
Motivation: “Too much milk” (UCB Slides, 2008)
• Great thing about OS’s – analogy between

problems in OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Too Much Milk: Correctness Properties

• Need to be careful about correctness of
concurrent programs, since non-deterministic
– Always write down behavior first
– Impulse is to start coding first, then when it
doesn’t work, pull hair out

– Instead, think first, then code
• What are the correctness properties for the

“Too much milk” problem???
– Never more than one person buys
– Someone buys if needed

• Restrict ourselves to use only atomic load and
store operations as building blocks

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory
read/write are atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

• Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and
note but before buying milk!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
leave Note;
buy milk;

}
}
remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNoteA) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead
each to think that the other is going to buy

• Really insidious:
– Extremely unlikely that this would happen, but will at
worse possible time

– Probably something like this in UNIX

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) { //X if (noNote A) { //Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece

of code for each thread:
if (noMilk) {

buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide better (higher-level) primitives
than atomic load and store

– Build even higher-level programming abstractions on this
new hardware support

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a

lock (more in the next lecture)
– Lock.Acquire() – wait until lock is free, then grab
– Lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are
waiting for the lock and both see it’s free, only one
succeeds to grab the lock

• Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

• Once again, section of code between Acquire() and
Release() called a “Critical Section”

• Of course, you can make this even simpler: suppose
you are out of ice cream instead of milk
– Skip the test since you always need more ice cream

Review: Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Review: Solution #3 discussion
• Our solution protects a single “Critical-Section” piece

of code for each thread:
if (noMilk) {

buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide better (higher-level) primitives
than atomic load and store

– Build even higher-level programming abstractions on this
new hardware support

