
POSIX THREADS &
MUTEX/BARRIER/SEMAPHORES

1

POSIX THREADS & MUTEX

Creation & Termination: pthread_create/pthread_join
Sync with Mutex: pthread_mutex_init/lock/unlock
Thread & Mutex attributes: pthread_attr_*/pthread_mutex_attr

BOOK

 Read List
 POSIX thread creation, termination and synchronization via

mutex in Chapter 11.1 to 11.6.1 (pages 383-401) of main book
 Thread attributes (e.g., pthread_attr_init/destroy)

in Chapter 12.3 (pages 426-427) of main book
 Mutex attributes (pthread_mutex_attr) in Chapter 12.4.1

(pages 430 - 431) of main book

3

INTRODUCTION

A thread defines a single execution stream within a process
In this chapter, we examine
 How to manage multiple threads of control (or simply

threads) to perform multiple tasks within a single process
 All threads within a single process can access the same

process components, such as file descriptors and memory

Thread concepts -11.2

4

COMPARE PROCESSES & POSIX THREADS

5

Threads -11.

THREADS VS PROCESSES

Different than process
 No initial system calls, like shared

memory, sockets etc
 Simpler/faster communication &

context switch (lightweight)
Similar to process
 Each process/thread can be

independently scheduled to a CPU
 Both viewed by Linux kernel as
task_struct 6

Threads -11.

function f

function g

code

data

heap

PC1

PC2

PC3

stack 1

stack 2

stack 3

SP1

SP2

SP3

THREE THREADS WITHIN A PROCESS

COMPARE PROCESSES & POSIX THREADS
A thread consists of the info to represent an execution context, including
 a thread ID that identifies the thread within a process,
 a set of register values,
 a stack,
 a scheduling priority and policy,
 a signal mask,
 an errno variable, and
 thread-specific data (Section 12.6)

Everything within a process is sharable among the threads in a process,
including the text of the executable program, the program’s global and
heap memory, the file descriptors

7

Threads -11.

PTHREAD ID
 Every thread has a unique thread ID (TID) that identifies the

thread in the kernel
 The TID is of pthread_t type
 A thread can obtain its own TID by calling the
pthread_self function
#include <pthread.h>

pthread_t pthread_self(void);

Returns: the thread ID of the calling thread

Thread Identification -11.3

8

PTHREAD CREATION

Threads are created by calling pthread_create
#include <pthread.h>

int pthread_create(pthread_t *restrict tidp,
const pthread_attr_t *restrict attr,
void *(*start_rtn)(void *),
void *restrict arg);

Returns: 0 if OK, error number on failure

Thread C
reation -11.4

9

PTHREAD CREATE - ARGUMENTS
 pthread_t *restrict tidp: Thread ID pointer of the newly

created POSIX thread, when pthread_create returns
successfully

 const pthread_attr_t *restrict attr: used to
customize thread attributes: concurrency level, scheduling
policy/parameters, detach state, stack address/size, stack guard size.
Setting this to NULL creates a thread with default attributes

 void *(*start_rtn)(void *): The newly created thread
runs start_rtn function.

 void *restrict arg: passed as single argument to
start_rtn()function (typeless pointer). If you need to pass more
than one argument, store them in a struct and pass the address of the
struct to arg (casting to void *)

Thread C
reation -11.4

10

PTHREAD_SCOPE_SYSTEM

PTHREAD_CREATE

When a thread is created,
there is no guarantee it will
run first

The newly created thread
 has access to the process

global address space
 inherits the environment

and signal mask (the set
of pending signals is
cleared)

Thread C
reation -11.4

12

PTHREAD TERMINATE
A pthread can exit in three ways.
1. The thread can return from the start routine start_rtn. The

return value is the thread’s exit code
2. The thread can be canceled by another thread in the same process

#include <pthread.h>

int pthread_cancel(pthread_t tidp);

Returns: 0 if OK, error number on failure

3. The thread can call pthread_exit

 void *rval_ptr: a typeless pointer (i.e. constant, or pointer to struct),
available to the process (or other threads) by calling pthread_join

#include <pthread.h>
void pthread_exit(void *rval_ptr);
Returns: 0 if OK, error number on failure

Threads -11.5

13

PTHREAD TERMINATE

The pthread_join() function waits for the thread specified by
thread, to terminate.

14

Threads -11.

