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Large language models in medicine
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Kabilan Elangovan    6, Laura Gutierrez    6, Ting Fang Tan6,7 & 
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Large language models (LLMs) can respond to free-text queries without 
being specifically trained in the task in question, causing excitement and 
concern about their use in healthcare settings. ChatGPT is a generative 
artificial intelligence (AI) chatbot produced through sophisticated 
fine-tuning of an LLM, and other tools are emerging through similar 
developmental processes. Here we outline how LLM applications such as 
ChatGPT are developed, and we discuss how they are being leveraged in 
clinical settings. We consider the strengths and limitations of LLMs and their 
potential to improve the efficiency and effectiveness of clinical, educational 
and research work in medicine. LLM chatbots have already been deployed 
in a range of biomedical contexts, with impressive but mixed results. This 
review acts as a primer for interested clinicians, who will determine if  
and how LLM technology is used in healthcare for the benefit of patients  
and practitioners.

Large language models (LLMs) are artificial intelligence (AI) systems 
that are trained on billions of words derived from articles, books and 
other internet-based content. Typically, LLMs use neural network 
architectures (see Box 1 for a glossary of terms) that leverage deep 
learning — already used with impressive results across medicine — to 
represent the complicated associative relationships between words in 
the text-based training dataset1,2. Through this training process, which 
may be multi-staged and involve variable degrees of human input, LLMs 
learn how words are used with each other in language and can apply 
these learned patterns to complete natural language processing tasks.

Natural language processing describes the broad field of compu-
tational research aiming to facilitate automatic analysis of language 
in a way that imitates human ability3. Generative AI developers aim 
to produce models that can create content on demand and intersect 
with natural language processing within applications, such as chatbots 
and text prediction — in other words, ‘natural language generation’ 
tasks4. After many years of development, LLMs are now emerging 
with ‘few-shot’ or ‘zero-shot’ properties (Box 1), meaning that they 

can recognize, interpret and generate text with minimal or no specific 
fine-tuning5,6. These few-shot and zero-shot properties emerge once 
model size, dataset size and computational resources are sufficiently 
large7. As development of deep learning techniques, powerful com-
putational resources and large datasets for training have advanced, 
LLM applications with the potential to disrupt cognitive work across 
sectors — including healthcare — have begun to appear (Fig. 1)5,8–11.

ChatGPT (OpenAI) is an LLM chatbot: a generative AI applica-
tion that now produces text in response to multimodal input (having 
previously accepted only text input)12. Its backend LLM is Genera-
tive Pretrained Transformer 3.5 or 4 (GPT-3.5 or GPT-4), described 
below13,14. ChatGPT’s impact stems from its conversational interac-
tivity and near-human-level or equal-to-human-level performance 
in cognitive tasks across fields, including medicine14. ChatGPT has 
attained passing-level performance in United States Medical Licensing 
Examinations, and there have been suggestions that LLM applications 
may be ready for use in clinical, educational or research settings14–16.  
However, potential applications and capacity for autonomous 
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Development of LLM chatbots
Gross size of an LLM is not the only important factor governing its util-
ity: ChatGPT is currently generating the greatest interest in healthcare 
research despite its initial backend LLM, GPT-3.5, not exhibiting the 
greatest number of parameters (Fig. 1)5,11. This is thanks to sophisti-
cated fine-tuning, specifically to respond appropriately to human input 
queries13. ChatGPT and its backend LLMs, GPT-3.5 and GPT-4, offer a 
useful case study to illustrate the architecture, resources and training 
required to develop state-of-the-art LLM applications, although the 
most recent technical developments remain confidential.

The first version of GPT (GPT-1) was released in 2018 (ref. 19). GPT-
1’s training was semi-supervised, consisting of initial unsupervised 
pretraining to program the associative relationships between words 
as used in language, followed by supervised fine-tuning to optimize 
performance in specified natural language processing tasks19. To sim-
plify optimization, structured input queries (for example, causally 
ordered passages, discrete passages and multiple choice questions 
and answers) were transformed into single linear sequences of words19. 
For pretraining, GPT-1 used the BooksCorpus dataset, a collection of 
11,308 novels containing around 74 million sentences, or 1 × 109 words. 
The general performance for this new type of model was remarkable — 
superior to bespoke models in nine of 12 natural language processing 
tasks, with acceptable zero-shot performance in many cases19.

With 1.5 billion parameters, GPT-2 (released in 2019) was 10 times 
larger than its predecessor20. Its training data were derived from  
WebText, a 40-gigabyte (GB) dataset derived from over 8 million 
documents. GPT-2 was initially evaluated on several natural language 
processing tasks — reading comprehension, summarization, transla-
tion and question answering — outperforming many bespoke models 
trained specifically for narrow use-cases, even in zero-shot settings20.  
GPT-2 demonstrated the ability of larger models to perform in  
unfamiliar tasks at state-of-the-art level but was notably weaker in text 
summarization tasks, where its performance was similar to or lesser 
than bespoke models20. Performance was improved in few-shot settings 
or with task prompts, illustrating the ability of these LLMs to integrate 
prompt information to better achieve users’ aims20.

