UNIX

User
Interface
l Users
Library
interface Standards utility programs T
l (shell, editors, compliers etc)
System User
call mode
interface Standard Iibrary
¢ (open, close, read, write, fork, etc) l
UNIX operating system ‘f
(process management, memory management, Kernel mode
the file system, I/O, etc) {

Hardware
(CPU, memory, disks, terminals, etc)

Steps 1n Making a System Call

Address

OXFFFFFFFF _

K | space <
(Operating system)

Sys call

| handler

-
0

There are 11 steps 1n making the system call
read (fd, buffer, nbytes)

System Calls for Process Management

System call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, opts)

Wait for a child to terminate

S = execve(name, argv, envp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

s = sigaction(sig, &act, &oldact)

Define action to take on signals

s = sigreturn(&context)

Return from a signal

s = sigprocmask(how, &set, &old)

Examine or change the signal mask

s = sigpending(set)

Get the set of blocked signals

s = sigsuspend(sigmask)

Replace the signal mask and suspend the process

s = kill(pid, sig) Send a signal to a process
residual = alarm(seconds) Set the alarm clock
s = pause() Suspend the caller until the next signal

§ 1s an error code
pid 1s a process ID

residual is the remaining time from the previous alarm

POSIX

Signal Cause
SIGABRT | Sent to abort a process and force a core dump
SIGALRM | The alarm clock has gone off
SIGFPE A floating-point error has occurred (e.g., division by 0)
SIGHUP The phone line the process was using has been hung up
SIGILL The user has hit the DEL key to interrupt the process
SIGQUIT The user has hit the key requesting a core dump
SIGKILL Sent to kill a process (cannot be caught or ignored)
SIGPIPE The process has written to a pipe which has no readers
SIGSEGV | The process has referenced an invalid memory address
SIGTERM | Used to request that a process terminate gracefully
SIGUSR1 | Available for application-defined purposes
SIGUSR2 | Available for application-defined purposes

System Calls for File Management

System call Description
fd = creat(name, mode) One way to create a new file
fd = open(file, how, ...) Open a file for reading, writing or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) | Move the file pointer
s = stat(name, &buf) Get a file’s status information
s = fstat(fd, &buf) Get a file's status information
s = pipe(&fd[0]) Create a pipe
s = fentl(fd, cmd, ...) File locking and other operations

e § 1S an error code
 fd is a file descriptor

 position 1s a file offset

The Istat System Call

Device the file is on

I-node number (which file on the device)
File mode (includes protection information)
Number of links to the file

Identity of the file’'s owner

Group the file belongs to

File size (in bytes)

Creation time

Time of last access

Time of last modification

Fields returned by the Istat system call.

System Calls for Directory Management

System cali Description
s = mkdir(path, mode) Create a new directory
s = rmdir(path) Remove a directory
s = link(oldpath, newpath) | Create a link to an existing file
s = unlink(path) Unlink a file
s = chdir(path) Change the working directory
dir = opendir(path) Open a directory for reading
s = closedir(dir) Close a directory
dirent = readdir(dir) Read one directory entry
rewinddir(dir) Rewind a directory so it can be reread

(also mount/umount)

* S 1s an error code
 dir 1dentifies a directory stream
 dirent 1s a directory entry

System Calls for File Protection

System cali

Description

s = chmod(path, mode)

Change afile's protection mode

s = access(path, mode)

Check access using the real UID and GID

uid = getuid() Get the real UID
uid = geteuid() Get the effective UID
gid = getgid() Get the real GID

gid = geteqid()

Get the effective GID

s = chown(path, owner, group)

Change owner and group

s = setuid(uid)

Set the UID

s = setgid(gid)

Set the GID

e § 1S an error code

 uid and gid are the UID and GID, respectively

11

System Calls for Memory Management

System call Description
s = brk(addr) Change data segment size
a = mmap(addr, len, prot, flags, fd, offset) | Map a file in
s = unmap(addr, len) Unmap a file

S 1S an error code

b and addr are memory addresses

len 1s a length

prot controls protection

flags are miscellaneous bits

fd 1s a file descriptor
offset 1s a file offset

12

Some System Calls For Miscellaneous Tasks

Miscellaneous

Call Description
s = chdir(dirname) Change the working directory
s = chmod(name, mode) Change a file’s protection bits
s = kill(pid, signal) Send a signal to a process
seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

System Calls (1)

A stripped down shell:

while (TRUE) {

type_prompt();
read_command (command, parameters)

if (fork() '=0) {

/* Parent code */
waitpid(-1, &status, 0);

} else {

}
¥

/* Child code */
execve (command, parameters, 0);

/* repeat forever */
/* display prompt */
/* input from terminal */

/* fork off child process */

/* wait for child to exit */

[* execute command */

14

The [s Command

PID = 501 PID = 748 PID = 748

New process —> Same process —>

1. Fork call 3. exec call

/2 new sh /4. sh overlaid
' with Is
Fork code created Exar cods

A A
| |

Allocate child's process table entry Find the executable program

Fill child's entry from parent Verify the execute permission
Allocate child's stack and user area Read and verify the header

Fill child's user area from parent Copy arguments, environ to kernel
Allocate PID for child Free the old address space

Set up child to share parent's text Allocate new address space

Copy page tables for data and stack Copy arguments, environ to stack
Set up sharing of open files R?-‘?eff 5'9”"—‘1'_5

Copy parent's registers to child Initialize registers

Steps 1n executing the command /s type to the shell

15

fork vs clone: Clone Flags

Flag Meaning when set Meaning when cleared
CLONE_VM Create a new thread Create a new process
CLONE_FS Share umask, root, and working dirs | Do not share them
CLONE_FILES Share the file descriptors Copy the file descriptors
CLONE_SIGHAND | Share the signal handler table Copy the table
CLONE_PID New thread gets old PID New thread gets own PID

Bits 1in the sharing flags bitmap

16

System Calls (2)

Address (hex)
FFFF

0000

* Processes have three segments: text, data, stack

17

System Calls (3)

/usrfast jusr/jim fusriast fusrfjim
16 | mail 31| bin 16 | mail 31 | bin
81| games /0] memo 81| games 70| memo
40 | test 2 | f.c 40 | test oY | f.c.

38 | prog 70| note 38 | prog

(@) (b)

(a) Two directories before linking
/usr/jim/memo to ast's directory

(b) The same directories after linking

System Calls (4)

bin dev lib mnt usr b%
(b)

(a)

(a) File system before the mount

(b) File system after the mount

19

Unix/Win32 System Calls (5)

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject | Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
Kill (none) Win32 does not support signals
time GetLocalTime Get the current time

20

