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Basic Concepts

 Maximum CPU utilization obtained with 
multiprogramming

 CPU–I/O Burst Cycle
 Process execution consists of a cycle of CPU execution and 

I/O wait

 CPU burst distribution

3COP 4610



Ming Zhao

Histogram of CPU-burst Times

 Exponential or hyperexponential distribution
 A large number of short CPU bursts and a small number of long CPU 

bursts
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Alternating Sequence of CPU and I/O Bursts
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CPU Scheduler

 Short-term scheduler
 Selects from among the processes in memory that are 

ready to execute and allocates the CPU to one of them

 Decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive
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Dispatcher

 The module that gives control of CPU to the process 
selected by the short-term scheduler
 Switching context
 Switching to user mode
 Jumping to the proper location in the user program to 

restart that program

 Dispatch latency
 Time for the dispatcher to stop one process and start 

another running
 Invoked during every process switch; Should be as fast as 

possible
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Scheduling Criteria

 CPU utilization
 Keep the CPU as busy as possible

 Throughput
 #of processes that complete their execution per time unit

 Turnaround time
 Amount of time to execute a particular process

 Waiting time
 Amount of time a process has been waiting in the ready 

queue
 Response time

 Amount of time it takes from when a request was 
submitted until the first response is produced
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Scheduling Algorithm Optimization Criteria

 Optimization objective
 Max CPU utilization
 Max throughput
 Min turnaround time 
 Min waiting time 
 Min response time

 In most cases, optimize the average measure
 Sometimes, optimize the minimum or maximum values
 Sometimes, optimize the variance
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First-Come, First-Served Scheduling

 The process that requests the CPU first is allocated 
the CPU first
 Can be easily managed with a FIFO queue
 Simple to implement

 But the average waiting time is often quite long

10COP 4610



Ming Zhao

FCFS Scheduling

Process Burst Time
P1 24
P2 3
P3 3

 Suppose the processes arrive in the order: P1 , P2 , P3  

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time:  (0 + 24 + 27)/3 = 17
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FCFS Scheduling
 Suppose that the processes arrive in the order

P2 , P3 , P1

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time:   (6 + 0 + 3)/3 = 3
 Much better than previous case
 Convoy effect

 Short processes wait for one long process to get off CPU
 Low CPU and device utilization

P1P3P2

63 300
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Shortest-Job-First (SJF) Scheduling

 Schedule the process with the shortest next CPU 
burst

 SJF is optimal — gives minimum average waiting 
time for a given set of processes
 The difficulty is knowing the length of the next CPU 

request
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Example of SJF
Proces Burst Time

P1 6
P2 8
P3 7
P4 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

14COP 4610



Ming Zhao

 Can only estimate the length
 Can be done by using the length of previous CPU 

bursts, using exponential averaging
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Determining Length of Next CPU Burst
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Prediction of the Length of the Next CPU Burst
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Examples of Exponential Averaging

 α =0
 τn+1 = τn

 Recent history does not count

 α =1
 τn+1 = α tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:
τn+1 = α tn + (1 - α)α tn -1 + … + (1 - α )jα tn -j + … + (1 - α )n +1 τ0

 Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor
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Priority Scheduling

 Allocate CPU to the process with the highest priority

 SJF is a priority scheduling where priority is the 
predicted next CPU burst time

 Problem: Starvation
 Low priority processes may never execute

 Solution: Aging
 As time progresses increase the priority of the process
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Example of Priority Scheduling
Process Burst Time Priority

P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

 Priority scheduling chart

 Average waiting time = 8.2

P2 P1P5

1 160

P3

196 18

P4
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Round-Robin Scheduling

 Specifically designed for time-sharing
 Similar to FCFS but with preemption
 Each process gets a small unit of CPU time (time quantum)

 Usually 10-100 milliseconds
 After this time has elapsed, the process is preempted and 

added to the end of the ready queue.

 Performance depends heavily on the size of time 
quantum (q)
 q large ⇒ FIFO
 q small ⇒ overhead from context switch can be very high

 q must be large with respect to context switch time
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Example of RR with Time Quantum = 4
Process Burst Time

P1 24
P2 3
P3 3

 RR scheduling chart 

 Average waiting time = 5.66
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Time Quantum and Context Switch Time
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Multilevel Queue Scheduling

 Designed for processes with different scheduling 
needs
 Foreground  (interactive) processes
 Background (batch) processes

 Partition the ready queue into separate queues
 Each queue has its own scheduling algorithm

 Foreground – RR
 Background – FCFS

 Example of scheduling of five queues
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Multilevel Queue Scheduling
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Multilevel Queue Scheduling

 Scheduling must also be done among the queues
 Fixed priority scheduling

 Foreground queue has absolute priority over background queue

 Time slice among the queues
 Each queue gets a certain portion of the CPU time which it can 

schedule amongst its processes
 E.g., 80% to foreground in RR, 20% to background in FCFS 
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Multilevel Feedback Queue Scheduling

 A process can move between the various queues
 Separate processes according to the characteristics of 

their CPU bursts
 If a process uses too much CPU, move it to a lower-priority queue

 Can implement aging to prevent starvation
 If a process has waited too long, move it to a higher-priority queue

 Example:
 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS
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Multilevel Feedback Queue Scheduling

 This algorithm gives highest priority to any process with a CPU 
burst of 8ms or less

 Processes with a CPU burst between 8ms and 24ms are also 
served quickly but with lower priority

 Long processes automatically sink to the bottom queue and 
served with left over CPU cycles
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Thread Scheduling

