22

Chapter 2

The Entity-Relationship
Data Model

The process of designing a database begins with an analysis of what informa-
tion the database must hold and what are the relationships among components
of that information. Often, the structure of the database, called the database
schema, 1s specified in one of several languages or notations suitable for ex-
pressing designs. After due consideration, the design is committed to a form in
which it can be input to a DBMS, and the database takes on physical existence.

In this book, we shall use several design notations. We begin in this chapter
with a traditional and popular approach called the “entity-relationship” (E/R)
model. This model is graphical in nature, with boxes and arrows representing
the essential data elements and their connections.

In Chapter 3 we turn our attention to the relational model, where the world
is represented by a collection of tables. The relational model is somewhat
restricted in the structures it can represent. However, the model is extremely
simple and useful, and it is the model on which the major commercial DBMS’s
depend today. Often, database designers begin by developing a schema using
the E/R or an object-based model, then translate the schema to the relational
model for implementation.

Other models are covered in Chapter 4. In Section 4.2, we shall introduce
ODL (Object Definition Language), the standard for object-oriented databases.
Next, we see how object-oriented ideas have affected relational DBMS’s, yielding
a model often called “object-relational.”

Section 4.6 introduces another modeling approach, called “semistructured
data.” This model has an unusual amount of flexibility in the structures that the
data may form. We also discuss, in Section 4.7, the XML standard for modeling
data as a hierarchically structured document, using “tags” (like HTML tags)
to indicate the role played by text elements. XML is an important embodiment
of the semistructured data model.

Figure 2.1 suggests how the E/R model is used in database design. We

23

24 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

E/R Relational Relational
—_—

design ™ schema DBMS

ldeas ——

Figure 2.1: The database modeling and implementation process

start with ideas about the information we want to model and render them in
the E/R model. The abstract E/R design is then converted to a schema in the
data-specification language of some DBMS. Most commonly, this DBMS uses
the relational model. If so, then by a fairly mechanical process that we shall
discuss in Section 3.2, the abstract design is converted to a concrete, relational
design, called a “relational database schema.”

It is worth noting that, while DBMS’s sometimes use a model other than
relational or object-relational, there are no DBMS’s that use the E/R model
directly. The reason is that this model is not a sufficiently good match for the
efficient data structures that must underlie the database.

2.1 Elements of the E/R Model

The most common model for abstract representation of the structure of a
database is the entity-relationship model (or E/R model). In the E/R model,
the structure of data is represented graphically, as an “entity-relationship dia-
gram,” using three principal element types:

1. Entity sets,
2. Attributes, and

3. Relationships.

We shall cover each in turn.

2.1.1 Entity Sets

An entity is an abstract object of some sort, and a collection of similar entities
forms an entity set. There is some similarity between the entity and an “object”
in the sense of object-oriented programming. Likewise, an entity set bears some
resemblance to a class of objects. However, the E/R model is a static concept,
involving the structure of data and not the operations on data. Thus, one would
not expect to find methods associated with an entity set as one would with a
class.

Example 2.1: We shall use as a running example a database about movies,
their stars, the studios that produce them, and other aspects of movies. Each
movie is an entity, and the set of all movies constitutes an entity set. Likewise,
the stars are entities, and the set of stars is an entity set. A studio is another

2.1. ELEMENTS OF THE E/R MODEL 25

E/R Model Variations

In some versions of the E/R model, the type of an attribute can be either:

1. Atomic, as in the version presented here.

2. A “struct,” as in C, or tuple with a fixed number of atomic compo-
nents.

3. A set of values of one type: either atomic or a “struct” type.

For example, the type of an attribute in such a model could be a set of
pairs, each pair consisting of an integer and a string.

kind of entity, and the set of studios is a third entity set that will appear in our
examples. O

2.1.2 Attributes

Entity sets have associated aftributes, which are properties of the entities in
that set. For instance, the entity set Mowvies might be given attributes such
as title (the name of the movie) or length, the number of minutes the movie
runs. In our version of the E/R model, we shall assume that attributes are
atomic values, such as strings, integers, or reals. There are other variations of
this model in which attributes can have some limited structure; see the box on
“E/R Model Variations.”

2.1.3 Relationships

Relationships are connections among two or more entity sets. For instance,
if Movies and Stars are two entity sets, we could have a relationship Stars-in
that connects movies and stars. The intent is that a movie entity m is related
to a star entity s by the relationship Stars-in if s appears in movie m. While
binary relationships, those between two entity sets, are by far the most common
type of relationship, the E/R model allows relationships to involve any number
of entity sets. We shall defer discussion of these multiway relationships until
Section 2.1.7.

2.1.4 Entity-Relationship Diagrams

An E/R diagram is a graph representing entity sets, attributes, and relation-
ships. Elements of each of these kinds are represented by nodes of the graph,
and we use a special shape of node to indicate the kind, as follows:

26 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

e Entity sets are represented by rectangles.
e Attributes are represented by ovals.

e Relationships are represented by diamonds.

Edges connect an entity set to its attributes and also connect a relationship to
its entity sets.

Example 2.2: In Fig. 2.2 is an E/R diagram that represents a simple database
about movies. The entity sets are Mowvies, Stars, and Studios.

Movies

Studios

Figure 2.2: An entity-relationship diagram for the movie database

The Mowies entity set has four attributes: title, year (in which the movie was
made), length, and film Type (either “color” or “blackAndWhite”). The other
two entity sets Stars and Studios happen to have the same two attributes: name
and address, each with an obvious meaning. We also see two relationships in
the diagram:

1. Stars-inis a relationship connecting each movie to the stars of that movie.
This relationship consequently also connects stars to the movies in which
they appeared.

2. Owns connects each movie to the studio that owns the movie. The arrow
pointing to entity set Studios in Fig. 2.2 indicates that each movie is
owned by a unique studio. We shall discuss uniqueness constraints such
as this one in Section 2.1.6.

2.1. ELEMENTS OF THE E/R MODEL 27

2.1.5 Instances of an E/R Diagram

E/R diagrams are a notation for describing the schema of databases, that is,
their structure. A database described by an E/R diagram will contain particular
data, which we call the database instance. Specifically, for each entity set, the
database instance will have a particular finite set of entities. FEach of these
entities has particular values for each attribute. Remember, this data is abstract
only; we do not store E/R data directly in a database. Rather, imagining this
data exists helps us to think about our design, before we convert to relations
and the data takes on physical existence.

The database instance also includes specific choices for the relationships of
the diagram. A relationship R that connects n entity sets E1, s, ..., E, has
an instance that consists of a finite set of lists (e1,eq,...,€,), where each ¢; is
chosen from the entities that are in the current instance of entity set F;. We
regard each of these lists of n entities as “connected” by relationship R.

This set of lists is called the relationship set for the current instance of R.
It is often helpful to visualize a relationship set as a table. The columns of the
table are headed by the names of the entity sets involved in the relationship,
and each list of connected entities occupies one row of the table.

Example 2.3: An instance of the Stars-in relationship could be visualized as
a table with pairs such as:

Movies | Stars

Basic Instinct | Sharon Stone
Total Recall Arnold Schwarzenegger
Total Recall Sharon Stone

The members of the relationship set are the rows of the table. For instance,
(Basic Instinct, Sharon Stone)

is a tuple in the relationship set for the current instance of relationship Stars-in.
O

2.1.6 Multiplicity of Binary E/R Relationships

In general, a binary relationship can connect any member of one of its entity
sets to any number of members of the other entity set. However, it is common
for there to be a restriction on the “multiplicity” of a relationship. Suppose R
is a relationship connecting entity sets £ and F'. Then:

e If each member of E can be connected by R to at most one member of F',
then we say that R is many-one from E to F'. Note that in a many-one
relationship from E to F', each entity in F' can be connected to many
members of E. Similarly, if instead a member of F' can be connected by
R to at most one member of ¥ then we say R i1s many-one from F to E
(or equivalently, one-many from F to F').

28 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

e If R is both many-one from £ to F' and many-one from F' to F| then we
say that R is one-one. In a one-one relationship an entity of either entity
set can be connected to at most one entity of the other set.

e If R is neither many-one from F to F or from F' to F, then we say R is
many-many.