#include <pthread.h>
int pthread_join(pthread_t tidp, void **rval_ptr);

Returns: 0 if OK, error number on failure

PTHREAD CREATE & TERMINATE – EXAMPLE 1
…
void *addtoX(void *);
int main() {

pthread_t tid1, tid2, tid3;
int x[3]={11, 12, 13};

// create 3 threads
 pthread_create(&tid1, NULL, addtoX, (void *)(intptr_t) x[0]);
 pthread_create(&tid2, NULL, addtoX, (void *)(intptr_t) x[1]);
 pthread_create(&tid3, NULL, addtoX, (void *)(intptr_t) x[2]);

 // wait for all 3 threads to terminate
 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 pthread_join(tid3, NULL);
}
void *addtoX(void *arg) {
 int y = (intptr_t) arg; // *((int*) arg);

printf("Thread argument is :%d\n", y);
return 0;

}

Threads -11.

15

Compile : gcc name.c – lpthread
Run: ./a.out
The program gives us:
Thread argument is :12
Thread argument is :13
Thread argument is :11

PTHREAD CREATE & TERMINATE

Multiple examples in :
 Book (Stevens & Rago): pages 389 -390
 yolinux :

http://www.yolinux.com/TUTORIALS/LinuxTutorialPos
ixThreads.html

Threads -11.

16

PTHREAD SYNCHRONIZATION (SAME FOR PROCESS)
When multiple threads share memory, we must make sure
that each thread has a consistent view of its data
If each thread uses variables that other threads don’t read or
modify, no consistency problems exist. Similarly, if a
variable is read-only, there is no consistency problem with
more than one thread reading its value at the same time.
However, when one thread modifies a variable that
other threads want to read or modify, we must
synchronize the threads. This ensures that they don’t use
an invalid value when accessing the variable.

Thread Synchronization -11.6

17

EXAMPLE - PTHREADS ACCESS SAME VARIABLE

Let thread A read the variable and then write a new value to it, and assume
write operation takes two memory cycles. If thread B reads the same variable
between the two write cycles, it will read an inconsistent value.

Thread Synchronization -11.6

18

Interleaved memory
cycles with two threads

EXAMPLE – MULTIPLE PTHREADS ACCESS A VARIABLE

To solve the problem with read-modify-write,
 if it’s not important which thread

changes the variable first, threads use a
lock that allows only one thread to
access the variable at a time
 For example, thread A acquires the lock

before updating the variable, and thus thread B
is unable to read the variable until thread A
releases the lock

 If it’s important who updates first, we
use a barrier to temporally separate
accesses (see later)

(Note: this is similar for processes)

Thread Synchronization -11.6

19

EXAMPLE – MULTIPLE PTHREADS ACCESS A VARIABLE
We must synchronize two or
more threads that modify the
same variable at the same time
Consider the case in which we
increment a variable (next figure).
The increment operation is usually
broken down into three steps.
1. Read the memory location

into a register
2. Increment the value in the

register
3. Write the new value back to

the memory location

Thread Synchronization -11.6

20
Two unsynchronized threads incrementing the same variable

MUTEX: LOCK & UNLOCK PRIMITIVES
Lock-based programming protects data in a critical section by
ensuring access by one thread at a time!
A mutex is a construct that allows
o locking a mutex before accessing a shared resource, and
o unlocking the mutex when done

Any thread locking a mutex is blocked until the mutex is released
Upon release of the lock, all blocked threads are made runnable, and
the first one to run locks the mutex atomically and proceeds, while
others block (sleeping)…

Threads -11.

21

STATIC MUTEX DEFINITION & INITIALIZATION

 A mutex variable is represented by the
pthread_mutex_t data type

 Before we can use a mutex variable, we first initialize it by
setting it to constant PTHREAD_MUTEX_INITIALIZER
or calling pthread_mutex_init function

Note: The second type of initialization must always be used if lock
is dynamically allocated

Threads -11.

22

DYNAMIC MUTEX – MUTEX_INIT & _DESTROY
#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Both return: 0 if OK, error number on failure

To initialize a mutex with the default attributes, we set attr to NULL. We
discuss mutex attributes (fairness, processes/threads) later
If we allocate the mutex dynamically (e.g. by calling malloc), then we need to
call pthread_mutex_destroy before freeing the memory

Threads -11.

