. POSIX THREADS &
@ MUTEX/BARRIER/SEMAPHORES

POSIX THREADS & MUTEX

Sync with Mutex: pthread mutex _init/lock/unlock

‘ Creation & Termination: pthread create/pthread join

Thread & Mutex attributes: pthread attr */pthread mutex_attr

BOOK

o Read List
e POSIX thread creation, termination and synchronization via
mutex in Chapter 11.1 to 11.6.1 (pages 383-401) of main book

e Thread attributes (e.g., pthread attr init/destroy)
in Chapter 12.3 (pages 426-427) of main book

e Mutex attributes (pthread mutex attr) in Chapter 12.4.1
(pages 430 - 431) of main book

INTRODUCTION

A thread defines a single execution stream within a process
In this chapter, we examine

o How to manage multiple threads of control (or simply
threads) to perform multiple tasks within a single process

o All threads within a single process can access the same
process components, such as file descriptors and memory

- $3doou0d peary],

[N!

COMPARE PROCESSES & POSIX THREADS

: Code Heap
“heavyweight” process -
P
completely separate [>
program with its own (a)process Stack

Interrupt routines

variables, stack, and

memory allocation.

Code Heap

—
=
=
(]
&
o,
7]
1
[e—
[—

: Stack Thread !

Threads - shares the same &i—'—-

Interrupt routines

memory space and global) Threads

variables between routines. Stack "TD'"ead;

THREE THREADS WITHIN A PROCESS

THREADS VS PROCESSES %

Different than process

o No initial system calls, like shared
memory, sockets etc o <
ata

o Simpler/faster communication &
context switch (lightweight)

Similar to process

o Each process/thread can be
independently scheduled to a CPU

* Both viewed by Linux kernel as
task struct

code <

COMPARE PROCESSES & POSIX THREADS

A thread consists of the info to represent an execution context, including
o athread ID that identifies the thread within a process,

a set of register values,

a stack,

a scheduling priority and policy,

a signal mask,

an errno variable, and

thread-specific data (Section 12.6)

- speary],

[S—
—

O O O OO O

Everything within a process 1s sharable among the threads in a process,
including the text of the executable program, the program’s global and
heap memory, the file descriptors

PTHREAD |ID

o Every thread has a unique thread ID (TID) that identifies the
thread 1n the kernel

o The TID 1sof pthread t type

o A thread can obtain 1ts own TID by calling the
pthread self function

€11 - UOHEIYHUIP] PeAIY]

#include <pthread.h>
pthread t pthread self (void);
Returns: the thread ID of the calling thread

PTHREAD CREATION

Threads are created by calling pthread create

#include <pthread.h>

int pthread create(pthread t *restrict tidp,
const pthread attr t *restrict attr,
vold * (*start rtn) (void *),
void *restrict argqg);

Returns: 0 1f OK, error number on failure

p11 - UOneaI) PeaIy],

PTHREAD_SCOPE_SYSTEM

PTHREAD CREATE - ARGUMENTS

(o)

pthread t *restrict tidp: Thread ID pointer of the newly
created POSIX thread, when pthread create returns
successfully

const pthread attr t *restrict attr: wused to
customize thread attributes: concurrency level, scheduling
policy/parameters, detach state, stack address/size, stack guard size.
Setting this to NULL creates a thread with default attributes

void * (*start rtn) (void *): The newly created thread
runs start rtn function.

void “*restrict arg: passed as single argument to
start rtn () function (typeless pointer). If you need to pass more
than one argument, store them 1n a struct and pass the address of the
struct to arg (casting to void *)

p11 - UOneaI) PeaIy],

PTHREAD CREATE

When a thread is created, N\
there is no guarantee it will [maser
B I". ."I —
run first N\ '\, -
|' thread '| d a
Vo Q
The newly created thread \ A :
’/\‘ - 3 3 o
g has aCeess tO the process Illic]1lfar;llll . work — - Qs s ?
global address SpaCC |2 II.... queve [+ job fe—ae| job |l job fw—w= job ;
/
> 1nherits the environment s
and signal mask (the set [tucad)
of pending signals is _/

cleared)

PTHREAD TERMINATE

A pthread can exit in three ways.

1.

The thread can return from the start routine start rtn. The
return value is the thread’s exit code

The thread can be canceled by another thread in the same process

#include <pthread.h>
int pthread cancel (pthread t tidp);

Returns: 0 if OK, error number on failure

The thread can call pthread exit

#include <pthread.h>
void pthread exit (void *rval ptr);
Returns: 0 if OK, error number on failure

e wvoid *rval ptr: a typeless pointer (i.e. constant, or pointer to struct),
available to the process (or other threads) by calling pthread join

SIT - SpeadyL

PTHREAD TERMINATE

The pthread join () function waits for the thread specitied by
thread, to terminate.

