a wide range of hedge ratios to be efficient, see Sutcliffe (1993).
5Hedge ratios can also be applied to spread and exploit the correlation structure of the underlying series for profitable advantage.
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based on rates of return for situations where the spot

position is fixed. Hammer (1988) derives a hedge ratio

assuming that the trader wishes to maximize the ratio of

the expected return on the hedged portfolio to its variance,

while Chang and Fang (1990) derive a utility-maximizing

hedge ratio.

Alternative estimation of optimal hedge ratio supports

the phenomenon that cash and futures prices display time-

varying volatility, and hence GARCH models are to be

preferred in view of this. These models are used for esti-

mating time-varying optimal hedge ratios, see Cecchetti,

et al. (1988), and Baillie and Myers (1991). The differences

between the constant and time varying hedge ratios are

discussed later on.

Early studies on optimal hedge ratios assume constant

hedge ratios (see Ederington, 1979; Anderson and

Danthine, 1981) and obtain the optimal hedge ratios as

the slope coefficients of simple OLS regressions.

However, several researchers argue that this method is

inappropriate because it is clear that optimal hedge ratios

depend on price movements and that hedge ratios vary

over time. In addition, these studies ignore serial correla-

tion and (conditional) heteroscedasticity. Clearly, there

are a number of econometric problems when applying

OLS regressions to compute risk-minimizing hedge ratios,

rendering OLS techniques for estimating optimal hedge

ratios unsatisfactory. A preferable approach is to use

stochastic volatility models.

Optimal hedge ratios can be estimated by modelling

stock index futures price changes within a GARCH frame-

work, allowing dynamic comparison of hedge ratios.

Cecchetti et al. (1988) use a univariate ARCH model

instead of an OLS model, and they assume that the condi-

tional correlation between cash and futures prices is con-

stant. On the other hand, Baillie and Myers (1991) and

Kroner and Sultan (1993) use bivariate GARCH

(BGARCH) models to estimate time-varying hedge ratios

in commodity futures and foreign exchange futures.

A priori, GARCH hedge ratio is expected to provide

greater reduction of risk with stock index futures.

Another problem in modelling a spot–futures relation-

ship arises from cointegration between these financial

markets. Ghosh (1993) and Lien (1996) argue that when

cointegration is neglected, it can result in an under-hedged

position due to the misspecification of spot and futures

prices. In particular, Ghosh (1993) analyses stock index

futures and underlying stock price index and finds that

minimum hedge ratio is biased downwards due to misspe-

cification if both prices are cointegrated. Also, Lien (1996)

points out that when a hedger omits cointegration will
adopt smaller than optimal futures position, resulting in
a poor hedging performance. From an econometric point
of view, Ghosh (1993) shows that MVHRs are biased
downwards due to misspecification, if spot and futures
are cointegrated and the error correction term (ECT) is
not included in the regression, while Lien (1996) discusses
that the ECT reduces the problem of under-hedging.

Furthermore, several papers use error correction models
(ECM) to estimate hedge ratios, see Chou et al. (1996), and
Lien (1996). Other papers use error correction terms with a
time-varying risk structure when analysing the spot-futures
relationship, see Kroner and Sultan (1993), and Lien and
Tse (1999). Notice that the conventional regression model
ignores the error correction term, as well as lagged changes
in variables (futures and spot values).

In this paper, the focus is on model specification and
empirical comparison of several models for hedge ratio
estimation, using data from Greek futures markets
(FTSE/ASE-20 index and FTSE/ASE Mid 40 index).
In particular, various econometric methods are employed,
including the traditional regression model (OLS),
ECM, VECM, and the multivariate GARCH model
(M-GARCH).6

The paper is organized as follows: Section II provides
a detailed literature review, while Section III shows an
overview of econometric models employed for estimating
hedge ratios. Section IV describes the data, and Section V
presents empirical results from various econometric
models. Finally, Section VI concludes the paper and
summarizes the findings.

II . DETAILED LITERATURE REVIEW

There is much empirical research on optimal hedge ratio
calculation. Optimal hedge ratio can be estimated by mod-
elling stock index futures prices within several frameworks.
First, the hedge ratio is estimated by OLS in regression of
the cash price against the futures price. Ederington (1979)
examines the hedging performance of the New futures
markets (GNMA and T-Bill), concluding that the risk
minimizing hedge ratio is less than one. This finding is in
accordance with Malliaris and Urrutia (1991), who also
find evidence that hedge ratio follows a random walk.

Nevertheless, OLS method has several problems. First,
the assumption that the risk in spot and futures markets
is constant is incorrect7 because asset prices are character-
ized by time-varying distributions. Hence, it is clear that

6A natural framework to take cross-sectional information into account is a multivariate model. Many problems in finance like hedging
and Value-at-Risk require multivariate volatility measures, see Cecchetti et al. (1988).
7 Lence (1995) shows that the simple OLS model is incorrect because the optimal hedge ratio depends on agent’s utility function.
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risk-minimizing hedge ratios should be time-varying

as well. Second, the OLS method ignores the existence of

a long-run cointegrating relationship between spot and

futures prices. To avoid these problems, a number of

papers measure optimal hedge ratios by modelling stock

index and index futures prices using GARCH processes,

where conditional variances of prices vary over time.

