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Background and Objective: The automatic assessment of pain is vital in designing optimal pain manage- 

ment interventions focused on reducing suffering and preventing the functional decline of patients. In 

recent years, there has been a surge in the adoption of deep learning algorithms by researchers attempt- 

ing to encode the multidimensional nature of pain into meaningful features. This systematic review aims 

to discuss the models, the methods, and the types of data employed in establishing the foundation of a 

deep learning-based automatic pain assessment system. 

Methods: The systematic review was conducted by identifying original studies searching digital libraries, 

namely Scopus, IEEE Xplore, and ACM Digital Library. Inclusion and exclusion criteria were applied to 

retrieve and select those of interest, published until December 2021. 

Results: A total of one hundred and ten publications were identified and categorized by the number of in- 

formation channels used (unimodal versus multimodal approaches) and whether the temporal dimension 

was also used. 

Conclusions: This review demonstrates the importance of multimodal approaches for automatic pain esti- 

mation, especially in clinical settings, and also reveals that significant improvements are observed when 

the temporal exploitation of modalities is included. It provides suggestions regarding better-performing 

deep architectures and learning methods. Also, it provides suggestions for adopting robust evaluation 

protocols and interpretation methods to provide objective and comprehensible results. Furthermore, the 

review presents the limitations of the available pain databases for optimally supporting deep learning 

model development, validation, and application as decision-support tools in real-life scenarios. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Pain, according to the International Association for the Study of 

ain (IASP), is described as “an unpleasant sensory and emotional 

xperience associated with actual or potential tissue damage, or de- 

cribed in terms of such tissue damage” [1, p. 250] . Pain is a highly

revalent and manifold condition [2] . According to the Global Bur- 

en of Disease (GBD) study, pain is the number one cause of years 

ived with disability (YLD) [3] . The main types of pain are acute 

nd chronic. Their primary difference has to do with the dura- 

ion of the sensation of pain; pain is considered acute when it is 
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resent for less than three months and is probably accompanied 

y apparent physiological damage, while it is considered chronic 

hen it progresses from an acute to a chronic state and persists 

eyond the healing process [4] . Chronic pain has several variations 

hen the temporal dimension is taken into consideration, such as 

hronic-recurrent ( e.g., migraine headache) or chronic-continuous 

 e.g., low back pain) [5] . Pain is a serious issue that concerns not

nly individuals but also society as a whole. Every day, people of 

ll ages experience pain, either due to an accident, an illness, or 

ven during treatment, and it is the most frequent reason for a 

hysician visit. Both acute and chronic pain constitute clinical, eco- 

omic, and social constraints [6] . The Institute of Medicine states 

hat more than 100 million Americans suffer from chronic pain 

7] , and the lost productivity is estimated at 61.2 billion dollars 

er year [8] . The National Institute of Health (NIH) disclosed that 
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he total cost of persistent pain ($560-$635 billion) significantly 

xceeds the cost of other major diseases, including cardiovascular 

$309 billion) and neoplasms ($243 billion) [9] . Besides the direct 

onsequences of pain in a patient’s life, there are various collateral 

egative impacts related to opioids, drug overuse, addiction, poor 

ocial relationships, and psychological diseases [6] . Accurate pain 

easurement facilitates early diagnosis, monitoring of disease pro- 

ression, and evaluation of therapeutic efficacy; thus is critical for 

he management of chronic pain. 

For all the aforementioned reasons, the objective assessment 

f pain is required to deliver appropriate care to people suffer- 

ng. A serious case concerning the healthcare community is vul- 

erable groups of people who cannot communicate and express 

heir pain directly. Such groups of people are infants, young chil- 

ren, people with mental illness, and the elderly. Usually, in most 

ases involving people who cannot express their pain, caregivers or 

amily members observe the behavioral or physiological responses 

hrough which they infer the presence or absence of pain. The 

roblems with such an approach are twofold [10] . The first relates 

o the fact that continuous observation of the patient throughout 

he day is only possible by employing technology-based solutions. 

he second relates to accuracy, i.e., whether the observation and 

rawing of conclusions are objective and correct. There are situa- 

ions in which the observer, either due to inadequate training or 

ersonal biases, is not able to assess appropriately and sufficiently 

he pain event that the patient is experiencing [11] . In addition, 

ocial and interpersonal relationships influence the judgment and 

he expression of the person, those who evaluate, and those who 

erceive pain [12] . For the above reasons, significant research is 

ocused on the development of automatic pain recognition systems 

hat can recognize the existence of pain and its intensity, analyzing 

hysiological and behavioral responses. In the last decade, artificial 

ntelligence (AI) researchers have focused on creating models and 

lgorithms capable of endowing machines with cognitive capabili- 

ies to recognize emotions and sentiments, such as pain. Especially 

n recent years, with the development of deep learning methods, 

any researchers are using such approaches for automated pain 

ssessment, as the results are often superior to those of classical 

achine learning techniques. 

Consequently, evaluating the current primary research studies 

dopting deep learning methods is necessary. According to [13] , 

he aggregation of empirical results can be performed with system- 

tic literature reviews (SLRs) addressing specific research questions 

r with systematic mapping reviews identifying all the relevant re- 

earch articles on a specific topic. The present work is an SLR to re-

ort on the achievements of existing approaches in automatic pain 

ssessment based on deep learning methods. We will fill the gap 

n the existing comprehensive reviews and provide insights about 

he techniques and strategies for future automatic pain recognition 

ystems to practitioners and researchers in this scientific field. 

.1. Related work 

Prior to making the final decision to conduct an SLR, the liter- 

ture was reviewed, and existing SLRs on pain assessment were 

dentified and assessed. The following were observed. In 2009, 

he first review [14] on automatic pain assessment was published, 

hich does not include papers based on deep learning, as the ac- 

ual implementations of deep architectures started in 2012. Zamzi 

t al. [15] conducted a review of automatic pain assessment, which 

ocused exclusively on infants and did not reference deep learn- 

ng methods. In 2018, Chen et al. [16] presented a review focus- 

ng on automated pain detection approaches using the Facial Ac- 

ion Coding System (FACS). The authors of this review also report 

nly a limited number ( i.e., three) of publications using deep learn- 

ng methods. A year later, i.e., in 2019, Hassan et al. [17] presented 
2 
 similar review in which only seven papers reporting the use of 

eep learning methods were included. The same year, Werner et al. 

18] presented their results on pain assessment without any con- 

traints on the modalities used or the age of subjects. The papers 

eporting deep learning methods are again less than ten. In 2020 

l-Eidan et al. [19] published the first SLR on pain assessment and 

eep learning approaches entitled “Deep-Learning-Based Models 

or Pain Recognition: A Systematic Review”, which includes fifteen 

apers. This review has, in our view, significant limitations and in- 

orrect information. We believe that a number of papers analyzed 

re not relevant, and there is, in our view, confusion between the 

erms “neural networks” and “deep learning” since the presence of 

he first in a study does not necessarily imply the existence of the 

econd. Specifically, although the referenced studies [3,17] report 

he use of neural network approaches, they do not present any ev- 

dence regarding the adoption of deep learning methods. At the 

ame time, in [16] , the authors explicitly report the development 

f a neural network with two layers combined with handcrafted 

eatures, which is certainly not a deep learning method. Further- 

ore, the studies [15,19] focus on detecting protective movement 

ehavior in patients suffering from chronic pain, which is a differ- 

nt research topic. 

As a result, although several reviews and SLRs have been pub- 

ished on automatic pain assessment, they do not focus exclusively 

r properly on deep learning methods. The present SLR attempts 

o fill this gap in the literature by providing a comprehensive sys- 

ematic review of deep learning methods employed for automatic 

ain assessment. 

.2. Pain 

Pain is explained as an unpleasant noxious stimulus originating 

rom the peripheral nervous system and transferred through the 

pinal cord, followed by the physiological sensation of it. It is a 

omplex biopsychosocial sensation that emerges from the synergy 

f neuroanatomic and neurochemical systems combined with cog- 

itive and affective processes [20] . For the above reason, Williams 

nd Craig [21] proposed an updated definition of pain: “Pain is a 

istressing experience associated with actual or potential tissue dam- 

ge with sensory, emotional, cognitive and social components”. 