#include <pthread.h>
int pthread join(pthread t tidp, void **rval ptr);
Returns: 0 1f OK, error number on failure

—
=
=1
aQ
&
(oN
w2
1
—
—

PTHREAD CREATE & TERMINATE — EXAMPLE 1

volid *addtoX (void *);

int main () {
pthread t tidl, tid2, tid3;
int x[31={11, 12, 13};

// create 3 threads

pthread create(&tidl, NULL, -, (void *) (intptr t) x[0]);
pthread create(&tid2, NULL, addtoX, (void *) (intptr t) x[1]);
pthread create (&tid3, NULL, addtoX, (void *) (intptr t) x[2]);

—
=
=
a
oo
ol
w2
1
[,
[E—

// wait for all 3 threads to terminate

pthread join (tidl, NULL); Compile : gcc name.c - lpthread

pthread join(tid2, NULL); Run: . /a.out

pthread join(tid3, NULL); The program gives us:
} LS
void *addtox (void *arg) { Thread argument is :12

int y = (intptr t) arg; // *((int*) arg){ Thread argument is :13
printf ("Thread argument is :%d\n", vy); 'Threadzn&annentis:ll

return 0;

PTHREAD CREATE & TERMINATE

Multiple examples 1n :
» Book (Stevens & Rago): pages 389 -390

> yolinux :
http://www.yolinux.com/TUTORIALS/LinuxTutorialPos
i1x Threads.html

- speary],

.
—

PTHREAD SYNCHRONIZATION (SAME FOR PROCESS)

When multiple threads share memory, we must make sure
that each thread has a consistent view of its data

If each thread uses variables that other threads don’t read or
modify, no consistency problems exist. Similarly, if a
variable 1s read-only, there 1s no consistency problem with
more than one thread reading its value at the same time.

—
=
=
a
&
o
2

<
=
o
=
=
=}
=
N
()
=
o
=

1
o
e
AN

However, when one thread modifies a variable that
other threads want to read or modify, we must
synchronize the threads. This ensures that they don’t use
an 1nvalid value when accessing the variable.

EXAMPLE - PTHREADS ACCESS SAME VARIABLE

Let thread A read the variable and then write a new value to it, and assume
write operation takes two memory cycles. If thread B reads the same variable

between the two write cycles, it will read an inconsistent value. =
4

i)]

Interleaved memory Thread A Thread B E
cycles with two threads g
read §

=

=

o

w:rit-E]

time

read

‘- wrlt-&2

EXAMPLE — MULTIPLE PTHREADS ACCESS A VARIABLE

To solve the problem with read-modify-write,

o if i’ not important which thread
changes the variable first, threads use a
lock that allows only one thread to

Thread A

Thread B

read

access the variable at a time

 For example, thread A acquires the lock ead

before updating the variable, and thus thread B
1s unable to read the variable until thread A

releases the lock
. . : write
o If it’s important who updates first, we time 1

use a barrier to temporally separate

accesses (see later)
Y write,

(Note: this 1s similar for processes)

read

9'[[- UONIBZIUOIYJUAS PBaIY [,

EXAMPLE — MULTIPLE PTHREADS ACCESS A VARIABLE

We must synchronize two or
more threads that modify the
same variable at the same time

Consider the case in which we
increment a variable (next figure).
The increment operation 1s usually
broken down into three steps.

. Read the memory location
into a register

2. Increment the value in the
register

3. Write the new value back to
the memory location

time

Thread A

fetch 1 into register
(register = 5)

Thread B

increment the
contents of
the register
(register = 6)

fetch i into register
(register = 5)

store the contents
of the register
into 1
(register = 6)

increment the
contents of
the register

(register = 6)

Two unsynchronized threads incrementing the same variable

store the contents
of the register
into 1
(register = 6)

Contents of 1

9'[[- UONIBZIUOIYJUAS PBaIY [,

MUTEX: LOCK & UNLOCK PRIMITIVES

Lock-based programming protects data in a critical section by
ensuring access by one thread at a time!

A mutex 1s a construct that allows
o locking a mutex before accessing a shared resource, and
o unlocking the mutex when done

- speary],

11

Any thread locking a mutex is blocked until the mutex 1s released

Upon release of the lock, all blocked threads are made runnable, and
the first one to run locks the mutex atomically and proceeds, while
others block (sleeping)...

STATIC MUTEX DEFINITION & INITIALIZATION

o A mutex variable is represented by the
pthread mutex t datatype

- speary],

o Before we can use a mutex variable, we first initialize 1t by
setting 1t to constant PTHREAD MUTEX INITIALIZER

or calling pthread mutex init function

!

Note: The second type of 1nitialization must always be used if lock

1s dynamically allocated

DYNAMIC MUTEX — MUTEX_INIT & _ DESTROY

#include <pthread.h>
int pthread mutex init (pthread mutex t *restrict mutex,

const pthread mutexattr t *restrict attr);

I1 - speay

int pthread mutex destroy(pthread mutex t *mutex);

Both return: 0 i1f OK, error number on failure

To 1nitialize a mutex with the default attributes, we set attr to NULL. We
discuss mutex attributes (fairness, processes/threads) later

If we allocate the mutex dynamically (e.g. by calling malloc), then we need to
call pthread mutex destroy before freeing the memory °

MUTEX — LOCK/UNLOCK OPERATIONS

To lock a mutex, we call pthread mutex lock. If the mutex is already

locked, the calling thread will block until the mutex 1s unlocked. To unlock a
mutex, we call pthread mutex unlock

#include <pthread.h>
int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex unlock(pthread mutex t *mutex);