As we mentioned in Example 2.2, arrows can be used to indicate the multi-
plicity of a relationship in an E/R diagram. If a relationship is many-one from
entity set E to entity set F', then we place an arrow entering F'. The arrow
indicates that each entity in set E is related to at most one entity in set F'.
Unless there is also an arrow on the edge to E, an entity in F' may be related
to many entities in F.

Example 2.4: Following this principle, a one-one relationship between entity
sets £ and F' is represented by arrows pointing to both £ and F'. For instance,
Fig. 2.3 shows two entity sets, Studios and Presidents, and the relationship
Runs between them (attributes are omitted). We assume that a president can
run only one studio and a studio has only one president, so this relationship 1s
one-one, as indicated by the two arrows, one entering each entity set.

Sudios Presidents

Figure 2.3: A one-one relationship

Remember that the arrow means “at most one”; it does not guarantee ex-
istence of an entity of the set pointed to. Thus, in Fig. 2.3, we would expect
that a “president” is surely associated with some studio; how could they be a
“president” otherwise? However, a studio might not have a president at some
particular time, so the arrow from Runsto Presidents truly means “at most one”
and not “exactly one.” We shall discuss the distinction further in Section 2.3.6.
O

2.1.7 Multiway Relationships

The E/R model makes it convenient to define relationships involving more than
two entity sets. In practice, ternary (three-way) or higher-degree relationships
are rare, but they are occasionally necessary to reflect the true state of affairs.
A multiway relationship in an E/R diagram is represented by lines from the
relationship diamond to each of the involved entity sets.

Example 2.5: In Fig. 2.4 1s a relationship Contracts that involves a studio,
a star, and a movie. This relationship represents that a studio has contracted
with a particular star to act in a particular movie. In general, the value of
an E/R relationship can be thought of as a relationship set of tuples whose

2.1. ELEMENTS OF THE E/R MODEL 29

Implications Among Relationship Types

We should be aware that a many-one relationship is a special case of a
many-many relationship, and a one-one relationship is a special case of a
many-one relationship. That is, any useful property of many-many rela-
tionships applies to many-one relationships as well, and a useful property
of many-one relationships holds for one-one relationships too. For exam-
ple, a data structure for representing many-one relationships will work for
one-one relationships, although it might not work for many-many relation-

ships.
Sars @ Movies

Sudios

Figure 2.4: A three-way relationship

components are the entities participating in the relationship, as we discussed in
Section 2.1.5. Thus, relationship Contracts can be described by triples of the
form

(studio, star, movie)

In multiway relationships, an arrow pointing to an entity set £ means that if
we select one entity from each of the other entity sets in the relationship, those
entities are related to at most one entity in E. (Note that this rule generalizes
the notation used for many-one, binary relationships.) In Fig. 2.4 we have an
arrow pointing to entity set Studios, indicating that for a particular star and
movie, there is only one studio with which the star has contracted for that
movie. However, there are no arrows pointing to entity sets Stars or Mouvies.
A studio may contract with several stars for a movie, and a star may contract
with one studio for more than one movie. 0O

2.1.8 Roles in Relationships

It is possible that one entity set appears two or more times in a single relation-
ship. If so, we draw as many lines from the relationship to the entity set as the
entity set appears in the relationship. Each line to the entity set represents a
different role that the entity set plays in the relationship. We therefore label the
edges between the entity set and relationship by names, which we call “roles.”

30 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

Limits on Arrow Notation in Multiway Relationships

There are not enough choices of arrow or no-arrow on the lines attached to
a relationship with three or more participants. Thus, we cannot describe
every possible situation with arrows. For instance, in Fig. 2.4, the studio
is really a function of the movie alone, not the star and movie jointly,
since only one studio produces a movie. However, our notation does not
distinguish this situation from the case of a three-way relationship where
the entity set pointed to by the arrow is truly a function of both other
entity sets. In Section 3.4 we shall take up a formal notation — func-
tional dependencies — that has the capability to describe all possibilities
regarding how one entity set can be determined uniquely by others.

Original

Sequel-of Movies

Sequel

Figure 2.5: A relationship with roles

Example 2.6: In Fig. 2.5 is a relationship Sequel-of between the entity set
Movies and 1itself. Each relationship is between two movies, one of which is
the sequel of the other. To differentiate the two movies in a relationship, one
line is labeled by the role Original and one by the role Sequel indicating the
original movie and its sequel, respectively. We assume that a movie may have
many sequels; but for each sequel there is only one original movie. Thus, the
relationship is many-one from Sequel movies to Original movies, as indicated
by the arrow in the E/R diagram of Fig. 2.5. O

Example 2.7: As a final example that includes both a multiway relationship
and an entity set with multiple roles, in Fig. 2.6 is a more complex version of
the Contracts relationship introduced earlier in Example 2.5. Now, relationship
Contracts involves two studios, a star, and a movie. The intent is that one
studio, having a certain star under contract (in general, not for a particular
movie), may further contract with a second studio to allow that star to act in
a particular movie. Thus, the relationship is described by 4-tuples of the form

(studiol, studio2, star, movie),

meaning that studio2 contracts with studiol for the use of studiol’s star by
studio2 for the movie.

2.1. ELEMENTS OF THE E/R MODEL 31

Sars Movies
Contracts
Sudio Producing
of star studio
Sudios

Figure 2.6: A four-way relationship

We see in Fig. 2.6 arrows pointing to Studios in both of its roles, as “owner”
of the star and as producer of the movie. However, there are not arrows pointing
to Stars or Mowvies. The rationale is as follows. Given a star, a movie, and a
studio producing the movie, there can be only one studio that “owns” the
star. (We assume a star is under contract to exactly one studio.) Similarly,
only one studio produces a given movie, so given a star, a movie, and the
star’s studio, we can determine a unique producing studio. Note that in both
cases we actually needed only one of the other entities to determine the unique
entity—for example, we need only know the movie to determine the unique
producing studio—but this fact does not change the multiplicity specification
for the multiway relationship.

There are no arrows pointing to Stars or Movies. Given a star, the star’s
studio, and a producing studio, there could be several different contracts allow-
ing the star to act in several movies. Thus, the other three components in a
relationship 4-tuple do not necessarily determine a unique movie. Similarly, a
producing studio might contract with some other studio to use more than one
of their stars in one movie. Thus, a star is not determined by the three other
components of the relationship. O

2.1.9 Attributes on Relationships

Sometimes it 1s convenient, or even essential, to associate attributes with a
relationship, rather than with any one of the entity sets that the relationship
connects. For example, consider the relationship of Fig. 2.4, which represents
contracts between a star and studio for a movie.! We might wish to record the
salary associated with this contract. However, we cannot associate it with the
star; a star might get different salaries for different movies. Similarly, it does
not make sense to associate the salary with a studio (they may pay different

1Here, we have reverted to the earlier notion of three-way contracts in Example 2.5, not
the four-way relationship of Example 2.7.

32 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

Cated Gy (e Gaores)
Gty

Movies

Sars

Sudios

o) (e

Figure 2.7: A relationship with an attribute

salaries to different stars) or with a movie (different stars in a movie may receive
different salaries).
However, it is appropriate to associate a salary with the

(star, movie, studio)

triple in the relationship set for the Contracts relationship. In Fig. 2.7 we see
Fig. 2.4 fleshed out with attributes. The relationship has attribute salary, while
the entity sets have the same attributes that we showed for them in Fig. 2.2.

It is never necessary to place attributes on relationships. We can instead
invent a new entity set, whose entities have the attributes ascribed to the rela-
tionship. If we then include this entity set in the relationship, we can omit the
attributes on the relationship itself. However, attributes on a relationship are
a useful convention, which we shall continue to use where appropriate.

Example 2.8: Let us revise the E/R diagram of Fig. 2.7, which has the
salary attribute on the Contracts relationship. Instead, we create an entity
set Salaries, with attribute salary. Salaries becomes the fourth entity set of
relationship Contracts. The whole diagram is shown in Fig. 2.8. O

2.1.10 Converting Multiway Relationships to Binary

There are some data models, such as ODL (Object Definition Language), which
we introduce in Section 4.2, that limit relationships to be binary. Thus, while
the E/R model does not require binary relationships, it is useful to observe that
any relationship connecting more than two entity sets can be converted to a
collection of binary, many-one relationships. We can introduce a new entity set

2.1. ELEMENTS OF THE E/R MODEL 33

Csalary)
@ @ Salaries @

Movies

Sars

Sudios

() o)

Figure 2.8: Moving the attribute to an entity set

whose entities we may think of as tuples of the relationship set for the multiway
relationship. We call this entity set a connecting entity set. We then introduce
many-one relationships from the connecting entity set to each of the entity sets
that provide components of tuples in the original, multiway relationship. If an
entity set plays more than one role; then it 1s the target of one relationship for
each role.