In 2020, GPT-3 was released — with 175 billion parameters, over  
100 times larger than GPT-2 (refs. 5,20). Its more extensive training con-
ferred greater few-shot and no-shot abilities, achieving state-of-the-art 
performance in a wide variety of natural language processing tasks5. 
The training dataset consisted of five corpora, comprising 45 terabytes 
(TB): Common Crawl (webpages), WebText2, Books1, Books2 and  
Wikipedia5. In general, development of GPT-3 specifically addressed the 
weaknesses of its predecessors to engineer the most sophisticated LLM 
yet5,19,20. GPT-4 has now been released and has attained even higher per-
formance than GPT-3 in natural language processing as well as diverse 
professional competency tests14. Moreover, GPT-4 accepts multimodal 
input: images can be included in user queries14. Its architecture, devel-
opment and training data remain confidential, but GPT-4 has already 
been implemented in a version of ChatGPT and is becoming accessible 
through an application programming interface (API)14.

The pretraining task underlying published GPT models is termed 
language modeling: predicting the next and/or previous ‘token’  
(usually analogous to ‘word’) in a sequence or sentence11,21. Other models  
pretrained through language modeling include LLaMA, MT-NLG, 
Language Model for Dialogue Applications (LaMDA), Anthropic-LM, 
Pathways Language Model (PaLM) and Open Pretrained Transformer 
(OPT) (Fig. 1)11,22. Many alternative training schemata exist, ranging 
from masked language modeling (cloze tasks: predicting masked 
tokens in a sequence) and permuted language modeling (language 
modeling with randomly sampled input tokens) to denoising auto
encoding (recovering undistorted inputs after intentional corrup-
tion) and next-sentence prediction (distinguishing whether sentences 
are contiguous or not). Models developed using these alternative 
schema include Gato, DALL-E, Enhanced Language Representations 

deployment are debatable: written examinations are unvalidated 
indicators of clinical performance, and a lack of good benchmarks 
makes appraisal of performance a substantial challenge17. It seems 
likely that current LLM technology will be most effectively leveraged 
as a tool under close supervision14,16,17.

This review explores state-of-the-art LLM applications in medicine, 
using ChatGPT as an illustrative example. First, LLM development 
is explained, outlining model architecture and training processes 
employed in developing these models. Next, the applications of LLM 
technology in medicine are discussed, with a focus on published 
use-cases. The technical limitations and barriers to implementation 
of LLM applications are then described, informing future directions 
for fruitful research and development. LLMs are now at the forefront 
of medical AI with immense potential to improve the efficiency and 
effectiveness of clinical, educational and research work, but they 
require extensive validation and further development to overcome 
technological weaknesses18.

Box 1

Glossary of common terms in 
LLM development
Computational resources: the hardware required to train and deploy 
a machine learning model, including processing power, memory 
and storage.

Deep learning: a variant of machine learning involving neural 
networks with multiple layers of processing ‘perceptrons’ 
(nodes), which together facilitate extraction of higher features of 
unstructured input data (for example, images, video and text).

Few-shot learning: AI developed to complete tasks with 
exposure to only a few initial examples of the task, with accurate 
generalization to unseen examples.

Generative artificial intelligence: computational systems 
capable of producing content, such as text, images or sound, on 
demand.

Large language model: a type of AI model using deep neural 
networks to learn the relationships between words in natural 
language, using large datasets of text to train.

Machine learning: a field of AI featuring models that enable 
computers to learn and make predictions based on input data, 
learning from experience.

Model size: the number of parameters in an AI model; LLMs 
consist of layers of communicating nodes that each contain a set of 
parameters that are optimized during training.

Natural language processing: a field of AI research focusing on 
the interaction between computers and human language.

Neural network: computing systems inspired by biological 
neural networks, comprising ‘perceptrons’ (nodes), usually 
arranged in layers, communicating with one another and 
performing transformations upon input data.

Parameter: a variable within a machine learning model that 
is tuned — usually automatically — during training to maximize 
performance. In deep learning, parameters are the ‘weights’ or data 
transforming functions comprising neural network nodes.

Semantic tasks: natural language processing tasks requiring 
understanding of the meaning of linguistic inputs at a deeper level 
than the simplest surface level of words and grammar.

Zero-shot learning: AI developed to complete tasks without 
exposure to any previous examples of the task.
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with Informative Entities (ERNIE), Bidirectional Encoder Representa-
tions from Transformers (BERT) and Bidirectional and Auto-regressive 
Transformers (BART) (Fig. 1)11.

From LLM to generative AI chatbot
Further fine-tuning of an LLM is required to develop useful applica-
tions, as seen in the engineering of GPT-3.5, which produces appropri-
ate responses to free-text input prompts (Fig. 2)13. Here, fine-tuning 
involved exposing GPT-3 to prompts and responses produced by human 
researchers acting the part of an application user and AI assistant; this 
facilitated model learning of how to answer custom queries properly. 
Next, ‘reinforcement learning from human feedback’ (RLHF) was con-
ducted using a reward model trained on data generated by human 
graders tasked with ranking GPT-3.5 responses to a set of queries13. 
This reward model enabled autonomous RLHF at a far greater scale 
than could be achieved through manual grading of every single model 
response by humans13. To improve security and safety, further autono-
mous adversarial training was completed using model-generated input 
queries and outputs13.