All return: 0O if OK, error number on failure

—
=
=
¢}
&
o
72]
1
o
o

EXERCISE 2 - SOLVE DATA RACE (MUTEX)

#include <stdio.h>

#include <stdlib.h>
#include <stdint.h>
#include <pthread.h>

pthread_mutex_t L = PTHREAD_MUTEX_INITIALIZER;
int x = 0; // global share variable

void *addtoX (void *arg) {
int 1i;
int y = (intptr t) arg;
printf ("Before sum :1 Thread argument is :%d\n", vy);
for(i = 0; i < 10000; i++) {

pthread yield(); // yield to other threads
pthread _mutex_lock(&L);
x=x+1;

pthread_mutex_unlock(&L);
}

printf ("After sum :Thread argument is :%d\n", vy);
return 0; }

odwexy uoneZIUOIYOUAS PeaIy],

EXERCISE 2 - SOLVE DATA RACE (MUTEX)

int main () {
pthread t tid[3];
int 1i;

// threads creation
for (i=0; i<3; i++)
pthread create(&tid[i], NULL, addtoX, (void *) (intptr t) 1);
// wait for all three threads to terminate
for (i=0; i<3; i++)

pthread join(tid[i], NULL);

printf ("x:%d \n", x);
fflush (stdout) ;

return 0;

—
=
=
(¢}
o
o
v
1
[e—
[—

EXERCISE 2 - SOLVE DATA RACE (MUTEX)

1. Download program name below from ECLASS folder:
Obb simple pthreads with data race.c

- speary],

2. Compile and run the program on the server or locally
(in your Virtualbox VM)

gcc name —lpthread

[S—
—

./a.out

3. Read comments at the top and understand the code

EXERCISE 2

1. Change the for loop to 10000
. Uncomment pthread yield function

- speary],

3. Compile and run the program again
gcc name —lpthread

1

./a.out

What do you notice 1f you run several time with/without lock?

What is the effect of pthread yield?

EXERCISE 3 — UPLOAD TO ECLASS

l.

Use X threads to compute matrix vector productB_,_A_ = X .

aii

a1

nx1

| Om1

ai2

a2

am2

A1n

a2n

Amn

L1

4

| Am1 L1 + Am2L2 + e+ AmnLn

111 + a2 + -+ + A1 Th
a21T1 + A22%9 + + -+ + A Thy

Use clock getttime to evaluate total execution time for different X
#include <time.h>

int clock gettime(clockid t clk 1d, struct timespec * ;
https://gist.github.com/pfigue/9ce8a2c0b14a2542acd7

Use pthread setaffinity np to balance threads across all CPUs

EXERCISE 3 — HELP: PIN A PTHREAD TO CPU

Call pin_cpu(0O)from thread function to fix execution to CPU 0

- speary],

vold pin cpu(int cpu)
Cpu set t cpuset;
CPU ZERO (&cpuset) ;
CPU SET (cpu, &cpuset);
if (pthread setaffinity np(pthread self (), \
sizeof (cpu set t), &cpuset) < 0)
err(l, "failed to set affinity");

) o

!

EXERCISE 4

.

Write lock-based multithreaded code with X threads to
compute the dot product of vectors a[n]| & b[n] into ¢ (integer)

n
li'bz h'"b, Z(llbl +(12b2-—----¥-11nbﬂ
—

=1
Use clock getttime to evaluate speedup for different X

#include <time.h>
int clock gettime(clockid t clk 1d, struct timespec *tp);

https://gist.github.com/pfigue/9ce8a2cObl14a2542acd7

Use pthread setaffinity np to balance threads .
across all available CPUs

EXERCISE 5 — MATRIX VECTOR MULTIPLICATION

1. Write multithreaded code with X threads to perform matrix
vector multiplication, 1.e. x = A x B (where A, B, C are
matrices of sizes nxn, nx1 and nx1)

a, a, - 4,4 X

Ay . |6, X -
. ., = = X = ZHJ'-;' X b
, . . : =

dl,n d.u.rr‘ L'é}:.'_ _'r.rr‘

2. Do you need locks to solve this problem?

EXAMPLE: CONCURRENT SERVERS (TCP/UDP)

Dispatcher

process

Request coming in

Request dispatched to

a worker process

[

Server

A

\

from the network

Worker
~ process

Operating system

MULTIPROCESS ARCHITECTURE — CHROME BROWSER

nMm =
] @]Wiley::Opemting System Co @H BBC - Homepage E The New York Times - Brea '- Google Chrome - The web

Each tab represents a separate process

|
! €->C 0 www.googie.c!*‘hromeﬁntl.'en.’ma*!download-n‘lac.html’brand=¢KZ / 77 N
) :\? Ch[’Ome Downlded Features English =]

o Google Chrome Browser 1s multiprocess with 3
different types of processes:

*Browser process manages user interface, disk and network I/O

*Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

o Runs in sandbox restricting disk and network I/O, minimizing
effect of security exploits

*Plug-in process for each type of plug-in

RELATED FUNCTIONS

#include <unistd.h>

long sysconf (int name); See page 42 (2.5.4)

#include <sys/times.h>

—
=
=
(]
&
o,
7]
1
[e—
[—

clock t times(struct tms *buf); See page 280 (8.17)