Also, several papers use error correction models for esti-

mating hedge ratios. Next, the findings of empirical studies

examining futures hedge ratios are reviewed.

Cecchetti et al. (1988) and Myers and Thomson (1989)

suggest that the standard OLS technique of regressing cash

prices on futures prices is unsatisfactory. They apply a

univariate ARCH model for estimating an optimal futures

hedge. Notice that Myers and Thomson (1989) argue that

the hedge ratio should be adjusted continuously based on

conditional information. They point out that the hedging

decision should be made using a hedge ratio conditioned

on the information available when the hedge is placed, and

not from the traditional regression of cash price on future

price, leading to unconditional hedge ratio. Hence, hedge

ratio should be calculated from conditional variance and

covariance.

Baillie and Myers (1991) examine commodity futures

using a GARCH framework, and Kroner and Sultan

(1991, 1993) use currency futures data. In particular,

Baillie and Myers (1991) examine six different commodities

in accordance to optimal hedge ratios using bivariate

GARCH models (GARCH framework with a conditional

t-distribution). Their results show that optimal hedge ratios

contain unit roots, and therefore, they are not constant (i.e.

they vary over time). Baillie and Myers (1991) also com-

pare the hedge ratios estimated from OLS and GARCH

models, and find that time-varying hedge ratios perform

better to reduce risk (time-varying hedge ratios exhibit sig-

nificant variations). They obtain a good fit in almost all

cases. However, Lien et al. (2002)8 show that the

GARCH models incur 20% more risk than the OLS regres-

sion, indicating that the OLS hedge ratio performs better

that the Vector GARCH hedge ratio. Furthermore, Kroner

and Sultan (1993) estimate futures hedge ratios for foreign

currency futures using a bivariate error correction model

with a GARCH error structure. The proposed model pro-

vides greater risk reduction (and hence more effective

hedges) than the conventional (OLS) model. Park and

Switzer (1995) investigate the risk-minimizing futures

hedge ratios for S&P 500 index futures, MMI futures,

and Toronto 35 index futures. They estimate the optimal

hedge ratios using a bivariate cointegration model with a

GARCH error. The GARCH-based hedge ratios are found

to be varying over time. Park and Switzer (1995) also find

that a constant GARCH model with an error-correction

leads into improvements of variance reduction for index

futures contracts.

Ghosh (1995) uses cointegration theory to estimate the

hedge ratios for European Currency Unit (ECU) futures

contracts. His results confirm that hedge ratio, estimated

from ECM, is superior to the hedge ratio obtained from the

OLS method. In addition, Ghosh and Clayton (1996) use

an intertemporal error correction model to estimate hedge

ratios, using data from stock index futures contracts for

France (CAC 40), the UK (FTSE 100), Germany (DAX),

and Japan (Nikkei). Their results indicate that hedge ratios

obtained from ECMs are superior to those obtained from

the traditional hedging techniques.

Chou et al. (1996)9 examine and compare conventional

and ECM hedge ratios for Japan’s NSA index and the

NSA index futures. They show that the ECM outperforms

the conventional model. Thus, hedge ratios obtained by

ECM reduce financial risk of the cash position more.

Also, Sim and Zurbruegg (2001) find that a cointegrating

time-varying hedge ratio performs better than a simple

constant hedge ratio. They show that hedge ratios have

significantly dropped after the Asian financial market crisis

and that risk has increased.

Bera et al. (1997) estimate time-varying hedge ratios for

corn and soybeans using the BGARCH model and the

random coefficient autoregressive (RCAR) model. They

show that BGARCH model provides the largest reduction

in the variance of the return portfolio for corn and soy-

beans. Furthermore, Kavussanos and Nomikos (2000) esti-

mate time-varying hedge ratios using a BGARCH model

and an augmented GARCH (GARCH-X) model for the

BIFFEX market. They suggest that time-varying hedge

ratios estimated from GARCH-X models outperform the

ones from BGARCH models in reducing market risk.

Recently, Lafuente and Novales (2002) further discuss

optimal hedging under departures from the cost-of-carry

valuation, using data from the Spanish stock index futures

market. To estimate the optimal hedge ratio, they employ a

bivariate error correction model with GARCH innova-

tions. Their empirical results and ex ante simulations

indicate that hedge ratios lead into using a lower number

of futures contracts than the one under a systematic unit

ratio.

Yang (2001) estimates hedge ratios using various econo-

metric models for both All Ordinary Index and SPI futures

traded in the Australian Futures Market. He employs

the OLS model, the bivariate vector autoregressive

model, the error-correction model and the multivariate

8 Lien et al. (2002) review some recent developments in futures hedging, and discuss the econometric implementation of various methods.
9 This paper’s finds that temporal aggregation has important effects on the hedge ratio.
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diagonal Vector GARCH model. These results show that
the GARCH hedge ratios exhibit the greatest portfolio risk
reduction.