Subsequent versions of ChatGPT, now integrating GPT-4 as its 
backend LLM, have not been explained, as new architecture, datasets 
and training are confidential14. However, it is plausible that similar 
principles are applied to those observed in the training of GPT-3.5 
and initial versions of ChatGPT, as newer and older models are prone 

to similar sorts of error — although new training schemata may have 
been developed using data derived from a rapidly growing userbase 
(Fig. 2, dotted arrow)23. Even within individual conversations, ChatGPT 
exhibits a remarkable ability to ‘learn’, with performance improved 
particularly by providing examples of the task it is challenged with — 
going from no-shot to few-shot execution. The provision of examples 
by users enables LLMs to train themselves in a process similar to the 
fine-tuning employed in their initial development24.

Other LLM chatbots besides ChatGPT are available to clinicians 
and patients. Bing’s AI chatbot (Microsoft) facilitates access to GPT-4 
without premium access to ChatGPT25. Sparrow (DeepMind) was built 
using the LLM ‘Chinchilla’ and reduces inaccuracy and inappropriate-
ness by leveraging Google search results, human feedback and an 
extensive initializing prompt — 591 words long — containing 23 explicit 
rules26. Adversarial testing of ChatGPT does not reveal a similar initializ-
ing prompt, although these tests are inconclusive, as security measures 
may have been implemented to conceal initial instructions. BlenderBot 
3 (Meta Platforms) also leverages internet access to improve accu-
racy, using OPT as its backend LLM27,28. BlenderBot 3 may continue to 
improve performance over time through use of organically generated 
data after its release, as described with relation to ChatGPT (Fig. 2,  
dotted arrow)27. Google Bard was initially built using LaMDA but 
now leverages PaLM 2, which rivals GPT-4 in terms of general and 
domain-specific aptitude29. HuggingChat offers a free-to-access 
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Fig. 1 | LLMs developed in recent years. LLMs are ordered by date of publication, 
with the oldest models at the top. Many have been developed with parameters 
in the order of billions. However, size is clearly not the only measure of progress: 
many previous models feature more parameters than the models currently 
generating the greatest impact in healthcare. For instance, GPT-3 (from which 
GPT-3.5 was developed) features just 175 billion parameters, in comparison to 
multiple models featuring over 1 trillion parameters. The largest iteration of 
LLaMA (used in many open-source alternatives to ChatGPT) features just  
65 billion parameters. Many other factors contribute to a model’s utility, such as 

its training data and schemata, fine-tuning protocols and overarching  
architecture. GPT-4 has been released, but its architecture is confidential, 
preventing inclusion in this comparison. BLOOM, BigScience Large  
Open-Science Open-Access Multilingual Language Model; CM, causally masked;  
CTLR, Conditional Transformer Language Model; GLaM, Generalist Language 
Model; GLIDE, Guided Language to Image Fiddusion for Generation and Editing; 
GLM, General Language Model; LM, language model; MT, Megatron-Turing;  
NLG, natural language generation; ViT, Vision Transformer.
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chatbot with a similar interface to ChatGPT but uses Large Language 
Model Meta AI (LLaMA) as its backend model30. Finally, cheap imitations 
of state-of-the-art LLM chatbots may be developed by individuals with 
access to relatively modest processing power31.

In their current form, LLMs are not poised to replace doctors, as 
competence in specialized examinations is far from perfect, raising 
serious issues of inaccuracy and uncertainty (in addition to ethical 
concerns, as described below)16. Although recently reported perfor-
mance across professional benchmarks has been impressive, specific 
evaluation and validation are required to demonstrate effectiveness 
and utility in any specific context14–16. Fundamentally, clinical practice 
is not the same as answering examination questions correctly, and find-
ing appropriate benchmarks to gauge the clinical potential of LLMs is a 
substantial challenge17. Nevertheless, encouraging results suggest that 
available technology is already well placed to impact clinical practice, 
and further development may accelerate and broaden the applications 
of natural language processing AI in medicine.

Reducing economic, computational and environmental costs 
of development
The development of GPT-3 and GPT-4 relied on some of the most power-
ful computational hardware available, provided by Microsoft Azure5,32. 
This energy-intensive infrastructure has a substantial carbon footprint, 
and considerable investment is committed to improving hardware and 
software efficiency to minimize the environmental costs of develop-
ment33–36. The cost and energy requirement to train LLMs has been 
trending downwards, with expectations of reaching a personally afford-
able level by around 2030 (ref. 37). However, rapid innovation is accele
rating progress even quicker than predicted. For example, researchers 
fine-tuned a small (7-billion-parameter) version of LLaMA using queries 
and outputs produced using the GPT-3.5 API31. The daughter model, 
Alpaca, achieves similar performance to GPT-3.5 despite its much 
smaller architecture, a training time in the order of hours and a total 

cost of less than US$600 (ref. 31). The performance of models produced 
with larger LLMs as a base, such as the 65-billion-parameter version of 
LLaMA — if fine-tuned with data derived from GPT-4, PaLM 2 or subse-
quently developed LLMs — could yield even more impressive results. 
In addition to reducing the economic cost and environmental impact 
of training high-performance models, such methods could massively 
increase the accessibility of LLMs. For instance, substantial reductions 
in the resource requirement for development of high-performance 
LLMs could democratize this technology, allowing more clinicians to 
develop tools for specific clinical purposes and enabling researchers 
in lower-income and middle-income countries to develop and adopt 
LLM applications.