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr); See pages 426-427 (12.3)

#include <pthread.h>
int pthread mutexattr init (pthread mutexattr t *attr);

int pthread mutexattr destroy(pthread mutexattr t *attr);

See pages 430 - 4317 (12.4.1)

. THREAD/PROCESS SYNCHRONIZATION
o

‘ Deadlock Avoidance

® .
Barriers

BOOK

o Read List

* Deadlock avoidance in Chapter 11.6.1 (pages 402 —407) of
main book

e Barriers in Chapter 11.6.8 (pages 418 —419) of main book

BERNSTEIN CONDITIONS - THEORY

Set of conditions sufficient to determine whether two processes can be
executed simultaneously. Given:
l; is the set of memory locations read (input) by process P;.
Oj is the set of memory locations written (output) by process Pj-
For two processes P4 and P> to be executed simultaneously, inputs to
process P4 must not be part of outputs of P,, and inputs of P, must not
be part of outputs of P¢; 1.e.,
l1nO2=¢
IpnO1=¢
where ¢ 1S an empty set. Set of outputs of each process must also be
different; i.e,
01 s 02 =0
If the three conditions are all satisfied, the two processes can be
executed concurrently.

BERNSTEIN CONDITIONS — EXAMPLE

Suppose the two statements are (in C)

a =X +Y;
b=x+ z;
We have
I, = (x, ¥) 0O, = (a)
I, = (x, z) 0, = (b)

and the conditions
I, N Oy= ¢
I, N O;=¢
O, M Oy= 0

are satisfied. Hence, the statements a
can be executed simultaneously.

X + yandb = x + z

BERNSTEIN CONDITIONS — LOCK OR BARRIER?

OPl: x = x + v (RMW)
OP2: x = x + z (RMW)

OPl: x = x + vy
OP2: y =2z + w

OPl: X = x + vy

OP2: y =2z + X

DEADLOCK — MULTIPLE MUTEXES

A protocol deadlock may occur 1n a program with multiple
mutexes 1f the following situation occurs:

o one thread, holding mutex A, blocks while trying to lock a
second mutex B, while

o another thread holding mutex B, attempts to lock the first
mutex A

Neither thread can proceed, since each one requires a resource
that 1s held by the other. Notice that this dependency cycle may
involve one or more threads

DEADLOCK AVOIDANCE — CONTROLLING LOCK ORDER

A deadlock can only occur if one thread attempts to lock
mutexes 1n the opposite order from another thread.

Deadlocks can be avoided by carefully controlling the
order in which mutexes are locked

For example, assume that you have two mutexes A and B,
that you need to lock at the same time. If all threads lock
mutex A before mutex B, no deadlock can occur (deadlock
with other resources 1s still possible).

DEADLOCK AVOIDANCE

Sometimes, 1t 1s difficult to apply lock order.

Alternatively, one can use pthread mutex trylock
(nonblocking call) to avoid deadlock. N -

If pthread mutex trylock 1is successful, then the

process can proceed. Otherwise, the process can release the
locks held, and try again later.

#include <pthread.h>

int pthread mutex trylock(pthread mutex t *mutex);
All return: O 1f OK, error number on failure

EXAMPLE — RUN — EXERCISE 1
1. Download from ECLASS folder:

08a pthread 2locks deadlock avoidance.c

2. Compile and run the program on the server or locally
(in your Virtualbox VM)

gcc name —lpthread
./a.out

3. Read comments at the top and understand the code

EXERCISE 2

I. Extend 08a pthread 2locks deadlock avoidance.c to
deadlock 3 threads that need to acquire successively 3
different locks

2. In order to complete a round and go past the critical section,
a racer must hold all three locks

3. Are there other possibilities of deadlocks in your code? If
so, how many?

BARRIER

Barrier is a synchronization mechanism that allows each
thread to wait until all cooperating threads have reached a
certain point in their code, and then continue executing
from there.

Notice that pthread join function acts as a barrier to
allow one thread to wait until another thread exits.

Barrier allows an arbitrary number of threads to wait until
all of the threads have completed processing, but the

threads don’t have to exit. They can continue working after
all threads have reached the barrier .

PTHREAD BARRIER INIT & DESTROY

pthread barrier init initializes, and pthread barrier destroy clears a
barrier until next initialization

#include <pthread.h>

int pthread barrier init(pthread barrier t *restrict barrier,
const pthread barrierattr t *restrict attr,
unsigned int count);

int pthread barrier destroy(pthread barrier t *barrier);

Both return: 0 i1f OK, error number on failure

0 pthread barrier t *restrict barrier: A pthread barrier is represented by
the barrier data type pthread barrier t

o const pthread barrierattr t *restrict attr: barrier attribute are set to
PTHREAD PROCESS SHARED/DYNAMIC for use with process/thread (default thread

0 unsigned int count: number of threads that must reach the barrier before all
threads are allowed to continue

PTHREAD BARRIER WAIT

We use the pthread barrier wait function to
indicate that a thread 1s done with its work and 1s ready to
wait for all the other threads to catch up

#include <pthread.h>
int pthread barrier wait (pthread barrier t *barrier);