Moschini and Myers (2001) provide a new GARCH
approach for estimating time-varying optimal hedge ratios,
and they test whether optimal hedge ratios are constant
over time, using BEKK parameterizations (Baba et al.,
1990) for the bivariate GARCH (BGARCH) model.

Seerljaroen (2000) examines hedge ratios of the SPI
futures contract, and finds that the variance minimization
model performs better than the naive model. Finally, Sercu
and Wu (2000) compare the performances of various hedge
ratios for three-month currency exposures, and find that
the price-based hedge ratios perform better than the regres-
sion-based hedge ratios. According to Sercu and Wu
(2000), price-based methods perform better, because they
provide immediate adjustment to break in the data.

III . THEORY AND METHODOLOGY

Consider the general case of selling b units of asset 2 to
finance the purchase of one unit of asset 1. Let the price of
asset 1, over a given period, be the random variable S1 and
the price of asset 2 be S2 (also random). The value of the
underlying portfolio is given by SP ¼ S1 � bS2 and has
variance VarðSPÞ ¼ VarðS1 � bS2Þ. Differentiate portfolio
variance with respect to b to find minimum hedge ratio
CovðS1,S2Þ=VarðS2Þ, which is the regression coefficient of
regressing S1 against S2, also known as the OLS hedge
ratio. Furthermore, consider a hedged portfolio of a long
position in a security and a short position in a future on an
asset, which is highly correlated with the security. Using
returns, rather than prices, appears to give a different value
for the hedge ratio, but it can be shown that it is in fact
the same.

For this, let b denote the hedge ratio, S(t) the price of
the security at time t, and F(t) the price of the future at
time t. (Notice that in the case of the future, the price
means the contracted future price.) The contract acquires
value as the futures price changes over time. Thus, the
initial value of the portfolio is S(0), and the value at time
t is S(t)�b (F(t)�F(0)). Let RS ¼ ½SðtÞ � Sð0Þ�=Sð0Þ be the
security return, RF ¼ ½FðtÞ � Fð0Þ�=Fð0Þ the futures return,
and RP ¼ ½PðtÞ � Pð0Þ�=Pð0Þ the portfolio return. It is
true that

RP ¼
PðtÞ � Pð0Þ

Pð0Þ
¼

SðtÞ � bðFðtÞ � Fð0ÞÞ � Sð0Þ

Sð0Þ

¼
SðtÞ � Sð0Þ � bðFðtÞ � Fð0ÞÞ

Sð0Þ
¼ RS � b

Fð0Þ

Sð0Þ
RF

As above, the variance RP can be differentiated to find
the optimal hedge ratio. The optimal value is given by

ðSð0Þ=Fð0ÞÞðCovðRS,RF Þ=VarðRF ÞÞ.However,CovðRS,RF Þ¼

CovðSðtÞ,FðtÞÞ=½Sð0ÞFð0Þ�, and VarðRF Þ ¼ VarðFðtÞÞ=Fð0Þ2,
so the new value coincides with the OLS value derived
earlier.

An alternative approach determining the hedge ratio
is to consider the investor’s utility. An appropriate utility
function is

UðRPÞ ¼ EðRPÞ � cVarðRPÞ

where c is known as the risk aversion parameter. It holds
that

UðRPÞ ¼ EðRS � b
Fð0Þ

Sð0Þ
RF Þ � cVarðRS � b

Fð0Þ

Sð0Þ
RF Þ

¼ EðRSÞ � b
Fð0Þ

Sð0Þ
EðRF Þ � cVarðRSÞ

� 2b
Fð0Þ

Sð0Þ
CovðRS,RF Þ þ b2

Fð0Þ2

Sð0Þ2
VarðRF Þ

which implies that

dðUðRPÞ

db
¼ �

Fð0Þ

Sð0Þ
EðRF Þ þ 2c

Fð0Þ

Sð0Þ
CovðRS,RF Þ

� 2cb
Fð0Þ2

Sð0Þ2
VarðRF Þ

The future is priced so that expected price changes of the
underlying security are discounted. Thus, the return to the
future is a martingale, that is EðRF Þ ¼ 0. The derivative
is zero, when b ¼ ðSð0Þ=Fð0ÞÞðCovðRS,RF Þ=VarðRF ÞÞ as
before.

In view of the expression for the minimum variance
hedge ratio (MVHR), which is equivalent to the regression
slope (conventional hedge ratio), it is common practice
amongst fund managers to calculate futures hedge ratios
using OLS regressions, and to periodically recalculate and
rebalance the hedge over time. Typically, they will use data
taken from the previous 100 trading days. Some studies
derive hedge ratios that minimize the variance of price
changes in the hedged portfolio, see Butterworth and
Holmes (2000) for details. The variance–minimizing
hedge ratio is the ratio of the unconditional covariance
between cash and futures price changes to the variance of
futures price changes. In addition, Butterworth and
Holmes (2000) estimate the (ex post) MVHR using OLS,
by regressing the log of the change (approximate return) in
the spot price against the log of the change in the futures
price. Hence,