However, the development of such ‘imitations’ could have serious  
implications for corporations investing large sums of money in develop
ing state-of-the-art models. Even if training data, model architecture 
and fine-tuning protocols are kept completely confidential, as with 
GPT-4, providing access at scale (such as through an API) allows external 
researchers to build a sufficient bank of questions and answers from 
the parent model to enable fine-tuning of open-source LLMs and pro-
duce interactive daughter models, with performance approximating  
that of the parent model14,31. Cheap imitations may compromise the 
competitive moat incentivizing investment in this sector and may lead 
to companies restricting access to their models. For example, future 
cutting-edge LLMs may not offer API access without a binding agree-
ment to not develop competing models. Moreover, proliferation of 
daughter models introduces another layer of uncertainty regarding 
processing, exacerbating ‘black box’ issues as outlined below.

Medical applications of LLM technology
In recent months, many use-cases of LLM technology, particularly 
ChatGPT, have been reported (Fig. 3). High-quality research is essential 
to establish the strengths and limitations of new technology, but few 
well-designed, pragmatic trials have sought to establish the utility of 
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Fig. 2 | Fine-tuning an LLM (GPT-3.5) to develop an LLM chatbot (ChatGPT). 
GPT-3 — trained through word prediction tasks using a vast dataset of text 
sourced from the internet — was fine-tuned to develop GPT-3.5. Fine-tuning 
involves exposure of the model to prompt–output pairings generated by 
humans, allowing the model to learn how to respond appropriately to queries. 
To develop ChatGPT, RLHF was employed. RLHF employs a reward model 
trained using human grading of a limited number of GPT-3.5 outputs to a list of 

prompts. This reward model could be used with a much larger list of prompts to 
facilitate training at greater scale than could be achieved with human grading 
of every individual output. The architecture and training processes of GPT-4 
and subsequent versions of ChatGPT are confidential but likely apply similar 
principles, as both models are liable to similar types of error. Adapted from 
Ouyang et al.13.
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implementing innovative LLM-based tools in clinical, educational or 
research settings.

Clinical applications
ChatGPT drew particular attention in medicine for attaining pass-
ing grades in United States Medical Licensing Examinations, and the  
performance of GPT-4 is markedly higher than its predecessor, GPT-3.5 
(ref. 15,38). Med-PaLM 2 (Google), a version of PaLM 2 fine-tuned on 
medical data, has recently attained state-of-the-art results, attaining 
close to expert human clinician level39. When ChatGPT responses to 
patient queries are compared to those provided by doctors (replying 
on a social network in their free time), the LLM output is preferred in 
terms of quality and empathy when assayed as a qualitative metric by 
doctor judges17. This has led to suggestions that AI is ready to replace 
doctors, but the reality is not quite so dramatic17,40–42. Performance is far 
from perfect even in medical student examinations, with no reported 
scores approaching 100%14,15,38,43,44. ChatGPT has been shown to fail 
specialist examinations for doctors and provide inaccurate informa-
tion in response to realistic patient queries regarding cardiovascular 
disease prevention16,45. Despite exhibiting an ability to interpret clinical  
vignettes and answer related questions, LLMs often fail to provide 
information to suit patients’ individual circumstances46–48. These data 
preclude autonomous deployment for decision-making or patient 
communication, particularly as patients are often unable to distinguish 
between information provided by LLMs and human clinicians49,50. As 
consecutive models tend to make quantitative but not qualitative gains —  
vulnerable to the same weaknesses, albeit at lower frequency — this is 
the likely status quo, at least for the foreseeable future14,22,50.

Domain-specific LLMs may prove useful by providing novel func-
tionality. Foresight — a model with GPT architecture fine-tuned with 

unstructured data corresponding to 811,336 patient electronic health 
records — demonstrated effectiveness in predicting and prognosticat-
ing in validation studies51. General risk models could provide a powerful 
alternative to the current myriad of tools used to stratify and triage 
patients. Other potential uses include counterfactual simulations 
and virtual clinical trials, which could accelerate clinical research by 
facilitating valuable risk–reward inferences that could inform research-
ers about which studies are most likely to provide value to patients51. 
Novel architectures, such as Hybrid Value-Aware Transformer (HVAT), 
may further improve performance of LLMs by enabling integration of 
longitudinal, multimodal clinical data52.

ChatGPT exhibits much stronger performance in tasks where  
specialist knowledge is not required or is provided in user prompts5,22,32. 
This illuminates avenues for implementation with more immediate  
promise than with clinical decision aids53. LLMs are capable of rapid 
assimilation, summarization and rephrasing of information that 
could reduce the administrative burden on clinicians. Discharge 
summaries are an instructive example — repetitive tasks involving 
interpretation and compression of information with little problem- 
solving or recollection required54. Emerging multimodal models will 
expand capabilities and compatibility with more sources of data; even 
doctors’ handwriting may be interpreted automatically and accurately14. 
Microsoft and Google aim to integrate ChatGPT and PaLM 2, respec-
tively, across the administrative workflow, allowing information from 
video calls, documents, spreadsheets, presentations and e-mails to  
be seamlessly and automatically integrated55,56. However, deployment  
in clinical contexts, where patient well-being is at risk, requires exten-
sive validation57. Quality appraisal is essential to ensure that patient  
safety and administrative efficiency are not compromised, and specific 
governance structures are required to allocate responsibility58.
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Fig. 3 | Limitations, priorities for research and development and potential 
use-cases of LLM applications. LLMs are now at the forefront of medical AI and 
have great potential in clinical work, education and research. The barriers to 
immediate implementation in these three domains represent opportunities for 
further development that may be explored by LLM developers and independent 