Example 2.9: The four-way Contracts relationship in Fig. 2.6 can be replaced
by an entity set that we may also call Contracts. As seen in Fig. 2.9, it partici-
pates in four relationships. If the relationship set for the relationship Contracts
has a 4-tuple

(studiol, studio2, star, movie)

then the entity set Contracts has an entity e. This entity is linked by relationship
Star-of to the entity starin entity set Stars. It is linked by relationship Mowvze-
of to the entity mowvie in Mowvies. It 1s linked to entities studio! and studio2 of
Studios by relationships Studio-of-star and Producing-studio, respectively.

Note that we have assumed there are no attributes of entity set Contracts,
although the other entity sets in Fig. 2.9 have unseen attributes. However, it is
possible to add attributes, such as the date of signing, to entity set Contracts.
O

2.1.11 Subclasses in the E/R Model

Often, an entity set contains certain entities that have special properties not
associated with all members of the set. If so, we find it useful to define certain

34 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

Stars Movies
Star—of Movie—of
Contracts
Studio roducin
of star studig
Studios

Figure 2.9: Replacing a multiway relationship by an entity set and binary
relationships

special-case entity sets, or subclasses, each with its own special attributes and/or
relationships. We connect an entity set to its subclasses using a relationship
called isa (i.e., “an A is a B” expresses an “isa” relationship from entity set A
to entity set B).

An isa relationship is a special kind of relationship, and to emphasize that
it 1s unlike other relationships, we use for it a special notation. Each isa re-
lationship is represented by a triangle. One side of the triangle is attached to
the subclass, and the opposite point 1s connected to the superclass. Every isa
relationship is one-one, although we shall not draw the two arrows that are
associated with other one-one relationships.

Example 2.10: Among the kinds of movies we might store in our example
database are cartoons, murder mysteries, adventures, comedies, and many other
special types of movies. For each of these movie types, we could define a
subclass of the entity set Movies. For instance, let us postulate two subclasses:
Cartoons and Murder-Mysteries. A cartoon has, in addition to the attributes
and relationships of Movies an additional relationship called Voices that gives
us a set of stars who speak, but do not appear in the movie. Movies that are not
cartoons do not have such stars. Murder-mysteries have an additional attribute
weapon. The connections among the three entity sets Mowies, Cartoons, and
Murder-Mysteries is shown in Fig. 2.10. O

While, in principle, a collection of entity sets connected by ¢sa relationships

2.1. ELEMENTS OF THE E/R MODEL 35

Parallel Relationships Can Be Different

Figure 2.9 illustrates a subtle point about relationships. There are two dif-
ferent relationships, Studio-of-Star and Producing-Studio, that each con-
nect entity sets Contracts and Studios. We should not presume that these
relationships therefore have the same relationship sets. In fact, in this
case, 1t is unlikely that both relationships would ever relate the same con-
tract to the same studios, since a studio would then be contracting with
itself.

More generally, there is nothing wrong with an E/R diagram having
several relationships that connect the same entity sets. In the database,
the instances of these relationships will normally be different, reflecting
the different meanings of the relationships. In fact, if the relationship sets
for two relationships are expected to be the same, then they are really the
same relationship and should not be given distinct names.

could have any structure, we shall limit isa-structures to trees, in which there
is one root entity set (e.g., Movies in Fig. 2.10) that is the most general, with
progressively more specialized entity sets extending below the root in a tree.

Suppose we have a tree of entity sets, connected by isa relationships. A
single entity consists of components from one or more of these entity sets, as
long as those components are in a subtree including the root. That is, if an
entity e has a component ¢ in entity set £/, and the parent of £ in the tree is
I, then entity e also has a component d in F'. Further, ¢ and d must be paired
in the relationship set for the isa relationship from £ to F'. The entity e has
whatever attributes any of its components has, and it participates in whatever
relationships any of its components participate in.

Example 2.11: The typical movie, being neither a cartoon nor a murder-
mystery, will have a component only in the root entity set Movies in Fig. 2.10.
These entities have only the four attributes of Movies (and the two relationships
of Movies — Stars-in and Owns — that are not shown in Fig. 2.10).

A cartoon that 1s not a murder-mystery will have two components, one in
Mowvies and one in Cartoons. Its entity will therefore have not only the four
attributes of Mowvies, but the relationship Voices. Likewise, a murder-mystery
will have two components for its entity, one in Movies and one in Murder-
Mysteries and thus will have five attributes, including weapon.

Finally, a movie like Roger Rabbit, which is both a cartoon and a murder-
mystery, will have components in all three of the entity sets Mowvies, Cartoons,
and Murder-Mysteries. The three components are connected into one entity by
the isa relationships. Together, these components give the Roger Rabbit entity
all four attributes of Mowvies plus the attribute weapon of entity set Murder-
Mysteries and the relationship Voices of entity set Cartoons. O

36 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

to Stars

Murder—
Cartoons Mysteries

Figure 2.10: Isa relationships in an E/R diagram

2.1.12 Exercises for Section 2.1

* Exercise 2.1.1: Let us design a database for a bank, including information
about customers and their accounts. Information about a customer includes
their name, address, phone, and Social Security number. Accounts have num-
bers, types (e.g., savings, checking) and balances. We also need to record the
customer(s) who own an account. Draw the E/R diagram for this database.
Be sure to include arrows where appropriate, to indicate the multiplicity of a
relationship.

Exercise 2.1.2: Modify your solution to Exercise 2.1.1 as follows:
a) Change your diagram so an account can have only one customer.
b) Further change your diagram so a customer can have only one account.

! ¢) Change your original diagram of Exercise 2.1.1 so that a customer can
have a set of addresses (which are street-city-state triples) and a set of
phones. Remember that we do not allow attributes to have nonatomic
types, such as sets, in the E/R model.

! d) Further modify your diagram so that customers can have a set of ad-
dresses, and at each address there is a set of phones.

Exercise 2.1.3: Give an E/R diagram for a database recording information
about teams, players, and their fans, including:

1. For each team, its name, its players, its team captain (one of its players),
and the colors of its uniform.

2. For each player, his/her name.

3. For each fan, his/her name, favorite teams, favorite players, and favorite
color.

2.1. ELEMENTS OF THE E/R MODEL 37

Subclasses in Object-Oriented Systems

There is a significant resemblance between “isa” in the E/R model and
subclasses in object-oriented languages. In a sense, “isa” relates a subclass
to 1ts superclass. However, there is also a fundamental difference between
the conventional E/R view and the object-oriented approach: entities are
allowed to have representatives in a tree of entity sets, while objects are
assumed to exist in exactly one class or subclass.

The difference becomes apparent when we consider how the movie
Roger Rabbit was handled in Example 2.11. In an object-oriented ap-
proach, we would need for this movie a fourth entity set, “cartoon-murder-
mystery,” which inherited all the attributes and relationships of Mowvies,
Cartoons, and Murder-Mysteries. However, in the E/R model, the effect
of this fourth subclass is obtained by putting components of the movie
Roger Rabbit in both the Cartoons and Murder- Mysteries entity sets.

Remember that a set of colors is not a suitable attribute type for teams. How
can you get around this restriction?

Exercise 2.1.4: Suppose we wish to add to the schema of Exercise 2.1.3 a
relationship Led-by among two players and a team. The intention is that this
relationship set consists of triples

(playerl, player2, team)

such that player 1 played on the team at a time when some other player 2 was
the team captain.

a) Draw the modification to the E/R diagram.

b) Replace your ternary relationship with a new entity set and binary rela-
tionships.

! ¢) Are your new binary relationships the same as any of the previously ex-
isting relationships? Note that we assume the two players are different,
1.e., the team captain is not self-led.

