Why Real-Time?

Mg. McKgoney, vou'ee H#l.pf'n
ING Y9 A REALTIME Ma'gs

Why Real-Time?

Soft Hard
Linux — QNX
SafeRTOS >
eCos gv-
LynxOS E
Azure RTOS ThreadX g
VxWorks — » g

RT Executives

» Many applications require “real-time” response

— Control, e.g., FTSE index, medical lasers, heart pacemaker, car/airplane
engine/flight control (hard constraints, missing deadline is not an option)

— Entertainment, e.g., video/chess game without real time constraint (soft)
»* Real-Time requirement imposes

— predictable timing (re-entrant code including library functions, avoid
Varlable latency operations, e.g., caching, paging)

— responsive constraints (fast interrupt handlers)

Hard Real-Time Examples ,f,"

What is

Anti-lock Braking System?

[Parts, Types & Working|

TheEngineersPost.cor

Control Module 5.0 Booster

Master

; With ABS

Without ABS

Brake Disc

Hard Real-Time Examples

Safety systems high-strength steel safety head rear crumpie
cage surrounding passengers restraints zones

diagnostic module
side airbag

laminated windshield

padded instrument panel

front impact sensors

\

y i B 7NN\ VR J chil-safety-
i ' 2 - o * \&X .
%\ ’ - =3

‘-?‘!I'

airbag and . safety belts child-seat

lap/shoulder
(shown deployed) accommodations
energy-absorbing reinfo:;eadl :toor hinges
front crumple zones bolster steering column ches
cross-car beams side-guard
for side impact door beams

© 2014 Encyclopaedia Britannica, Inc.

Hard Real-Time Examples

* (1) A pacemaker. This is a device that is inserted in someone's chest to
provide electrical impulses at regular intervals to help their heart beat. If

the device missed a beat, it may be fatal.

- PACEMAKER IN ACTION -

o Pacemaker generates
electrical activity

° Pulse generator catches this
activity

o Ultrasonic pulse is sent to
wireless electrodes that

causes left ventricle to pace

{ MediFee.com }

Hard Real-Time Examples

> (4) missile weapons defense system.

Real-Time Applications

»* Complex RT systems (computation & communication)
* Original Linux designed for throughput, not response
— kernel not preemptable, new efforts (SCHED DEADLINE policy)
— kernel disables interrupts
» Soft Real-Time or Hard Real-Time = determinism
— Scheduling response time
— Scheduling jitter
— Interrupt response time

AMmMwC

A

Y

application
source

code

Example: Embedded Software

Application

software

Example: Fly-by-wire Avionics

Sensors Signal Control laws Actuating Actuators
Conditioning
Aileron 1 :
gerT, > IIEIE] Pitch control) 1 1kHz [Atleron
accel. zZ 500 Ly >
GPS R GPS > > Alllirﬁn 2 »| Aileron
20 Hz | Lateral Control “
| Air data | 250 Hz | Elevator | Elevator/M
Sensor g 1 kHz g > 1 kHz «— .
Toystick | Throttle Control | 7
: . — L udder
Stick 1 s00Hz [250 Hz T (wvgy [Rudder

»* Hard real-time system with multirate behavior

Real-Time Operating Systems (RTOS) -Services

Intertask
Communication &
synchronization

Dynamic
MMemory
Allocation

Device

Lo

SUpervisor

* Since many embedded systems are real-time (upper bound on execution time), the
OS is a real-time operating system (RTOS) performing

— management of timers & shared resources (I0, memory, CPU and task)
— 1Inter-task communication and synchronization, interrupts, QoS
* Protection mechanisms not always necessary

Task Switching Time: RTOS vs. OS

Task GE“;’HP';“:P;'FHE
Switching b R
Time

Operating System .

' A Using Real-Time
gt e = GP : Eﬁtﬂm

Mumber of Tasks that can be Scheduled

RTOS Classification

» Depending on how timing constraints are supported, current real-time
operating systems are distinguished 3 main categories (R. Gupta):

v" Fast fixed-priority Kkernels: real-time clock, high performance
(average response time) based on priorities (VxWorks, QNX)

v Real-time extensions of time-sharing OS: improved real-time clock
and timing constraints into task scheduling, (RTLinux, RTAI etc)

v Hard real-time OS: incorporate bounded execution time,
communication and scheduling costs, clock interrupts

RTOS: Task States

Real-Tume Scheduliog

N

Dyoamic Static N
Preemptive Noopreemptive preemptive Noopreemptive

Fig 2: Taxooomy of Real-Time Scheduling

RTOS: Task States

recelve

- RUNNING.

- BREADTY.

- WAITING.

-IDLE.

-DELAY.

- RECEIVE.

- ZOMBIE.

RTOS: Task States

A task enters thas state as 1f starts executing on the processor.