23

MUTEX – LOCK/UNLOCK OPERATIONS

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

All return: 0 if OK, error number on failure

To lock a mutex, we call pthread_mutex_lock. If the mutex is already
locked, the calling thread will block until the mutex is unlocked. To unlock a
mutex, we call pthread_mutex_unlock Threads -11.

24

EXERCISE 2 - SOLVE DATA RACE (MUTEX)
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <pthread.h>

pthread_mutex_t L = PTHREAD_MUTEX_INITIALIZER;
int x = 0; // global share variable

void *addtoX(void *arg) {
int i;
int y = (intptr_t) arg;
printf("Before sum :i Thread argument is :%d\n", y);
for(i = 0; i < 10000; i++) {

pthread_yield(); // yield to other threads
 pthread_mutex_lock(&L);
 x=x+1;
 pthread_mutex_unlock(&L);

}
printf("After sum :Thread argument is :%d\n", y);
return 0; }

Thread Synchronization Exam
pe

25

EXERCISE 2 - SOLVE DATA RACE (MUTEX)
int main() {

pthread_t tid[3];
int i;

// threads creation
for (i=0; i<3; i++)

pthread_create(&tid[i], NULL, addtoX, (void *)(intptr_t) i);

// wait for all three threads to terminate
for (i=0; i<3; i++)

pthread_join(tid[i], NULL);

printf("x:%d \n", x);
fflush(stdout);

return 0;
}

Threads -11.

26

EXERCISE 2 - SOLVE DATA RACE (MUTEX)
1. Download program_name below from ECLASS folder:

06b_simple_pthreads_with_data_race.c

2. Compile and run the program on the server or locally
(in your Virtualbox VM)

gcc name –lpthread

./a.out

3. Read comments at the top and understand the code

Threads -11.

27

EXERCISE 2
1. Change the for loop to 10000
2. Uncomment pthread_yield function
3. Compile and run the program again

gcc name –lpthread

./a.out

What do you notice if you run several time with/without lock?
What is the effect of pthread_yield?

Threads -11.

28

EXERCISE 3 – UPLOAD TO ECLASS

1. Use X threads to compute matrix vector product Bnx1 = Amxn x Xnx1

Bnx1

2. Use clock_getttime to evaluate total execution time for different X
#include <time.h>
int clock_gettime(clockid_t clk_id, struct timespec *tp);

https://gist.github.com/pfigue/9ce8a2c0b14a2542acd7
3. Use pthread_setaffinity_np to balance threads across all CPUs

EXERCISE 3 – HELP: PIN A PTHREAD TO CPU
Call pin_cpu(0)from thread function to fix execution to CPU 0

void pin_cpu(int cpu) {
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(cpu, &cpuset);
if (pthread_setaffinity_np(pthread_self(), \

sizeof(cpu_set_t), &cpuset) < 0)
err(1, "failed to set affinity");

} 30

Threads -11.

EXERCISE 4
1. Write lock-based multithreaded code with X threads to

compute the dot product of vectors a[n] & b[n] into c (integer)

2. Use clock_getttime to evaluate speedup for different X
#include <time.h>

int clock_gettime(clockid_t clk_id, struct timespec *tp);

https://gist.github.com/pfigue/9ce8a2c0b14a2542acd7
3. Use pthread_setaffinity_np to balance threads

across all available CPUs

EXERCISE 5 – MATRIX VECTOR MULTIPLICATION

1. Write multithreaded code with X threads to perform matrix
vector multiplication, i.e. x = A x B (where A, B, C are
matrices of sizes nxn, nx1 and nx1)

2. Do you need locks to solve this problem?

EXAMPLE: CONCURRENT SERVERS (TCP/UDP)
Dispatcher
process

Request dispatched to
a worker process Server

Worker
process

MULTIPROCESS ARCHITECTURE – CHROME BROWSER

 Google Chrome Browser is multiprocess with 3
different types of processes:
Browser process manages user interface, disk and network I/O
Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

 Runs in sandbox restricting disk and network I/O, minimizing
effect of security exploits

Plug-in process for each type of plug-in

RELATED FUNCTIONS

35

Threads -11.

