
PROCESSES, SHARED MEMORY, PIPES …

1) System calls: fork, wait, exit … (zombies, orphans) & Communication
2) SystemV Shmem: shmget, shmat, shmdt, shmctl, ftok functions
3) POSIX Shmem: shm_open, ftruncate, mmap, munmap, close, shm_unlink
4) Unnamed/Anonymous Pipes (related processes), named Pipes (FIFOs), Msg Queues

1

PROCESS - MEMORY LAYOUT OF A C PROGRAM

2

FIELDS IN PROCESS CONTROL BLOCK

3

PROCESS ID & FUNCTIONS

4

 Every process has a unique (non negative) id between 0 and 65535.
 IDs are reused when processes terminate

 Linux known processes (implementation-dependent), e.g. in pre-systemddistros
 PID 0 : scheduler process
 PID 1 : init process,
 PID 2 : is the pagedaemon

 A process ID is represented by the pid_t data type

A process can call these functions (see page 228):
#include <unistd.h>
pid_t getpid(void);

Returns: PID of calling process
pid_t getppid(void);

Returns: parent PID of calling process

FORK

 A process (called parent) can create new processes by
calling fork(). Each such process is called a child process,
since its PCB is a copy of its parent (few exceptions).

5

#include <unistd.h>

pid_t fork(void);

 The fork() function is called once, but returns twice.
 Once in child, returning 0
 Second in parent, returning the PID of the new child
 -1 on error

 Both the child and the parent continue executing their code with the
instruction that follows the call to fork()

CHILD PROPERTIES DURING FORK (MAN FORK)
PCB contents of the parent are inherited by the child:
 Real user ID, real group ID, effective user ID, and effective group ID
 The set-user-ID and set-group-ID flags
 Supplementary group IDs
 Environment
 Controlling terminal
 Session ID
 Current working directory
 Root directory
 File mode creation mask
 Open file descriptors and flags
 Signal mask and dispositions
 Resource limits
 Memory mappings
 Attached shared memory segments 6

FORK

Differences between the parent and child are:
 The return values from fork are different.
 The PIDs are different.
 The two processes have different parent process IDs:

 the parent PID of the child is the parent
 the parent PID of the parent doesn’t change

 The child’s tms_utime, tms_stime, tms_cutime, and
tms_cstime values are reset to 0

 File locks set by the parent are not inherited by the child
 Pending alarms are cleared for the child
 The set of pending signals for the child is set to the empty set 7

PROCESS TERMINATION
There are eight ways for a process to terminate.
Normal termination occurs in five ways:
1. Return from main
2. Calling exit with cleanup (ISO C)
3. Calling _exit (ISO C) or _Exit (POSIX)
4. Return of the last thread from its start routine (see book Section 11.5)
5. Calling pthread_exit (Section 11.5) from the last thread
Abnormal termination occurs in three ways:
1. Calling abort (Section 10.17)
2. Receipt of a signal (Section 10.2)
3. Response of last thread to a cancellation request (Sections 11.5, 12.7) 8

EXIT FUNCTION

To terminate a process normally use one of the exit functions:

In abnormal termination, the parent of the process can obtain a
termination status generated by the kernel using the wait or the
waitpid function (see next). If the child terminated normally,
the parent can obtain the exit status of the child. 9

#include <stdlib.h>
void exit(int status);
void _Exit(int status);

#include <unistd.h>
void _exit(int status);

int status : 0 or
EXIT_SUCCESS indicates
successful, while EXIT_FAILURE
indicates unsuccessful termination.