�St ¼ cþ b�Ft þ ut ut � i:i:d:ð0, �2
Þ ð1Þ

Nevertheless, this assumes that there is no serial correlation
in returns as well as homoscedasticity. There is substantial
evidence to suggest that financial time series do not comply
with these assumptions. There is evidence that the returns
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to financial instruments exhibit heteroscedasticity, with
time varying conditional variances or volatility. Herbst
et al. (1993) argue that the above estimation of the
MVHR suffers from the problem of serial correlation in
the OLS residuals, while Park and Bera (1987) show that
the OLS model is not appropriate to estimate hedge ratios,
because it ignores potential heteroscedasticity. Also notice
that, since conditional moments change, as new informa-
tion arrives to the market, the hedge ratio (and optimal
hedge ratio) changes over time. In view of this, Myers
and Thompson (1989) argue that the hedge ratio should
be adjusted continuously, based on conditional informa-
tion and thus calculated from conditional variance and
covariance.

To derive variances and covariances, required to
compute the hedge ratio, a model accommodating time-
varying conditional second moment is employed. One
such model is the Bivariate GARCH (BGARCH) model.
BGARCH models have been used to estimate time-varying
hedge ratios in foreign exchange futures, see Kroner
and Sultan (1993), in interest rate futures, see Gagnon
and Lypny (1995), in commodity futures, see Baillie and
Myers (1991), and in stock index futures, see Park and
Switzer (1995). In BGARCH modelling, it is assumed
that conditional mean equations are somehow modelled,
no details are given now. When the variables are returns
to the index St and the returns to the future Ft:

�St ¼ Modelð�StÞ þ "S, t ð2Þ

�Ft ¼ Modelð�FtÞ þ "F , t ð3Þ

The error terms are then used in the building of condi-
tional variance and covariance equations. In the simplest
version, these equations take the form

Varð�StÞ ¼ c1 þ a1ð"S, t�1Þ
2
þ b1Varð�St�1Þ ð4:1Þ

Varð�FtÞ ¼ c2 þ a2ð"F , t�1Þ
2
þ b2Varð�Ft�1Þ ð4:2Þ

Covð�St,�FtÞ ¼ c3 þ a3"S, t�1"F , t�1 þ b3Covð�St�1,�Ft�1Þ

ð4:3Þ

In building this model nine GARCH parameters plus any
parameters from the mean models are used. Estimation is
by maximum likelihood. Having estimated the model
parameters, the conditional variance of the future and the
conditional covariance can be used in the computation of
hedge ratio (b).

More specifically, hedge ratio is estimated using daily
future and spot prices by the following model in returns
form:

RS
t ¼ �S þ "St

RF
t ¼ �F þ "Ft

"tj�t�1 � BNð0,HtÞ ð5:0Þ

"t ¼ ½"St, "Ft�
0. The form of Ht for a BGARCH( p,q) model

is written as

vechðHtÞ ¼ vechðCÞ þ
Xq
i¼1

Aivechð"t�1"
0
t�1Þ

þ
Xp
i¼1

BivechðHt�1Þ ð5:1Þ

where C is a 2� 2 positive definite symmetric matrix and Ai

and Bi are 3� 3 matrices. However, the parameterization
in Equation 5.1 is difficult to estimate, since positive defi-
niteness of Ht is not guaranteed. Also, the model contains
too many parameters. The VECH model allows for a very
general dynamic structure of the multivariate volatility
process. This specification suffers from high dimensionality
of the relevant parameter space, which makes it intractable
for empirical work. In the diagonal VECH formulation,
it is assumed that the conditional variance of the index
is not affected by the errors or by the conditional variance
of the index, nor by the conditional covariance. A similar
assumption is made for the conditional variance of the
future. It is also assumed that the conditional covariance
is not affected by the conditional variances. For this,
12 extra parameters are required for the full VECH
formulation:

Varð�StÞ

Covð�St,�FtÞ

Varð�FtÞ

2
64

3
75 ¼

c1

c3

c2

2
64

3
75þ A

ð"S, t�1Þ
2

ð"S, t�1"F , t�1Þ

ð"F , t�1Þ
2

2
664

3
775

þ B

Varð�St�1Þ

Covð�St�1,�Ft�1Þ

Varð�Ft�1Þ

2
64

3
75 ð5:2Þ

where A and B are 3� 3 matrices.
The computational burden, introduced by more than

doubling the number of parameters to be estimated, is
very significant. Moreover, neither the diagonal VECH
Bollerslev et al. (1988), nor the full VECH formulation
of bivariate GARCH enforce positive definiteness of the
covariance matrix. This can be remedied, without using
too many parameters, by the BEKK formulation, see
Engle and Kroner (1995). Positive definiteness is easily
guaranteed by the BEKK model (named after Baba,
Engle, Kraft, and Kroner 1990). The generic version of
the model is

Ht ¼ CTC þ ATEt�1E
T
t�1Aþ BTHt�1B ð6:0Þ

Ht ¼
VarðStÞ

CovðSt,FtÞ

"
CovðSt,FtÞ

VarðFtÞ

#
ð6:1Þ

Et ¼

"S, t

"F , t

" #
ð6:2Þ

1130 C. Floros and D.V. Vougas



and where A, B and C are matrices of parameters:

C ¼
C11

0

�
C12

C22

�
ð6:3Þ

The BEKK parameterization requires estimation of only
11 parameters in the conditional–covariance structure,
and also, guarantees Ht to be positive definite. Compared
to the diagonal model, the BEKK model allows for
convenient cross-dynamics of conditional variances.

