
Why Real-Time?

QNX

SafeRTOS

eCos

LynxOS

Azure RTOS ThreadX

VxWorks

A
utom

ation

Why Real-Time?

 Many applications require “real-time” response
– Control, e.g., FTSE index, medical lasers, heart pacemaker, car/airplane

engine/flight control (hard constraints, missing deadline is not an option)
– Entertainment, e.g., video/chess game without real time constraint (soft)

 Real-Time requirement imposes
– predictable timing (re-entrant code including library functions, avoid

variable latency operations, e.g., caching, paging)
– responsive constraints (fast interrupt handlers)

Soft Hard

QNX

SafeRTOS

eCos

LynxOS

Azure RTOS ThreadX

VxWorks

Linux A
utom

ation

RT Executives

Hard Real-Time Examples

Hard Real-Time Examples

Hard Real-Time Examples

Hard Real-Time Examples

Real-Time Applications

 Complex RT systems (computation & communication)

 Original Linux designed for throughput, not response

– kernel not preemptable, new efforts (SCHED_DEADLINE policy)

– kernel disables interrupts

 Soft Real-Time or Hard Real-Time  determinism

– Scheduling response time

– Scheduling jitter

– Interrupt response time

Example: Embedded Software

C
P
U

ROM

RAM

A
S
I
C

A
S
I
C

RTOSa.out

Application

software

simulator

compilerapplication
source

code

debugger

U
S
E
R

Example: Fly-by-wire Avionics

 Hard real-time system with multirate behavior

INU
1kHz

GPS
20 Hz

Air data
1 kHz

Joystick
500 Hz

Pitch control
500 Hz

Lateral Control
250 Hz

Throttle Control
250 Hz

Aileron 1
1 kHz

Aileron 2
1 kHz

Elevator
1 kHz

Rudder
1 kHz

gyros,
accel.

GPS

Sensor

Stick

Aileron

Aileron

Elevator

Rudder

Sensors Signal
Conditioning

Control laws Actuating Actuators

Real-Time Operating Systems (RTOS) -Services

 Since many embedded systems are real-time (upper bound on execution time), the
OS is a real-time operating system (RTOS) performing

– management of timers & shared resources (IO, memory, CPU and task)

– inter-task communication and synchronization, interrupts, QoS

 Protection mechanisms not always necessary

Task Switching Time: RTOS vs. OS

 Depending on how timing constraints are supported, current real-time
operating systems are distinguished 3 main categories (R. Gupta):

 Fast fixed-priority kernels: real-time clock, high performance
(average response time) based on priorities (VxWorks, QNX)

 Real-time extensions of time-sharing OS: improved real-time clock
and timing constraints into task scheduling, (RTLinux, RTAI, etc)

 Hard real-time OS: incorporate bounded execution time,
communication and scheduling costs, clock interrupts

RTOS Classification

RTOS: Task States

RTOS: Task States

RTOS: Task States

RTOS Parameters

How to make Linux a real-time OS?

 Real-time extension to Linux

– O(1) RT scheduler (v2.4.19)

– Complex preemption kernel capable of meeting requirements for
a soft real-time system (v2.5.4)

– POSIX.1b compliance

 Priority inheritance inside kernel (TimeSys)

 Low-latency patch (Molnar & Morton)

– Insert reschedule points inside kernel; need cooperation

 Micro-kernel: Linux sits on another RTOS; real-time code external

Outline on RTOS

 Wind River Systems Inc. VxWorks - http://www.wrs.com
– System
– Kernel
– Supported processors
– Closely coupled multiprocessor support
– Loosely coupled multiprocessor support
– Custom hardware support

 Task management
– multitasking, unlimited number of tasks
– preemptive and round-robin (static) scheduling
– fast, deterministic context switch
– inter-task communication (message queue, shared memory, control

sockets, POSIX pipes, semaphore)
– Fast, efficient interrupt and exception handling
– 256 priority levels

10/26/99 VxWorks 23

VxWorks

Multiprocessing supportGraphics Internet support

POSIX LibraryJava support File system

WindNet Networking

Core OS

Wind Microkernel

Real-Time Embedded Applications

VxWorks 5.4 Scalable Run-Time System

Task States

 Ready State: waiting in ready queue

 Running State: CPU executing the task

 Blocked: waiting in the semaphore queue until shared resource is free

Do I Need an RTOS?