Three main variables characterize pain; severity, duration, and 

istribution [5] . Pain severity is the most visible element, with low, 

oderate, or high intensity. The second variable is the duration of 

ain; as previously mentioned, the two primary types of pain are 

cute and chronic. The last variable is the distribution of pain. Pain 

istribution is one of the typical factors used for the clinical as- 

essment of patients with chronic pain. In order to effectively man- 

ge the pain situation of an individual, it is necessary to assess its 

resence and intensity. In clinical settings, the gold standard is the 

elf-report, where the person describes the intensity or/and the re- 

ion where the pain occurs. There are numerous self-report scales 

elated to adults, children, and elders, such as the visual analogue 

cale (VAS) [22] and the verbal rating scale (VRS) [23] . Additionally, 

here are observational-based scales where a third person evalu- 

tes the severity of the pain, e.g., the Prkachin and Solomon pain 

ntensity scale (PSPI) [24] and the neonatal/infant pain scale (NIPS) 

25] . However, there is reported evidence that patients report high 

ain severity in order to provoke more aggressive treatment [26] . 

hese types of incidents create uncertainties about the validity of 

he reported symptoms. Hence the objective measurement of pain 

ntensity is clinically fundamental. 

.3. Modalities & hardware for automatic pain assessment 

The development of an automatic pain assessment system re- 

uires the recording of the necessary input information channels. 
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Table 1 

Pain Databases utilized in most studies. 

Database Modality Population Annotation Granularity Annotation Labels 

UNBC-McMaster RGB video of face 25 adults with shoulder pain Frame level FACS 

Shoulder Pain A [27] Sequence level VAS, OPI 

BioVid A [28] RGB video of face, 87 healthy adults Sequence level stimulus (calibrated per person) 

EDA, ECG, EMG 

MIntPAIN 

A [29] RGB-Depth-Thermal 20 healthy adults Sequence level stimulus (calibrated per person), 

video of face VAS 

iCOPE A [30] RGB photographs of face 26 healthy neonates Frame level pain, cry, rest, air puff, friction 

iCOPEvid A [31] Grayscale video of face 49 neonates Sequence level pain, no pain 

NPAD-I A [32] RGB video of face & body, 36 healthy neonates & 9 neonates Sequence level NIPS, N-PASS 

HR, SpO2, BP, NIRS with tissue injured by surgery 

APN-db A [33] RGB video of face 112 healthy neonates Sequence level NFLAPS, NIPS, NFCS 

EmoPain N [34] video, audio, EMG, MoCap 22 adults with chronic pack pain Sequence level self-report, naive OPI 

& 28 healthy adults 

SenseEmotion N [35] video of face, audio, 45 healthy adults Sequence level stimulus (calibrated per person) 

EDA, ECG, EMG, RSP 

X-ITE N [36] RGB-Thermal video of face, 134 healthy adults Sequence level stimulus (calibrated per person) 

RGB-Depth video of body, 

audio, EDA, ECG, EMG 

A : Publicly available by request, complete or part of the dataset N : Not yet available Modality: HR: heart rate SpO2: oxygen saturation rate BP: blood pressure 

NIRS: near-infrared spectroscopy MoCap: motion capture RSP: respiration rate EDA: electrodermal activity ECG: electrocardiogram EMG: electromyogram An- 

notation Labels: FACS: Facial Action Coding System VAS: visual analogue scale OPI: observer pain intensity NIPS: neonatal infant scale N-PASS: neonatal pain, 

agitation and sedation scale NFLAPS: neonatal face and limb acute pain scale NFCS: neonatal facial coding system 
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he information channels known as modalities are characterized 

s behavioral or physiological. A system is called unimodal if it 

onsists of one modality or multimodal if multiple modalities are 

sed. 

The primary behavioral modalities include facial expressions, 

ody movements, gestures, and audio. Several kinds of optical and 

ight sensors can be exploited to record images or sequences of im- 

ges ( i.e., videos) regarding facial and body expressions. Most re- 

earchers utilize color RGB cameras, while in other cases, depth 

nd thermal camera sensors are employed to provide additional 

isual channels. In addition, motion capture sensors have been 

sed for movement measurement, while microphones are the typ- 

cal hardware choice for audio recording. Physiological modalities 

sually include biosignals capturing the electrical activity arising 

rom tissues and organs. Numerous biosignal measurement meth- 

ds have been used in order to assess pain; electrocardiography 

ECG), electromyography (EMG), electrodermal activity (EDA), pho- 

oplethysmography (PPG), blood oxygen saturation (SpO2), near- 

nfrared spectroscopy (NIRS), respiration rate and skin temperature. 

t is worth mentioning that multiple modalities can be measured 

y several sensors, e.g., respiration rate can also be measured with 

train sensors and cameras. 

Beyond the sensors capturing the necessary input informa- 

ion, the hardware for the computation process is essential. Deep 

earning-based systems works in two phases; training and infer- 

nce. The training phase is the most computationally intensive, 

nd a graphics processing unit (GPU), even for efficient approaches, 

s necessary. For inference, the trained model is deployed, mak- 

ng predictions on novel data. Usually, this process takes place in 

 central processing unit (CPU), but the specific choice of hard- 

are is related to several factors. For instance, in real-time sce- 

arios where the latency is critical, the requirements are higher 

han in an offline approach, where estimations happen in a subse- 

uent stage. Furthermore, the characteristics of the trained model, 

.e., floating point per second (FLOPS), and the number of opera- 

ions must be considered too. 

.4. Pain databases 

Data availability is essential to evaluate different methods and 

lgorithms for automatic pain assessment. Table 1 summarizes the 

ain databases used in the studies reviewed. In Fig. 1 , we present 
3 
he number of studies that utilized each database. Most studies 

mployed one of the publicly available datasets, and several stud- 

es experimented with more than one dataset. A limited number 

f studies employed a private dataset, especially those focusing on 

he pain detection of neonates. The most used dataset is UNBC- 

cMaster Shoulder Pain Archive Database [27] , followed by The 

ioVid Heat Pain Database [28] . The first consists of 200 facial 

ideos of 25 participants suffering from shoulder pain, while the 

econd combines facial videos and biopotentials of 90 healthy par- 

icipants subjected to experimentally induced heat pain at four dif- 

erent intensity levels. 

.5. Structure of the paper 

The review is organized as follows: in Section 1 , we provide 

 brief analysis and assessment of existing SLRs and briefly de- 

cribe the pain phenomenon. In addition, we present the rele- 

ant datasets used for automatic pain assessment and refer to the 

odalities and hardware requirements for developing an automatic 

ain assessment system. Section 2 presents the methodological 

pproach for conducting the review, including our main research 

uestions and search strategy. In Section 3 , we describe the identi- 

ed automatic pain estimation approaches. Section 4 includes the 

eview’s findings, and Section 5 concludes the review. 

. Review methodology & content 

The present SLR has been conducted according to the “Guide- 

ines for performing Systematic Literature Reviews in Software En- 

ineering” by Kitchenham [37] and the PRISMA updated guideline 

or reporting systematic reviews [38] . 

.1. Goal and research questions 

This SLR aims to map the current research area of deep learn- 

ng methods as applied to the automatic pain assessment domain. 

n particular, this study aims to address the following primary re- 

earch questions: 

1. What types of deep machine learning models are most com- 

monly used, and what types of learning methods are used, i.e., 

supervised, unsupervised, semi-supervised, self-supervised, etc., 

for the automatic assessment of pain? 
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Fig. 1. The number of studies using the specific datasets. Several studies, however, employed more than one for contacting their experiments. 

Table 2 

Search Terms and Sources employed in the current review. 

Sources Keywords 

• Pain Assessment 
• Scopus 1 • Pain Detection 
• IEEE Xplore 2 • Pain Recognition 
• ACM Digital Library 3 • Pain Intensity 

• Pain Estimation 

Search String: 

TITLE-ABS-KEY((“pain assessment”) OR (“pain detection”) OR (“pain 

recognition”) OR (“pain intensity”) OR (“pain estimation”)) AND (LIMIT-TO 

(DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”)) AND (LIMIT-TO(LANGUAGE, 

“English”)) AND (LIMIT-TO (SUBJAREA, “COMP”)) 

The specific search string employed to Scopus database. 1 https://www.scopus.com 

2 https://ieeexplore.ieee.org 3 https://dl.acm.org 
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2. What modalities are used for the automatic assessment of pain, 

what are the most effective combinations of modalities, and 

what are the performance gains observed, if any, compared to 

unimodal approaches? 