WAIT/WAITPID FUNCTION
After a child is created using fork(), the parent must call wait to monitor
child termination (to cleanup PCB, e.g. memory maps, close files, etc)

#include <sys/wait.h>
pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *statloc, int options);

Both return: PID if OK, 0 (see later), or −1 on error

 The wait function can block the caller until a child process terminates, whereas
waitpid has an option that prevents it from blocking.
 statloc>>8 provides the exit code of the child

 The waitpid function doesn’t wait for the child that terminates first; it can
control which process it waits for via the pid argument (see next)

10

WAITPID PARAMETERS

 Can wait for specific processes
 pid > 0, normal (specific process)
 pid == 0, wait for any child whose process group ID is equal to that of the

calling process ID
 pid < -1, wait for any child whose process group ID is equal to |pid|
 pid ==-1, wait for any child process (as wait)

 Extended functions (for detailed resource utilization statistics)
 pid t wait3(int *status, int options, struct rusage

*rusage);

 pid t wait4(pid t wpid, int *status, int options,
struct rusage *rusage); 11

WAIT FUNCTIONS

12

WAIT/WAITPID FUNCTION

13

From statloc, we can determine how a child exited using macros:
 WIFEXITED(status) is true if the child terminated normally.

Then, use WEXITSTATUS(status) to obtain the exit status.
 WIFSIGNALED(status) is true if child terminated abnormally

(by receiving a signal it didn’t catch). Then, use
WTERMSIG(status) to retrieve the signal number

 WCOREDUMP(status) to see if the child left a core image
 WIFSTOPPED(status) is true if the child is currently stopped.

Then, use WSTOPSIG(status) to determine the signal that
caused this.

Finally, with WNOHANG option, if the requested PID has not terminated,
waitpid returns immediately instead of blocking.

FORK – EXAMPLE 1

14

WAITPID EXAMPLE

15

void fork11()
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}

ORPHAN PROCESSES

What happens if parent terminates before the child?
 The child becomes an orphan and the init process

(systemd) becomes the (adopted) parent process
 The init process will now use wait to monitor

termination information consists of the PID, termination
status, and amount of CPU time taken by the process

16

ZOMBIES VS ORPHANS

 Zombie is a process that has terminated, but whose
parent has not yet called the wait/waitpid function

 Orphan is a process whose parent has terminated and is
inherited by the init process

17

INTER-PROCESS COMMUNICATION (IPC)
Processes on the same system
 Shared memory with Synchronization Objects (Locks, Semaphores, …)
 Unnamed (anonymous) Pipes
 FIFO queues
 Message queues
Processes on different systems (LAN, WAN, …)
 Sockets
 STREAMS

SHARED MEMORY

Shared memory allows two or more processes to communicate
by sharing a persistent physical memory segment to their
virtual address space
 Processes share the memory region for transferring data

 Writes are immediately visible to other processes (fastest IPC)
 However, processes must synchronize accesses to the region

 Use IPC lock, barrier, semaphore, condition variable, …

19

KERNEL SUPPORT FOR SHARED MEMORY

20

Shared M
em

ory -15.9 -Stevens &

Rago

 The shm_ids variable
stores IPC shared memory
resources

 It includes pointers to
shmid_kernel data
structures

https://www.halolinux.us/kernel-reference/ipc-shared-memory.html

User API
ipcs - lists all IPC objects
owned by the user
ipcrm - removes specific
IPC object

XSI (SYSTEM V) SHARED MEMORY

The kernel maintains a data structure for each shared memory segment:

21

XSI (SYSTEM V) SHARED MEMORY

struct ipc_perm {

key_t key;

ushort uid; // owner uid, gid, euid, egid

ushort gid;

ushort cuid;

ushort cgid;

ushort mode; // access modes

ushort seq; //sequence number

};
22

API: CREATING & ATTACHING PHYSICAL SEGMENTS

23

API: DETACHING & DELETING PHYSICAL SEGMENTS

24

SHMGET FUNCTION

 key_t key: If key is IPC_PRIVATE a new segment is created.
Otherwise an old value previously obtained using ftok function can
be used to access a previously defined shared memory segment

 size_t size: size of the shared memory segment in bytes
 int flag: bitwise OR combination of 9-bit security r/w flag with

 IPC_CREAT: Create a new segment.
 IPC_EXCL: Used with IPC_CREAT to ensure that this call creates the

segment. If the segment already exists, the call fails. 25

#include <sys/shm.h>
int shmget(key_t key, size_t size, int flag);

Returns: shared memory ID if OK, −1 on error

KEY GENERATION – FTOK()
#include <sys/ipc.h>

key_t ftok(const char *path, int id);

The ftok() function returns a key based on path and the
eight least significant bits of id. The key is usable in
subsequent calls to msgget(), semget(), and shmget().
The path argument must correspond to an existing file that
the process is able to stat().