Exercise 2.1.5: Modify Exercise 2.1.3 to record for each player the history of
teams on which they have played, including the start date and ending date (if
they were traded) for each such team.

Exercise 2.1.6: Suppose we wish to keep a genealogy. We shall have one
entity set, Person. The information we wish to record about persons includes
their name (an attribute) and the following relationships: mother, father, and
children. Give an E/R diagram involving the Person entity set and all the

38 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

relationships in which it 1s involved. Include relationships for mother, father,
and children. Do not forget to indicate roles when an entity set is used more
than once in a relationship.

Exercise 2.1.7: Modify your “people” database design of Exercise 2.1.6 to
include the following special types of people:

1. Females.
2. Males.

3. People who are parents.

You may wish to distinguish certain other kinds of people as well, so relation-
ships connect appropriate subclasses of people.

Exercise 2.1.8: An alternative way to represent the information of Exer-
cise 2.1.6 is to have a ternary relationship Famely with the intent that a triple
in the relationship set for Family

(person, mother, father)

is a person, their mother, and their father; all three are in the People entity set,
of course.

* a) Draw this diagram, placing arrows on edges where appropriate.

b) Replace the ternary relationship Family by an entity set and binary rela-
tionships. Again place arrows to indicate the multiplicity of relationships.

Exercise 2.1.9: Design a database suitable for a university registrar. This
database should include information about students, departments, professors,
courses, which students are enrolled in which courses, which professors are
teaching which courses, student grades, TA’s for a course (TA’s are students),
which courses a department offers, and any other information you deem appro-
priate. Note that this question is more free-form than the questions above, and
you need to make some decisions about multiplicities of relationships, appro-
priate types, and even what information needs to be represented.

Exercise 2.1.10: Informally, we can say that two E/R diagrams “have the
same information” if| given a real-world situation, the instances of these two di-
agrams that reflect this situation can be computed from one another. Consider
the E/R diagram of Fig. 2.6. This four-way relationship can be decomposed
into a three-way relationship and a binary relationship by taking advantage
of the fact that for each movie, there is a unique studio that produces that
movie. Give an E/R diagram without a four-way relationship that has the
same information as Fig. 2.6.

2.2. DESIGN PRINCIPLES 39

2.2 Design Principles

We have yet to learn many of the details of the E/R model, but we have enough
to begin study of the crucial issue of what constitutes a good design and what
should be avoided. In this section, we offer some useful design principles.

2.2.1 Faithfulness

First and foremost, the design should be faithful to the specifications of the
application. That is, entity sets and their attributes should reflect reality. You
can’t attach an attribute number-of-cylinders to Stars, although that attribute
would make sense for an entity set Automobiles. Whatever relationships are
asserted should make sense given what we know about the part of the real
world being modeled.

Example 2.12: If we define a relationship Stars-in between Stars and Mowies,
it should be a many-many relationship. The reason is that an observation of the
real world tells us that stars can appear in more than one movie, and movies can
have more than one star. It is incorrect to declare the relationship Stars-in
to be many-one in either direction or to be one-one. 0O

Example 2.13: On the other hand, sometimes it is less obvious what the
real world requires us to do in our E/R model. Consider, for instance, entity
sets Courses and Instructors, with a relationship Teaches between them. Is
Teaches many-one from Courses to Instructors? The answer lies in the policy
and intentions of the organization creating the database. It is possible that
the school has a policy that there can be only one instructor for any course.
Even if several instructors may “team-teach” a course, the school may require
that exactly one of them be listed in the database as the instructor responsible
for the course. In either of these cases, we would make Teaches a many-one
relationship from Courses to Instructors.

Alternatively, the school may use teams of instructors regularly and wish
its database to allow several instructors to be associated with a course. Or,
the intent of the Teaches relationship may not be to reflect the current teacher
of a course, but rather those who have ever taught the course, or those who
are capable of teaching the course; we cannot tell simply from the name of the
relationship. In either of these cases, it would be proper to make Teaches be
many-many. O

2.2.2 Avoiding Redundancy

We should be careful to say everything once only. For instance, we have used a
relationship Owns between movies and studios. We might also choose to have
an attribute studioName of entity set Movies. While there is nothing illegal
about doing so, it is dangerous for several reasons.

40 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

1. The two representations of the same owning-studio fact take more space,
when the data is stored, than either representation alone.

2. If a movie were sold, we might change the owning studio to which it
is related by relationship Owns but forget to change the value of its
studioName attribute, or vice versa. Of course one could argue that one
should never do such careless things, but in practice, errors are frequent,
and by trying to say the same thing in two different ways, we are inviting
trouble.

These problems will be described more formally in Section 3.6, and we shall
also learn there some tools for redesigning database schemas so the redundancy
and its attendant problems go away.

2.2.3 Simplicity Counts

Avoid introducing more elements into your design than is absolutely necessary.

Example 2.14: Suppose that instead of a relationship between Mowvies and
Studios we postulated the existence of “movie-holdings,” the ownership of a
single movie. We might then create another entity set Holdings. A one-one
relationship Represents could be established between each movie and the unique
holding that represents the movie. A many-one relationship from Holdings to
Studios completes the picture shown in Fig. 2.11.

Repre=

Movies sent

Holdings| Studios

Figure 2.11: A poor design with an unnecessary entity set

Technically, the structure of Fig. 2.11 truly represents the real world, since
it is possible to go from a movie to its unique owning studio via Holdings.
However, Holdings serves no useful purpose, and we are better off without it.
It makes programs that use the movie-studio relationship more complicated,
wastes space, and encourages errors. O

2.2.4 Choosing the Right Relationships

Entity sets can be connected in various ways by relationships. However, adding
to our design every possible relationship is not often a good idea. First, it
can lead to redundancy, where the connected pairs or sets of entities for one
relationship can be deduced from one or more other relationships. Second, the
resulting database could require much more space to store redundant elements,
and modifying the database could become too complex, because one change in
the data could require many changes to the stored relationships. The problems

2.2. DESIGN PRINCIPLES 41

are essentially the same as those discussed in Section 2.2.2, although the cause
of the problem is different from the problems we discussed there.

We shall illustrate the problem and what to do about it with two examples.
In the first example, several relationships could represent the same information;
in the second, one relationship could be deduced from several others.

Example 2.15: Let us review Fig. 2.7, where we connected movies, stars,
and studios with a three-way relationship Contracts. We omitted from that
figure the two binary relationships Stars-in and Owns from Fig. 2.2. Do we
also need these relationships, between Mowvies and Stars, and between Mowvies
and Studios, respectively? The answer is: “we don’t know; it depends on our
assumptions regarding the three relationships in question.”

It might be possible to deduce the relationship Stars-in from Contracts. If
a star can appear in a movie only if there is a contract involving that star, that
movie, and the owning studio for the movie, then there truly is no need for
relationship Stars-in. We could figure out all the star-movie pairs by looking
at the star-movie-studio triples in the relationship set for Contracts and taking
only the star and movie components. However, if a star can work on a movie
without there being a contract — or what i1s more likely, without there being a
contract that we know about in our database — then there could be star-movie
pairs in Stars-in that are not part of star-movie-studio triples in Contracts. In
that case, we need to retain the Stars-in relationship.

A similar observation applies to relationship OQwns. If for every movie, there
is at least one contract involving that movie, its owning studio, and some star for
that movie, then we can dispense with Owns. However, if there is the possibility
that a studio owns a movie, yet has no stars under contract for that movie, or
no such contract is known to our database, then we must retain Qwns.

In summary, we cannot tell you whether a given relationship will be redun-
dant. You must find out from those who wish the database created what to
expect. Only then can you make a rational decision about whether or not to
include relationships such as Stars-in or Qwns. 0O

Example 2.16: Now, consider Fig. 2.2 again. In this diagram, there is no
relationship between stars and studios. Yet we can use the two relationships
Stars-in and Owns to build a connection by the process of composing those
two relationships. That is, a star is connected to some movies by Stars-in, and
those movies are connected to studios by Owns. Thus, we could say that a star
i1s connected to the studios that own movies in which the star has appeared.

Would it make sense to have a relationship Works-for, as suggested in
Fig. 2.12, between Stars and Studios too? Again, we cannot tell without know-
ing more. First, what would the meaning of this relationship be? If it is to
mean “the star appeared in at least one movie of this studio,” then probably
there is no good reason to include it in the diagram. We could deduce this
information from Stars-in and Owns instead.