In parallel, we would also like to shed some light on how auto- 

atic pain assessment is most commonly approached, i.e., a binary 

r multi-class classification problem, and identify if any benefits 

re reported when exploiting the temporal dimension of pain. 

.2. Search strategy 

In order to conduct the review, we identified original stud- 

es searching digital libraries, utilizing keywords combined with 

oolean operators OR, AND , with no time constraints. The selected 

ibraries were Scopus, IEEE Xplore, and ACM Digital Library since 

he major journals and conference proceedings related to affective 

omputing are indexed in them. Further, the PubMed database was 

earched without additional results not identified from the previ- 

us databases. Regarding the search keywords, several terms were 

sed in addition to “pain assessment” to identify all relevant stud- 

es. We note that we did not use any keyword associated with deep 

earning, though numerous terms are related to the particular type 

f approach. Table 2 presents the digital sources, the keywords, 

nd an example of a completed search string. 

All retrieved articles were investigated, but only studies that 

atisfied the following inclusion criteria were included: (1) are 

ritten in the English language; (2) are published in a journal 

r conference proceedings; (3) are related to the computer sci- 

nce research area and (4) affective computing field; (5) the em- 

loyed modalities are video, biosignals, audio, movement data or 
4 
ombinations of them; (6) there are no time constraints since we 

ant to review all relevant papers, including the early research 

ffort s. Articles irrelevant to the inclusion criteria were removed. 

ubsequently, the following exclusion criteria apply: (1) research 

f pain assessment on animals; (2) the employed modalities are 

edical images, e.g., X-rays, CT, and MRI, since they are not as- 

ociated with affective computing; (3) articles that describe only 

heoretical concepts without implementation; (4) pain assessment 

n virtual agents or medical training dolls; (5) secondary literature, 

.g., review articles. Table 3 presents the applied eligibility criteria, 

here according to them, we accepted or rejected studies for the 

omplete reading procedure. 

.3. Selection process 

Once primary studies were identified, based on the previously 

escribed process, we proceeded with the following steps: 

1. Export the citation for each paper, including the title, abstract, 

and keywords from each digital library. 

2. Screening of the papers for verification and confirmation that 

meet the eligibility criteria. 

3. In agreed papers that meet the eligibility criteria, a study of the 

entire paper was performed to confirm if the authors used deep 

learning approaches. 

In total, 822 articles were retrieved from the databases employ- 

ng the search keywords. After removing duplicates and those not 

ulfilling the eligibility criteria, 100 articles remained. In addition, 

he references of the papers selected were reviewed in order to 

otentially identify additional relevant studies. A list of 110 pa- 

ers was included in the SLR, from which we extracted several 

etadata presented in Table 4 , which assisted in obtaining insight 

nd understanding about the approaches. In Fig. 2 , we depict an 

verview of the SLR process based on [39] . In Fig. 3 , we represent

he whole procedure of the identification, screening, eligibility as- 

essment, and inclusion for the final list of papers. Fig. 4 presents 

he number of studies per year and the machine learning methods 

sed, i.e., traditional feature engineering techniques or deep learn- 

ng methods. The rapid increase of relevant pain assessment stud- 

es during the last ten years and the increased use of deep learning 

pproaches since 2015 are evident. 

. Search results analysis about automatic pain assessment 

pproaches 

As already said, 110 scientific papers reporting automated pain 

ssessment methods fulfilled the inclusion criteria defined, i.e., 

https://www.scopus.com
https://ieeexplore.ieee.org
https://dl.acm.org
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Fig. 2. Overview of the systematic review. 

Fig. 3. Information flow of the systematic review. 
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Table 3 

Eligibility Criteria applied on the studies. 

Eligibility Criteria 

Inclusion Exclusion 

• Language: English • Animals as subjects of the research 
• Type of papers: Journal articles, Conference proceedings • Medical images as information e.g., X-rays, CT, MRI 
• Subject area: Computer Science • Papers where describe only theoretical concepts without implementation 
• Research field: Affective Computing • Use of virtual agents or medical training dolls as subject 
• Modalities: video, biosignals, audio, movement data • Review papers 
• No time constraints 

Fig. 4. The number of studies in automatic pain assessment by year of publication. The black line shows the studies based on classical machine learning and image/signal 

processing, while the green line shows the studies based on deep learning methods. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Table 4 

Extracted data from the included studies. 

Extracted Data 

• Year • Learning Method 
• Title • Pre-trained Model 
• Unimodal, Multimodal • Classification, Regression 
• Modality • Objective Ground Truth 
• Temporal Exploitation • Interpretation 
• Fusion Method • Validation Method 
• Deep Model • Number of Subjects 
• Non-Deep model • Performance Metrics 
• Non-Deep learned features • Dataset 
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hey report application of deep learning methods and are included 

n our analysis. The initial separation of these papers relates to 

he number of information channels used, i.e., unimodal vs. mul- 

imodal. Subsequently, the unimodal approaches are distinguished 

s 1) vision-based, 2) contact-sensor-based, and 3) audio-based. It 

s worth pointing out that the highest percentage of the studies 

eport vision-based approaches. Specifically, 84 of the 110 papers 

xploit the face as an input channel. 

Additionally, a further subdivision was done to vision-based ap- 

roaches regarding the temporal exploitation of the modalities. The 

tudies which utilized the temporal dimension are divided into 1) 

on-machine learning-based and 2) machine learning-based ap- 

roaches, which in turn are divided into explicit and implicit ma- 

hine learning-based approaches. The non-machine learning meth- 

ds are based on the dynamic encoding of the initial information, 
6 
.g., optical flow features or the subtraction of subsequent frames. 

achine learning-based methods are based on a learning proce- 

ure; the explicit approaches develop specific/individual temporal 

odules, e.g., a long short-term memory network (LSTM). The im- 

licit approaches focus on extracting temporal features from the 

odels’ training process, e.g., 3D convolutional neural network (3D 

NN). 

It should be pointed out that the direct comparison of the per- 

ormances reported in the various studies is not always possible 

ince, in many cases, different scales and ground truths were used. 

n addition, the studies differ even when using the same dataset. 

or example, some studies may exclude specific subjects from the 

xperiments without reporting this, thus making comparability im- 

ossible, an issue also reported in [18] . For these reasons, we note 

hat proper comparisons can be made between studies if the fol- 

owing criteria are fulfilled: employ the same dataset or part of 

t, adopt the same validation method, implement an identical task 

 e.g., pain detection, multi-level pain estimation), and the same 

erformance metrics are used. Furthermore, in this SLR, we do not 

crutinize the processing techniques such as face detection, align- 

ent, resizing, etc. , since our emphasis is on the learning proce- 

ure of pain features. 

.1. Unimodal approaches 

In this section, we present the studies that utilized only one 

nformation channel to estimate the subject’s pain condition. 
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.1.1. Vision-Based: Non-temporal exploitation 

The first publicly available pain database which contributed 

ignificantly to the progress and development of automatic pain 

ssessment methods was the UNBC-McMaster Shoulder Pain. A 

lethora of studies has employed the particular dataset. Peder- 

en [40] in 2015 implemented the first deep learning approach 

o address the pain assessment problem, utilizing a 4-layer con- 

ractive autoencoder. He exploited the encoding representation 

long with a support vector machine (SVM) and achieved high 

erformance of pain detection at the frame level. An important 

ontribution to the vision-based approaches for pain recognition 

as been the EmoPain challenge in 2020. It was the first in- 

ernational competition focused on creating a platform for com- 

aring machine learning methods of automatic chronic pain as- 

essment. Egede et al. [41] presented the EMOPAIN 2020 Chal- 

enge , in which the corresponding dataset consists of extracted 

eatures using handcrafted approaches and deep learned models. 

he authors utilized facial landmarks, histogram of oriented gra- 

ients (HOG), and deep vectors elicited from VGG-16 [42] , and 

esNet-50 [43] accordingly, which are pre-trained on the Aff-Wild 

ataset 1 . The authors report that the hand-engineered features 

ombined with deep learning cues obtained the highest perfor- 

ance. Likewise, Yang et al. [44] utilized low and high-level cues 

xtracted from local descriptors and pre-trained VGG-16 CNN [42] , 

espectively, and combined them employing weighted coefficients. 

emwal and Londhe [45] showed that the fusion of deep-learned 

eatures with facial landmarks is beneficial for multi-class pain es- 

imation. Lakshminarayan et al. [46] exploited deep learned and 

andcrafted features, i.e., learned features from VGG-16 [42] and 

esNet-50 [43] , HOG, action units occurrence, action units inten- 

ity, facial landmarks, and head pose through a fully connected 

etwork. The study revealed that combining VGG-16 and hand- 

rafted features led to lower regression error. However, in [47] , 

he authors achieved maximal performance utilizing the VGG-16 

eatures exclusively with a similar fully connected network as a 

lassifier. 