Thas 15 the state of those tasks that are ready to execute but cannot be executed because the
processor 15 assigned to another task.

A tazk can enter this state when 1t exscutes a synchromization prinutovs to wat for an
event or on a busy resource. When the tazk 15 resumed by a s1znal fee resource oran
event i1t 15 mserted 1 the ready queus.

A penodic task enters this state when 1t completes 1ts execution and has to wait for the
begmnmg of the next peniod. Af the nght time, each job m the IDLE state will be
awakenad by the operating system and mnserted m the ready queue.

A delay promitive which suspends a task for a grven interval of tme puts the task mm a
sleeping state (DELATY), untl the timer awakens 1t after the elapsed mntsrval.

A tazk enters thus state when it executes a recefve priutive on an empdy channel of a
classical meszage passing mechamism. The job exats this state when a send prioutive 13
expcuted by another task on the same chanmel.

In real-time systems that support dynamue creation and termunation of hard penodic tasks,
a new state meeds to be inroduced for preserving the bandwadih assizned to the guarantesd
tasks.. This problem arises because when a penodic task 15 aborted, its uhilization factor
cannot be immediately subfracted from the total processor load smee the task could
already have delayed the executon of other tasks. In order to keep the guarantes test
consistent, its utilization factor can be subtracted only at the end of its period. In the
mterval of time between the abort operation and the snd of its pertod, the tazk 1z zmd to be
m ZOMBIE state since 1t does not exist in the system, but 1t confinues to ocoupy procassor

bandwidth.

RTOS Parameters

Table 1. List of example RTOS parameters that
affect the timing of RTES

¢ Scheduler: 5Schedulinz policy, associated tinung
overbead, support for task preempbon, scheduler
rizgering events (e g.. blockme of a task. timer ISE.
) vl

Prionry loversion resolution protocols: Priomcy
inheritance profocol, pronty ceiling protocol, disabling
presmiption danng aocess to shared data [4]

« Timer gramalaricy

Presropiability & preemption polnts of kermnel semicss

¢ [lame] thraad prionty

« 5et of svstem calls and their durabion

¢ Tack synchromrzation primmitives (e.g . lock, semsphore.
DItex, i)

et of IPC facilites (moessags passing. bammer, ec) and
their characteristics (1.e., blocking / non-blockmse)

e 5Sef of ISEs (Timer ISE. I'0 ISE) and their duration

¢ Effect of splitting I'0 mutermupt mio rop-horom hafl

How to make Linux a real-time OS?

RT-task 1

RT-task 2

non-RT task 1

non-RT task 2

device driver

device driver

Standard-0OS

real-time kernel

Real-time extension to Linux

— O(1) RT scheduler (v2.4.19)
— Complex preemption kernel capable of meeting requirements for
a soft real-time system (v2.5.4)

— POSIX.1b compliance

Priority inheritance inside kernel (TimeSys)
Low-latency patch (Molnar & Morton)

— Insert reschedule points inside kernel; need cooperation

Micro-kernel: Linux sits on another RTOS; real-time code external

Outline on RTOS

* Wind River Systems Inc. VxWorks - http://www.wrs.com
— System
— Kernel
— Supported processors
— Closely coupled multiprocessor support
— Loosely coupled multiprocessor support
— Custom hardware support
» Task management
— multitasking, unlimited number of tasks
— preemptive and round-robin (static) scheduling
— fast, deterministic context switch

— 1Inter-task communication (message queue, shared memory, control
sockets, POSIX pipes, semaphore)

— Fast, efficient interrupt and exception handling
— 256 priority levels

VxWorks

iprocessing su e
OSIX Librar
WindNet Networking

Wind Microkernel

VxWorks 5.4 Scalable Run-Time System

10/26/99 VxWorks 23

Task States

»* Ready State: waiting in ready queue
» Running State: CPU executing the task

» Blocked: waiting in the semaphore queue until shared resource 1s free

Do I Need an RTOS?

Not always. Cyclic executive plus interrupt routines (good for DSP)
loop

do part of task 1

do part of task 2

do part of task 3
end loop

Execute user-specified instruction upon interrupt to avoid loop iterations,
e.g. copy peripheral data into a buffer, if “byte arrived” on serial channel

Advantages

— Simple, cheap implementation

— Low overhead, sometimes direct hardware support

— Predictable interrupt handler (no context switch, no environment save)
Disadvantages

— Can’t handle sporadic events, since everything operates in lockstep

— Code must be scheduled manually

Handling an Interrupt

1. Normal
program
execution
3. Saved CPU state 4. Interrupt
2. Interrupt routine
OCCUrS uns
6. Restore CPU state
5. Interrupt
routine
7. Normal finishes
program
execution

resumes

Real-Time Issues

»* The main goal of an RTOS scheduler is meeting deadlines

* Fairness concept (from time-sharing OS schedulers) does not help you meet
deadlines

» Priority-based scheduling:
— Typical RTOS based on fixed-priority preemptive scheduler
— Assign each process a priority
— At any time, scheduler runs highest priority process ready to run

— Process runs to completion unless preempted

Typical RTOS Task Model

Execution Deadline

Initiation fime
==
| . -
N > Time
Y
Period

» FEach task a triplet: (execution time, period, deadline)

»* Can be 1nitiated any time during the period
* Usually, deadline = period and task initiated any time before deadline

Priority-based Preemptive Scheduling ’,rj
— BWE. .