However, it is conceivable that we have other information about stars work-
ing for studios that is not entailed by the connection through a movie. In that

42 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

Stars
Stars—in
Movies W%rks_
Owns
Studios

Figure 2.12: Adding a relationship between Stars and Studios

case, a relationship connecting stars directly to studios might be useful and
would not be redundant. Alternatively, we might use a relationship between
stars and studios to mean something entirely different. For example, it might
represent the fact that the star is under contract to the studio, in a manner
unrelated to any movie. As we suggested in Example 2.7, it is possible for a star
to be under contract to one studio and yet work on a movie owned by another
studio. In this case, the information found in the new Works-for relation would
be independent of the Stars-in and Qwns relationships, and would surely be
nonredundant. 0O

2.2.5 Picking the Right Kind of Element

Sometimes we have options regarding the type of design element used to repre-
sent a real-world concept. Many of these choices are between using attributes
and using entity set/relationship combinations. In general, an attribute is sim-
pler to implement than either an entity set or a relationship. However, making
everything an attribute will usually get us into trouble.

Example 2.17: Let us consider a specific problem. In Fig. 2.2, were we wise
to make studios an entity set? Should we instead have made the name and
address of the studio be attributes of movies and eliminated the Studio entity
set? One problem with doing so is that we repeat the address of the studio for
each movie. This situation is another instance of redundancy, similar to those
seen in Sections 2.2.2 and 2.2.4. In addition to the disadvantages of redundancy
discussed there, we also face the risk that, should we not have any movies owned
by a given studio, we lose the studio’s address.

On the other hand, if we did not record addresses of studios, then there is
no harm in making the studio name an attribute of movies. We do not have
redundancy due to repeating addresses. The fact that we have to say the name
of a studio like Disney for each movie owned by Disney is not true redundancy,

2.2. DESIGN PRINCIPLES 43

since we must represent the owner of each movie somehow, and saying the name
is a reasonable way to do so. O

We can abstract what we have observed in Example 2.17 to give the condi-
tions under which we prefer to use an attribute instead of an entity set. Suppose
E is an entity set. Here are conditions that F must obey, in order for us to
replace E/ by an attribute or attributes of several other entity sets.

1. All relationships in which E is involved must have arrows entering FE.
That 1s, £ must be the “one” in many-one relationships, or its general-
ization for the case of multiway relationships.

2. The attributes for F must collectively identify an entity. Typically, there
will be only one attribute, in which case this condition is surely met.
However, if there are several attributes, then no attribute must depend
on the other attributes, the way address depends on name for Studios.

3. No relationship involves E more than once.
If these conditions are met, then we can replace entity set F as follows:

a) If there is a many-one relationship R from some entity set F' to E, then
remove R and make the attributes of £ be attributes of F', suitably re-
named if they conflict with attribute names for F'. In effect, each F-entity
takes, as attributes, the name of the unique, related E-entity,? as movie
objects could take their studio name as an attribute, should we dispense
with studio addresses.

b) If there is a multiway relationship R with an arrow to E, make the at-
tributes of E be attributes of R and delete the arc from R to E. An
example of transformation is replacing Fig. 2.8, where we had introduced
a new entity set Salaries, with a number as its lone attribute, by its
original diagram, in Fig. 2.7.

Example 2.18: Let us consider a point where there is a tradeoff between using
a multiway relationship and using a connecting entity set with several binary
relationships. We saw a four-way relationship Contracts among a star, a movie,
and two studios in Fig. 2.6. In Fig. 2.9, we mechanically converted it to an
entity set Contracts. Does it matter which we choose?

As the problem was stated, either is appropriate. However, should we change
the problem just slightly, then we are almost forced to choose a connecting entity
set. Let us suppose that contracts involve one star, one movie, but any set of
studios. This situation is more complex than the one in Fig. 2.6, where we
had two studios playing two roles. In this case, we can have any number of

2In a situation where an F-entity is not related to any E-entity, the new attributes of F
would be given special “null” values to indicate the absence of a related E-entity. A similar
arrangement would be used for the new attributes of R in case (b).

44 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

studios involved, perhaps one to do production, one for special effects, one for
distribution, and so on. Thus, we cannot assign roles for studios.

It appears that a relationship set for the relationship Contracts must contain
triples of the form

(star, movie, set-of-studios)

and the relationship Contracts itself involves not only the usual Stars and
Mowies entity sets, but a new entity set whose entities are sets of studios. While
this approach is unpreventable, it seems unnatural to think of sets of studios
as basic entities, and we do not recommend 1t.

A better approach is to think of contracts as an entity set. Asin Fig. 2.9, a
contract entity connects a star, a movie and a set of studios, but now there must
be no limit on the number of studios. Thus, the relationship between contracts
and studios is many-many, rather than many-one as it would be if contracts
were a true “connecting” entity set. Figure 2.13 sketches the E/R diagram.
Note that a contract is associated with a single star and a single movie, but
any number of studios. 0O

Stars Contracts Movies

Studios

Figure 2.13: Contracts connecting a star, a movie, and a set of studios

2.2.6 Exercises for Section 2.2

* Exercise 2.2.1: In Fig. 2.14 is an E/R diagram for a bank database involv-
ing customers and accounts. Since customers may have several accounts, and
accounts may be held jointly by several customers, we associate with each cus-
tomer an “account set,” and accounts are members of one or more account sets.
Assuming the meaning of the various relationships and attributes are as ex-
pected given their names, criticize the design. What design rules are violated?
Why? What modifications would you suggest?

2.2. DESIGN PRINCIPLES 45

owner—

AcctSets Customers

Membe

Accounts Addresses

Figure 2.14: A poor design for a bank database

* Exercise 2.2.2: Under what circumstances (regarding the unseen attributes
of Studios and Presidents would you recommend combining the two entity sets
and relationship in Fig. 2.3 into a single entity set and attributes?

Exercise 2.2.3: Suppose we delete the attribute address from Studios in
Fig. 2.7. Show how we could then replace an entity set by an attribute. Where
would that attribute appear?

Exercise 2.2.4: Give choices of attributes for the following entity sets in
Fig. 2.13 that will allow the entity set to be replaced by an attribute:

a) Stars.
b) Movies.
!¢) Studios.

! Exercise 2.2.5: In this and following exercises we shall consider two design
options in the E/R model for describing births. At a birth, there is one baby
(twins would be represented by two births), one mother, any number of nurses,
and any number of doctors. Suppose, therefore, that we have entity sets Babies,
Mothers, Nurses, and Doctors. Suppose we also use a relationship Births, which
connects these four entity sets, as suggested in Fig. 2.15. Note that a tuple of
the relationship set for Births has the form

(baby, mother, nurse, doctor)

If there is more than one nurse and/or doctor attending a birth, then there will
be several tuples with the same baby and mother, one for each combination of
nurse and doctor.

46 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

Mothers

Babies —<Births Nurses

Doctors

Figure 2.15: Representing births by a multiway relationship

There are certain assumptions that we might wish to incorporate into our
design. For each, tell how to add arrows or other elements to the E/R diagram
in order to express the assumption.

a) For every baby, there is a unique mother.

b) For every combination of a baby, nurse, and doctor, there is a unique
mother.

¢) For every combination of a baby and a mother there is a unique doctor.

Births

Babies Mothers Doctors Nurses

Figure 2.16: Representing births by an entity set

! Exercise 2.2.6: Another approach to the problem of Exercise 2.2.5 is to con-
nect the four entity sets Babies, Mothers, Nurses, and Doctors by an entity set
Births, with four relationships, one between Births and each of the other entity
sets, as suggested in Fig. 2.16. Use arrows (indicating that certain of these
relationships are many-one) to represent the following conditions:

a) Every baby is the result of a unique birth, and every birth is of a unique

baby.

b) In addition to (a), every baby has a unique mother.

2.3. THE MODELING OF CONSTRAINTS 47

¢) In addition to (a) and (b), for every birth there is a unique doctor.
In each case, what design flaws do you see?