research teams. Currently, LLMs are limited in medicine by their lack of accuracy, 
recency, coherence and transparency and by ethical concerns. LLM technology 
may nevertheless have a substantial impact on how medical work is done, 
particularly where stakes are lower, where personal data are not required and 
where specialist knowledge is either not required or is provided by the user.
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Educational applications
The strong performance of GPT-4 and Med-PaLM 2 in medical tests 
suggest that LLMs may be useful teaching tools for students currently 
attaining a lower level in such tests38,59. GPT-4’s meta-prompt feature 
allows users to explicitly describe the desired role for the chatbot 
to take on during conversation; useful examples include a ‘Socratic 
tutor mode’, which encourages students to think for themselves by 
pitching questions at decreasing levels of difficulty until students are 
able to work out solutions to the fuller question at hand. Conversation 
logs could empower human teachers to monitor progress and cater 
teaching to directly address students’ weaknesses. Khan Academy, a 
not-for-profit educational organization, is actively researching how to 
implement AI tools, such as GPT-4, in ‘Khanmigo’ to optimize online 
teaching60. Duolingo, a primarily free platform for learning languages, 
has implemented GPT-4 in roleplay and answer explanation features 
to improve the interactivity of online learning61. Similar tools could 
potentially augment medical education15.

However, caution is warranted, as frequent mistakes — especially 
in medicine — and the lack of an uncertainty indicator to accompany 
outputs represent a considerable problem for LLM teachers: how can 
students know if they are being taught accurately?15,16,62 Perpetuating 
falsehood and bias is a risk of LLM adoption. Despite these limita-
tions, LLM tools may be used with expert oversight to efficiently pro-
duce material for teaching at an unprecedented scale, such as clinical 
vignettes, assessment questions and content summaries63. Multi-
modal LLMs could allow teachers to more quickly integrate and analyze 
student-produced material in diverse formats, with similar benefits to 
those described with clinical use-cases.

Research applications
As with clinical use-cases, the inaccuracy of LLMs precludes autono-
mous deployment, but deployment in an assisting role may markedly 
improve efficiency. Models can be instructed to summarize information 
succinctly, write at length to describe a set of provided results or rewrite 
passages to suit specified readers or audiences. Models fine-tuned with 
domain-specific information may exhibit superior performance, with 
examples derived from one LLM (BERT), including PubMedBERT and 
BioBERT64,65. This could reduce the burden of critical appraisal, research 
reporting and peer review, which forms a substantial component of 
researchers’ workload66. Issues concerning accountability would be 
ameliorated by ensuring that clinicians and researchers using these 
tools are responsible for their output67.

LLMs may facilitate novel research, such as analysis of language 
at greater scale than previously possible. Demonstrative examples 
include ClinicalBERT, GPT-3.5 and GatorTron, which are well placed 
to enable researchers to efficiently analyze large quantities of clinical 
text data68–70. LLMs may also drive research in less obviously related 
domains, as text-based information encompasses more than just 
human language. For instance, genetic and protein structure data 
are usually represented in text form and are amenable to natural lan-
guage processing techniques facilitated by LLMs. Models are already 
generating impressive results: AlphaFold deduces protein structure 
from amino acid sequences; ProGen generates protein sequences 
with predictable biological function; and TSSNote-CyaPromBERT 
identifies promotor regions in bacterial DNA71–73. Finally, generative AI 
applications used to analyze patient data may also be used to produce 
synthetic data; with appropriate quality assessment, this could aug-
ment clinical research by increasing the scale of the training corpora 
available to develop LLM and other AI tools74.

Barriers to implementation of generative AI LLMs
There are several issues and limitations preventing clinical deploy-
ment of ChatGPT and other similar applications at scale (Table 1). First, 
training datasets are not sufficient to ensure that generated informa-
tion is accurate and useful. One reason for this is a lack of recency: 

GPT-3.5 and GPT-4 (ChatGPT’s backend LLMs) were trained mostly 
using text generated up to September 2021 (refs. 14,75). As research 
and innovation are continuous across fields, including medicine, a lack 
of more recent content may exacerbate inaccuracies. The issue is espe-
cially problematic where language changes suddenly, such as where 
researchers invent new terminology or change how particular words 
are used to describe new discoveries and methods. Issues also arise with 
paradigm shifts — for example, where something that was assumed 
to be impossible is achieved. Topical examples include development 
of Coronavirus Disease 2019 (COVID-19) vaccines at unprecedented 
speed and anti-tumor pharmaceuticals directed against previously 
‘undruggable’ targets, such as KRAS76,77. Should similar events breach 
the training dataset threshold date, models will inevitably provide 
poor-quality responses to related queries. Consultation with healthcare 
professionals, therefore, remains essential.

Table 1 | Limitations of LLMs and how they may be overcome 
with future development

Limitations Description Mitigating strategies

Recency GPT training datasets 
do not include content 
created after September 
2021.
All pretraining datasets 
necessarily ‘cut off’ at an 
arbitrary date.

- �Gathering training data 
from more recent sources.

- �Real-time internet access 
(for example, Bing AI, 
Sparrow and BlenderBot 3).