26

SHMGET FUNCTION
When a new segment is created, several fields in shmid_ds
are initialized.
 ipc_perm structure: The mode member of this

structure is set to the corresponding permission bits of flag
 shm_lpid, shm_nattch, shm_atime, and shm_dtime

are all set to 0
 shm_ctime is set to the current time
 shm_segsz is set to the requested size in bytes

27

SHMAT FUNCTION
#include <sys/shm.h>
void *shmat(int shmid, const void *addr, int flag);

Returns: pointer to SM segment if OK, −1 on error

 const void *addr: The address at which the segment is attached
depends on addr and whether the SHM_RND bit is specified in flag.
 If addr is 0, the segment is attached at the first available address

selected by the kernel. This is the recommended technique.
 If addr is nonzero and SHM_RND is not specified, the segment is

attached at the address given by addr
 If addr is nonzero and SHM_RND is specified, the segment is attached

at the address given by (addr − (addr modulus SHMLBA))

28

SHMAT FUNCTION

 int flag: refers to following fields
 SHM_EXEC (Linux-specific; since Linux 2.6.9): Allow the contents of the

segment to be executed. The caller must have execute permission
 SHM_RDONLY: Attach the segment for read-only access. Otherwise, the

segment is attached as read–write
 SHM_REMAP: (Linux-specific) This flag specifies that the mapping of the

segment should replace any existing mapping in the range starting at
shmaddr and continuing for the size of the segment. In this case,
shmaddr must not be NULL.

29

#include <sys/shm.h>
void *shmdt(const void *addr);

Returns: 0 if OK, −1 on error

SHMDT FUNCTION

30

 addr is the value that was returned by a previous call to shmat

If successful, shmdt detaches the segment (decrements shm_nattch
counter), but does not remove it from the system. The segment can be
later attached to another process via shmat, or later removed by calling
shmctl with a command of IPC_RMID.

SHMCTL FUNCTION

31

#include <sys/shm.h>
int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Returns: 0 if OK, −1 on error

 cmd : specifies command to be performed on the shmid segment, e.g.
 IPC_STAT: Fetch the shmid_ds structure for this segment, storing it

in the structure pointed to by buf.
 IPC_SET: Set the following three fields from buf to the shmid_ds

structure associated with shmid segment: shm_perm.uid,
shm_perm.gid, and shm_perm.mode (requires privileges)

 IPC_RMID: Remove the shmid segment (requires privileges). The
segment is not removed until the last process using the segment
terminates or detaches it (see shm_nattch)

 buf: is a pointer to the shmid_ds structure (parameters, statistics)

POSIX SHARED MEMORY

POSIX shared memory allows two or more processes to
communicate by attaching a persistent physical memory segment
to their virtual address space
 Processes share the memory object for transferring data

 Writes are immediately visible to other processes (efficient)
 However, processes must synchronize accesses to the region

 Use IPC: lock, barrier, semaphore, condition variable, …

Many types of storage data could be shared in the memory, e.g.
data files, disks, remote files, etc 32

POSIX SHARED MEMORY LAYOUT

33

POSIX SHARED MEMORY

34

struct stat {
dev_t st_dev; // ID of device containing file
ino_t st_ino; // inode number
mode_t st_mode; // protection
nlink_t st_nlink; // number of hard links
uid_t st_uid; // user ID of owner
gid_t st_gid; // group ID of owner
dev_t st_rdev; // device ID (if special file)
off_t st_size; // total size, in bytes
blksize_t st_blksize; // blocksize for file system I/O
blkcnt_t st_blocks; // number of 512B blocks allocated
time_t st_atime; // time of last access
time_t st_mtime; // time of last modification
time_t st_ctime; // time of last status change

};