On the contrary, Semwal and Londhe [48] report that the 

onventional handcrafted feature engineering method has several 

rawbacks and difficulties in its application, while deep neural net- 

orks are highly computationally expensive. Therefore, they sug- 

est the deployment of a relatively shallow 4-layer CNN, in which 

he computational training cost is reduced because of the lim- 

ted number of parameters. However, the performance and out- 

omes are comparable to those obtained using deeper architec- 

ures. A different approach emanated from [49] , in which the au- 

hors focused on representing the facial expressions as a com- 

act binary code for the classification of different pain inten- 

ity levels, with a pre-trained model [50] conducting feature ex- 

raction and a fully connected network constructing the binary 

ode. 

Other approaches employed CNNs ensemble designs with dif- 

erent architectures to exploit variations of characteristics. Semwal 

nd Londhe [51] utilized three compact CNNs, VGG-16 [42] , M- 

obileNet [52] , and GoogleNet [53] , integrating their predictions us- 

ng the average ensemble rule. The experiments demonstrate that 

erging the CNNs leads to better classification performance than 

sing them individually. Kharghanian et al. [54] reported the de- 

elopment of a convolutional deep belief network (CDBN) through 

n unsupervised feature learning approach. The extracted features 

ere used by an SVM in order to distinguish two states for the bi-

ary classification of pain, i.e., pain and no pain. In subsequent re- 

earch, [55] , the authors added two additional layers to the CDBN. 
1 https://ibug.doc.ic.ac.uk/resources/first- affect- wild- challenge 
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7 
nfortunately, the results are not comparable since the evaluation 

ethods were different. 

Several papers claim that since the presence and manifestation 

f pain are visible in certain areas of the face, it would be advan- 

ageous to exploit these areas as input information instead of the 

ntire facial image. This way, the model will be trained to pay at- 

ention to the regions most relevant to the manifestation of pain, 

xcluding noise. Along these lines, Huang et al. [56] initially de- 

ected the face regions of the left eye, right eye, nose, and mouth, 

ollowed by a multi-stream CNN responsible for the feature ex- 

raction, consisting of 4 sub-CNNs, one for each region. A notable 

lement of the particular framework was that the extracted fea- 

ures were assigned with learned weights to provide the required 

ttention to account for the fact that each region contributes differ- 

ntly to pain expression. Similarly, in [57] , a 9-layer CNN was com- 

ined with an attention mechanism assigning different weights re- 

ated to the expressiveness of the face regions to generate atten- 

ion face maps which provided up to 19% more accurate predic- 

ions. In [58] , the authors proposed a multi-scale regional atten- 

ion network (MSRAN), which utilizes several cropping regions of 

ach video frame. Furthermore, it incorporates a self-attention and 

 relation attention module to emphasize pain-related regions and 

xplore their relationship. Beyond the creation of saliency maps, 

he work reported by Li et al. [59] relied on the idea of [60] , com-

ining contrastive and multi-task training through an autoencoder. 

n addition, similar to basic facial expression recognition, one chal- 

enge for pain intensity estimation is that some individual charac- 

eristics, e.g., face shapes, may cause great diversities in the same 

motion. As a result, it is usually challenging to distinguish two 

djacent intensity levels of pain expression as each intensity has a 

ignificant variation. In addressing this issue, Peng et al. [61] scru- 

inized facial shape information and developed a deep multi-task 

etwork that interpreted the relationship between pain recogni- 

ion and shape, which indeed enhanced the performance of pain 

stimation. Similarly, Xin et al. [62] presented a novel multi-task 

ramework incorporating a CNN feature learning module combined 

ith an autoencoder attention component, estimating the subject 

dentity as well since different individuals have specific pain man- 

festations. The experiments showed state-of-the-art performance 

n publicly available datasets. 

Most research efforts report the results of experiments con- 

ucted in controlled lab settings, with proper lighting, low vari- 

bility of head pose, and absence of occlusions. These are not rep- 

esentative of the typical hospital environments. The authors of 

63] focused on pain assessment to study the problem of pain 

ssessment in uncontrolled environments. Developing a relatively 

hallow CNN with 3 convolutional layers achieved high multi-class 

lassification performance comparable to deeper pre-trained mod- 

ls. In a follow-up study by the same authors [64] , a more complex 

eep framework was developed, consisting of 3 modules. Exploit- 

ng high-level spatial feature descriptors with local and global ge- 

metric cues, they achieved results comparable to those obtained 

rom other models, such as GoogleNet [65] and VGG [42] . Lee and 

ang [66] explored the intensive care unit (ICU) setting, where the 

henomenon of partially occluded faces frequently occurs, which 

reates difficulties in every facial analysis task. Concerning the fea- 

ure extraction method, they developed a 4-layer CNN combined 

ith an extreme learning machine (ELM) network for the final es- 

imation. In the work reported in [67] , the authors have used CNNs 

o implement a novel approach to evaluating the timing informa- 

ion of pain by classifying the section of frames where the pain 

as triggered, reached its climax, and started to diminish. Nugroho 

t al. [68] studied the issue of pain detection in the context of a 

mart home-care setting, in which small and relatively computa- 

ionally weak mobile devices are used for detecting and classifying 

ndividuals’ pain, particularly elders. Utilizing and modifying Open- 

https://ibug.doc.ic.ac.uk/resources/first-affect-wild-challenge
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ace 2 , a face recognition library based on the pre-trained FaceNets 

69] , revealed that with transfer learning, the binary classification 

f pain ( i.e., pain vs. no pain) is possible to be estimated in real-

ime, even in low-powered hardware. 

Several researchers [70] [71] point out that in the majority 

f studies, the models, either with deep or shallow architectures, 

re trained on dataset-specific features and not on actual pain- 

elated features. Also, most studies investigating the facial expres- 

ion of pain implement validation methods on the same database, 

hereas cross-database performance is less considered. These re- 

ult in approaches that are not applicable in real-world settings. 

n addressing these issues, Dai et al. [70] experimented with the 

ombination of pain and emotion-detection datasets in order to 

evelop a real-time pain assessment system with higher gen- 

ralization capabilities. Their work highlights the importance of 

ross-corpus evaluation, real-time testing and the need for a well- 

alanced and ecologically valid [72] pain dataset. 

A number of papers exploited combinations of different pain 

cales as ground truth in order for the final prediction to be as 

bjective and reliable as possible. Liu et al. [73] focused on the es- 

imation of individual’s pain via a two-stage personalized model, 

rained with active appearance model (AAM) facial landmarks in a 

ulti-task manner, and VAS and observed pain index (OPI) scores 

s ground truth. In a similar manner, Xu et al. [74] combined the 

round truth utilizing various pain scales simultaneously in order 

o reduce the mean square error (MSE) using the VGG-Face [75] . On 

he other hand, the authors in [76] report that the original ground 

ruth has limitations related to the subjects themselves or data 

nnotation experts. For this reason, they re-annotated the dataset 

mploying multi-expert judgments via seven evaluators. Based on 

he multidimensional scaling method, they mapped the frames to 

llumination-invariant 3D space to feed a pre-trained AlexNet [77] . 

Celona and Manoni [78] explored the facial expression of 

eonates to detect the presence or absence of pain. The authors 

xperimented with hand-crafted features but achieved the highest 

erformance when utilizing two pre-trained models, namely VGG- 

ace [75] and mapped LBP+CNN (MBPCNN) [79] . In parallel, the au- 

hors of [80] also report that the pre-trained models are essential 

ince training from scratch with small datasets, such as neonatal 

nes, will cause over-fitting. They achieved their highest classifi- 

ation scores by employing and fine-tuning the VGG-16 [43] as a 

hole, instead of only its last layers. Contrary to the findings of 

arious studies indicating that using pre-trained models was the 

ost beneficial approach when applied to neonates, Zamzmi et al. 