 Not always. Cyclic executive plus interrupt routines (good for DSP)
loop
do part of task 1
do part of task 2
do part of task 3

end loop

 Execute user-specified instruction upon interrupt to avoid loop iterations,
e.g. copy peripheral data into a buffer, if “byte arrived” on serial channel

 Advantages

– Simple, cheap implementation

– Low overhead, sometimes direct hardware support

– Predictable interrupt handler (no context switch, no environment save)

 Disadvantages

– Can’t handle sporadic events, since everything operates in lockstep

– Code must be scheduled manually

Handling an Interrupt

1. Normal
program
execution

2. Interrupt
occurs

3. Saved CPU state 4. Interrupt
routine
runs

5. Interrupt
routine
finishes

6. Restore CPU state

7. Normal
program
execution
resumes

Real-Time Issues

 The main goal of an RTOS scheduler is meeting deadlines

 Fairness concept (from time-sharing OS schedulers) does not help you meet
deadlines

 Priority-based scheduling:

– Typical RTOS based on fixed-priority preemptive scheduler

– Assign each process a priority

– At any time, scheduler runs highest priority process ready to run

– Process runs to completion unless preempted

Typical RTOS Task Model

 Each task a triplet: (execution time, period, deadline)

 Can be initiated any time during the period
 Usually, deadline = period and task initiated any time before deadline

Execution
time

Period

Deadline

Time

Initiation

Priority-based Preemptive Scheduling

 Always runs the highest-priority runnable process. Multiple processes at
the same priority level? A few solutions:
– Simply prohibit: Each process has unique priority
– Time-slice processes at the same priority (extra context-switch

overhead, no starvation)
– Processes at the same priority never preempt the other (more efficient,

still meets deadlines if possible)
 Deadlines, not fairness, the goal of RTOSes

1

2

3

Rate-Monotonic Scheduling (RMS)

 Common way to assign priorities, Liu & Layland, 1973 (JACM)
 Simple to understand and implement, e.g. processes with shorter period get

higher priority
 Rate-monotonic scheduling is optimal: if there is fixed-priority schedule

that meets all deadlines, then RMS will produce a feasible schedule
 Task sets do not always have a schedule (require >100% CPU utilization),

e.g.
P1 = (10, 20, 20), P2 = (5, 9, 9)

Period Priority
10 1 (highest)
12 2
15 3
20 4 (lowest)

RMS Missing a Deadline

 p1 = (10,20,20), p2 = (15,30,30) have utilization 100%

1

2

P2 misses first deadline

Would have met the deadline if p2 = (10,30,30), utilization reduced 83%

When Is There an RMS Schedule?

 Consider sum of compute time divided by period for each process U=ci/pi
 No schedule can possibly exist if U>1, i.e. no CPU can run 110% of time
 RMS schedule always exists if U < n (2 1/n – 1)

n Bound for U
1 100% Trivial: one process
2 83% Two process case
3 78%
4 76%
…
 69% Asymptotic bound

 Rate-monotonic analysis : if the required processor utilization is under
69%, RMS will always give a valid schedule

 Converse is not true, i.e. if the required processor utilization is over 69%,
RMS might still give a valid schedule, but there is no guarantee

EDF Scheduling

 RMS assumes fixed priorities. Can you do better with dynamic priorities?

 Earliest deadline first: Processes with soonest deadline given highest
priority (EDF harder to analyze)

 Earliest deadline first scheduling is optimal: If a dynamic priority
schedule exists, EDF will produce a feasible schedule

 Earliest deadline first scheduling is efficient: RMS only guarantees
feasibility at 69% utilization, EDF guarantees it at 100% or less

EDF Meeting a Deadline

 p1 = (10,20,20) p2 = (15,30,30) utilization is 100%

1

2

P2 takes priority because its
deadline is sooner

Priority Inversion

 Lower-priority process effectively blocks a higher-priority one

– Lower-priority owns lock that prevents higher-priority process from
running

– Makes high-priority process runtime unpredictable

Priority Inversion

 Priority inversion is undesirable, since a high priority task gets blocked
(waits for CPU) by lower priority tasks. Example:

– Let T1 , T2, and T3 three periodic tasks with decreasing priority order.

– Let T1 and T3 share a resource

– T3 obtains a lock on the semaphore S and enters its critical section

– T1 is ready to run and preempts T3. Then, T1 tries to enter its critical
section, trying to lock S. But, S is acquired by T3, hence T1 is blocked

– T2 is ready to run. Since only T2 and T3 are ready to run, T2 preempts
T3 while T3 is in its critical section.

 Ideally, the highest priority task (T1) should be blocked no longer than the
time for T3 to complete its critical section. However, duration of blocking
is unpredictable, since task T2 is executed in between.