Exercise 2.2.7: Suppose we change our viewpoint to allow a birth to involve
more than one baby born to one mother. How would you represent the fact
that every baby still has a unique mother using the approaches of Exercises

2.2.5 and 2.2.67

2.3 The Modeling of Constraints

We have seen so far how to model a slice of the real world using entity sets and
relationships. However, there are some other important aspects of the real world
that we cannot model with the tools seen so far. This additional information
often takes the form of constraints on the data that go beyond the structural
and type constraints imposed by the definitions of entity sets, attributes, and
relationships.

2.3.1 Classification of Constraints

The following is a rough classification of commonly used constraints. We shall
not cover all of these constraint types here. Additional material on constraints
is found in Section 5.5 in the context of relational algebra and in Chapter 7 in
the context of SQL programming.

1. Keys are attributes or sets of attributes that uniquely identify an entity
within its entity set. No two entities may agree in their values for all of
the attributes that constitute a key. It ¢s permissible, however, for two
entities to agree on some, but not all, of the key attributes.

2. Single-value constraints are requirements that the value in a certain con-
text be unique. Keys are a major source of single-value constraints, since
they require that each entity in an entity set has unique value(s) for the
key attribute(s). However, there are other sources of single-value con-
straints, such as many-one relationships.

3. Referential integrity constraints are requirements that a value referred to
by some object actually exists in the database. Referential integrity is
analogous to a prohibition against dangling pointers, or other kinds of
dangling references, in conventional programs.

4. Domain constraints require that the value of an attribute must be drawn
from a specific set of values or lie within a specific range.

5. General constraints are arbitrary assertions that are required to hold in
the database. For example, we might wish to require that no more than
ten stars be listed for any one movie. We shall see general constraint-
expression languages in Sections 5.5 and 7.4.

48 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

There are several ways these constraints are important. They tell us some-
thing about the structure of those aspects of the real world that we are modeling.
For example, keys allow the user to identify entities without confusion. If we
know that attribute name is a key for entity set Studios, then when we refer
to a studio entity by its name we know we are referring to a unique entity. In
addition, knowing a unique value exists saves space and time, since storing a
single value is easier than storing a set, even when that set has exactly one
member.? Referential integrity and keys also support certain storage structures
that allow faster access to data, as we shall discuss in Chapter 13.

2.3.2 Keys in the E/R Model

A key for an entity set F 1s a set K of one or more attributes such that, given
any two distinct entities e; and es in F, e; and e; cannot have identical values
for each of the attributes in the key K. If K consists of more than one attribute,
then it is possible for e; and es to agree in some of these attributes, but never
in all attributes. Three useful points to remember are:

e A key can consist of more than one attribute; an illustration appears in
Example 2.19.

e There can also be more than one possible key for an entity set, as we
shall see in Example 2.20. However, it is customary to pick one key as
the “primary key,” and to act as if that were the only key.

e When an entity set is involved in an isa-hierarchy, we require that the root
entity set have all the attributes needed for a key, and that the key for
each entity is found from its component in the root entity set, regardless
of how many entity sets in the hierarchy have components for the entity
in question.

Example 2.19: Let us consider the entity set Movies from Example 2.1. One
might first assume that the attribute {itle by itself is a key. However, there are
several titles that have been used for two or even more movies, for example,
King Kong. Thus, it would be unwise to declare that title by itself is a key. If
we did so, then we would not be able to include information about both King
Kong movies in our database.

A better choice would be to take the set of two attributes title and year as
a key. We still run the risk that there are two movies made in the same year
with the same title (and thus both could not be stored in our database), but
that is unlikely.

For the other two entity sets, Stars and Studios, introduced in Example 2.1,
we must again think carefully about what can serve as a key. For studios, it is
reasonable to assume that there would not be two movie studios with the same

3In analogy, note that in a C program it is simpler to represent an integer than it is to
represent a linked list of integers, even when that list contains only one integer.

2.3. THE MODELING OF CONSTRAINTS 49

Constraints Are Part of the Schema

We could look at the database as it exists at a certain time and decide
erroneously that an attribute forms a key because no two entities have
identical values for this attribute. For example, as we create our movie
database we might not enter two movies with the same title for some time.
Thus, 1t might look as if title were a key for entity set Movies. However,
if we decided on the basis of this preliminary evidence that title is a key,
and we designed a storage structure for our database that assumed title is
a key, then we might find ourselves unable to enter a second King Kong
movie into the database.

Thus, key constraints, and constraints in general, are part of the
database schema. They are declared by the database designer along with
the structural design (e.g., entities and relationships). Once a constraint
is declared, insertions or modifications to the database that violate the
constraint are disallowed.

Hence, although a particular instance of the database may satisfy
certain constraints, the only “true” constraints are those identified by the
designer as holding for all instances of the database that correctly model
the real-world. These are the constraints that may be assumed by users
and by the structures used to store the database.

name, so we shall take name to be a key for entity set Studios. However, it is
less clear that stars are uniquely identified by their name. Surely name does
not distinguish among people in general. However, since stars have traditionally
chosen “stage names” at will, we might hope to find that name serves as a key
for Stars too. If not, we might choose the pair of attributes name and address
as a key, which would be satisfactory unless there were two stars with the same
name living at the same address. 0O

Example 2.20: Our experience in Example 2.19 might lead us to believe that
it 1s difficult to find keys or to be sure that a set of attributes forms a key.
In practice the matter is usually much simpler. In the real-world situations
commonly modeled by databases, people often go out of their way to create
keys for entity sets. For example, companies generally assign employee ID’s to
all employees, and these ID’s are carefully chosen to be unique numbers. One
purpose of these ID’s is to make sure that in the company database each em-
ployee can be distinguished from all others, even if there are several employees
with the same name. Thus, the employee-1D attribute can serve as a key for
employees in the database.

In US corporations, it is normal for every employee to also have a Social
Security number. If the database has an attribute that is the Social Security

50 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

number, then this attribute can also serve as a key for employees. Note that
there is nothing wrong with there being several choices of key for an entity set,
as there would be for employees having both employee ID’s and Social Security
numbers.

The idea of creating an attribute whose purpose is to serve as a key is quite
widespread. In addition to employee ID’s; we find student ID’s to distinguish
students in a university. We find drivers’ license numbers and automobile reg-
istration numbers to distinguish drivers and automobiles, respectively, in the
Department of Motor Vehicles. The reader can undoubtedly find more examples
of attributes created for the primary purpose of serving as keys. O

2.3.3 Representing Keys in the E/R Model

In our E/R diagram notation, we underline the attributes belonging to a key
for an entity set. For example, Fig. 2.17 reproduces our E/R diagram for
movies, stars, and studios from Fig. 2.2, but with key attributes underlined.
Attribute name 1s the key for Stars. Likewise, Studios has a key consisting of
only 1ts own attribute name. These choices are consistent with the discussion
in Example 2.19.

() ey () Caaesd

vovies stars
Lom>

Studios

Figure 2.17: E/R diagram; keys are indicated by underlines

The attributes title and year together form the key for Mowvies, as we dis-
cussed in Example 2.19. Note that when several attributes are underlined, as
in Fig. 2.17, then they are each members of the key. There is no notation for
representing the situation where there are several keys for an entity set; we
underline only the primary key. You should also be aware that in some unusual
situations, the attributes forming the key for an entity set do not all belong to

2.3. THE MODELING OF CONSTRAINTS 51

the entity set itself. We shall defer this matter, called “weak entity sets,” until
Section 2.4.

2.3.4 Single-Value Constraints

Often, an important property of a database design is that there 1s at most one
value playing a particular role. For example, we assume that a movie entity
has a unique title, year, length, and film type, and that a movie is owned by a
unique studio.

There are several ways in which single-value constraints are expressed in the

E/R model.

1. Each attribute of an entity set has a single value. Sometimes it is permis-
sible for an attribute’s value to be missing for some entities, in which case
we have to invent a “null value” to serve as the value of that attribute. For
example, we might suppose that there are some movies in our database
for which the length is not known. We could use a value such as —1 for
the length of a movie whose true length is unknown. On the other hand,
we would not want the key attributes #itle or year to be null for any movie
entity. A requirement that a certain attribute not have a null value does
not have any special representation in the E/R model. We could place a
notation beside the attribute stating this requirement if we wished.