81] report a model’s design and training process from scratch in 

n end-to-end manner. They mention that most face recognition 

ethods and techniques are designed for adults who have differ- 

nt facial structures and diverse ways of pain manifestations than 

nfants. By introducing a lightweight 2D CNN, they achieved high 

erformance in pain detection. However, its external validation on 

 different neonatal dataset revealed challenges regarding its gen- 

ralizability. In 2019, Brahnam et al. [31] presented a new neonatal 

ideo dataset called iCOPEvid . This was a significant contribution 

ince, until then, the only publicly available neonatal pain dataset 

30] included only static images. Using local descriptors based on 

ag-of-features (BoF) outperformed the deep learning-based re- 

ults obtained with VGG-Face [75] and ResNet [43] . In addition, 

he combination of hand-crafted and deep-learned features has a 

egligible increase in the system’s performance. Contrary to these 

ndings, the authors in [82] report that for the binary classifica- 

ion ( i.e., pain vs. no pain) problem, the most successful approach 

as based on the fusion of higher-level features of a VGG [83] and 

ptical flow strains through a naive Bayes as a classifier. In another 
2 http://cmusatyalab.github.io/openface 

d

l

c

8 
tudy [84] , the authors implemented a Wasserstein generative ad- 

ersarial network with gradient penalty (WGAN-GP) [85] , demon- 

trating that the augmentation of the training set by the generated 

ynthetic samples improved the classification performance. Table 5 

ummarizes the vision-based studies, which are based solely on 

he spatial dimension. 

.1.2. Vision-Based: Exploitation of the temporal dimension 

Non-machine learning-based) 

The complex and dynamic nature of pain makes its assess- 

ent very challenging. The use of static and independent visual 

rames is incapable of capturing the temporal evolution of the 

henomenon and thus often leads to erroneous pain estimation. 

n addition, several studies point out that applying deep learning 

ethods to limited-size datasets is problematic, and a proposed 

olution combines deep learning with traditional feature extrac- 

ion techniques. As a result, Egede et al. [86] elicited deep fea- 

ures from a pre-trained CNN corresponding to eyes and mouth re- 

ions. They employed a relevance vector regressor (RVR), demon- 

trating that the combined exploitation of deep and hand-crafted 

eatures achieves the highest performance. Although the UNBC- 

cMaster database provides valuable pain information material, 

t is characterized by imbalanced samples ( i.e., limited number of 

rames manifesting pain), challenging deep learning researchers. 

gede and Valstar [87] , when facing the specific problem, devel- 

ped a method that capitalized on the observation that neighbor- 

ng classes of pain levels share a large number of common char- 

cteristics. This led them to a decision that for classes with a lim- 

ted number of samples, it is not necessary to extract every possi- 

le type of feature because certain features have already been ex- 

loited from other disparate classes. In addition, the study reported 

hat the combination of hand-crafted and deep-learned features 

chieved improved performance. In contrast, in a subsequent study 

88] by the same authors, the identical approach was employed 

o minimize data imbalance. However, they extracted deep-learned 

eatures exclusively, and as reported, they could not achieve equiv- 

lent performance levels. 

Tavakolian et al. [89] studied the phenomenon of pain from a 

ifferent perspective. The specific research objective was to detect 

enuine versus acted pain based on its facial manifestation, which 

s valuable for medical and criminal applications. The authors de- 

igned a residual GAN (R-GAN) exploiting the subtle facial changes 

nd also captured the dynamic nature of facial expressions utiliz- 

ng a weighted spatio-temporal pooling method (WSP). In a sub- 

equent study [90] , the authors suggest that self-supervised learn- 

ng is recommended to reduce time and effort in collecting labeled 

ata since this approach does not require annotation of the entire 

ataset. The authors introduce a novel similarity function to learn 

eneralized representations using a Siamese network. They employ 

tatistical spatio-temporal distillation (SSD) based on the Gaussian 

cale mixture (GSM) to make the method computationally efficient. 

n this way, they encode the spatiotemporal variations of the facial 

ideo into a single RGB image and avoid more complex models. 

Other authors also attempt to capture the dynamic nature of 

ain. For example, in [91] the authors combined a random for- 

st classifier and the pre-trained MobileNetV2 model [92] , encoding 

ach video into an image by selecting and merging three frames 

rom different time steps. Othman et al. [93] report that to achieve 

etter estimation results and to improve the model’s generalizabil- 

ty, it is important to use datasets that include diverse distributions 

f age and gender and even various poses, occlusions, lighting con- 

itions, etc. The authors deployed numerous data combinations uti- 

izing a reduced version of MobileNetV2 [92] and pointed out that 

ross-data training is valuable, respecting the generalization affair. 

http://cmusatyalab.github.io/openface
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Table 5 

Studies utilized camera-based information with non-temporal exploitation. 

Paper 

Input Processing Evaluation 

Modality Non deep features Fusion M/E 

Deep 

model 

Non deep 

model 

Learning 

Method 

Classific. 

/ Regres. Objective GT 

Number 

subjects 

Validation 

Method Dataset Metrics 

’19 [31] F (RGB) texture descriptors - FF 2D CNN 

+ SVM SL C P O 49 k-fold iCOPEvid 79.80 AUC 

’15 [40] F (RGB) - - - AE SVM SeSL, SL C P PS 25 LOSO UNBC 86.10 ACC, 96.50 AUC 

’20 [41] F (RGB) - - FF 2D CNN 

+ NN SL R IC O 36 hold-out EmoPain 0.91 MAE ‡ 

’18 [44] F (RGB) HOG, statistics - FF 2D CNN 

+ SVR SL R IC PS 25 LOSO UNBC 1.44 MSE ‡ 

’21 [51] F (RGB) - - DF 2D CNN 

+ - SL C ID PS 25 k-fold UNBC 93.87 ACC ‡ 

’16 [54] F (RGB) - - - CDBN SVM UL C P PS 25 LOSO 

† UNBC 87.20 ACC ‡ 

’21 [55] F (RGB) - - - CDBN SVM SL C P PS 25 LOSO UNBC 93.16 AUC 

’19 [56] F (RGB) - - FF 2D CNN - SL C ID 

1 , IC PS 25 LOSO UNBC 88.19 1 ACC 

’20 [57] F (RGB) - - - 2D CNN - SL C ID PS 25 hold-out UNBC 51.10 ACC ‡ 

’20 [61] F (RGB) - - FF 2D CNN 

+ - SL R ID S 25 ? UNBC 79.94 ACC ‡ 

’21 [63] F (RGB) - - - 2D CNN - SL C ID O 8 k-fold other 97.48 ACC ‡ 

’19 [66] F (RGB) - - - 2D CNN ELM SL R IC PS 25 k-fold UNBC • 1.22 MSE ‡ 

’19 [67] F (RGB) - - - 2D CNN - SL C TR, CL, DI PS 25 k-fold UNBC 60.00 ACC 

’19 [71] F (RGB) - - - 2D CNN 

+ - SL C AUs-D PS 25, 43 k-fold UNBC & CK+ 1 , Wilkie 97.70 1 ACC ‡ 

’17 [73] F (RGB) statistics - - NN GPM WSL R IC O, S 25 k-fold UNBC 2.18 MAE 

’20 [74] F (RGB) statistics - FF 2D CNN 

+ NN SL R IC S 25 k-fold UNBC 1.95 MAE ‡ 

’19 [76] F (RGB) LBP, MDS - - 2D CNN 

+ - SL C ID O 25 hold-out UNBC 80.00 ACC 

’18 [80] F (RGB) - - - 2D CNN 

+ - SL C ID O ? hold-out other 78.30 ACC 

’18 [82] F (RGB) optical flow - FF 2D CNN 

+ SVM, kNN, 

NB 

SL C P O 31 k-fold other 92.71 ACC, 94.80 AUR 

’19 [84] F (RGB) - - - WGAN-GP - SL C P O 26 LOSO iCOPE 93.38 ACC 

’17 [107] F (RGB) - - - 2D CNN 

+ - SL R IC PS 25 LOSO UNBC 0.99 MAE ‡ 

’20 [108] F (RGB) - - - 2D CNN - SL C ID ST 87 hold-out BioVid (A) 36.60 ACC 

’20 [109] F (RGB) - - - 2D CNN - SL C P PS 25 hold-out UNBC 97.00 PPV ‡ 

+ : Pre-trained model -:Not exist &: in Dataset indicates the utilization of cross-database training/validation ?: Not found † : The authors provide additional experiments with other validation methods •: The authors utilized 

occluded facial images ‡ : The authors provide additional metrics Modality: F: face region Non deep features: LBP: local binary pattern MDS: multidimensional scaling Fusion: M: fusion of modalities E: fusion of deep learned 

features or hand-crafted features Deep models: AE: autoencoder RCNN: recurrent convolutional neural network CDBN: convolutional deep belief network CNN: convolutional neural network NN: neural network WGAN-GP: 