B B K
ol | N

;

/

W N =

i

i

/
* Always runs the highest-priority runnable process. Multiple processes at |
the same priority level? A few solutions:
— Simply prohibit: Each process has unique priority 3!
— Time-slice processes at the same priority (extra context-switch b
overhead, no starvation)
— Processes at the same priority never preempt the other (more efficient,
still meets deadlines if possible) /4

»* Deadlines, not fairness, the goal of RTOSes

Rate-Monotonic Scheduling (RMS)

Period Priority

10 1 (highest)
12 2

15 3

20 4 (lowest)

Common way to assign priorities, Liu & Layland, 1973 (JACM)
Simple to understand and implement, e.g. processes with shorter period get
higher priority
Rate-monotonic scheduling 1s optimal: if there is fixed-priority schedule
that meets all deadlines, then RMS will produce a feasible schedule
Task sets do not always have a schedule (require >100% CPU utilization),
e.g.

P1 = (10, 20, 20), P2=(5,9,9)

RMS Missing a Deadline

»*» pl=(10,20,20), p2 = (15,30,30) have utilization 100%
I I I

1 |

I

P2 misses first deadline

Would have met the deadline if p2 = (10,30,30), utilization reduced 83%

2

»*

When Is There an RMS Schedule?

Consider sum of compute time divided by period for each process U=2c. /p;
No schedule can possibly exist if U>1, 1.e. no CPU can run 110% of time
RMS schedule always exists if U < n (2 /» — 1)

n Bound for U

1 100% Trivial: one process
2 83% Two process case

3 78%

4 76%

0 69% Asymptotic bound

Rate-monotonic analysis : if the required processor utilization is under
69%, RMS will always give a valid schedule

Converse 1s not true, 1.e. 1f the required processor utilization 1s over 69%,
RMS might still give a valid schedule, but there 1s no guarantee

EDF Scheduling

RMS assumes fixed priorities. Can you do better with dynamic priorities?

Earliest deadline first: Processes with soonest deadline given highest
priority (EDF harder to analyze)

Earliest deadline first scheduling is optimal: If a dynamic priority
schedule exists, EDF will produce a feasible schedule

Earliest deadline first scheduling is efficient: RMS only guarantees
feasibility at 69% utilization, EDF guarantees it at 100% or less

EDF Meeting a Deadline

* pl=(10,20,20) p2 = (15,30,30) utilization is 100%
1 | | | |

, [1 [1
| | |

1

P2 takes priority because its
deadline is sooner

Priority Inversion

»* Lower-priority process effectively blocks a higher-priority one

— Lower-priority owns lock that prevents higher-priority process from
running

— Makes high-priority process runtime unpredictable

Priority Inversion

* Priority inversion is undesirable, since a high priority task gets blocked
(waits for CPU) by lower priority tasks. Example:

Let 7, T,, and T, three periodic tasks with decreasing priority order.
Let 7, and T} share a resource
T3 obtains a lock on the semaphore S and enters its critical section

T1 1s ready to run and preempts T3. Then, T1 tries to enter 1its critical
section, trying to lock S. But, S 1s acquired by T3, hence T1 is blocked

T2 1s ready to run. Since only T2 and T3 are ready to run, T2 preempts
T3 while T3 1s in its critical section.

» Ideally, the highest priority task (T1) should be blocked no longer than the
time for T3 to complete its critical section. However, duration of blocking
1s unpredictable, since task T2 is executed in between.

Priority Inversion

1 [| [

Process 1 tries to acquire lock for resource

Process 1 preempts Process 2

Process 2 acquires lock on resource

Process 2 begins running

* RMS and EDF assume no process interaction
» Often a gross oversimplification

» Consider the following scenario:

Nastier Example

Process 2 delays process 3’s release of lock

1 B []

A A

A 4
a

Process 1 tries to acquire lock and is blocked
Process 1 preempts Process 2
Process 2 preempts Process 3

Process 3 acquires lock on resource

Process 3 begins running

» Higher priority process blocked indefinitely

Priority Inversion in Real World

Mars Pathfinder mission (July 4, 1997)

VxWorks (real-time OS), preemptive priority scheduling of threads (e.g.,
RMS)