2. A relationship R that is many-one from entity set E to entity set F
implies a single-value constraint. That is, for each entity e in F, there is
at most one associated entity f in F'. More generally, if R is a multiway
relationship, then each arrow out of R indicates a single value constraint.
Specifically, if there is an arrow from R to entity set E, then there is at
most one entity of set £ associated with a choice of entities from each of
the other related entity sets.

2.3.5 Referential Integrity

While single-value constraints assert that at most one value exists in a given
role, a referential integrity constraint asserts that exactly one value exists in
that role. We could see a constraint that an attribute have a non-null, single
value as a kind of referential integrity requirement, but “referential integrity”
is more commonly used to refer to relationships among entity sets.

Let us consider the many-one relationship Qwns from Mowvies to Studios in
Fig. 2.2. The many-one requirement simply says that no movie can be owned
by more than one studio. It does not say that a movie must surely be owned
by a studio, or that, even if it i1s owned by some studio, that the studio must
be present in the Studios entity set, as stored in our database.

A referential integrity constraint on relationship OQwns would require that for
each movie, the owning studio (the entity “referenced” by the relationship for

52 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

this movie) must exist in our database. There are several ways this constraint
could be enforced.

1. We could forbid the deletion of a referenced entity (a studio in our ex-
ample). That is, we could not delete a studio from the database unless it
did not own any movies.

2. We could require that if a referenced entity i1s deleted, then all entities
that reference it are deleted as well. In our example, this approach would
require that if we delete a studio, we also delete from the database all
movies owned by that studio.

In addition to one of these policies about deletion, we require that when a
movie entity is inserted into the database, it is given an existing studio entity
to which it is connected by relationship Owns. Further, if the value of that
relationship changes, then the new value must also be an existing Studios entity.
Enforcing these policies to assure referential integrity of a relationship is a
matter for the implementation of the database, and we shall not discuss the
details here.

2.3.6 Referential Integrity in E/R Diagrams

We can extend the arrow notation in E/R diagrams to indicate whether a
relationship is expected to support referential integrity in one or more directions.
Suppose R is a relationship from entity set £ to entity set F'. We shall use a
rounded arrowhead pointing to F' to indicate not only that the relationship is
many-one or one-one from F to F, but that the entity of set F related to a
given entity of set E is required to exist. The same idea applies when R is a
relationship among more than two entity sets.

Example 2.21: Figure 2.18 shows some appropriate referential integrity con-
straints among the entity sets Mowvies, Studios, and Presidents. These entity sets
and relationships were first introduced in Figs. 2.2 and 2.3. We see a rounded
arrow entering Studios from relationship Owns. That arrow expresses the refer-
ential integrity constraint that every movie must be owned by one studio, and
this studio is present in the Studios entity set.

Movies Sudios Presidents

Figure 2.18: E/R diagram showing referential integrity constraints

Similarly, we see a rounded arrow entering Studios from Runs. That arrow
expresses the referential integrity constraint that every president runs a studio
that exists in the Studios entity set.

Note that the arrow to Presidents from Runs remains a pointed arrow. That
choice reflects a reasonable assumption about the relationship between studios

2.3. THE MODELING OF CONSTRAINTS 53

and their presidents. If a studio ceases to exist, its president can no longer be
called a (studio) president, so we would expect the president of the studio to
be deleted from the entity set Presidents. Hence there is a rounded arrow to
Studios. On the other hand, if a president were deleted from the database, the
studio would continue to exist. Thus, we place an ordinary, pointed arrow to
Presidents, indicating that each studio has at most one president, but might
have no president at some time. 0O

2.3.7 Other Kinds of Constraints

As mentioned at the beginning of this section, there are other kinds of con-
straints one could wish to enforce in a database. We shall only touch briefly on
these here, with the meat of the subject appearing in Chapter 7.

Domain constraints restrict the value of an attribute to be in a limited set.
A simple example would be declaring the type of an attribute. A stronger
domain constraint would be to declare an enumerated type for an attribute or
a range of values, e.g., the length attribute for a movie must be an integer in
the range 0 to 240. There is no specific notation for domain constraints in the
E/R model, but you may place a notation stating a desired constraint next to
the attribute, if you wish.

There are also more general kinds of constraints that do not fall into any
of the categories mentioned in this section. For example, we could choose to
place a constraint on the degree of a relationship, such as that a movie entity
cannot be connected by relationship stars to more than 10 star entities. In
the E/R model, we can attach a bounding number to the edges that connect
a relationship to an entity set, indicating limits on the number of entities that
can be connected to any one entity of the related entity set.

. <=10
Movies 28 Stars

Figure 2.19: Representing a constraint on the number of stars per movie

Example 2.22: Figure 2.19 shows how we can represent the constraint that
no movie has more than 10 stars in the E/R model. As another example, we
can think of the arrow as a synonym for the constraint “< 1,” and we can think
of the rounded arrow of Fig. 2.18 as standing for the constraint “=1." O

2.3.8 Exercises for Section 2.3
Exercise 2.3.1: For your E/R diagrams of:
* a) Exercise 2.1.1.

b) Exercise 2.1.3.

54 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

¢) Exercise 2.1.6.

(7) Select and specify keys, and (¢¢) Indicate appropriate referential integrity
constraints.

Exercise 2.3.2: We may think of relationships in the E/R model as having
keys, just as entity sets do. Let R be a relationship among the entity sets
Ey,Es,...,E,. Then a key for R is a set K of attributes chosen from the
attributes of £y, Ea, ..., E\, such that if (e1,e2,...,¢e,) and (f1, fa,..., fn) are
two different tuples in the relationship set for R, then it is not possible that
these tuples agree in all the attributes of K. Now, suppose n = 2; that is, R
is a binary relationship. Also, for each i, let K; be a set of attributes that is a
key for entity set F;. In terms of E; and FEs, give a smallest possible key for R
under the assumption that:

a) R 1s many-many.

* b

R is many-one from E; to Fs.

¢) R is many-one from F5 to Ey.

)
)
)
d) R is one-one.

Exercise 2.3.3: Consider again the problem of Exercise 2.3.2, but with n
allowed to be any number, not just 2. Using only the information about which

arcs from R to the E;’s have arrows, show how to find a smallest possible key
K for R in terms of the K;’s.

Exercise 2.3.4: Give examples (other than those of Example 2.20) from real
life of attributes created for the primary purpose of being keys.

2.4 Weak Entity Sets

There is an occasional condition in which an entity set’s key is composed of
attributes some or all of which belong to another entity set. Such an entity set
is called a weak entity set.

2.4.1 Causes of Weak Entity Sets

There are two principal sources of weak entity sets. First, sometimes entity sets
fall into a hierarchy based on classifications unrelated to the “isa hierarchy” of
Section 2.1.11. If entities of set £ are subunits of entities in set F'| then it is
possible that the names of E entities are not unique until we take into account
the name of the F' entity to which the E entity is subordinate. Several examples
will illustrate the problem.

2.4. WEAK ENTITY SETS 99

Example 2.23: A movie studio might have several film crews. The crews
might be designated by a given studio as crew 1, crew 2, and so on. However,
other studios might use the same designations for crews, so the attribute number
is not a key for crews. Rather, to name a crew uniquely, we need to give both
the name of the studio to which it belongs and the number of the crew. The
situation is suggested by Fig. 2.20. The key for weak entity set Crews is its
own number attribute and the name attribute of the unique studio to which the
crew is related by the many-one Unit-of relationship.* O

CQumber Crame> Cadan)

Studios

Figure 2.20: A weak entity set for crews, and its connections

Example 2.24: A species is designated by its genus and species names. For
example, humans are of the species Homo sapiens; Homo is the genus name
and sapiens the species name. In general, a genus consists of several species,
each of which has a name beginning with the genus name and continuing with
the species name. Unfortunately, species names, by themselves, are not unique.
Two or more genera may have species with the same species name. Thus, to
designate a species uniquely we need both the species name and the name of the
genus to which the species is related by the Belongs-to relationship, as suggested
in Fig. 2.21. Species is a weak entity set whose key comes partially from its

i

Species Genus

Figure 2.21: Another weak entity set, for species

The second common source of weak entity sets is the connecting entity
sets that we introduced in Section 2.1.10 as a way to eliminate a multiway
relationship.® These entity sets often have no attributes of their own. Their

4The double diamond and double rectangle will be explained in Section 2.4.3.