Accuracy GPT-3 is limited to 570 GB 
of data.
Models are not trained 
to ‘understand’; instead, 
they are limited to 
learning probabilistic 
associations between 
words.
Training data are sourced 
from unverified and 
unvalidated websites and 
books.

- Validation of training data.
- Uncertainty indicators.
- �Fine-tuning to optimize 

medical accuracy.
- �Self-improvement through 

intelligent prompts (for 
example, chain-of-thought).

Coherence Model outputs are based 
on learned associations 
between words rather 
than understanding input 
queries or information 
used in outputs.
Fabricated facts are 
presented as if they were 
true.

- �Redeveloping model 
architecture and training 
strategies to develop true 
semantic knowledge.

- �Fine-tuning to eliminate 
presentation of inaccurate 
information.

Transparency and 
interpretability

It is unclear how models 
generate answers 
from input queries and 
architectural data and 
algorithms (known as 
‘black box’ issues).
It is unclear which parts 
of the training dataset are 
leveraged in generated 
responses.

- �Requirement for outputs 
to cite which parts of the 
dataset contributed to the 
model’s answers.

- �‘Explainable’ AI research 
and development.

Ethical concerns Responses may 
be dangerous, 
discriminatory or 
offensive.
- �Risk of privacy and 

security breaches.
- �No established 

accountability for 
consequences of model 
outputs.

- �No consensus on 
what roles AI should 
and should not play in 
medicine.

- �Fine-tuning to reduce the 
incidence of undesirable 
outputs.

- �Establishment of 
governance systems and 
overseeing authorities.

- �Installation of a reporting 
system for users to flag 
dangerous responses.

- �Consensus-building 
initiatives involving patients 
and practitioners.
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Second, training data are not verified for domain-specific accu-
racy, which leads to an issue of ‘garbage in, garbage out’ — described 
(more eloquently) by Charles Babbage, the father of modern comput-
ing, as long ago as 1864 (ref. 78). GPT-3.5 is trained on data from books, 
Wikipedia and the wider internet, with no mechanisms designed to 
cross-check or validate the accuracy of these texts5. Despite the impres-
sive size of the LLM, with 175 billion parameters, GPT-3.5 uses only 
570 GB for initial training — a mere fraction of the data available on the 
internet, estimated as 120 zettabytes (1.2 × 1014 GB)5,79. However, the 
relative scarcity of diverse, high-quality text data may nevertheless limit 
datasets, and recent estimates suggest that new text for training may 
run out in a matter of years36,80. Moreover, ChatGPT has no real-time 
access to the internet when responding to queries, so its knowledge 
base is fundamentally limited14. Alternative applications have been 
developed that can access the internet when generating responses, 
such as BlenderBot 3 and Sparrow26,27.

Third, LLMs are not trained to understand language as humans do. 
By ‘learning’ the statistical associations between words as they have 
been used by humans, GPT-3 develops an ability to successfully predict 
which word best completes a phrase or sentence5. Through intensive 
fine-tuning and further training, subsequent models may develop an 
ability to produce plausible-sounding, coherently phrased — but not 
necessarily accurate — responses to queries16. So-called ‘hallucinations’ 
have been widely reported, where inaccurate information is invented 
(as it is not represented in the training dataset) and espoused lucidly; an 
alternative term such as ‘fact fabrication’ is preferred to avoid inappro-
priate anthropomorphism81,82. On the other hand, LLMs may be stimu-
lated to self-improve: chain-of-thought prompting combined with 
encouragement of self-consistency facilitated autonomous fine-tuning 
that resulted in a 5–10% improvement in reasoning by an LLM with  
540 billion parameters83,84. However, inconsistent accuracy and a lack 
of uncertainty indicators necessitate caution with deployment16.

Fourth, LLM processing is a ‘black box’ that makes interpretability 
of processing and decision-making challenging85. Responses are not 
referenced or explained unless explicitly requested, and the actual rep-
resentativeness of explanations is unclear. This compounds accuracy 
issues, as it is not obvious how models should be retrained or fine-tuned 
to improve performance. The problem is best illustrated by reference 
to another form of generative AI based on GPT-3, DALL-E 2 — an appli-
cation that generates images in response to text-based prompts86. For 
example, users worried about skin cancer may use DALL-E 2 to find 
out how melanoma would look on their skin, but generated images 
are not necessarily accurate. Similar issues undoubtedly complicate 
ChatGPT, potentially leading to false reassurance and relayed diagno-
sis16. Explainable AI initiatives may improve interpretability, but such 
research in the context of natural language processing is relatively 
nascent, and contemporary techniques across machine learning appear 
insufficient to truly engender trust87,88.

Fifth, ethical concerns have arisen with the advent of generative 
AI models capable of producing responses indistinguishable from 
human-written text49,85,89. Using a model trained on biased data (for 
example, unverified content from books and the internet) risks per-
petuating those biases22. Many other risks posed by LLM applications 
have been noted, but discussion here focuses on those most pertinent 
in clinical contexts. Research acceleration facilitated by LLM cognitive 
assistance could feasibly lead to dangerous declines in safety stand-
ards and ethical consideration23,32,41,85. Although ChatGPT is explicitly 
designed to reduce these risks, issues remain and have been widely 
reported, and adversarial prompts may be used to ‘jailbreak’ Chat-
GPT, evading its inbuilt rules90,91. Despite intensive work to ameliorate 
these vulnerabilities, GPT-4 remains vulnerable to adversarial prompt 
approaches, such as ‘opposite mode’ and ‘system message attack’32. 
Many prominent figures in big tech, industry and academia are con-
cerned about these risks, and an open letter calling for a pause on 
development has attracted attention worldwide41. However, a lack of 

signatories representing leaders in LLM development suggests that 
innovation will continue, with developers taking responsibility for the 
safety of their releases14.