Priority inversion involving three threads:

— Information bus task (T1), meteorological data gathering task (T3),
communication task (T2). Priority order: TI>T2>T3

— Shared resource: information bus (used mutex)
Same situation as described in the previous example had occurred
Findings
Priority ceiling protocol was found to be disabled 1nitially, then 1t was
enabled online and the problem was corrected

Priority Inheritance

Solution to priority inversion by temporarily increasing a process’s priority
when 1t acquires a lock

High enough priority assigned to prevent preemption by another process
Danger: Low-priority process acquires lock, gets high priority and hogs the
processor

Basic rule: low-priority processes should acquire high-priority locks only
briefly

No equivalent theoretical results (RMS/EDF) when locks and priority
inheritance 1s used

Priority Inheritance

task operation sequence on critical section
T | Lock{CSs) Lock(CS) Undock(CS1) Unlock(CS)
To | Lock{CS) Lock(C\5:) Undock(CS2) Unlock(CS)
time | tagk | action
to Ty | starts execution
t Ty | locks 52
1o Ty | activated and preempts T due to its higher priority
t3 Ty | locks U5,
(7 Ty | attempts to lock "5, but i8 blocked because T has a lock on it
is Ty | imherits the priority of 75 and starts eccecuting
ta T, | attempts to lock 57, but i8 blocked because T- has a lock on it
=tr | - | both the tasks cannot proceed (deadlocked)

Figure 1: Example for priority imheritance protocol resulting in deadlock

Priority Ceiling Protocol

For each semaphore, a priority ceiling 1s defined, whose value is the
highest priority of all the tasks that may lock it.

The priority ceiling protocol is the same as the priority inheritance protocol,
except that a task 7; can also be blocked from entering a critical section 1f
any other task 1s currently holding a semaphore whose priority ceiling 1s
greater than or equal to the priority of task 7.

Prevents mutual deadlock among tasks
A task can be blocked by lower priority tasks at most once

Priority Ceiling Protocol

For the previous example, the priority ceiling for both CS, and CS, 1s the
priority of 7.

From time ¢, to #,, the operations are the same as before.

At time t;, 7}, attempts to lock CS,, but 1s blocked since CS, (which has
been locked by 7)) has a priority ceiling equal to the priority of 7,,.

Thus, 7 inherits the priority of 7, and proceeds to completion, thereby
preventing deadlock situation.

Fault Tolerance - Byzantine Agreement

» Erroneous local clocks can have an impact on the computed local time.

» Advanced algorithms are fault-tolerant with respect to Byzantine errors.
Excluding k erroneous clocks 1s possible with 3k+1 clocks (largest and
smallest values will be excluded.

* Many publications in this area.

Real-time data bases

» Transaction is a sequence of read/write operations.
» Properties of transactions
— Atomic transaction: either completed or has no effect at all
— Consistent set of values retrieved from several data accesses
— Isolation: no user should see intermediate transaction states
— Durability: results of transactions should be persistent
»* For hard discs, access times are hardly predictable. Possible solutions:
— Relax ACID requirements
— Main memory data bases
— Access to remote objects through middleware (RT-CORBA, RT-MPI)

Priority Ceiling Emulation

Once a task locks a semaphore, its priority 1s immediately raised to the
level of the priority ceiling of the semaphore.

Deadlock avoidance and block at-most-once result of priority ceiling
protocol still holds.

Restriction: A task cannot suspend its execution within the critical section.

Modeling Blocking Time and Earlier Deadline

Blocking time (B1) encountered by task Ti by lower priority tasks can be modeled
by increasing Ti's utilization by Bi/Pi.

Earlier deadline (D1 < Pi1) can also be modeled as blocking time for E1 = Pi - Di.
Net increase in task Ti's utilization is (Bi + Ei) / Pi.

Modeling Blocking and Earlier Deadline (Cont.)

* Schedulability Check (T1>T2> ...>Tn)

C C (C.+B.+E.) :
vil<i<n L4244 L 1L i o0y
Py P, P

* Completion time Test
— Earlier deadline case : no change (i.e., same as discussed in RM exact analysis)
— Blocking time: add Bi to Ci. So, the modified
Ci'=Ci+Bi
(Note: Blocking Time calculation will be learned thro homework)

RTOS Comparison

name Scheduling Determinism Responsiveness
VxWorks *POSIX »reentrant code »interrupt/task locking
(WindRiver) »preemptive: FIFO, RR | *avoid deadlock via »avoid priority

(per thread) multi-owner semaphore | inversion via inheritance [

*non-preemptive

OSEK/VDX s#preemptive(FIFO) *avoid deadlock/priority | #fast ISR (stack/no-

(Siemens) *non-preemptive mversion: prevent stack)

preemption if resource »scheduler locking
acquired