#include <unistd.h>

long sysconf(int name); See page 42 (2.5.4)

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

#include <sys/times.h>

clock_t times(struct tms *buf); See page 280 (8.17)

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

See pages 426-427 (12.3)

See pages 430 - 4317 (12.4.1)

THREAD/PROCESS SYNCHRONIZATION

Deadlock Avoidance
Barriers

BOOK

 Read List
 Deadlock avoidance in Chapter 11.6.1 (pages 402 – 407) of

main book
 Barriers in Chapter 11.6.8 (pages 418 – 419) of main book

BERNSTEIN CONDITIONS - THEORY

BERNSTEIN CONDITIONS – EXAMPLE

BERNSTEIN CONDITIONS – LOCK OR BARRIER?
 P1: x = x + y (RMW)

 P2: x = x + z (RMW)

 P1: x = x + y

 P2: y = z + w

 P1: x = x + y

 P2: y = z + x

DEADLOCK – MULTIPLE MUTEXES

A protocol deadlock may occur in a program with multiple
mutexes if the following situation occurs:
 one thread, holding mutex A, blocks while trying to lock a

second mutex B, while
 another thread holding mutex B, attempts to lock the first

mutex A

Neither thread can proceed, since each one requires a resource
that is held by the other. Notice that this dependency cycle may
involve one or more threads

DEADLOCK AVOIDANCE – CONTROLLING LOCK ORDER

A deadlock can only occur if one thread attempts to lock
mutexes in the opposite order from another thread.
Deadlocks can be avoided by carefully controlling the
order in which mutexes are locked
For example, assume that you have two mutexes A and B,
that you need to lock at the same time. If all threads lock
mutex A before mutex B, no deadlock can occur (deadlock
with other resources is still possible).

DEADLOCK AVOIDANCE

Sometimes, it is difficult to apply lock order.
Alternatively, one can use pthread_mutex_trylock
(nonblocking call) to avoid deadlock.
If pthread_mutex_trylock is successful, then the
process can proceed. Otherwise, the process can release the
locks held, and try again later.

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);
All return: 0 if OK, error number on failure

EXAMPLE – RUN – EXERCISE 1
1. Download from ECLASS folder:

08a_pthread_2locks_deadlock_avoidance.c

2. Compile and run the program on the server or locally
(in your Virtualbox VM)

gcc name –lpthread

./a.out

3. Read comments at the top and understand the code

EXERCISE 2
1. Extend 08a_pthread_2locks_deadlock_avoidance.c to

deadlock 3 threads that need to acquire successively 3
different locks

2. In order to complete a round and go past the critical section,
a racer must hold all three locks

3. Are there other possibilities of deadlocks in your code? If
so, how many?

BARRIER

Barrier is a synchronization mechanism that allows each
thread to wait until all cooperating threads have reached a
certain point in their code, and then continue executing
from there.
Notice that pthread_join function acts as a barrier to
allow one thread to wait until another thread exits.
Barrier allows an arbitrary number of threads to wait until
all of the threads have completed processing, but the
threads don’t have to exit. They can continue working after
all threads have reached the barrier

#include <pthread.h>

int pthread_barrier_init(pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr,
unsigned int count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

Both return: 0 if OK, error number on failure

PTHREAD_BARRIER_INIT & _DESTROY
pthread_barrier_init initializes, and pthread_barrier_destroy clears a
barrier until next initialization

 pthread_barrier_t *restrict barrier: A pthread barrier is represented by
the barrier data type pthread_barrier_t

 const pthread_barrierattr_t *restrict attr: barrier attribute are set to
PTHREAD_PROCESS_SHARED/DYNAMIC for use with process/thread (default threads)

 unsigned int count: number of threads that must reach the barrier before all
threads are allowed to continue

PTHREAD_BARRIER_WAIT

We use the pthread_barrier_wait function to
indicate that a thread is done with its work and is ready to
wait for all the other threads to catch up
#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

Returns: 0 or PTHREAD_BARRIER_SERIAL_THREAD if OK, error number on
failure

EXAMPLE – RUN – EXERCISE 3
1. Download from ECLASS folder:

08b_simple_barrier_before_sum_4threads.c

2. Compile and run the program on the server or locally
(in your Virtualbox VM)

(see the file README.txt)
3. Try to understand the code, in the part where

pthread_barrier_wait calls
4. Why are these necessary?