Returns: 0 or PTHREAD BARRIER SERIAL THREAD if OK, error number on
failure

EXAMPLE — RUN — EXERCISE 3
1. Download from ECLASS folder:

08b simple barrier before sum 4threads.c

2. Compile and run the program on the server or locally
(in your Virtualbox VM)

(see the file README.txt)

3. Try to understand the code, in the part where
pthread barrier wait calls

4. Why are these necessary?

EXERCISE 4

Write a new multithreaded program, where each of the M threads
1. generates N (possibly random) numbers, and then

2. adds those N numbers to a global variable (initial value 0)
Addition to the global variable is performed either
1. using a lock (as in previous classes), or

2. using alternating barrier calls, so that threads enter the critical section in round-robin

fashion (T,, T,, .. Ty, T, T, .. Ty, ..). Eachtime a thread enters the critical
section, it adds 1ts next X numbers

To validate correctness, each thread prints the value of the global variable before exiting the
critical section. Remember to flush the buffer after each print using ff1ush (stdout).

Time your implementations using clock gettime, as in previous Labs, and include your
comparisons (lock vs barrier for various values of M, and X) as comments in your progb

Collaborate with others, but then sit down & write you solution alone!

EXERCISE 5

Write a multithreaded elevator controller for an M-story building. the elevator and N passengers

L. Thread T, models the elevator. The elevator struct includes current time, status={moving,
door closed, door open},and current floor.The elevator can carry ONLY one person at a time
identified by id, original floor,and target floor. When the elevator arrives at target floor
with door open, it waits until passenger calls exit elevator.

2. N threads (T,, .. Ty) model N passengers (id =1, ... 50). Each passenger performs a random delay (few secs),
and then presses a button (only once) to set original floor,and target floor. If a passenger is selected,
he waits until elevator arrives at original floor with door open. Then, elevator waits until a passenger
can print enter elevator.

Assumptions:
1. Initially the elevator is in floor O.

[\®]

If there 1s no pending passenger, the elevator waits on the last target floor (initially floor 0)

W

Show that your code properly controls the elevator by correctly printing the status of elevator and passenger, e.g.
using door open, enter elevator/exit elevator and door closed.

1. Try to use specific messages to help validation, i.e., by providing current floor, passenger id e
2. Remember to also flush the output buffer using ff1ush (stdout) after each print.

4, The elevator stops after all passengers have been served

EXERCISE 6

1.

Assume

nokh w

Write a program where X threads (T, T, ... Ty) implement square matrix
multiplication, 1.e. C = A x B, where A, B, C are matrices of size nxn

fori =1ton

for j = 1ton
C,'j = ¥}
fork = 1ton

Cij = Cij + ik - b,

A, B arrays are loaded by main with random numbers before thread creation

Each thread computes some rows of C, e.g. T, computes rows: 0, 0+X, 0+2*X ..
All elements in a row of C array are computed by the same thread

Use barriers to print the array after a row computation is completed by each thread

Main program must compute the total delay of matrix multiplication (without array,
initialization). This requires synchronizing main with the start and end of the threa

EXERCISE 6 — SAMPLE OUTPUT (N = 15, NPROC=5)

172 168 191 260 197 269 208 210

oo ®®
OO OODODODOOD
(SN N-NoNC NN NN NC]
oo ®®
OO0
[SR-N-NoNON- NN NN
o0 OO®®
OO0 DOOD
oo ®®
OO0 ODOO®
PO
oo ®®
DO OODODODDOOD
(SN N-NoNC NN NN NS
oo ®®

C 217 310 340 282 394 300 207 239 265 246 386 256 320 288 296
274 258 278 302 395 302 194 219 270 221 327 293 337 330 243
243 349 359 367 466 427 295 217 338 290 357 302 366 327 272
183 237 290 191 351 251 194
336 333 332 338 484 399 318 236 305 288 356 327 383 369 330

SOt OeeTOMMT ONN®
WONTITNANDN 0 0NSD
TAMMMOOOINNDIMNL O~
NASTOONOITOTTOIRAN®D
FNNOSAN~IN@ O TN~ MS
NeNF@OFHONNHOON~N®
T HOMODANT N NN M
NANOSAMOMS N OMMAMMS
NeunomMmunear~reOITTTMMN®
DNV ONAITOMND O
VOO OWORINNIINNDDD
STMTOOONNNNNSDINMMNNS
DO ONAOOS T N 0DD
NVOVOITOVADODNWVWOIN
ODNNOEMOTOT-DOVOLDDO
-]

MNSTATOROO N OO0
OO TOTMEOOOM N
@eMmMdenNFTON~NOTNINSE N
RANMANNMONOOO~RMNOD
NeOMNMITITINHFRNOIO-O 0D
SFANNO~MROOOONMNMNIMNMM
OO ANV TOIIAOOMNS
NSOV OANNHN~NAMM
COMOOOOO-~HOS S
nmer~MINENNSON ™SO
MmMoo@weoanNM~NTOTINSDN~
NMANOWNMONNOMS 00~
rONSSTITONAMOD~NAO
LeNOUNITOENOILOOMHAMD
MOARNPENAONOO N ®®
<