Wasserstein generative adversarial model with gradient penalty Non deep model: SVM: support vector machine GPM: Gaussian process regression model kNN: k-nearest neighbors NB: naive Bayes ELM: extreme learning 

machine Learning Method: SL: supervised learning SeSL: semi-supervised learning UL: unsupervised learning WSL: weakly supervised learning Classific./Regres.: C: classification R: regression Objective: P: presence of pain 

ID: intensity in discrete scale IC: intensity in continuous scale TR: trigger CL: climax DI: diminishing AUs-D: Action Units detection GT : ground truth PS: Prkachin and Solomon S: self-report O: observer rating ST: stimulus 

Validation Method: LOSO: leave one subject out Metrics: AUC: Area Under the ROC Curve ACC: accuracy PPV: precision MSE: mean squared error MAE: mean absolute error 

9
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Table 6 

Studies utilized vision-based information with non-temporal exploitation. 

Paper 

Input Processing Evaluation 

Modality Non deep features Fusion M/E Deep model 

Non deep 

model 

Learning 

Method 

Classific. 

/ Regres. Objective GT 

Number 

subjects 

Validation 

Method Dataset Metrics 

’21 [45] F (RGB) facial landmarks - FF 2D CNN NN SL C, R ID, IC 1 P 25 LOSO 

† UNBC 0.17 1 MSE ‡ 

’20 [46] F (RGB) HOG, head pose, 

AUs intensity/ 

occurrence, facial 

landmarks, 

FF - 2D CNN 

+ NN SL R IC O 36 hold-out EmoPain 5.48 RMSE ‡ 

’20 [47] F (RGB) - - - 2D CNN 

+ NN SL R IC O 36 hold-out EmoPain 1.49 RMSE ‡ 

’18 [48] F (RGB) - - - 2D CNN - SL C ID PS 25 hold-out UNBC 92.00 ACC ‡ 

’18 [49] F (RGB) statistics, distance 

metrics 

- FF 2D CNN 

+ - SL C, R ID, IC PS 25 LOSO UNBC 0.81 PCC 0.69 MSE 

’21 [58] F (RGB) - - FF 2D CNN 

+ - SL C, R ID, IC P 25 LOSO UNBC 91.13 ACC, 0.78 PCC, 

0.46 MSE 

’18 [59] F (RGB) - - - AE + - SL R IC PS 25 k-fold UNBC 0.33 MAE ‡ 

’21 [62] F (RGB) - - FF [AE, 2D CNN] ∪ - SL C, R ID 

1 , IC 2 , P 3 P, ST 25, 87 LOSO UNBC 1 , BioVid (A) 2 89.17 11 ACC, 0.81 21 

PCC, 85.65 32 ACC, 

40.40 12 ACC 

’21 [64] F (RGB) entropy texture 

descriptors 

- - 2D CNN 

+ - SL C ID O 8 k-fold other 0.92 PPV ‡ 

’18 [68] F (RGB) - - - 2D CNN 

+ - SL C P PS 14 k-fold UNBC 93.00 ACC 

’19 [70] F (RGB) - - - 2D CNN - SL C P PS 25, 20 k-fold UNBC & BioVid (A) � 56.75 ACC 

’17 [78] F (RGB) HOG, LBP - FF 2D CNN 

+ SVM SL C P O 26 LOSO iCOPE 73.78 ACC 

’19 [81] F (RGB) - - - 2D CNN - SL C P O 31 LOSO NPAD 

1 , iCOPE 2 96.98 1 ACC ‡ , 89.80 2 

ACC 

’21 [110] F (RGB) - - - 2D CNN 

+ - FL C P PS 25 LOSO UNBC 76.00 ACC ‡ 

’21 [111] F (RGB) - - - 2D CNN 

+ - SL C P O 25 hold-out UNBC 75.49 ACC 

’21 [112] F (RGB) - - - 2D CNN 

+ SVR SL R IC P 25 LOSO UNBC 0.34 MSE 

’21 [113] F (RGB) - - - 2D R-CNN - SL C P O ? hold-out other 87.80 PPV 

’21 [114] F (RGB) - - - 2D CNN - SL C ID P 28 LOSO 

† UNBC 90.30 ACC 

’19 [115] F (RGB) - - - 2D CNN - SL C P O 31 hold-out NPAD 

1 , iCOPE 2 91.00 1 ACC ‡ , 84.50 2 

ACC ‡ 

’21 [116] F (RGB) - - - 2D CNN 

+ - SL C P O 26, 30 hold-out iCOPE & UNIFESP 89.90 ACC ‡ 

’21 [117] F (RGB) - - - 2D CNN - SL C AUs-D P 10 hold-out Pain-ICU 77.00 ACC ‡ 

∪ : The authors combined the deep models into a unified framework �: The authors experimented with additional datasets combinations Non deep features: AUs: actions units HOG: histogram of oriented gradients Non deep 

model: SVR: support vector regression Learning Method: FL: federated learning Metrics: RMSE: root mean squared error 

1
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.1.3. Vision-Based: Exploitation of the temporal dimension (Implicit) 

Considering the application of 3D CNNs, several studies em- 

loy this particular approach. Specifically, Tavakolian and Hadid 

94] developed a 3D CNN capturing the dynamic facial represen- 

ation from videos. The authors report that usually, the researchers 

sing 3D convolution techniques deploy a fixed temporal kernel 

epth. This results in the ineffective implementation of simulta- 

eously extracting short, mid, and long ranges from the sequences. 

hey designed a model having parallel 3D convolutional layers of 

ariable temporal depths capable of capturing temporal dependen- 

ies from 32 consecutive frames as a time window. Similarly, Wang 

nd Sun [95] exploited 3D convolutions based on the architecture 

eported in [96] , which consisted of 8 convolutional layers with 

x3x3 filters. Although a very high performance is reported, the 

uthors also state that the deep features are inefficient, if extracted 

rom small databases, since the models have difficulty generaliz- 

ng appropriately. Interestingly, in [97] , the authors have created a 

ramework that integrated 3D, 2D, and 1D CNNs, which are used 

or extracting spatio-temporal, spatial, and geometric features cor- 

espondingly. In relation to 3D CNN, they have modified the archi- 

ecture reported in [98] , by combining discrete kernels of 1x3x3 

nd 3x1x1 rather than the classic 3D kernel of 3x3x3. Other au- 

hors have also developed a 3D deep CNN with various temporal 

epths, based on the assumption that using 3D kernels with dif- 

erent ranges it will be feasible to capture short, mid, and long- 

ange facial expression variations [99] . Further, taking into consid- 

ration that the training process of a deep 3D CNN from scratch is 

ifficult and time-consuming, they introduced a cross-architecture 

nowledge transfer learning technique, which utilizes a pre-trained 

D CNN in the training of the 3D CNN. In the work reported in

100] and [101] , the authors have adopted the weak-supervised do- 

ain adaptation, in which the source domain was related to hu- 

an affective expressions, and the target domain were data based 

n pain expressions explicitly. Their proposed framework included 

n inflated 3D-CNN (I3D) [102] designed with 3 convolutional lay- 

rs and 3 inception modules [53] to exploit both spatial and tem- 

oral information from the videos. 

Bargshady et al. [103] exploited the HSV instead of the RGB 

olor space, since they advocated that it is more valuable for tasks 

elated to human visual perception, e.g., skin pixel detection and 

ulti-face detection. The authors utilized the pre-trained VGG- 

ace [75] for feature extraction. This was followed by a tempo- 

al convolutional network (TCN) based on dilated causal convo- 

utional operations exploiting the temporal dependencies. Rezaei 

t al. [104] tried to tackle the problem of pain detection in peo- 

le with dementia, which is incredibly challenging because the ex- 

sting pain datasets do not include an adequate amount of images 

r videos of such (elderly) subjects. They designed a 2D CNN of 

0 layers receiving pairs of pain and no-pain images, analyzing 

hanges from frame to frame, and training in a multi-task man- 

er, utilizing the contrastive training method [105] . The authors 

eport high-performance rates both in healthy and in people with 

ementia. The authors in [106] studied the potential use of the 

hallowest-possible 1D CNN architectures for pain recognition in 

eal-time settings, extracting facial action units from each frame 

ith the OpenFace 2.0 3 toolkit with promising results. 