EXERCISE 4
Write a new multithreaded program, where each of the M threads
1. generates N (possibly random) numbers, and then
2. adds those N numbers to a global variable (initial value 0)
Addition to the global variable is performed either
1. using a lock (as in previous classes), or
2. using alternating barrier calls, so that threads enter the critical section in round-robin

fashion (T1, T2, … TM, T1, T2 … TM, …). Each time a thread enters the critical
section, it adds its next X numbers

To validate correctness, each thread prints the value of the global variable before exiting the
critical section. Remember to flush the buffer after each print using fflush(stdout).
Time your implementations using clock_gettime, as in previous Labs, and include your
comparisons (lock vs barrier for various values of Μ, and Χ)as comments in your program.
Collaborate with others, but then sit down & write you solution alone!

EXERCISE 5
Write a multithreaded elevator controller for an M-story building. the elevator and N passengers

1. Thread T0 models the elevator. The elevator struct includes current_time, status={moving,
door_closed, door_open}, and current_floor.The elevator can carry ONLY one person at a time
identified by id, original_floor, and target_floor. When the elevator arrives at target_floor
with door_open, it waits until passenger calls exit_elevator.

2. N threads (T1, … TN) model N passengers (id = 1, … 50). Each passenger performs a random delay (few secs),
and then presses a button (only once) to set original_floor, and target_floor. If a passenger is selected,
he waits until elevator arrives at original_floor with door_open. Then, elevator waits until a passenger
can print enter_elevator.

Assumptions:
1. Initially the elevator is in floor 0.
2. If there is no pending passenger, the elevator waits on the last target_floor (initially floor 0)
3. Show that your code properly controls the elevator by correctly printing the status of elevator and passenger, e.g.

using door_open, enter_elevator/exit_elevator and door_closed.
1. Try to use specific messages to help validation, i.e., by providing current_floor, passenger id etc
2. Remember to also flush the output buffer using fflush(stdout)after each print.

4. The elevator stops after all passengers have been served

EXERCISE 6
1. Write a program where X threads (T0, T1, … TX) implement square matrix

multiplication, i.e. C = A x B, where A, B, C are matrices of size nxn

Assume
1. A, B arrays are loaded by main with random numbers before thread creation
2. Each thread computes some rows of C, e.g. T0 computes rows: 0, 0+X, 0+2*X …
3. All elements in a row of C array are computed by the same thread
4. Use barriers to print the array after a row computation is completed by each thread
5. Main program must compute the total delay of matrix multiplication (without array

initialization). This requires synchronizing main with the start and end of the threads.

EXERCISE 6 – SAMPLE OUTPUT (N = 15, NPROC=5)

EXERCISE 7
1. Work on the Nbody problem.
2. Request for the demo: 08b_nbody.zip

2. Compile and run the program on the server or locally
(in your Virtualbox VM)

(see the file README.txt)
3. Try to understand the code, in the part where

pthread_barrier_wait calls
4. Why are these necessary?

EXERCISE 8 – EXTRA WORK

See example in:
Book (Stevens & Rago): page 419

SEMAPHORE SYNCHRONIZATION

Semaphores – sem_open, sem_close, sem_unlink (named)
sem_init, sem_close, sem_destroy (unnamed)
sem_wait, sem_post (all)

BOOK FOR READING

Read List
 Chapters for reading:
 11.6.1 (pages 579 – 584) Posix Semaphores

 sem_open/sem_destroy/sem_close, sem_init,
sem_wait, sem_post

POSIX NAMED VS. UNNAMED SEMAPHORES

 Named semaphores are used by unrelated processes/threads
(e.g. written by different engineers) by passing the same name
to sem_open()

 Unnamed semaphores (lacking a name) must exist in a pre-
existing, agreed upon memory location (shared memory for
processes, and shared, global memory or heap for threads of a
single process). Thus, code in parent, child, or threads already
knows the address of the semaphore.

POSIX NAMED SEMAPHORE – SEM_OPEN

A named semaphore is identified by a name /somename. The sem_open() function
creates and initializes a new named semaphore or opens an existing one.

