Motivation: "Too much milk" (UCB Slides, 2008)

- Great thing about OS's analogy between problems in OS and problems in real life
 - Help you understand real life problems better
 - But, computers are much stupider than people

Time	Person A	Person B
3:00	Look in Fridge. Out of milk	
3:05	Leave for store	
3:10	Arrive at store	Look in Fridge. Out of milk
3:15	Buy milk	Leave for store
3:20	Arrive home, put milk away	Arrive at store
3:25		Buy milk
3:30		Arrive home, put milk away

Too Much Milk: Correctness Properties

- Need to be careful about correctness of concurrent programs, since non-deterministic
 - Always write down behavior first
 - Impulse is to start coding first, then when it doesn't work, pull hair out
 - Instead, think first, then code
- What are the correctness properties for the "Too much milk" problem???
 - Never more than one person buys
 - Someone buys if needed
- Restrict ourselves to use only atomic load and store operations as building blocks

Too Much Milk: Solution #1

- Use a note to avoid buying too much milk:
 - Leave a note before buying (kind of "lock")
 - Remove note after buying (kind of "unlock")
 - Don't buy if note (wait)
- Suppose a computer tries this (remember, only memory read/write are atomic):

```
if (noMilk) {
    if (noNote) {
        leave Note;
        buy milk;
        remove note;
    }
}
```


- Result?
 - Still too much milk but only occasionally!
 - Thread can get context switched after checking milk and note but before buying milk!
- Solution makes problem worse since fails intermittently
 - Makes it really hard to debug...
 - Must work despite what the dispatcher does!

Too Much Milk: Solution #1¹/₂

- Clearly the Note is not quite blocking enough
 Let's try to fix this by placing note first
- Another try at previous solution:

```
leave Note;
if (noMilk) {
    if (noNote) {
        leave Note;
        buy milk;
    }
}
remove note;
```

- What happens here?
 - Well, with human, probably nothing bad
 - With computer: no one ever buys milk

Too Much Milk Solution #2

- How about labeled notes?
 - Now we can leave note before checking
- Algorithm looks like this:

Thread AThread Bleave note A;leave note B;if (noNote B) {if (noNoteA) {if (noMilk) {if (noMilk) {buy Milk;buy Milk;}}remove note A;remove note B;

- Does this work?
- Possible for neither thread to buy milk
 - Context switches at exactly the wrong times can lead each to think that the other is going to buy
- Really insidious:
 - Extremely unlikely that this would happen, but will at worse possible time
 - Probably something like this in UNIX

Too Much Milk Solution #2: problem!

- I'm not getting milk, You're getting milk
- This kind of lockup is called "starvation!"

Too Much Milk Solution #3

Here is a possible two-note solution:

```
Thread AThread Bleave note A;leave note B;while (note B) { //Xif (noNote A) { //Ydo nothing;if (noMilk) {}buy milk;if (noMilk) {}buy milk;}remove note A;remove note B;
```

- Does this work? Yes. Both can guarantee that:
 - It is safe to buy, or
 - Other will buy, ok to quit
- At X:
 - if no note B, safe for A to buy,
 - otherwise wait to find out what will happen
- At Y:
 - if no note A, safe for B to buy
 - Otherwise, A is either buying or waiting for B to quit

Solution #3 discussion

 Our solution protects a single "Critical-Section" piece of code for each thread:

```
if (noMilk) {
    buy milk;
}
```

- Solution #3 works, but it's really unsatisfactory
 - Really complex even for this simple an example » Hard to convince yourself that this really works
 - A's code is different from B's what if lots of threads?
 - » Code would have to be slightly different for each thread
 - While A is waiting, it is consuming CPU time » This is called "busy-waiting"
- There's a better way
 - Have hardware provide better (higher-level) primitives than atomic load and store
 - Build even higher-level programming abstractions on this new hardware support

Too Much Milk: Solution #4

- Suppose we have some sort of implementation of a lock (more in the next lecture)
 - Lock.Acquire() wait until lock is free, then grab
 - Lock.Release() Unlock, waking up anyone waiting
 - These must be atomic operations if two threads are waiting for the lock and both see it's free, only one succeeds to grab the lock
- Then, our milk problem is easy:

```
milklock.Acquire();
if (nomilk)
```

```
buy milk;
```

```
milklock.Release();
```

- Once again, section of code between Acquire() and Release() called a "Critical Section"
- Of course, you can make this even simpler: suppose you are out of ice cream instead of milk

- Skip the test since you always need more ice cream

Review: Too Much Milk Solution #3

Here is a possible two-note solution:

```
Thread AThread Bleave note A;leave note B;while (note B) {\\Xif (noNote A) {\\Ydo nothing;if (noMilk) {}buy milk;}}buy milk;}remove note A;Fremove note B;
```

- Does this work? Yes. Both can guarantee that:
 - It is safe to buy, or
 - Other will buy, ok to quit
- At X:
 - if no note B, safe for A to buy,
 - otherwise wait to find out what will happen
- At Y:
 - if no note A, safe for B to buy
 - Otherwise, A is either buying or waiting for B to quit

Review: Solution #3 discussion

 Our solution protects a single "Critical-Section" piece of code for each thread:

if (noMilk) {
 buy milk;
}

- Solution #3 works, but it's really unsatisfactory
 - Really complex even for this simple an example » Hard to convince yourself that this really works
 - A's code is different from B's what if lots of threads?
 - » Code would have to be slightly different for each thread
 - While A is waiting, it is consuming CPU time
 » This is called "busy-waiting"
- There's a better way
 - Have hardware provide better (higher-level) primitives than atomic load and store
 - Build even higher-level programming abstractions on this new hardware support