API: CREATING PHYSICAL SEGMENTS

35

shared memory object name O_RDONLY,
O_CREATE,
O_EXCL,
O_TRUNC

e.g.
S_IRWXU |
S_IRWXG

file descriptor

 int shm_open(const char *name, int oflag, mode_t mode);

file descriptor

 int ftruncate(int fd, off_t length);

size (bytes)

 void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

PROT_READ|PROT_WRITE
MAP_SHARED
MAP_PRIVATE file descriptor

Programs using
POSIX shared
memory are
linked with real-
time library
(gcc –lrt)

API: DETACHING & DELETING A SHARED OBJECT

36

address of unmap

 int munmap(void *addr, size_t length);

 int close(int fd);

 int shm_unlink(const char *name);

 int fstat(int fd, struct stat *buf);

 int fchown(int fd, uid_t owner, gid_t group);

 int fchmod(int fd, mode_t mode);

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <errno.h>

size of mapped region

shared memory object name

MANAGING POSIX SHARED MEMORY - SUMMARY

A POSIX shared memory segment API.
 Create and/or open a shared memory object with shm_open(). A file

descriptor is returned if shm_open() runs successfully
 Set the shared memory object size using ftruncate()
 Map the shared memory object into the current virtual address space of

the calling process using mmap()
 Access the shared memory (read/write/modify)
 Unmap the shared memory from virtual address space of the calling

process using munmap()
 Close the file descriptor of the shared memory object with close()
 Delete shared memory object using shm_unlink() 37

SHMOPEN FUNCTION

 const char *name: defines a specific path name, usually /somename
 int oflag: bit mask OR combination
 O_RDONLY: Open the object for read
 O_RDWR: Open the object for read/write access
 O_CREAT: Create shared memory object if it does not exist, use euid/egid & mode bits except umask)
 O_EXCL: if O_CREAT was specified, return an error.
 O_TRUNC: initialize the shared memory object to zero bytes
 mode_t mode: defines file access mode bits. Symbolic macro definitions from <sys/stat.h>

38

#include <sys/mman.h>
#include <sys/stat.h> // For mode constants
#include <fcntl.h> // For O_* constants */
int shm_open (const char *name, int oflag, mode_t mode);
Returns: a nonnegative file descriptor if OK, −1 on error

Create and/or open new/existing a POSIX shared memory object. A file descriptor is
returned if successful

SHMOPEN –MACROS FOR ACCESS PERMISSION
 S_ISUID: set-user-ID on execution
 S_ISGID: set-group-ID on execution
 S_ISVTX: on directories, restricted deletion flag
 S_IRUSR: read permission, owner
 S_IWUSR: write permission, owner
 S_IXUSR: execute/search permission, owner
 S_IRGRP: read permission, group
 S_IWGRP: write permission, group
 S_IXGRP: execute/search permission, group
 S_IROTH: read permission, others
 S_IWOTH: write permission, others
 S_IXOTH: execute/search permission, others

 S_IRWXU: Read, write, execute/search by owner
 S_IRWXG: read, write, execute/search by group
 S_IRWXO: read, write, execute/search by others

39

FTRUNCATE FUNCTION

40

#include <unistd.h>
int ftruncate(int fd, off_t length);

Returns: 0 if OK, −1 on error

 int fd: file descriptor mapped to shared memory
 off_t length: number of bytes

Define shared memory of length bytes

#include <sys/mman.h>
void *mmap(void *addr, size_t len, int prot, int flag, int fd,

off_t off);
Returns: starting address of mapped region if OK, −1 on error

MMAP FUNCTION

41

 void *addr: specify start address of mapped region. If 0, kernel chooses
this. The return value of this function is the starting address of the mapped area

 size_t len: set the number of bytes to map
 int prot: specify protection of the mapped region

Map the shared memory object into the virtual address space of the calling process.