In addition, Bollerslev (1990) introduces another way to
simplify Ht. He presented the ‘constant-correlation specifi-
cation’ by assuming that the conditional correlation
between "St and "Ft is constant over time. He defines Ht as

h2ss, t
h2fs, t

"
h2sf , t
h2ff , t

#
¼

hs, t
0

�
0
hf , t

�
1
�St

�
�St
1

�
hS, t
0

�
0
hF , t

�
ð7Þ

In this case, positive definiteness is assured if hS, t>0
and hF , t>0. The above (constant correlation) model con-
tains only seven parameters compared to 21 parameters
encountered in the full VECH model.

On the other hand, Park and Switzer (1995) use the
above methodology to compute hedge ratios. They employ
a bivariate cointegration model with simple GARCH
errors to estimate the optimal hedge ratio. The bivariate
cointegration GARCH(1,1) distributions of spot and
futures are given by:

�St ¼ a0 þ a1ðSt�1 � �Ft�1Þ þ "st

�Ft ¼ �0 þ �1ðSt�1 � �Ft�1Þ þ "ft

"t ¼
"st

"ft

" #
j�t�1 � Nð0,HtÞ

h2st ¼ cs þ as"
2
s, t�1 þ bsh

2
s, t�1

h2ft ¼ cf þ af "
2
f , t�1 þ bf h

2
f , t�1 ð8Þ

where �t�1is the information at time t�1, and St�1 � �Ft�1

is the error term obtained from the equation St ¼ � þ

�Ft þ et. The time-varying hedge ratio provided by the
BGARCH models is expressed as

bt ¼
hsf , t

hff , t
¼

Covð"st, "ftÞ

Varð"ftÞ

� �
ð9Þ

Alternatively, BGARCH models provide the time-
varying conditional variances and covariances of S and
F, and calculate the time-varying hedge ratio at time t�1 as

bt�1 ¼
h2sf , t

h2ff , t
¼ HRt ð10Þ

Notice that estimation of all multivariate GARCH models
above is carried out by using conditional quasi maximum
likelihood estimation. The conditional log-likelihood

function for a single observation can be written as

Ltð�Þ ¼ �ðn=2Þ logð2�Þ � ð1=2Þ logðjHtð�ÞjÞ

� ð1=2Þ"tð�Þ
0H�1

t ð�Þ"tð�Þ ð11Þ

where � represents a vector of parameters, n is the sample
size, and t is the time index.

Furthermore, Chou et al. (1996), following the method
proposed by Engle and Granger (1987), estimate the hedge
ratio, using an error correction model (ECM). Assuming
the series are cointegrated, there exists an ECM of the form

�St ¼ cþ a"t�1 þ b�Ft þ
Xn
i¼1

�i�Ft�i þ
Xk
j¼1

	j�St�j þ ut

ð12Þ

where �St ¼ St � St�1, �Ft ¼ Ft � Ft�1 and "t�1 ¼ St�1�

ðaþ bFt�1Þ. In this ECM, the coefficient b is the hedge
ratio. In addition, Ghosh (1993), and Lien (1996) calculate
the optimal hedge ratio using a VECM:

�St ¼
Xn
i¼1

��St�i þ
Xk
j¼1

��Ft�j � aszt�1 þ "S, t ð13Þ

�Ft ¼
Xn
i¼1

��St�i þ
Xk
j¼1

	�Ft�j � af zt�1 þ "F , t ð14Þ

The hedge ratio is calculated as �ð�s=�F Þ, where � is the
correlation coefficient between "S, t and "F , t, and �S and �F
are the standard deviations of "S, t and "F , t respectively.

Finally, Brooks et al. (2002) use a bivariate VECM,
which is given by

�Yt ¼ �þ
X4
i¼1

�i�Yt�i þ�vt�1 þ "t

Yt ¼
St

Ft

� �
;� ¼

�F

�S

� �
; �i ¼

�F
i,F

�S
i,F

"
�F
i,S

�S
i,S

#
;� ¼

�F

�S

� �
;

"t ¼
"F , t

"S, t

� �
ð15Þ

However, a disadvantage of VECM is that it does not
ensure the conditional variance–covariance matrix of
spot and futures returns to be positive definite, see
Lien et al. (2002).

IV. DATA

The data employed in this study comprise 525 daily obser-
vations on the FTSE/ASE-20 stock index and stock
index futures contract (August 1999–August 2001) and
415 daily observations on the FTSE/ASE Mid 40 stock
index and stock index futures contract (January 2000–
August 2001). Closing prices for spot indices were obtained
from Datastream, and closing futures prices were obtained
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from the official web page of the Athens Derivatives
Exchange (www.adex.ase.gr).