Priority Inversion

 RMS and EDF assume no process interaction

 Often a gross oversimplification

 Consider the following scenario:

1

2

Process 2 begins running

Process 2 acquires lock on resource

Process 1 preempts Process 2

Process 1 tries to acquire lock for resource

Nastier Example

 Higher priority process blocked indefinitely

1

Process 3 begins running

Process 3 acquires lock on resource

Process 2 preempts Process 3

Process 1 tries to acquire lock and is blocked

3

2

Process 1 preempts Process 2

Process 2 delays process 3’s release of lock

Priority Inversion in Real World

 Mars Pathfinder mission (July 4, 1997)

 VxWorks (real-time OS), preemptive priority scheduling of threads (e.g.,
RMS)

 Priority inversion involving three threads:

– Information bus task (T1), meteorological data gathering task (T3),
communication task (T2). Priority order: T1>T2>T3

– Shared resource: information bus (used mutex)

 Same situation as described in the previous example had occurred

 Findings

 Priority ceiling protocol was found to be disabled initially, then it was
enabled online and the problem was corrected

Priority Inheritance

 Solution to priority inversion by temporarily increasing a process’s priority
when it acquires a lock

 High enough priority assigned to prevent preemption by another process

 Danger: Low-priority process acquires lock, gets high priority and hogs the
processor

 Basic rule: low-priority processes should acquire high-priority locks only
briefly

 No equivalent theoretical results (RMS/EDF) when locks and priority
inheritance is used

Priority Inheritance

 The priority inheritance protocol solves the priority inversion. problem

– If a higher priority task TH is blocked by a lower priority task TL,
because TL is currently executing critical section needed by TH, TL

temporarily inherits the priority of TH.

– When blocking ceases (i.e., TL exits the critical section), TL resumes its
original priority. Unfortunately, priority inheritance may lead to
deadlock.

Priority Ceiling Protocol

 For each semaphore, a priority ceiling is defined, whose value is the
highest priority of all the tasks that may lock it.

 The priority ceiling protocol is the same as the priority inheritance protocol,
except that a task Ti can also be blocked from entering a critical section if
any other task is currently holding a semaphore whose priority ceiling is
greater than or equal to the priority of task Ti.

 Prevents mutual deadlock among tasks
 A task can be blocked by lower priority tasks at most once

Priority Ceiling Protocol

 For the previous example, the priority ceiling for both CS1 and CS2 is the
priority of T2.

 From time t0 to t2, the operations are the same as before.
 At time t3, T2 attempts to lock CS1, but is blocked since CS2 (which has

been locked by T1) has a priority ceiling equal to the priority of T2.
 Thus, T1 inherits the priority of T2 and proceeds to completion, thereby

preventing deadlock situation.

Fault Tolerance - Byzantine Agreement

 Erroneous local clocks can have an impact on the computed local time.

 Advanced algorithms are fault-tolerant with respect to Byzantine errors.
Excluding k erroneous clocks is possible with 3k+1 clocks (largest and
smallest values will be excluded.

 Many publications in this area.

Real-time data bases

 Transaction is a sequence of read/write operations.

 Properties of transactions

– Atomic transaction: either completed or has no effect at all

– Consistent set of values retrieved from several data accesses

– Isolation: no user should see intermediate transaction states

– Durability: results of transactions should be persistent

 For hard discs, access times are hardly predictable. Possible solutions:

– Relax ACID requirements

– Main memory data bases

– Access to remote objects through middleware (RT-CORBA, RT-MPI)

Priority Ceiling Emulation

 Once a task locks a semaphore, its priority is immediately raised to the
level of the priority ceiling of the semaphore.

 Deadlock avoidance and block at-most-once result of priority ceiling
protocol still holds.

 Restriction: A task cannot suspend its execution within the critical section.

Modeling Blocking Time and Earlier Deadline

 Blocking time (Bi) encountered by task Ti by lower priority tasks can be modeled
by increasing Ti’s utilization by Bi/Pi.

 Earlier deadline (Di < Pi) can also be modeled as blocking time for Ei = Pi – Di.

 Net increase in task Ti’s utilization is (Bi + Ei) / Pi.

Modeling Blocking and Earlier Deadline (Cont.)

 Schedulability Check (T1 > T2 > … > Tn)

 Completion time Test
– Earlier deadline case : no change (i.e., same as discussed in RM exact analysis)
– Blocking time: add Bi to Ci. So, the modified

Ci’ = Ci + Bi
(Note: Blocking Time calculation will be learned thro homework)

)1/12(
)(

2

2

1

1,1, 


 ii
i

p
i

E
i

B
i

C

p

C

p

C
nii 

RTOS Comparison
ResponsivenessDeterminismSchedulingname

fast ISR (stack/no-
stack)

scheduler locking

avoid deadlock/priority
inversion: prevent
preemption if resource
acquired

preemptive(FIFO)

non-preemptive
OSEK/VDX
(Siemens)

interrupt/task locking

avoid priority
inversion via inheritance

reentrant code

avoid deadlock via
multi-owner semaphore

POSIX

preemptive: FIFO, RR
(per thread)

non-preemptive

VxWorks
(WindRiver)