 Distinction between user-level and kernel-level threads
 User-level threads are scheduled by thread library
 Kernel-level threads are scheduled by OS

 In many-to-one and many-to-many models, thread 
library schedules user-level threads to run on LWP
 Known as process-contention scope (PCS) since scheduling 

competition is within the process

 OS schedules kernel thread onto physical CPU 
 Known as system-contention scope (SCS) since scheduling 

competition is among all threads in system
 In one-to-one model, thread scheduling uses only SCS
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Pthread Scheduling

 API allows specifying either PCS or SCS during thread 
creation
 Specify contention scope

 PTHREAD_SCOPE_PROCESS schedules threads using PCS 
scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

 Set/get the contention scope
 pthread_attr_setscope(pthread_attr_t *attr, int scope)
 pthread_attr_getscope(pthread_attr_t *attr, int *scope)
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Pthread Scheduling

 API also allows specifying the scheduling policy
 Scheduling policy

 SCHED_FIFO
 SCHED_RR
 SCHED_OTHER

 Set/get the scheduling policy
 pthread_attr_setsched_policy(pthread_attr_t *attr, int policy)
 pthread_attr_getsched_policy(pthread_attr_t *attr, int *policy)
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Pthread Scheduling Example
int main(int argc, char *argv[]) {

int i;
pthread_t tid[NUM_THREADS];
pthread_attr t attr;
/* get the default attributes */
pthread_attr_init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread create(&tid[i], &attr, runner, NULL);
/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}
void *runner(void *param)
{ 

printf("I am a thread\n");
pthread exit(0);

}
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Multiple-Processor Scheduling

 Scheduling is more complex with multiple CPUs
 Here we focus on homogeneous multi-processors

 Asymmetric multiprocessing 
 One processor handles all scheduling, I/O, and other system 

activities; Other processors execute only user code
 Reduce the need for data sharing because only one processor 

accesses the system data structures

 Symmetric multiprocessing (SMP) 
 Each processor is self-scheduling
 All processes may be in a common ready queue or each 

processor may have its own private ready queue
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Load Balancing
 Keep the workload evenly distributed across all 

processors
 Fully utilize the multi-processor resources
 Only necessary on systems with per-processor queue

 Push migration
 Load on each processor is periodically checked and processes 

are moved from overloaded processors to idle or less-busy ones

 Pull migration
 An idle processor pull a waiting task from a busy processor

 E.g., Linux runs its load-balancing algorithm every 200ms 
or whenever the run queue of a processor is empty
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Multi-core Processors

 Recent trend to place multiple processor cores on same 
physical chip
 Faster and consume less power compared to traditional single-

core multiprocessors

 Multiple threads per core also growing
 Take advantage of memory stall in one thread to make progress 

on another thread
 From an OS perspective, each hardware thread appears as a 

logical processor

 Multithreaded multi-core processors
 E.g., Intel Core i7-860 has 4 cores per chip, 2 threads per core
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Intel Core i7
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Processor Number i7-860

# of Cores 4

# of Threads 8

Clock Speed 2.8 GHz

Max Turbo Frequency 3.46 GHz

Intel® Smart Cache 8 MB

Bus/Core Ratio 21

DMI 2.5 GT/s

Instruction Set 64-bit

Instruction Set Extensions SSE4.2

Embedded Options Available Yes

Supplemental SKU No

Lithography 45 nm

http://ark.intel.com/MySearch.aspx?Embedded=true�
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Multithreaded Multi-core CPU Scheduling

 Two level scheduling
 At the first level, OS chooses which software thread to run 

on each hardware thread (logical processor)
 At the second level, each core decides which hardware 

thread to run
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Solaris Scheduling

 Priority-based thread scheduling where each thread 
belongs to one of six classes
 Time sharing (default), interactive, real time, system, fair 

share, fixed priority
 Time-sharing class uses multilevel feedback queue 

scheduling
 An inverse relationship between priorities and time slices

 Interactive class uses the same scheduling policy but gives 
windowing applications higher priority

 Real-time class has the highest priority
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Solaris Dispatch Table 
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Solaris Scheduling
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Windows XP Scheduling

 Priority-based, preemptive thread scheduling
 32-level priority with two classes

 Variable class: priority 1-15
 Real-time class: 16-31

 When a thread in variable class runs out its time quantum
 It is interrupted and its priority is lowered

 When a thread in variable class is released from a wait
 Its priority is boosted

 In addition, a foreground process also receives priority 
boost
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Linux Scheduling

 Priority-based, preemptive scheduling
 Two priority ranges

 Real-time : 0-99
 Time-sharing: 100-140 (nice value)

 Real-time tasks are assigned static priorities
 Time-sharing tasks are assigned dynamic priorities

 Nice values plus or minus 5, determined by their interactivity
 Interactivity is determined by how long it has been waiting for I/O
 Scheduler favors interactive tasks which typically have longer 

sleeping time
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Priorities and Time-slice Length
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Linux Scheduling

 Kernel maintains a list of all runnable tasks in 
runqueue
 Each processor maintains its own runqueue and schedules 

itself independently
 Each runqueue contains two priority arrays

 Active: all tasks with time remaining in their time slices
 Expired: all tasks with their time slices expired

 Each priority array contains a list of tasks indexed by 
priority
 Scheduler executes the task with the highest priority in active 

array
When all tasks have exhausted their time slices, the two arrays are 

exchanged
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List of Tasks Indexed According to Priorities
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Quiz 1 Results
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