The FTSE/ASE-20 comprises 20 Greek companies,
quoted on the Athens Stock Exchange (ASE), with the
largest market capitalization (blue chips), while the
FTSE/ASE Mid 40 comprises 40 mid-capitalization
Greek companies. Futures contracts are quoted on the
Athens Derivatives Exchange (ADEX). The price of a
futures contract is measured in index points multiplied by
the contract multiplier, which is 5 Euros for the FTSE/
ASE-20 contract and 10 Euros for the FTSE/ASE Mid
40 contract. There are four delivery months: March,
June, September and December. Trading takes place in
the three nearest delivery months, although volume in the
far contract is very small. Both futures contracts are cash-
settled and marked to market on the last trading day,
which is the third Friday in the delivery (expiration)
month at 14:30 Athens time.

V. EMPIRICAL RESULTS

First, unit root tests for log-stock prices and log-futures
prices are applied for FTSE/ASE-20 and FTSE/ASE Mid
40. ADF and PP tests results for both series indicate pre-
sence of a unit root in each series. As a result, the null
hypothesis of integration cannot be rejected. For the data
in first differences, ADF and PP tests for both series are
significant, indicating that the differenced series are not
integrated. Therefore, all series are I(1), and cointegration
tests can be used to confirm whether there exists such a
cointegrating structure between spot and futures markets.
Johansen’s approach suggests that spot and futures are
cointegrated, with one cointegration relationship. Thus,
there exists a linear combination of the Greek spot and
futures price, which is not integrated.

A. The conventional approach

The optimal hedge ratio can be derived from the regression
in Equation 1, where the returns to holding spot asset are
regressed on the returns to holding the hedging instru-
ments, see Ederington (1979). Table 1 presents these results
for FTSE/ASE-20 index (Panel A) and FTSE/ASE Mid 40
index (Panel B). The hedge ratio for FTSE/ASE-20 is
0.916 086 and for FTSE/ASE Mid 40 is 0.703 317. In
both cases, the estimated hedge ratio is significantly less
than unity (i.e. b<1).

B. An error correction approach

Following Chou et al. (1996) and Lien (1996), existence of
cointegration between spot and futures prices will lead to a
downwardly biased hedge ratio if the error correction term
is neglected. Engle and Granger (1987) show that if two or

more series are cointegrated, then there exists an error
correction model (ECM). The ECM incorporates both
short- and long-run information of data. In the present
case, S and F are cointegrated, and therefore, the optimal
hedge ratio can be calculated from an Error Correction
model, see Equation 12.

An ECM is applied to obtain alternative estimates for
the hedge ratio, so they can compared with those obtained
from the conventional method. Thus, last-period’s equili-
brium error is taken into account. The results are reported
in Table 2 for FTSE/ASE-20 index and Table 3 for FTSE/
ASE Mid 40 index.

The results show a hedge ratio of 0.912302 for FTSE/
ASE-20 and a hedge ratio of 0.715086 for FTSE/ASE Mid
40. Both hedge ratio coefficients in the hedge equations
(ECM) are significantly different from zero at 5% sig-
nificance level. Ghosh and Clayton (1996) argue that
the superiority of the optimal hedge ratios arises from the

Table 2. FTSE/ASE-20: ECM (Equation 12)

Coefficient t-statistic

c �0.0004 �1.5802
�St�1 �0.2818 �4.8445*
�St�2 �0.2131 �3.9041*
�St�3 �0.0433 �0.6623
�St�4 �0.1230 �2.1007*
�St�5 �0.1366 �2.2981*
�St�6 �0.1936 �3.1683*
�St�7 �0.1296 �2.5641*
�St�8 �0.0963 �1.6360
�Ft 0.9123 49.1043*
�Ft�1 0.3370 5.9183*
�Ft�2 0.1836 3.2803*
�Ft�3 0.0564 0.8762
�Ft�4 0.1240 2.0376*
�Ft�5 0.1406 2.3332*
�Ft�6 0.1731 2.9063*
�Ft�7 0.0966 1.9358*
�Ft�8 0.0718 1.1355
"t�1 �0.1016 �3.2383*

Notes: *Indicates significance at the 5% level.
Model: �St¼cþ a"t�1þ b�Ft þ�n

i¼1�i�Ft�i þ�k
j¼1	j�St�j þ ut

where �St ¼ St � St�1, �Ft ¼ Ft � Ft�1 and "t�1 ¼ St�1�

ðaþ bFt�1Þ:

Table 1. Hedge ratio estimates (OLS)

Coefficient t-statistic

Panel FTSE/ASE-20
c �0.0001 �0.5006
�Ft 0.9160 43.1613*

Panel B. FTSE/ASE Mid 40
c �0.0008 �1.3243
�Ft 0.7033 22.8321

Notes: * Indicates significance at the 5% level.
Model: �St ¼ cþ b�Ft þ ut:

1132 C. Floros and D.V. Vougas



likelihood ratio test. In addition, comparing estimated
hedge ratio for FTSE/ASE-20, it is concluded that the
hedge ratio estimated by Equation 12 is less than the one
estimated by Equation 1. This implies that the conven-
tional model overestimates the number of futures contracts
needed to hedge the spot portfolio, Ghosh and Clayton
(1996). Since the hedge ratio, estimated by ECM, is lower
than the one estimated by OLS, then it could be said that
the hedge ratio estimated by the ECM is more efficient in
reducing the risk of spot change. Also, this implies that
Greek investors need fewer contracts to hedge their spot
risk. In other words, the lower ratio helps investors to
improve their hedging performance at a lower cost. Also,
the hedge ratio, estimated by ECM, significantly improves
the performance of the hedging activity, while ECM pro-
vides better hedge ratio. On the other hand, for FTSE/ASE
Mid 40, it is found that the traditional model underesti-
mates the number of futures contracts, needed to hedge the
spot portfolio. In this case, there is the observation of
Ghosh and Clayton (1996) that portfolio managers can
incur significant loss by using the traditional hedge ratio.

C. A Vector Error Correction approach

Furthermore, Ghosh (1993) and Lien (1996) suggest that, if
spot and futures prices are cointegrated, non-inclusion of
the error correction term in VAR model used to estimate
the hedge ratio will lead to misspecification problems and
under-estimation of the true optimal hedge ratio. In this
section, a Vector Error Correction Model (VECM) is used

to estimate hedge ratios. In particular, the unconditional
variances of the spot prices (�SS), futures prices (�FF ) and
the covariance (�SF ) of the two series is obtained from the
residual covariance matrix of the VECM. The hedge ratio
from VECM is thus calculated as h ¼ �SF=�FF . The results
are presented in Table 4. As expected, the hedge ratios,
estimated from VECM, are greater than the ones obtained
from other models. This is consistent with Ghosh (1993).

D. The multivariate GARCH model

The final approach for estimating time-varying hedge
ratios is by employing a multivariate GARCH (M-
GARCH) model. In this paper, a restricted version of the
bivariate BEKK of Engle and Kroner (1995) is employed.
The Bivariate cointegration model, with GARCH error
structure, (BGARCH), incorporates a time varying condi-
tional correlation coefficient between spot and futures
prices and generates time-varying hedge ratios. Several
BGARCH models (not reported in detail) are applied to
the data, so the variance of each series can be modelled and
hedge ratios estimated. In particular, to account for coin-
tegration, the mean equations (first moment) is modelled
with a bivariate error correction model, see Engle and
Granger (1987), and in addition, time-varying variances
and covariances are taken into account, by modelling the
second moment with a bivariate GARCH(1,1) model as
proposed in Engle and Kroner (1995) For estimation, a
BHHH algorithm with the Marquardt correction is used.
Akaike’s information criterion (AIC) is used to select the
best model (representation). Accordingly, the lower AIC
value selects the model with the better fit to the data.

Specifically, mean hedge ratios are calculated from
Equation 9. Table 5 reports the results from BGARCH
(1,1) models, with 1, 2, 3, 4, 5, and 6 lags in the mean
equation, for FTSE/ASE-20 (Panel A) and FTSE/ASE
Mid 40 (Panel B). Although most empirical applications
have restricted attention to BGARCH (1,1) model, with
one lag for �S and one lag for �F, it is found that, for
the present data, the BGARCH (1,1) model with two lags
for �S and two lags for �F has the lowest AIC value.
Therefore, this model is selected. The mean hedge ratio is
0.923 596 for FTSE/ASE-20 index, and 0.754 221 for
FTSE/ASE Mid 40 index. Remarkably, hedge ratios esti-
mated by BGARCH models are greater than the ones

Table 3. FTSE/ASE Mid 40: ECM (Equation 12)

Coefficient t-Statistic

c �0.0007 �1.4268
�St�1 �0.3784 �5.7405*
�St�2 �0.3602 �4.2029*
�St�3 �0.1302 �1.5842
�St�4 �0.0677 �1.0650
�St�5 �0.0079 �0.1314
�St�6 �0.0558 �0.9386
�St�7 �0.1548 �2.6793*
�St�8 �0.1303 �2.0068*
�Ft 0.7150 28.1097*
�Ft�1 0.4531 8.1799*
�Ft�2 0.3003 3.7098*
�Ft�3 0.1742 2.3552*
�Ft�4 0.1016 1.7073*
�Ft�5 0.0152 0.2860
�Ft�6 0.0606 1.1103
�Ft�7 0.0960 1.8438*
�Ft�8 0.0998 1.6234
"t�1 �0.0546 �1.1832

Notes: *Indicates significance at the 5% level.
Model:
�St ¼ cþ a"t�1 þ b�Ft þ

Pn
i¼1 �i�Ft�i þ

Pk
j¼1 	j�St�j þ ut

where �St ¼ St � St�1, �Ft ¼ Ft � Ft�1 and "t�1 ¼ St�1�

ðaþ bFt�1Þ:

Table 4. Hedge ratio estimates (VECM)

Variances FTSE/ASE-20 FTSE/ASE Mid 40

�SS 0.000 362 0.000 501
�FF 0.000 379 0.000 762
�SF 0.000 346 0.000 549
h 0.912 928 0.720 472

Notes: Model: h ¼ �SF=�FF .
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obtained from all other models. Hence, hedge ratios esti-
mated by multivariate GARCH models should be more
efficient in reducing risk of spot prices. Furthermore, this
implies that all other models underestimate the number of
futures contracts needed to hedge spot prices. In summary,
the results show that the hedge ratio obtained from the
BGARCH (1,1) model is superior to hedge ratios obtained
from other models, and that this hedge ratio should
provide better hedging.