172 168 191 260 197 269 208 210
194 214 147 274 310 338 254 336

oo @®
oo ®
[SE-N-NoNC)
oo @®
oo ®
[CR-N-NoNo)
oo ®
oo
oo @
oo @
(SR-N-NC N
oo @®
o000 ®
[SE-NoNCNC)
oo @®

274 258 278 302 395 302 194 219 270 221 327 293 337 330 243
183 237 290 191 351 251 194

336 333 332 338 484 399 318 236 305 288 356 327 383 369 330
330 269 379 271 472 383 258 277 279 284 401 327 408 344 363
345 296 320 368 524 325 320 270 320 218 334 326 435 350 271
303 334 337 265 449 271 214

333 336 365 310 447 371 268 231 300 187 374 299 322 367 360
247 324 448 332 498 369 275 276 374 229 411 260 378 345 353

C 217 310 340 282 394 300 207 239 265 246 386 256 320 288 296
243 349 359 367 466 427 295 217 338 290 357 302 366 327 272

SO OOOTOMMSTDODDND
WONTITNADNDD DO NS
TAMRMOOOINNDMENWL O
NATOONOTOTSTON®D
NNOSAN~NN© O ~@S M
NeNF@®@OoHONINFOEN®
FTHOMODANT NN NDM A
NANOSEMOM®NOM~MM ST
NeunmomMmuneA~ReOTSTTMMO
DO NDOIRVONADNOMND O
VOOUWOOWOURINANIOINND DD
TMNMTOOONNNNNINMNNS
OO ONAOOO N T DD D
NVOOVOAITOVADO®D®OWWYIN
DNNEMOTOT VDO OLDDO
-]

M ATONOOWN OO D
OOV MMM N
@eMmdenNFToOoO~ROOTNNINOEN
RANMANNMONOODI~R~OD
N MNTITINHRNOID~0 0D
SFANNO~MOOOORMN MMM
OO AOMOTOITAODMS
NN OAOOOVOA NN~ MM
COMOOODOOr~O < <<t <
Ne~MUOIcRANNSON ™SO
MmMoo@weaonNi~NTOTNDN
NMANQNFMOSNSOMS 00N
rOANYTYTTONAMO~NAO
ceNONTOENOILOMAMOD
MO NFAONOONO®D
<

194 214 147 274 310 338 254 336

274 258 278 302 395 302 194 219 270 221 327 293 337 330 243
183 237 296 191 351 251 194 172 168 191 260 197 269 208 210
336 333 332 338 484 399 318 236 305 288 356 327 383 369 330
330 269 379 271 472 383 258 277 279 284 401 327 408 344 363
345 296 320 368 524 325 320 270 320 218 334 326 435 350 271
303 334 337 265 449 271 214

333 336 365 310 447 371 268 231 300 187 374 299 322 367 360
247 324 448 332 498 369 275 276 374 229 411 260 378 345 353
316 368 366 272 436 389 265 251 312 225 401 329 373 279 349
271 308 292 292 395 285 218 182 247 243 287 279 303 324 316
329 315 385 307 469 373 297 299 356 231 449 347 412 338 369
260 362 350 341 446 434 262 220 304 247 381 331 359 304 294
263 403 391 346 476 394 277 244 304 279 395 335 371 321 337

C 217 310 340 282 394 300 207 239 265 246 386 256 320 288 296
243 349 359 367 466 427 295 217 338 290 357 302 366 327 272

SFOTOoOeTOMMTONN®D
ONTTNANDD 00 INS
TAMRMOOOINNDMNL O~
NASTOONOTOTTON®D
NN N~N©O T~ M
NeNF@OOHONINFOON~N®
THOMOANNTNNNNDMA
NANOSEMOMON MMM
NewunoMmMneMr~ROOTTMNMNO
DONDIRVONANIOMNO O
LOUWWIIOVORINNOINNDD
TN TOOONNNNNDOINMMNNS
OO NA OO N T O DD
NOSVITOVAOO®®OWVWVIN
BNNDIDMOENTT-DOOLDDO
]

M ATONNO W O®0D
OO O ME@OOMSTIN
@MeHONFHTTON~NODOITNINOEN
RANMANNMONOUOO~RM~OD
Ne@eoMSTFTIN-ANOO~0 0
SFANNO~MROOOOMMMN MMM
A OMOTOO—HOOMNS
NMNOAOOLOANNSHN~N-SMM
LOMOOWOOOE~O <<t <
neErRMINEANNSONST~SOO
MOooVWeaanNN~NTOTNDN
VANV~ MONNSOMS 0~
NONSTSTTONAMOS~NAO
LeNONTENOTLOMAMOD
MO NPFEANAONOONOD
<<

EXERCISE [/

1. Work on the Nbody problem.
2. Request for the demo: 08b nbody.zip

2. Compile and run the program on the server or locally
(in your Virtualbox VM)

(see the file README.txt)

3. Try to understand the code, in the part where
pthread barrier wait calls

4. Why are these necessary?

EXERCISE 8 — EXTRA WORK

See example 1n:
Book (Stevens & Rago): page 419

SEMAPHORE SYNCHRONIZATION

‘ Semaphores — sem_open, sem_close, sem_unlink (named)

. ° L3
sem_init, sem_close, sem_destroy (unnamed)

sem_wait, sem_post (all)

BOOK FOR READING

Read List

o Chapters for reading:
» 11.6.1 (pages 579 — 584) Posix Semaphores

» sem open/sem destroy/sem close, sem init,
sem walt, sem post

POSIX NAMED VS. UNNAMED SEMAPHORES

o Named semaphores are used by unrelated processes/threads
(e.g. written by different engineers) by passing the same name
to sem open ()

o Unnamed semaphores (lacking a name) must exist in a pre-
existing, agreed upon memory location (shared memory for
processes, and shared, global memory or heap for threads of a
single process). Thus, code in parent, child, or threads already
knows the address of the semaphore.