MMAP FUNCTION

42

 int flag: affects attributes of the mapped region
MAP_SHARED: This flag describes a shared mapping, where updates are
are carried through to the underlying file and are visible to other processes
mapping the same region
MAP_PRIVATE: store operations into the mapped region write to a private
copy of the mapped file (copy-on-write)
…

 int fd: file descriptor of mapped file
 off_t off: starting offset of the file to map

#include <sys/mman.h>
int munmap(void *addr, size_t len);

Returns: 0 if OK, −1 on error

MUΝMAP FUNCTION

43

 void *addr: specify start address of shared region to be unmapped.
 size_t len: number of bytes to unmap

The memory-mapped region is automatically unmapped when the process
terminates or we can unmap a region directly by calling munmap

CLOSE FUNCTION

44

#include <unistd.h>
int close(int fd);

Returns: 0 if OK, −1 on error

Closes a file descriptor, so that it no longer refers to any file and may be reused

#include <sys/mman.h>
#include <sys/stat.h> // For mode constants
#include <fcntl.h> // For O_* constants
int shm_unlink(const char *name);

Returns: 0 if OK, −1 on error

SHM_UNLINK FUNCTION

45

Remove the shared memory object that was created with shm_open

EXTRA FUNCTIONS - POSIX SHARED MEMORY

 Obtain a stat structure that describes the shared memory
object using fstat(). For example, this returns the size
(st_size), permissions (st_mode), owner (st_uid),
and group info (st_gid). See also Linux stat command

 Change owner of a shared memory with fchown()
 Change permissions of a shared memory using fchmod()

46

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
int fstat(int fd, struct stat *statbuf);

Returns: 0 if OK, −1 on error

FSTAT FUNCTION

47

Stat info on file descriptor

https://pubs.opengroup.org/onlinepubs/007908799/xsh/sysstat.h.html

#include <unistd.h>
int fchown(const char *pathname, uid_t owner, gid_t group);

Returns: 0 if OK, −1 on error

FCHOWN FUNCTION

48

Change file permissions

#include <sys/stat.h>
int fchmod(int fd, mode_t mode);

Returns: 0 if OK, −1 on error

FCHMOD FUNCTION

49

Change file ownership

PIPE VS SHARED MEMORY

50

FIFO buffer (default
size 4096 bytes)

FILE VS PIPE

 Both can be used to share information among processes
 Both share the file API
 Semantic difference

 A pipe is a FIFO queue
 Pipe data can only be read once (data is lost after read)

 A storage in a file is persistent
 File data can be used many times.

 Performance difference
 A pipe is usually realized in memory (r/w), a file on disk (I/O)

UNNAMED VS NAMED PIPES (FIFOS)
 Unnamed pipes

 An unnamed pipe does not associate with any physical file
 It can only be shared by related processes (descendants of a

process that creates the unnamed pipe)
 Created using system call pipe()

 Named pipes
 treat them as files (mknod , mkfifo, open, read/write)
 can be shared by any process
 discussed in detail later

52

UNNAMED PIPES

 Oldest form of IPC in UNIX
 Historically they are half duplex (uni-directional)
 Pipes used between processes that have a common ancestor

 Typically, a process forks after creating an unnamed pipe
 pipe can be shared between parent & child.

 Default size 65K bytes (16 pages, limit defined by POSIX)
 Cannot write more than 65K bytes (PIPE_BUF)

Extra functionality (see manual)
 nonatomic writes for large sizes
 nonblocking operations via fcntl 53

UNNAMED PIPES

A pipe is created by calling the pipe function
#include <unistd.h>

int pipe(int fd[2]);

Returns: 0 if OK, −1 on error

Two file descriptors are returned through the fd argument:
 fd[0] is open for reading, and
 fd[1] is open for writing
 output of fd[1] is the input for fd[0] (since, it’s a pipe)

An open file descriptor is closed by calling close
#include <unistd.h>

int close(int fd);

Returns: 0 if OK, −1 on error
54

UNNAMED PIPES

Data is written to the pipe using write function (asynchronous)
#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t nbytes);

Returns: number of bytes written if OK, −1 on error

Data is read from the pipe using read function (blocking)
#include <unistd.h>

ssize_t read(int fd, void *buf, size_t nbytes);

Returns: number of bytes read, 0 if end of file, −1 on error

55

FORK THE PROCESS?