.1.4. Vision-Based: Temporal exploitation (explicit) 

Several effort s have f ocused on alleviating the limit ations of 

sing static frames and developing dedicated temporal modules. 

hou et al. [118] addressed the specific problem by deploying a 

egression framework based on a 4-layer recurrent convolutional 

eural network (RCNN), each with a length of 3 time steps. Ro- 
3 https://github.com/TadasBaltrusaitis/OpenFace 

11
riguez et al. [119] exploited the dynamic information, design- 

ng an LSTM, and fed it with the extracted vectors from the 

GG-16 [43] . Similarly, the authors in [120] stated that since fa- 

ial expressions change over time, it is necessary to study the 

patio-temporal dimension of pain. An improved estimation per- 

ormance has been achieved through a fine-tuned 16-layer CNN 

odel [75] , an LSTM using 16 frames as a time window, and super- 

esolution techniques. By performing a combination of the CNN 

GG-Face [75] and a 3-layer LSTM the authors in [121] extracted 

patio-temporal features from grayscale images in which they ap- 

lied zero-phase component analysis (ZCA), while in [122] princi- 

al component analysis (PCA) was adopted to reduce the dimen- 

ionality. Similarly, Mauricio et al. [123] deployed the VGG-Face 

75] , but instead of LSTM they utilized a 2-layer gated recurrent 

nit (GRU). The authors in [124] utilized a conventional 2D CNN 

nd two RCNNs extracting temporal features, exploiting both pre- 

ious and subsequent frames, to exploit the time dimension of the 

xpressions. 

In a subsequent study [125] , a similar approach was followed 

egarding the feature extraction from VGG-Face [75] . However, the 

uthors exploited ensemble learning to create three distinct mod- 

les of CNN-biLSTMs, whose outputs were merged to produce the 

nal prediction. Salekin et al. [126] employed a bilinear CNN (B- 

NN) based on the standard CNN architecture of VGG [42] , with 

odels pre-trained on the VGGFace2 4 and ImageNet 5 datasets, re- 

pectively. In addition, an LSTM model exploited the temporal de- 

endencies from the image sequences. Kalischek et al. [127] stud- 

ed the application of deep domain adaptation to facial expression 

nd pain detection, employing the self-ensembling approach [128] , 

n which the training process was evolving in an unsupervised 

anner with a long-term recurrent convolutional network (LRCN). 

espite the fact that state-of-the-art performance was achieved 

ith self-ensembling regarding facial expression recognition, the 

esults were relatively poor regarding pain recognition. This may 

e a consequence of the subtle expressions in the pain events. 

There is a limited number of studies regarding multi-task ap- 

roaches, although the pain datasets provide the additional re- 

uired information. Martinez et al. [129] introduced a novel per- 

onalized multi-task machine learning method based on individual 

hysiological and behavioral pain response profiles for pain esti- 

ation. They initially extracted AAM facial landmarks and drove 

hem to a bidirectional L STM (biL STM), producing PSPI scores to 

redict the final VAS. At the same time, the authors in [130] uti- 

ized the AlexNet [77] with 2 GRU layers to capture the temporal 

ependencies, combined with self and observer-reported pain in- 

ensity as ground truth. Vu et al. [131] also developed a multi-task 

ramework to estimate the pain level and simultaneously recon- 

truct heatmaps from the predefined action unit locations. In this 

ay, the model generalized better, while a CNN combined with an 

STM exploited the micromovements between the frames. 

In [132] , the authors noted that beyond the pain manifesta- 

ion on specific facial areas, certain frames exhibit pain expres- 

ions more vividly in a video sequence, requiring appropriate han- 

ling. For this reason, they developed a novel framework with at- 

ention saliency maps through a VGG-16 [42] , GRUs, and learned 

eights associated with the contribution of each frame in the fi- 

al pain intensity estimation. The study revealed that there are 

pportunities to achieve compelling performance through the ex- 

loitation of dynamic and salient features. At the same time, the 

uthors in [133] , through the VGG-11 (configuration A) [42] and an 

STM, they developed an attention mechanism of various convolu- 

ional filters predicting pain intensity from 16 consecutive frames. 
4 https://www.robots.ox.ac.uk/ ∼vgg/data/vgg _ face 
5 https://www.image-net.org 

https://github.com/TadasBaltrusaitis/OpenFace
https://www.robots.ox.ac.uk/~vgg/data/vgg_face
https://www.image-net.org
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t 
u and Liu [134] interestingly utilized a ResNet-50 [43] model with 

 learned attention mechanism extracting spatial features, followed 

y a transformer encoder [135] to exploit the sequential nature of 

ideo frames achieving promising results. 

Other studies, such as [136] , employed the extracted action 

nits to train a 2-layer LSTM predicting an 11-point scale of pain, 

dopting curriculum learning. In [137] , a convolutional LSTM (C- 

STM) network was developed to extract spatial and temporal fea- 

ures from videos simultaneously, demonstrating significant differ- 

nces among temporal and non-temporal models and revealing the 

mportance of the time dimension for the accurate pain estima- 

ion. Other authors, e.g., Rasipuram et al. [138] , utilized videos in 

he wild for the detection of pain. Their approach was based on a 

re-trained network [139] , which generated a 3D morphable model 

f the face without exploiting facial landmarks, and was com- 

ined with an LSTM. Zhi and Wan [140] introduced sparse coding 

ith LSTM (SLTM) based on the iterative hard thresholding algo- 

ithm (ISTA) [141] to capture the dynamic nature of facial expres- 

ions. The authors utilized the SLTMs solely for spatial and tem- 

oral feature extraction, converting the frames to grayscale format 

nd resizing them to 32x32 pixels. The proposed approach did not 

chieve high performance but may be convenient in cases where 

peed and efficiency are required. Finally, the authors in [142] em- 

loyed implicit and explicit approaches to exploit the temporal as- 

ect of image sequences. They created motion history and optical 

ow images from the original frames, accompanied by a 10-layer 

NN combined with a 2-layer biLSTM. The study demonstrates that 

he weighted score aggregation of the motion history and optical 

ow provides improved performance. Table 7 summarizes all the 

tudies that exploit the modalities’ temporal dimension. 

.1.5. Contact sensor-Based 

Contact sensors are an alternative option for assessing pain, and 

he pain estimation results are often superior to those based on vi- 

ion. Table 10 presents the studies that report using the informa- 

ion from contact sensors to assess pain. Yu et al. [143] analyzed 

hree classes of pain, namely no pain, moderate and severe, based 

n EEG signals. By extracting several bands from the biosignals ( i.e., 

lpha, beta, gamma) and employing a convolution module for each 

and, the authors report that the combination of bands resulted in 

mproved results as compared to using them independently. Simi- 

arly, the authors of [144] employed EEG potentials and an autoen- 

oder to encode the raw data into a compressed format, utilizing 

he logistic regressor as the classifier. 

Other researchers, such as Rojas et al. [145] , exploited func- 

ional near-infrared spectroscopy (fNIRS) to estimate the pain con- 

ition. They developed three models, in particular multilayer per- 

eptron (MLP), LSTM, and biLSTM, with the latter achieving a sig- 

ificant higher accuracy. Also, the authors in [146] studied PPG sig- 

als eliciting traditional hand-crafted features from the time and 

requency domain combined with a deep belief network (DBN), at- 

aining over 65% accuracy in the 4-class pain estimation task. Uti- 

izing kinematics data, Hu et al. [147] studied healthy and with 

ow back pain (LBP) populations. Their approach was based on 2- 

tacked LSTM layers and achieved more than 97% accuracy in bi- 

ary classification when fed with raw motion data. Finally, Ma- 

ontov et al. [148] reported the first study that adopted evolu- 

ionary algorithms and designed an optimized architecture of a re- 

urrent neural network (RNN) and were used for pain estimation. 

sing this approach and EDA signals, they achieved 91.94% accu- 

acy in a pain detection setting. 

.1.6. Audio-Based 

A few studies have focused on using audio information to iden- 

ify pain and/or estimate its intensity. These are shown in Table 11 . 

uch approaches are particularly relevant for neonates since, due 
12 
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Table 8 

Studies utilizing vision-based methods and the temporal dimension of pain. 