VI. CONCLUSIONS

When using stock index futures for hedging (a technique to
minimize risk mainly), estimates of the so-called hedge
ratio are required. Various approaches for risk minimiza-
tion lead to different estimation approaches for the hedge
ratio. First, the naive or one-to-one hedge assumes that the
correlation between the spot and futures is perfect (hedge
ratio¼ 1). This hedge ratio fails to recognize that the cor-
relation between spot and futures prices is less than perfect
and ignores the stochastic nature of futures and spot prices,
as well as time variation of hedge ratios. A second
approach estimates the hedge ratio as the OLS coefficient
of a regression of spot returns on futures return, see
Ederington (1979), and Anderson and Danthine (1981).

This approach imposes a constant hedge ratio, as well as
constant conditional second moments over time. Since
financial returns exhibit time-varying conditional hetero-
scedasticity, the hedge ratio may be treated as varying
and estimated using GARCH models. The papers by
Cecchetti et al. (1988), Myers and Thompson (1989) and
Baillie and Myers (1991) highlight the issue of time-varying
covariance matrices (and thus hedging ratios) in futures
prices models. More specifically, Baillie and Myers
(1991), and Kroner and Sultan (1993) highlight the use of
M-GARCH models to capture time-variation and estimate
variable hedge ratio by employing bivariate conditional
heteroscedasticity models to measure optimal hedge ratio.

In this paper, the focus is on model specification and
empirical comparison of several models for (optimal)
hedge ratio estimation using data from Greek futures mar-
kets. In particular, we examine the behaviour of futures
prices from FTSE/ASE-20 and FTSE/ASE Mid 40 indices
is examined by employing various econometric methods,
which include: the traditional regression model (OLS),
ECM, VECM and the multivariate GARCH (M-
GARCH) models; implying four alternative hedging stra-
tegies. First, empirical results show that error correction
models (ECM) are superior to conventional (OLS) models.
For FTSE/ASE-20, it is found that hedge ratio, estimated
by ECM and VECM, is lower than the hedge ratios esti-
mated by the traditional (OLS) method. Using a Bivariate
cointegration model with GARCH (BGARCH), it is
shown that the hedge ratio for FTSE/ASE-20 index is
greater than hedge ratios obtained from OLS, ECM and
VECM, respectively. For FTSE/ASE Mid 40, the conven-
tional method underestimates the number of futures
contracts needed to hedge the spot portfolio. However,
the optimal hedge ratio, estimated from a BGARCH
(1,1) model, is higher than hedge ratios, estimated by
OLS, ECM and VECM, respectively. Hence, the

Table 5. Mean of the hedge ratio (BGARCH (1,1) model)

Lags AIC Hedge ratio

Panel A. FTSE/ASE-20
1 �12.321 02 0.925 789
2* �12.329 52 0.923 596
3 �12.328 50 0.924 630
4 �12.320 40 0.925 031
5 �12.311 15 0.925 859
6 �12.319 67 0.928 269

Panel B. FTSE/ASE Mid 40
1 �10.858 79 0.746 485
2* �10.920 41 0.754 221
3 �10.919 90 0.755 136
4 �10.909 70 0.753 801
5 �10.901 47 0.754 189
6 �10.885 26 0.754 372

Notes: *Selected model.
The lag length is determined using the AIC.
Model: Bivariate cointegration GARCH(1,1) of spot and futures:

St ¼ a0 þ a1ðSt�1 � �Ft�1Þ þ "st

Ft ¼ �0 þ �1ðSt�1 � �Ft�1Þ þ "ft

"st

"ft

" �
j�t�1 � Nð0,HtÞ

h2st ¼ cs þ as"
2
s, t�1 þ bsh

2
s, t�1

h2ft ¼ cf þ af "
2
f , t�1 þ bf h

2
f , t�1

Hedge ratio: bt ¼
hsf , t

hff , t
¼

Covð"st, "ftÞ

Varð"ftÞ
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Fig. 1. Hedge ratios forFTSE/ASE-20. (——)HR_OLS, (– – – –),
HR_VECM (- - - - -) HR_ECM, (— -—) HR_BGARCH
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BGARCH (1,1) model is superior to the other models, in
this respect. Finally, from Fig. 1 (for FTSE/ASE-20) and
Fig. 2 (for FTSE/ASE Mid 40), it is clear that hedge ratios
obtained from restricted versions of Bivariate BEKK
(BGARCH (1,1) models), are time-varying, as new infor-
mation arrives in the Greek market. Future research
should examine the stability of the hedge ratios over time
in Greek futures markets.
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