5Remember that there is no particular requirement in the E/R model that multiway re-
lationships be eliminated, although this requirement exists in some other database design
models.

56 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

key 1s formed from the attributes that are the key attributes for the entity sets
they connect.

Example 2.25: In Fig. 2.22 we see a connecting entity set Contracts that
replaces the ternary relationship Contracts of Example 2.5. Contracts has an
attribute salary, but this attribute does not contribute to the key. Rather, the
key for a contract consists of the name of the studio and the star involved, plus
the title and year of the movie involved. O

Contracts

Figure 2.22: Connecting entity sets are weak

2.4.2 Requirements for Weak Entity Sets

We cannot obtain key attributes for a weak entity set indiscriminately. Rather,
if 1s a weak entity set then its key consists of:

1. Zero or more of its own attributes, and

2. Key attributes from entity sets that are reached by certain many-one
relationships from E to other entity sets. These many-one relationships
are called supporting relationships for E.

In order for R, a many-one relationship from £ to some entity set F', to be a
supporting relationship for £, the following conditions must be obeyed:

a) R must be a binary, many-one relationship® from E to F.

8Remember that a one-one relationship is a special case of a many-one relationship. When
we say a relationship must be many-one, we always include one-one relationships as well.

2.4. WEAK ENTITY SETS 57

b)

R must have referential integrity from £ to F'. That is, for every E-entity,
the F-entity related to it by R must actually exist in the database. Put
another way, a rounded arrow from R to F' must be justified.

The attributes that F' supplies for the key of ¥ must be key attributes of
F.

However, if F' is itself weak, then some or all of the key attributes of F'
supplied to F will be key attributes of one or more entity sets G to which
F is connected by a supporting relationship. Recursively, if G is weak,
some key attributes of G will be supplied from elsewhere, and so on.

If there are several different supporting relationships from E to F', then
each relationship is used to supply a copy of the key attributes of F' to
help form the key of E/. Note that an entity e from E may be related to
different entities in F' through different supporting relationships from FE.
Thus, the keys of several different entities from /' may appear in the key
values identifying a particular entity e from F.

The intuitive reason why these conditions are needed is as follows. Consider
an entity in a weak entity set, say a crew in Example 2.23. Each crew is unique,
abstractly. In principle we can tell one crew from another, even if they have
the same number but belong to different studios. It 1s only the data about
crews that makes it hard to distinguish crews, because the number alone is not
sufficient. The only way we can associate additional information with a crew
is if there is some deterministic process leading to additional values that make
the designation of a crew unique. But the only unique values associated with
an abstract crew entity are:

1.
2.

Values of attributes of the Crews entity set, and

Values obtained by following a relationship from a crew entity to a unique
entity of some other entity set, where that other entity has a unique
associated value of some kind. That 1s, the relationship followed must be
many-one (or one-one as a special case) to the other entity set F', and the
associated value must be part of a key for F'.

2.4.3 Weak Entity Set Notation

We shall adopt the following conventions to indicate that an entity set is weak
and to declare its key attributes.

1.

If an entity set is weak, it will be shown as a rectangle with a double
border. Examples of this convention are Crewsin Fig. 2.20 and Contracts
in Fig. 2.22.

Its supporting many-one relationships will be shown as diamonds with a
double border. Examples of this convention are Unit-of in Fig. 2.20 and
all three relationships in Fig. 2.22.

58 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

3. If an entity set supplies any attributes for its own key, then those at-
tributes will be underlined. An example is in Fig. 2.20, where the number
of a crew participates in its own key, although it is not the complete key
for Crews.

We can summarize these conventions with the following rule:

e Whenever we use an entity set £ with a double border, it is weak. E’s
attributes that are underlined, if any, plus the key attributes of those
entity sets to which F is connected by many-one relationships with a
double border, must be unique for the entities of £.

We should remember that the double-diamond is used only for supporting
relationships. It is possible for there to be many-one relationships from a weak
entity set that are not supporting relationships, and therefore do not get a
double diamond.

Example 2.26: In Fig. 2.22, the relationship Studio-of need not be a support-
ing relationship for Contracts. The reason is that each movie has a unique own-
ing studio, determined by the (not shown) many-one relationship from Mowvies
to Studios. Thus, if we are told the name of a star and a movie, there is at most
one contract with any studio for the work of that star in that movie. In terms
of our notation, it would be appropriate to use an ordinary single diamond,
rather than the double diamond, for Studio-of in Fig. 2.22. 0O

2.4.4 Exercises for Section 2.4

Exercise 2.4.1: One way to represent students and the grades they get in
courses 1s to use entity sets corresponding to students, to courses, and to “en-
rollments.” Enrollment entities form a “connecting” entity set between students
and courses and can be used to represent not only the fact that a student is
taking a certain course, but the grade of the student in the course. Draw an
E/R diagram for this situation, indicating weak entity sets and the keys for the
entity sets. Is the grade part of the key for enrollments?

Exercise 2.4.2: Modify your solution to Exercise 2.4.1 so that we can record
grades of the student for each of several assignments within a course. Again,
indicate weak entity sets and keys.

Exercise 2.4.3: For your E/R diagrams of Exercise 2.2.6(a)—(c), indicate weak
entity sets, supporting relationships, and keys.

Exercise 2.4.4: Draw E/R diagrams for the following situations involving
weak entity sets. In each case indicate keys for entity sets.

a) Entity sets Courses and Departments. A course is given by a unique
department, but its only attribute is its number. Different departments
can offer courses with the same number. Each department has a unique
name.

2.5. SUMMARY OF CHAPTER 2 59

*1'b) Entity sets Leagues, Teams, and Players. League names are unique. No
league has two teams with the same name. No team has two players with
the same number. However, there can be players with the same number
on different teams, and there can be teams with the same name in different
leagues.

2.5 Summary of Chapter 2

O The Entity/Relationship Model: In the E/R model we describe entity
sets, relationships among entity sets, and attributes of entity sets and
relationships. Members of entity sets are called entities.

O FEntity/Relationship Diagrams: We use rectangles, diamonds, and ovals
to draw entity sets, relationships, and attributes, respectively.

O Multiplicity of Relationships: Binary relationships can be one-one, many-
one, or many-many. In a one-one relationship, an entity of either set can
be associated with at most one entity of the other set. In a many-one
relationship, each entity of the “many” side is associated with at most
one entity of the other side. Many-many relationships place no restriction
on multiplicity.

O Keys: A set of attributes that uniquely determines an entity in a given
entity set is a key for that entity set.

O Good Design: Designing databases effectively requires that we represent
the real world faithfully, that we select appropriate elements (e.g., rela-
tionships, attributes), and that we avoid redundancy — saying the same
thing twice or saying something in an indirect or overly complex manner.

O Referential Integrity: A requirement that an entity be connected, through
a given relationship, to an entity of some other entity set, and that the
latter entity exists in the database, is called a referential integrity con-
straint.

O Subclasses: The E/R model uses a special relationship isa to represent
the fact that one entity set 1s a special case of another. Entity sets may be
connected in a hierarchy with each child node a special case of 1ts parent.
Entities may have components belonging to any subtree of the hierarchy,
as long as the subtree includes the root.

O Weak Entity Sets: An occasional complication that arises in the E/R
model is a weak entity set that requires attributes of some related entity
set(s) to identify its own entities. A special notation involving diamonds
and rectangles with double borders is used to distinguish weak entity sets.

60 CHAPTER 2. THE ENTITY-RELATIONSHIP DATA MODEL

2.6 References for Chapter 2

The original paper on the Entity /Relationship model is [2]. Two modern books
on the subject of E/R design are [1] and [3].

1. Batini, Carlo.,; S. Ceri, and S. B. Navathe, and Carol Batini, Concep-
tual Database Design: an Entily/Relationship Approach, Addison-Wesley,
Reading MA, 1991.

2. Chen, P. P., “The entity-relationship model: toward a unified view of
data,” ACM Trans. on Database Systems 1:1, pp. 9-36, 1976.

3. Thalheim, B., “Fundamentals of Entity-Relationship Modeling,” Spring-
er-Verlag, Berlin, 2000.