In addition, security and privacy concerns come hand-in-hand 
with adoption of internet-based platforms, particularly when run by 
a commercial enterprise92. These concerns could limit deployment 
opportunities if patient-identifiable data are prohibited from being 
input as model prompts. GPT-4 also introduces risks of person identi-
fication through assimilation of its large training data and multimodal 
input prompts32. Incorporation of personal data during model training 
is irreversible, conflicting with legal rights such as the General Data 
Protection Regulation ‘right to be forgotten’93. Ultimately, these pro-
hibitions and regulations are up to humans to follow, but autonomous 
applications raise a serious issue of accountability.

Scientific journals moved quickly to stop the accreditation of 
ChatGPT as an author, suggesting that the technology cannot pro-
vide the accountability required for authorship and should, instead, 
be treated like any other methodological tool assisting humans with 
their work94–96. Until use-cases emerge in more detail, it is difficult to 
envisage and design governance structures to establish accountability 
where AI contributes to clinical decisions. A more fundamental ethical 
concern lies within the issue of which tasks LLMs should be allowed 
to assist with or participate in. Although utilitarian arguments may 
be made to justify any intervention proven to improve patient out-
comes, stakeholders must reach a consensus on the acceptability of 
AI involvement — autonomous, semi-autonomous or as an entirely 
subordinate tool.

Finally, gauging the performance of LLMs in clinical tasks repre-
sents a considerable challenge. Early quantitative studies focused on 
examinations, which are unvalidated measures of clinical aptitude in 
real-world settings15,16,44. Qualitative appraisal has been employed in 
artificial settings, such as social media arenas, for provision of advice 
by volunteer doctors17. Ultimately, clinical interventions using LLMs 
should be tested in randomized controlled trials evaluating the effect 
on mortality and morbidity, but what benchmark should be used to 
determine whether an intervention is suitable for such an expensive 
and risky trial? These open questions, and approaches to answering 
them, are discussed in greater depth in the next section.

Directions for future LLM research and 
development
The limitations outlined above provide useful indications of where sub-
sequent research and development should focus to improve the utility  
of LLM applications (Fig. 3). Incorporation of domain-specific text  
during training can improve performance in clinical tasks97. Potential 
data sources include clinical text (for example, patient notes and medi-
cal letters) and accurate medical information (for example, guidelines 
and peer-reviewed literature). Existing models built or fine-tuned with 
clinical text include ClinicalBERT, Med-PaLM 2 and GatorTron, which 
have collectively outperformed various general LLMs in biomedical 
natural language processing tasks39,70,98. Up-to-date knowledge could 
be sourced from the internet in real time rather than relying on limited 
pretraining datasets; Bing AI and Google Bard already have this func-
tionality, and ChatGPT is following suit as it begins to accept plugins28. 
However, frequent errors in medical notes, scientific literature and 
other internet material will continue to hamper LLM performance; 
clinical practice, scientific inquiry and dissemination of knowledge are 
not, and will never be, executed perfectly99,100. Dataset quality could be 
improved by secondary verification, but the volumes of text involved 
likely preclude completely manual quality assessment. Machine learn-
ing solutions — involving initial manual grading by experts, with the 
results used to train an automatic model to process data at larger 
scale — may be optimal in terms of balancing efficiency and effective-
ness, illustrated by the reward model employed to optimize ChatGPT  
(Fig. 2)13. Additionally, task-specific fine-tuning guided by expert 
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validation (perhaps augmented with machine learning) may improve 
the accuracy and safety of outputs58.

Currently, fabricated facts and other errors inhibit confidence in 
LLM outputs and necessitate close oversight, particularly in high-stakes 
healthcare environments14–16. Before accuracy improves to match 
or exceed human expert performance, development of uncertainty 
indicators could facilitate deployment in semi-autonomous roles, 
provided that responsible clinicians are introduced into the loop where 
applications cannot provide useful information. Google Bard initially 
implemented safeguards that prevented the model from answering 
many clinical questions, but this broad-brush approach limits develop-
ment and implementation of healthcare tools.

Where LLMs are used as tools, issues of responsibility and credit 
must be addressed96,101–103. Peer-reviewed journals have taken a variety 
of approaches to the issue — some outright banning use, others requir-
ing explicit description of use40,94,104–106. Cambridge University Press 
has released explicit guidance summarized in four points107. First, use 
of AI must be declared and clearly explained (as with other software, 
tools and methodologies); second, AI does not meet the requirements 
for authorship; third, AI-generated text must not breach plagiarism  
policies; and fourth, authors are accountable for the accuracy, integrity  
and originality of text produced with or without AI. However, it is 
unclear how any regulations will be enforced: although tools are being 
developed to detect AI-generated language, their accuracy is currently 
very poor, particularly with shorter segments of text108. ‘Watermarking’ 
protocols could facilitate high-quality text generation with detect-
able signatures signaling LLM involvement, but this is not currently 
being implemented in the most popular models109. Ethics problems 
and solutions may be use-case specific, but human oversight may be 
a successful general approach to mitigating risk and ensuring that 
accountable individuals remain responsible for clinical decisions. 
Although this limits potential applications to semi-autonomous AI, 
these could nevertheless revolutionize clinical work by automating 
some time-consuming cognitive labor14.