 O_CREAT specifies that a new semaphore must be created if it does not exist. Its
owner/group is set to the effective uid/gid of the calling process. If O_CREAT |
O_EXCL is specified, then an error is returned if a semaphore with the given name already
exists

 If the semaphore is created, then
 mode specifies r/w permissions as in shm_open(), see <sys/stat.h>.
 value specifies the initial value for the new semaphore

#include <fcntl.h> // For O_* constants
#include <sys/stat.h> // For mode constants
#include <semaphore.h> // Link with -pthread
sem_t *sem_open(const char *name, int oflag);
sem_t *sem_open(const char *name, int oflag, mode_t mode, unsigned int val);

Return: 0 if OK, −1 on error

POSIX NAMED SEMAPHORES – SEM_UNLINK

Once all processes close a previously open named semaphore,
we can discard it by calling the sem_unlink function

#include <semaphore.h>
int sem_unlink(const char* name);

Returns: 0 if OK, −1 on error

POSIX UNNAMED SEMAPHORES – SEM_CLOSE

When we are done using an unnamed semaphore, we can
discard it by calling the sem_close(). This frees
semaphore resources allocated to the calling process.
#include <semaphore.h>
int sem_close(sem_t *sem);

Returns: 0 if OK, −1 on error

POSIX UNNAMED SEMAPHORES (MEMORY-BASED)

An unnamed semaphore does not have a name.
 Instead the semaphore is placed in a region of memory that is shared between

multiple threads (global variable) or processes (shared memory region), either
System V or POSIX shared memory

 Before being used, an unnamed semaphore must be initialized using
sem_init()

 It can then be operated using sem_post() and sem_wait().
 When the semaphore is no longer required, and before the memory in which it is

located is deallocated, the semaphore should be closed using sem_close() and
destroyed using sem_destroy()

POSIX UNNAMED SEMAPHORES

To initialize an unnamed semaphore, we call sem_init

function#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int val);

Returns: 0 if OK, −1 on error

int pshared: indicates if we plan to use the semaphore with
processes, or with threads in the same process (essentially an in-
process semaphore). In the former case, we set it to a nonzero value
unsigned int val: specifies the initial value of the semaphore

SEMAPHORE OPERATIONS – NAMED & UNNAMED

 sem_wait checks if semaphore is greater than zero, and if so, it decrements it
and returns immediately. Otherwise, the function blocks until the semaphore is
positive, or a signal interrupt occurs

 sem_post increments the semaphore. As a result, some other process blocked
on this semaphore (calling sem_wait) is unblocked to continue execution

#include <semaphore.h>
int sem_wait(sem_t *sem);

Both return: 0 if OK, −1 on error

#include <semaphore.h>
int sem_post(sem_t *sem);

Returns: 0 if OK, −1 on error

POSIX SEMAPHORES

When we not using the unnamed semaphore anymore, we
can discard it from virtual address space of the process by
calling the sem_destroy function

#include <semaphore.h>
int sem_destroy(sem_t *sem);

Returns: 0 if OK, −1 on error

EXERCISE 1
1. Download (producer consumer problem)

09a_pthread_sem_prod_cons.c

2. Read the comments at the top of file and understand the
code

3. Compile and run the program
gcc name –lpthread

./a.out

EXERCISE 2

1. Write a program for a 2-stage pipelined consumer/producer
2. First stage consumers are also producers for next stage
3. Use appropriate semaphores to extend the classical solution
4. Assume that all producers/consumers are POSIX threads
5. What if producers/consumers are related (forked), or unrelated processes?

 Provide at least your comments telated to such implementations

EXERCISE 3 – RELATIVE PROGRESS RATE OF THREADS

1. Write a program which creates two threads which enter a loop that
prints its id (1 or 2). However, threads must synchronize, so that the
first thread is always executed twice before the other. Notice that the
only valid sequence of execution is:

1, 1, 2, 1, 1, 2, …
2. Rewrite your program, the first thread is always executed twice in

each round of three trials. Notice that now there are more valid
sequences:

1, 1, 2, … OR
1, 2, 1, … OR
2, 1, 1, …

For a given number of runs which program is faster and why?

EXERCISE 4 – SLEEPING BARBER (N CHAIRS)
Write a program that models barber/customer threads and operations
 A barbershop consists of a waiting room with N chairs and a barber

room with one barber chair
 If there are no customers to be served  barber goes to rest
 If a customer enters and all chairs are occupied  customer leaves
 If the barber is busy but chairs are available  customer sits in one

of the free chairs
 If the barber is asleep  customer wakes the barber to have haircut

EXERCISE 5 – M SLEEPING BARBERS (N CHAIRS)
Write a program that models barber/customer threads and operations
 A barbershop consists of a waiting room with N chairs and a barber

room with M barber chairs
 If there are no customers to be served  all barbers go to rest
 If a customer enters and all chairs are occupied  customer leaves
 If all barbers are busy but chairs are available  customer sits in one

of the free chairs
 If all barbers are asleep  customer wakes a barber to have haircut