POSIX NAMED SEMAPHORE — SEM_ OPEN

A named semaphore is identified by a name /somename. The sem open () function
creates and initializes a new named semaphore or opens an existing one.

#include <fcntl.h> // For O_* constants

#include <sys/stat.h> // For mode constants

#include <semaphore.h> // Link with -pthread

sem t *sem open(const char *name, int oflagqg);

sem t *sem open(const char *name, int oflag, mode t mode, unsigned int val);
Return: 0 i1f OK, -1 on error

o O CREAT specifies that a new semaphore must be created if it does not exist. Its
owner/group 1s set to the effective uid/gid of the calling process. If O CREAT |
O EXCL 1s specified, then an error is returned if a semaphore with the given name already
exists

o If the semaphore is created, then

* mode specifies r/w permissions as in shm open (), see <sys/stat.h>. ‘
* value specifies the initial value for the new semaphore

POSIX NAMED SEMAPHORES — SEM_UNLINK

Once all processes close a previously open named semaphore,
we can discard 1t by calling the sem unlink function

#include <semaphore.h>
int sem unlink(const char* name);
Returns: 0 if OK, -1 on error

POSIX UNNAMED SEMAPHORES — SEM_CLOSE

When we are done using an unnamed semaphore, we can
discard it by calling the sem close (). This frees

semaphore resources allocated to the calling process.

#include <semaphore.h>
int sem close(sem t *sem);
Returns: 0 1if OK, -1 on error

POSIX UNNAMED SEMAPHORES (MEMORY-BASED)

An unnamed semaphore does not have a name.

o Instead the semaphore 1s placed in a region of memory that is shared between
multiple threads (global variable) or processes (shared memory region), either
System V or POSIX shared memory

o Before being used, an unnamed semaphore must be initialized using
sem 1nit ()
o It can then be operated using sem post () and sem wait ().
o When the semaphore 1s no longer required, and before the memory in which it is

located 1s deallocated, the semaphore should be closed using sem close () and
destroyed using sem destroy ()

POSIX UNNAMED SEMAPHORES

To mitialize an unnamed semaphore, we call sem init

#include <semaphore.h>

int sem init(sem t *sem, int pshared,
Returns: 0 if OK, -1 on error

unsigned int wval);

int pshared: indicates if we plan to use the semaphore with

processes, or with threads in the same process (essentially an in-

process semaphore). In the former case, we set it to a nonzero value
unsigned int wval: specifies the initial value of the semaphore

SEMAPHORE OPERATIONS — NAMED & UNNAMED

o sem wait checks if semaphore 1s greater than zero, and if so, it decrements it
and returns immediately. Otherwise, the function blocks until the semaphore is

positive, or a signal interrupt occurs

#include <semaphore.h>
int sem wailt (sem t *sem);
Both return: 0 if OK, -1 on error

0 sem post increments the semaphore. As a result, some other process blocked
on this semaphore (calling sem wait) is unblocked to continue execution

#include <semaphore.h>

int sem post(sem t *sem);
Returns: 0 if OK, -1 on error

PoOsSIX SEMAPHORES

When we not using the unnamed semaphore anymore, we

can discard 1t from virtual address space of the process by
calling the sem destroy function

#include <semaphore.h>
int sem destroy(sem t *sem);
Returns: 0 if OK, -1 on error

EXERCISE 1

1. Download (producer consumer problem)
09a pthread sem prod cons.c

2. Read the comments at the top of file and understand the
code

3. Compile and run the program
gcc name —lpthread

./a.out

EXERCISE 2

Stage 1 Stage 2 Stage k

SIS] (S5
i Tl T T ~T— T

1. Write a program for a 2-stage pipelined consumer/producer

2. First stage consumers are also producers for next stage

3. Use appropriate semaphores to extend the classical solution
4. Assume that all producers/consumers are POSIX threads

5. What if producers/consumers are related (forked), or unrelated processes?.

* Provide at least your comments telated to such implementations

EXERCISE 3 — RELATIVE PROGRESS RATE OF THREADS

1. Write a program which creates two threads which enter a loop that
prints its 1d (1 or 2). However, threads must synchronize, so that the
first thread 1s always executed twice before the other. Notice that the
only valid sequence of execution is:

1,1,2,1,1,2, ...

2. Rewrite your program, the first thread 1s always executed twice in
each round of three trials. Notice that now there are more valid
sequences:

1,1,2,... OR

1,2,1, ... OR

2, 1.1, ...

5 5

For a given number of runs which program is faster and why?

