
COP 4610 — Chapter 5
CPU Scheduling

Dr. Ming Zhao

Ming Zhao

Outline

 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Thread Scheduling
 Multiple-Processor Scheduling
 Operating Systems Examples
 Algorithm Evaluation

2COP 4610

Ming Zhao

Basic Concepts

 Maximum CPU utilization obtained with
multiprogramming

 CPU–I/O Burst Cycle
 Process execution consists of a cycle of CPU execution and

I/O wait

 CPU burst distribution

3COP 4610

Ming Zhao

Histogram of CPU-burst Times

 Exponential or hyperexponential distribution
 A large number of short CPU bursts and a small number of long CPU

bursts
4COP 4610

Ming Zhao

Alternating Sequence of CPU and I/O Bursts

5COP 4610

Ming Zhao

CPU Scheduler

 Short-term scheduler
 Selects from among the processes in memory that are

ready to execute and allocates the CPU to one of them

 Decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive

6COP 4610

Ming Zhao

Dispatcher

 The module that gives control of CPU to the process
selected by the short-term scheduler
 Switching context
 Switching to user mode
 Jumping to the proper location in the user program to

restart that program

 Dispatch latency
 Time for the dispatcher to stop one process and start

another running
 Invoked during every process switch; Should be as fast as

possible

7COP 4610

Ming Zhao

Scheduling Criteria

 CPU utilization
 Keep the CPU as busy as possible

 Throughput
 #of processes that complete their execution per time unit

 Turnaround time
 Amount of time to execute a particular process

 Waiting time
 Amount of time a process has been waiting in the ready

queue
 Response time

 Amount of time it takes from when a request was
submitted until the first response is produced

8COP 4610

Ming Zhao

Scheduling Algorithm Optimization Criteria

 Optimization objective
 Max CPU utilization
 Max throughput
 Min turnaround time
 Min waiting time
 Min response time

 In most cases, optimize the average measure
 Sometimes, optimize the minimum or maximum values
 Sometimes, optimize the variance

9COP 4610

Ming Zhao

First-Come, First-Served Scheduling

 The process that requests the CPU first is allocated
the CPU first
 Can be easily managed with a FIFO queue
 Simple to implement

 But the average waiting time is often quite long

10COP 4610

Ming Zhao

FCFS Scheduling

Process Burst Time
P1 24
P2 3
P3 3

 Suppose the processes arrive in the order: P1 , P2 , P3

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

11COP 4610

P1 P2 P3

24 27 300

Ming Zhao

FCFS Scheduling
 Suppose that the processes arrive in the order

P2 , P3 , P1

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case
 Convoy effect

 Short processes wait for one long process to get off CPU
 Low CPU and device utilization

P1P3P2

63 300

12COP 4610

Ming Zhao

Shortest-Job-First (SJF) Scheduling

 Schedule the process with the shortest next CPU
burst

 SJF is optimal — gives minimum average waiting
time for a given set of processes
 The difficulty is knowing the length of the next CPU

request

13COP 4610

Ming Zhao

Example of SJF
Proces Burst Time

P1 6
P2 8
P3 7
P4 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

14COP 4610

Ming Zhao

 Can only estimate the length
 Can be done by using the length of previous CPU

bursts, using exponential averaging

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .1 1 nnn t ταατ −+=+

Determining Length of Next CPU Burst

15COP 4610

Ming Zhao

Prediction of the Length of the Next CPU Burst

16COP 4610

Ming Zhao

Examples of Exponential Averaging

 α =0
 τn+1 = τn

 Recent history does not count

 α =1
 τn+1 = α tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:
τn+1 = α tn + (1 - α)α tn -1 + … + (1 - α)jα tn -j + … + (1 - α)n +1 τ0

 Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor

17COP 4610

Ming Zhao

Priority Scheduling

 Allocate CPU to the process with the highest priority

 SJF is a priority scheduling where priority is the
predicted next CPU burst time

 Problem: Starvation
 Low priority processes may never execute

 Solution: Aging
 As time progresses increase the priority of the process

18COP 4610

Ming Zhao

Example of Priority Scheduling
Process Burst Time Priority

P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

 Priority scheduling chart

 Average waiting time = 8.2

P2 P1P5

1 160

P3

196 18

P4

19COP 4610

Ming Zhao

Round-Robin Scheduling

 Specifically designed for time-sharing
 Similar to FCFS but with preemption
 Each process gets a small unit of CPU time (time quantum)

 Usually 10-100 milliseconds
 After this time has elapsed, the process is preempted and

added to the end of the ready queue.