EXERCISE 6 - DINING PHILOSOPHERS PROBLEM

https://en.wikipedia.org/wiki/Dining_philosophers_problem

CONDITION VARIABLES

pthread_cond_init
pthread_cond_wait, pthread_cond_signal
pthread_cond_destroy

BOOK FOR READING

Book : W. Richard Stevens and Stephan A. Rago, "Advanced Programming,
Addison Wesley, 2014, 3rd edition
 11.6.6 (pages 413-416) Condition Variables

73

CONDITION VARIABLES

 #include <pthread.h>
 The pthread_cond_t object has two main

operations
 Wait: pthread_cond_wait(…)
 Signal: pthread_cond_signal(…) or _bcast(…)

 Used for event notification
 Wake up a process when a particular condition occurs

 Implements a monitor along with a mutex

CONDITION VARIABLES
 Important functions

 pthread_cond_wait(mutex) causes the thread to suspend
execution until some condition is true

 pthread_cond_signal(mutex) signals a condition, hence, one of
the threads which have posted previously a wait on this condition
variable (if any) is woken up and given access to the mutex

 pthread_cond_broadcast(mutex) broadcasts a condition, hence,
all threads which have posted previously a wait on this condition
variable (if any) are woken up and given access to the mutex

Possible data race: if one thread signals the condition before another
thread actually waits, then the signal is lost
A condition variable is associated with a user-defined mutex to avoid
deadlock during data race

EXAMPLE

 Waiting for x==y condition
pthread_mutex_lock(&m);
while (x != y)

pthread_cond_wait(&v, &m);
/* modify x or y if necessary */

pthread_mutex_unlock(&m);

 Notifying the waiting thread that x has been incremented
pthread_mutex_lock(&m);
x++;
pthread_cond_signal(&v);

pthread_mutex_unlock(&m);

CREATING / DESTROYING CONDITION VARIABLES

Creating a condition variable
 Static initialization
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
 Standard Initializer
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);

 Destroying a condition variable
int pthread_cond_destroy(pthread_cond_t *cond);

Returns 0 if successful, nonzero error code if unsuccessful

WAITING ON CONDITION VARIABLES
int pthread_cond_wait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);

 Called with a mutex lock held
 Internals

 Sleeps until signaled
 Reacquires the lock when woken up
 Causes the thread to release the mutex

 Variation: pthread_cond_timedwait

SIGNALING CONDITION VARIABLES
int pthread_cond_signal(pthread_cond_t *restrict cond);

 Called with the mutex lock held
 Internals

 Wake up at least one of the threads blocked on the specified condition variable
 Scheduling policy determines the thread unblocked (if any)
 Return zero on success; otherwise, an error number to indicate the error

 Variation: int pthread_cond_broadcastpthread_cond_t *cond);

unblock all threads currently blocked on the specified condition variable

CONDITIONAL WAITING

action()

{

lock();

while (x != 0)

wait (s);

unlock();

}

counter()

{

lock();

x--;

if (x==0)

signal(s);

unlock();

}

Both must occur before wait() returns

EXERCISE 1 – RUN
1. Download

11c_pthread_cond_var.c
11c_pthread_cond_var_avoid_multiple_signals.c

2. Read the comments and understand the code involving
sensors & actuators using condition variables

3. Compile and run the program
gcc program_name

./a.out

Which program runs faster and why? How to avoid multiple
signals?

pipes

81

EXERCISE 2

 In the classic producer consumer problem replace
semaphores with condition variables.

 In the same problem, possibly implement the following
functions using condition variables
 int getitem(buffer_t *itemp)

 removes item from butter and put in *itemp
 int putitem(buffer_t item)

 inserts item in the buffer
82

pipes

REFERENCES

 Book: W. R. Stev.ens. and S.A. Rago, "Advanced
Programming in the Unix Environment”, Addison Wesley,
2014, 3rd edition.

 W.R. Stevens, “UNIX Network Programming: Interprocess
Communications”, Vol. 2, Prentice Hall, 1999, 2nd Edition.

 http://man7.org/linux/man-pages/man3/ (pthread_create,
phtread_join)

 http://man7.org/linux/man-pages/man3/pthread_yield.3.html