56Pipe after fork Pipe from parent to child
(example)

PIPE AFTER FORK
What we do after fork depends on the
direction of data flow. For example
(right previous image)
 if the parent process wants to

write to the pipe, it must close its
read end of the pipe, and
correspondingly

 if the child process wants to read
from the pipe, it must close its
write end of the pipe

This provides a one-way flow of data
between the two processes using pipe
messages

57

Pipe from parent to child

UNNAMED PIPES

 Reading from an empty pipe that has its write end closed returns
0 to indicate EOF

 Writing to a pipe when the read end has been closed generates
SIGPIPE signal
 Ignoring the signal, or returning from the handler causes the

corresponding write to return an error with errno set to EPIPE

PIPE QUESTIONS

 How come each end during fork() works both ways?
 How is a a pipe shared between two processes?

 When is it declared?
 How must the processes be related?
 Can the pipe be used by threads also?

 How can the pipe be used to accomplish one-way communication?
 What happens when we use both I/O mechanisms in the same program?
 How to fix the order in printing?
 How can full-duplex be achieved?
 If multiple processes share one end of a pipe, how can we be sure

transmissions aren’t interleaved?

POPEN/PCLOSE - LINK COMMAND TO UNNAMED PIPE

 popen creates a pipe (or a socket), forks, closes un-needed ends of pipe,
execs a shell to run command in child, and waits for command to finish

 type either r to read from stdout, or w to write to stdin (of child)
 FILE* returned is the created pipe

 pclose closes standard I/O stream, waits for the command to terminate
and returns the exit status

#include <stdio.h>

FILE *popen(const char *command, const char *type);
Returns: pointer to open stream if OK, NULL on error

#include <stdio.h>

int pclose(FILE *stream);
Returns: exit status of command if OK, −1 on error

EXAMPLE – FROM COMMAND TO PROGRAM VIA POPEN
#include <stdio.h>
int main() {

FILE *fp;
char buffer[100];a
if ((fp = popen("ls -l", "r")) != NULL) {

while(fgets(buffer, 100, fp) != NULL) {
printf("Line from ls:\n");
printf(" %s\n", buffer);

}
pclose(fp);

}
return 0;

}

HANDS ON - EXECV & OTHER EXEC FUNCTIONS

The exec() family of functions replace the current process PCB image (text,
data, heap, stack segments) with a new image from disk (using vfork)
#include <unistd.h>

 int execv (const char* pathname, const char** argv, …);

 int execve (const char* pathname, const char** argv, const char** env);

 int execl (const char* pathname, const char* arg, …);

 int execle (const char* pathname, const char* arg, …, const char** env);

 int execvp (const char* filename, const char** argv);

 int execlp (const char* filename, const char* arg, …);

#include <unistd.h>

int execv(const char * path, char * argv[])

Returns: 0 if OK, −1 on error

REDIRECTING STANDARD I/O - DUP & DUP2

 dup returns a new file descriptor that is a copy of fd (first available in file table)
 For example, to dup a read pipe end to stdin (0)

 close unused file descriptor (stdin), then
 dup the read end of the pipe

 Close unused file descriptors; a process should have only one file descriptor open on a pipe end

 dup2 duplicates fromFD to toFD
 If toFD is open, it must be closed first

 If the ends of a pipe are in fd, then dup2(fd[1],1) redirects stdout to the write end of the pipe
 Must close fd[1] (unused read end of pipe)

#include <unistd.h>
int dup(int fd);
int dup2(int fromFD,int toFD);

If a process communicates only via pipes, then use dup, dup2 to redirect
standard I/O (stdin, stdout) to the appropriate pipe end

DUP EXAMPLE
if (fork() == 0) { /* Child process */

close(1) ; dup(fd[1]) ; // Redirect stdout to pipe
close(fd[0]);
for (i=0; i < 10; i++) {

printf("%d\n",n); n++;
}

}
else { /* Parent process */

close(0) ; dup(fd[0]) ; // Redirect stdin to pipe
close(fd[1]);
for (i=0; i < 10; i++) {

scanf("%d",&n);
printf("n = %d\n",n); sleep(1);

}
64

PIPE EXAMPLES

65

Q &A

66