 Performance depends heavily on the size of time
quantum (q)
 q large ⇒ FIFO
 q small ⇒ overhead from context switch can be very high

 q must be large with respect to context switch time

20COP 4610

Ming Zhao

Example of RR with Time Quantum = 4
Process Burst Time

P1 24
P2 3
P3 3

 RR scheduling chart

 Average waiting time = 5.66

21COP 4610

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Ming Zhao

Time Quantum and Context Switch Time

22COP 4610

Ming Zhao

Multilevel Queue Scheduling

 Designed for processes with different scheduling
needs
 Foreground (interactive) processes
 Background (batch) processes

 Partition the ready queue into separate queues
 Each queue has its own scheduling algorithm

 Foreground – RR
 Background – FCFS

 Example of scheduling of five queues

23COP 4610

Ming Zhao

Multilevel Queue Scheduling

24COP 4610

Ming Zhao

Multilevel Queue Scheduling

 Scheduling must also be done among the queues
 Fixed priority scheduling

 Foreground queue has absolute priority over background queue

 Time slice among the queues
 Each queue gets a certain portion of the CPU time which it can

schedule amongst its processes
 E.g., 80% to foreground in RR, 20% to background in FCFS

25COP 4610

Ming Zhao

Multilevel Feedback Queue Scheduling

 A process can move between the various queues
 Separate processes according to the characteristics of

their CPU bursts
 If a process uses too much CPU, move it to a lower-priority queue

 Can implement aging to prevent starvation
 If a process has waited too long, move it to a higher-priority queue

 Example:
 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS

26COP 4610

Ming Zhao

Multilevel Feedback Queue Scheduling

 This algorithm gives highest priority to any process with a CPU
burst of 8ms or less

 Processes with a CPU burst between 8ms and 24ms are also
served quickly but with lower priority

 Long processes automatically sink to the bottom queue and
served with left over CPU cycles

27COP 4610

Ming Zhao

Thread Scheduling

 Distinction between user-level and kernel-level threads
 User-level threads are scheduled by thread library
 Kernel-level threads are scheduled by OS

 In many-to-one and many-to-many models, thread
library schedules user-level threads to run on LWP
 Known as process-contention scope (PCS) since scheduling

competition is within the process

 OS schedules kernel thread onto physical CPU
 Known as system-contention scope (SCS) since scheduling

competition is among all threads in system
 In one-to-one model, thread scheduling uses only SCS

28COP 4610

Ming Zhao

Pthread Scheduling

 API allows specifying either PCS or SCS during thread
creation
 Specify contention scope

 PTHREAD_SCOPE_PROCESS schedules threads using PCS
scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

 Set/get the contention scope
 pthread_attr_setscope(pthread_attr_t *attr, int scope)
 pthread_attr_getscope(pthread_attr_t *attr, int *scope)

29COP 4610

Ming Zhao

Pthread Scheduling

 API also allows specifying the scheduling policy
 Scheduling policy

 SCHED_FIFO
 SCHED_RR
 SCHED_OTHER

 Set/get the scheduling policy
 pthread_attr_setsched_policy(pthread_attr_t *attr, int policy)
 pthread_attr_getsched_policy(pthread_attr_t *attr, int *policy)

30COP 4610

Ming Zhao

Pthread Scheduling Example
int main(int argc, char *argv[]) {

int i;
pthread_t tid[NUM_THREADS];
pthread_attr t attr;
/* get the default attributes */
pthread_attr_init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread create(&tid[i], &attr, runner, NULL);
/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}
void *runner(void *param)
{

printf("I am a thread\n");
pthread exit(0);

}
31COP 4610

Ming Zhao

Multiple-Processor Scheduling

 Scheduling is more complex with multiple CPUs
 Here we focus on homogeneous multi-processors

 Asymmetric multiprocessing
 One processor handles all scheduling, I/O, and other system

activities; Other processors execute only user code
 Reduce the need for data sharing because only one processor

accesses the system data structures

 Symmetric multiprocessing (SMP)
 Each processor is self-scheduling
 All processes may be in a common ready queue or each

processor may have its own private ready queue

32COP 4610

Ming Zhao

Load Balancing
 Keep the workload evenly distributed across all

processors
 Fully utilize the multi-processor resources
 Only necessary on systems with per-processor queue

 Push migration
 Load on each processor is periodically checked and processes

are moved from overloaded processors to idle or less-busy ones

 Pull migration
 An idle processor pull a waiting task from a busy processor

 E.g., Linux runs its load-balancing algorithm every 200ms
or whenever the run queue of a processor is empty

33COP 4610

Ming Zhao

Multi-core Processors

 Recent trend to place multiple processor cores on same
physical chip
 Faster and consume less power compared to traditional single-

core multiprocessors

 Multiple threads per core also growing
 Take advantage of memory stall in one thread to make progress

on another thread
 From an OS perspective, each hardware thread appears as a

logical processor

 Multithreaded multi-core processors
 E.g., Intel Core i7-860 has 4 cores per chip, 2 threads per core