Other ethical concerns are difficult to investigate in uninterpret-
able black box models87. As a result, despite lots of demonstrations 
of bias in the literature, investigative research and mitigating strate-
gies are far more limited54,110–112. The Crowdsourced Stereotype Pairs 
(CrowS-Pairs) benchmark enables quantification of bias, with 50% 
corresponding to a ‘perfect’ lack of American stereotyping113. Worry-
ingly, all tested LLMs exhibit bias22,113. However, active development 
has reduced the incidence of biased and dangerous output, with GPT-4 
evaluated as 82% less likely than its predecessor, GPT-3.5, to respond 
to requests for disallowed content14. To work with these currently 
ubiquitous biases, ‘data statements’ may be employed to provide con-
textual information relating to datasets that may inform researchers 
and consumers about the generalizability of reported performance 
and conclusions114. On the other hand, explainable AI initiatives that 
address the black box issue and facilitate deeper understanding of 
bias and other ethical issues could have benefits beyond LLM applica-
tions, by providing new investigational approaches and insights into 
linguistic processing in the human brain87.

The value of engineered safeguards is only as good as their robust-
ness in the face of adversarial attacks, as circumvention by nefarious 
actors may otherwise compromise efforts to mitigate risks. GPT-4 
is more robust than its predecessors thanks to extensive directed 
training14. However, further work is required to tackle its remain-
ing vulnerabilities32,91. Additional risk is conferred by the ability of 
external researchers to train their own models — perhaps without 
any safeguards — using data generated at scale by state-of-the-art 
LLMs through APIs31. GPT-4 keeps its internal workings confidential, 
to protect privacy but also to maintain a competitive advantage; API  
access may compromise both14,31. As the abilities of LLMs continue to  
expand, particular attention must be paid to guarding privacy, as models  
may be employed to identify patients from disparate information 

within training data and input queries14. Clinicians should also take 
care not to input identifiable data on platforms that may store and 
use the data for unspecified purposes. Governance structures should 
clearly state what is and is not permitted when developing and using 
these tools in medicine115.

Few experimental studies of LLM applications in medicine have 
been conducted, so there is a great demand for rigorous research to 
demonstrate and validate innovative use cases. Prospective clinical  
trials should be pragmatic, reflecting real-world clinical practice, and 
should test interventions that have a genuine chance of being imple-
mented in terms of acceptance, effectiveness and practicality. For 
instance, AI assistance models (rather than autonomous models) 
should be evaluated relative to standard practice, as it is well estab-
lished that unsupervised deployment of LLMs is unlikely to be feasible18. 
Appropriate endpoints are required to gauge success or failure, ideally 
reducing mortality and/or morbidity. Other innovative endpoints may 
include document quality (requiring validated quality assessment), 
work efficiency and patient or physician satisfaction. Some would 
contend that developing and using validated benchmarks to demon-
strate genuine potential of clinical interventions would be a neces-
sary precursor to large-scale clinical trials that may provide evidence 
justifying use of LLMs for clinical work. However, as non-LLM-based 
chatbots have been tested in randomized controlled trials before, and 
LLMs represent a meaningful advance in natural language processing, 
there may already be justification for clinical trials of LLM interven-
tions17,116. Guidelines should be used where available to maximize the 
quality of research, and further work is required to adapt and develop 
frameworks suited for appraisal and conduction of studies involving 
natural language processing117.

In the context of clinical efficiency, studies are needed to ensure 
that LLM tools actually reduce workload rather than introducing an 
even greater administrative burden for healthcare professionals16,118. 
For example, electronic health records were hailed as a fantastic 
advance in digital health, but many physicians complain about result-
ant increases in menial data entry and administrative work118. Targeted 
studies may reduce the risk of LLMs causing similar problems. In addi-
tion, health economic analysis is required to establish that implementa-
tion of LLM applications is cost-effective rather than a wasteful ‘white 
elephant’119. Researchers from different disciplines should, therefore, 
be encouraged to work together to improve the quality and rigor of 
published research120.

Conclusion
LLMs have revolutionized natural language processing, and 
state-of-the-art models, such as GPT-4 and PaLM 2, now occupy a cen-
tral position at the forefront of AI innovation in medicine. Opportuni-
ties abound for this new technology across clinical, educational and 
research work, particularly with emerging multimodality and integra-
tion with plugin tools (Fig. 3). However, potential risks are causing 
considerable concern among experts and in wider society regarding 
safety, ethics and potential replacement of humans in certain con-
texts41. Autonomous deployment of LLM applications is not currently 
feasible, and clinicians will remain responsible for delivering optimal 
and humane care for their patients14,16. Validated applications may 
nevertheless serve as valuable tools to improve healthcare for patients 
and practitioners, provided ethical and technical issues are addressed. 
Successful validation will involve pragmatic clinical trials demonstrat-
ing real benefits with minimized bias and transparent reporting.
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