EXERCISE 4 — SLEEPING BARBER (N CHAIRS)

Write a program that models barber/customer threads and operations

o A barbershop consists of a waiting room with N chairs and a barber
room with one barber chair

o If there are no customers to be served = barber goes to rest
o If a customer enters and all chairs are occupied = customer leaves

o If the barber 1s busy but chairs are available = customer sits in one
of the free chairs

o If the barber 1s asleep = customer wakes the barber to have haircut

EXERCISE 5 — M SLEEPING BARBERS (N CHAIRS)

Write a program that models barber/customer threads and operations

o A barbershop consists of a waiting room with N chairs and a barber
room with M barber chairs

o If there are no customers to be served = all barbers go to rest
o If a customer enters and all chairs are occupied = customer leaves

o If all barbers are busy but chairs are available = customer sits in one
of the free chairs

o If all barbers are asleep = customer wakes a barber to have haircut

EXERCISE 6 - DINING PHILOSOPHERS PROBLEM

https://en.wikipedia.org/wiki/Dining philosophers problem

CONDITION VARIABLES

‘ pthread cond_init
o

pthread cond_wait, pthread cond signal
pthread cond destroy

BOOK FOR READING

Book : W. Richard Stevens and Stephan A. Rago, "Advanced Programming,
Addison Wesley, 2014, 3rd edition
o 11.6.6 (pages 413-416) Condition Variables

CONDITION VARIABLES

O #include <pthread.h>

o The pthread cond t object has two main
operations
e Wait: pthread cond wait (..)
» Signal: pthread cond signal(..) or bcast(..)

o Used for event notification
» Wake up a process when a particular condition occurs

o Implements a monitor along with a mutex

CONDITION VARIABLES

o Important functions

 pthread cond wait (mutex) causes the thread to suspend
execution until some condition is true

 pthread cond signal (mutex) signals a condition, hence, one of
the threads which have posted previously a wait on this condition
variable (if any) 1s woken up and given access to the mutex

 pthread cond broadcast (mutex) broadcasts a condition, hence,
all threads which have posted previously a wait on this condition
variable (if any) are woken up and given access to the mutex

Possible data race: if one thread signals the condition before another
thread actually waits, then the signal is lost

A condition variable is associated with a user-defined mutex to avoid .
deadlock during data race

EXAMPLE

o Waiting for x==y condition
pthread mutex_ lock(&m);
while (x != vy)
pthread cond wait (&v, &m);
/* modify x or y if necessary */
pthread_mutex_unlock(&m);

o Notifying the waiting thread that x has been incremented
pthread_mutex_lock(&m);
X++;
pthread cond signal (&v) ;
pthread_mutex_unlock(&m);

CREATING / DESTROYING CONDITION VARIABLES

Creating a condition variable
o Static initialization
pthread cond t cond = PTHREAD COND INITIALIZER;

o Standard Initializer

int pthread cond 1init (pthread cond t *restrict cond,
const pthread condattr t *restrict attr);

o Destroying a condition variable
int pthread cond destroy(pthread cond t *cond);

Returns 0 1f successful, nonzero error code 1f unsuccessful

WAITING ON CONDITION VARIABLES

int pthread cond wait (pthread cond t *restrict cond,
pthread mutex t *restrict mutex);

o Called with a mutex lock held

o Internals
» Sleeps until signaled
» Reacquires the lock when woken up
» Causes the thread to release the mutex

o Variation: pthread cond timedwait

SIGNALING CONDITION VARIABLES

int pthread cond signal (pthread cond t *restrict cond);

o Called with the mutex lock held

o Internals
» Wake up at least one of the threads blocked on the specified condition variable
» Scheduling policy determines the thread unblocked (if any)
» Return zero on success; otherwise, an error number to indicate the error

o Variation: int pthread cond broadcastpthread cond t *cond);

unblock all threads currently blocked on the specified condition variable

CONDITIONAL WAITING

action () counter ()
{ {
lock () ; lock () ;
while (x != 0) K——
wait (s); if (x==0)
unlock () ; tf:::::::\\\‘\\\\\ signal(s);
} B
~ unlock();
}

Both must occur before wait () returns

EXERCISE 1 — RUN

1. Download
llc pthread cond var.c
llc pthread cond var avoid multiple signals.c

2. Read the comments and understand the code involving
sensors & actuators using condition variables

3. Compile and run the program
gcc program name

sadid

./a.out

Which program runs faster and why? How to avoid multiple

signals? @

EXERCISE 2

o In the classic producer consumer problem replace
semaphores with condition variables.

=.

=
(¢
7

o In the same problem, possibly implement the following
functions using condition variables
* Int getitem(buffer t *itemp)
o removes item from butter and put in *itemp
* Int putitem(buffer t i1tem)
o inserts item in the buffer

REFERENCES

o Book: W. R. Stevens and S.A. Rago, "Advanced
Programming in the Unix Environment”, Addison Wesley,
2014, 3rd edition.

o W.R. Stevens, “UNIX Network Programming: Interprocess
Communications”, Vol. 2, Prentice Hall, 1999, 2nd Edition.

O http://man7.org/linux/man-pages/man3/ (pthread create,
phtread join)

o http://man7.org/linux/man-pages/man3/pthread Vield.3.html.