34COP 4610

Ming Zhao

Intel Core i7

35COP 4610

Processor Number i7-860

of Cores 4

of Threads 8

Clock Speed 2.8 GHz

Max Turbo Frequency 3.46 GHz

Intel® Smart Cache 8 MB

Bus/Core Ratio 21

DMI 2.5 GT/s

Instruction Set 64-bit

Instruction Set Extensions SSE4.2

Embedded Options Available Yes

Supplemental SKU No

Lithography 45 nm

http://ark.intel.com/MySearch.aspx?Embedded=true�

Ming Zhao

Multithreaded Multi-core CPU Scheduling

 Two level scheduling
 At the first level, OS chooses which software thread to run

on each hardware thread (logical processor)
 At the second level, each core decides which hardware

thread to run

36COP 4610

Ming Zhao

Solaris Scheduling

 Priority-based thread scheduling where each thread
belongs to one of six classes
 Time sharing (default), interactive, real time, system, fair

share, fixed priority
 Time-sharing class uses multilevel feedback queue

scheduling
 An inverse relationship between priorities and time slices

 Interactive class uses the same scheduling policy but gives
windowing applications higher priority

 Real-time class has the highest priority

37COP 4610

Ming Zhao

Solaris Dispatch Table

38COP 4610

Ming Zhao

Solaris Scheduling

39COP 4610

Ming Zhao

Windows XP Scheduling

 Priority-based, preemptive thread scheduling
 32-level priority with two classes

 Variable class: priority 1-15
 Real-time class: 16-31

 When a thread in variable class runs out its time quantum
 It is interrupted and its priority is lowered

 When a thread in variable class is released from a wait
 Its priority is boosted

 In addition, a foreground process also receives priority
boost

40COP 4610

Ming Zhao

Linux Scheduling

 Priority-based, preemptive scheduling
 Two priority ranges

 Real-time : 0-99
 Time-sharing: 100-140 (nice value)

 Real-time tasks are assigned static priorities
 Time-sharing tasks are assigned dynamic priorities

 Nice values plus or minus 5, determined by their interactivity
 Interactivity is determined by how long it has been waiting for I/O
 Scheduler favors interactive tasks which typically have longer

sleeping time

41COP 4610

Ming Zhao

Priorities and Time-slice Length

42COP 4610

Ming Zhao

Linux Scheduling

 Kernel maintains a list of all runnable tasks in
runqueue
 Each processor maintains its own runqueue and schedules

itself independently
 Each runqueue contains two priority arrays

 Active: all tasks with time remaining in their time slices
 Expired: all tasks with their time slices expired

 Each priority array contains a list of tasks indexed by
priority
 Scheduler executes the task with the highest priority in active

array
When all tasks have exhausted their time slices, the two arrays are

exchanged

43COP 4610

Ming Zhao

List of Tasks Indexed According to Priorities

44COP 4610

Ming Zhao

Quiz 1 Results

45COP 4610

100-90 89-80 79-70 69-60 59-50 49-40 39-30 29-20 19-10

0
1
2
3
4
5
6
7
8
9

10

Score

of

 S
tu

de
nt

s

Avg 56
Min 16
Max 83

Median 54

	COP 4610 — Chapter 5� CPU Scheduling
	Outline
	Basic Concepts
	Histogram of CPU-burst Times
	Alternating Sequence of CPU and I/O Bursts
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Optimization Criteria
	First-Come, First-Served Scheduling
	FCFS Scheduling
	FCFS Scheduling
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Determining Length of Next CPU Burst
	Prediction of the Length of the Next CPU Burst
	Examples of Exponential Averaging
	Priority Scheduling
	Example of Priority Scheduling
	Round-Robin Scheduling
	Example of RR with Time Quantum = 4
	Time Quantum and Context Switch Time
	Multilevel Queue Scheduling
	Multilevel Queue Scheduling
	Multilevel Queue Scheduling
	Multilevel Feedback Queue Scheduling
	Multilevel Feedback Queue Scheduling
	Thread Scheduling
	Pthread Scheduling
	Pthread Scheduling
	Pthread Scheduling Example
	Multiple-Processor Scheduling
	Load Balancing
	Multi-core Processors
	Intel Core i7
	Multithreaded Multi-core CPU Scheduling
	Solaris Scheduling
	Solaris Dispatch Table
	Solaris Scheduling
	Windows XP Scheduling
	Linux Scheduling
	Priorities and Time-slice Length
	Linux Scheduling
	List of Tasks Indexed According to Priorities
	Quiz 1 Results