Paper 

Input Processing Evaluation 

Modality Non deep features Fusion M/E 

Temporal 

Exploitation Deep model 

Non deep 

model 

Learning 

Method 

Classific. 

/ Regres. Objective GT 

Number 

subjects 

Validation 

Method Dataset Metrics 

’19 [33] F (RGB) HOG, distance metrics - DF NL 2D CNN RVR SL R IC O 13 LOSO APN-DB 1.71 MAE ‡ 

’19 [89] F (RGB) - - - NL R-GAN - UL C genuine vs 

posed 

PS, ST 25, 34, 87, 

87 

? UNBC & 

STOIC & 

BioVid (A) & 

BioVid (D) 

90.97 ACC 

’20 [90] F (RGB) - - FF NL 2D CNN 

+ - SSL C IC P, ST 25, 87 LOSO UNBC 1 , 

BioVid (A) 2 

�

0.78 1 PCC ‡ , 71 . 02 2 AUC ‡ 

’21 [91] F (RGB) AUs intensity - H NL 2D CNN 

+ RF SL C ID ST 127 k-fold X-ITE 25.00 ACC 

’19 [93] F (RGB) - - - NL 2D CNN - SL C P ST 87, 134 k-fold BioVid (A) & 

X-ITE �
67.90 ACC 

’20 [130] F (RGB) - - FF E [2D CNN 

+ , GRU] ∪ - SL R IC O, S 25 k-fold UNBC 2.34 MAE 

’20 [132] F (RGB) - - FF E [2D CNN 

+ , GRU] ∪ - SL R IC PS 19 LOSO UNBC 0.21 MSE, 0.89 PCC 

’19 [133] F (RGB) - - FF E [2D CNN, LSTM] ∪ - SL R IC PS 24 LOSO UNBC 1.22 MSE ‡ , 0.40 PCC ‡ 

’20 [136] F (RGB) AUs intensity - - E LSTM - SL R IC O 36 hold-out EmoPain 2.12 RMSE, 1.60 MAE ‡ 

’20 [138] F (RGB) - - FF E [2D CNN 

+ , LSTM] ∪ - SL C P O ? k-fold UNBC 78.20 ACC ‡ 

’20 [142] F (RGB) - - DF E [2D CNN, biLSTM, 

NN] ∪ 
- SL C P ST 87, 40 LOSO BioVid (A) 1 , 

SenseEmo- 

tion 2 

69.25 1 ACC, 64.35 2 ACC 

’20 [155] F (RGB) - - FF E [2D CNN 

+ , GRU] ∪ - SL C ID, IC PS 25 LOSO UNBC 0.84 ACC, 0.69 PCC ‡ 

�: The authors provide experiments with cross-dataset settings Fusion: H: hybrid Non deep models: RF: random forest classifier 

Table 9 

Studies utilizing vision-based methods and the temporal dimension of pain. 

Paper 

Input Processing Evaluation 

Modality Non deep features Fusion M/E 

Temporal 

Exploitation Deep model 

Non deep 

model 

Learning 

Method 

Classific. 

/ Regres. Objective GT 

Number 

subjects 

Validation 

Method Dataset Metrics 

’21 [97] F (RGB) facial landmarks - DF I [3D CNN 

+ , 2D 

CNN 

+ , 1D CNN, 

FC] ∪ 

- SL R IC PS 25 LOSO UNBC 0.76 MSE, 0.82 PCC ‡ 

’19 [99] F (RGB) - - - I [2D CNN 

+ , 3D 

CNN] ∪ 
- UL, SL C, R IC 1 , P 2 P, ST 25, 87 LOSO UNBC 1 , BioVid (A) 2 0.92 11 PCC ‡ , 86.02 22 AUC 

’20 [100] F (RGB) - - - I 3D CNN 

+ - WSL R IC PS 24,?, 87, 18 LOSO UNBC 1 & RECOLA 

& BioVid (A) 2 �
0.74 1 PCC, 0.34 2 PCC 

’20 [103] F (RGB) PCA - FF I [2D CNN 

+ , TCN] ∪ - SL C ID P, ST 25, 20 LOSO 

† UNBC 1 , MIntPAIN 

2 92.44 1 ACC ‡ , 89.00 2 ACC ‡ 

’20 [104] F (RGB) - - - I 2D CNN - SL C, R IC, P 1 P 95, 25 k-fold UofR & UNBC 1 82.00 11 PCC ‡ 

’20 [106] F (RGB) AUs occurrence - FF I 1D CNN - SL R IC P 24, 87 hold-out UNBC 1 , BioVid (A) 0.80 1 CCC 

’20 [125] F (RGB) PCA - DF E [2D CNN 

+ , 1D 

CNN, biLSTM] ∪ 
- SL C ID PS, ST 25, 20 k-fold UNBC 1 , MIntPAIN 

2 86.00 1 ACC ‡ 92.26 2 ACC ‡ 

’20 [126] F (RGB) - - FF E [2D CNN 

+ , LSTM] ∪ - SL R P, IC 1 O 45 LOSO NPAD 3.99 1 MSE, 1.55 2 MAE 

’19 [127] F (RGB) - - FF E [2D CNN 

+ , LSTM] ∪ - UL C P ST 40 LOSO SenseEmotion 60.61 ACC 

’21 [131] F (RGB) - - - E [2D CNN 

+ , LSTM] ∪ - SL R IC P 25, 27 LOSO UNBC 1 , DISFA � 0.60 + MSE, 0.82 + PCC ‡ 

’21 [134] F (RGB) - - - E [2D CNN 

+ , 
Transformer] ∪ 

- SL R IC P 25 LOSO UNBC 0.40 MSE, 0.76 PCC ‡ 

’21 [137] F (RGB) - - - E 2D C-LSTM - SL C ID S 29 hold-out other 69.58 F1 

’19 [140] F (RGB) - - FF E SLSTM - SL C P 1 , ID 

2 ST 85 LOSO BioVid (A) 61.70 1 ACC 29.70 2 ACC 

’21 [156] F (RGB) - - - I 3D CNN 

+ - SL R IC S 25 k-fold UNBC 0.66 ICC ‡ 

Fusion: H: hybrid Deep models: TCN: temporal convolutional neural network C-L STM: convolutional-L STM SLTM: sparse long short memory network Learning Method: SSL: self-supervised learning Metrics: F1: F1 score CCC: 

concordance correlation coefficient 

1
3
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Table 10 

Studies utilizing contact-sensor’ information. 

Paper 

Input Processing Evaluation 

Modality 

Non deep 

features Fusion M/E 

Temporal 

Exploitation Deep model 

Non deep 

model 

Learning 

Method 

Classific. 

/ Regres. Objective GT 

Number 

subjects 

Validation 

Method Dataset Metrics 

’20 [143] EEG - - FF I 1D TCN - S C ID S 32 k-fold other 97.30 ACC ‡ 

’20 [144] EEG - - - I AE (TCN) LR UL, S C P S 29 LOSO other 74.60 ACC 

’21 [145] fNIRS - - - E biLSTM - SL C ID S 18 k-fold other 90.60 ACC ‡ 

’19 [146] PPG - - - NL DBN SBM U, SL C P 1 , ID 

2 S 100 k-fold other 86.79 1 ACC, 65.57 2 ACC 

’18 [147] kinematatics - - FF E LSTM - SL C P LBP 44 LOSO other 97.20 ACC ‡ 

’19 [148] EDA - - FF E [RNN, LSTM, GRU, 

NN] ∪ 
SelfCGA, 

selfCGP, 

PSOPB 

SL C P ST 40 LOSO Sense- Emotion 81.94 ACC 

’21 [168] EDA - - - I NN - SL C P 1 , I2 ST 87, 55 LOSO BioVid (A) 1 , 

PainMonit 2 
84.22 11 ACC ‡ , 86.50 12 ACC ‡ 

Modality: PPG: photoplethysmogram fNIRS: functional near-infrared spectroscopy EEG: electroencephalography EDA: electrodermal activity Deep models: DBN: Deep belief network RNN: recurrent neural network Non deep 

models: SBM: selective bagging model LR: Logistic Regression SelfCGA: Self-Configuring Genetic Algorithm SelfCGP: Self-Configuring Genetic Programming PSOPB: Particle Swarm Optimisation with parasitic behaviour GT: LBP: 

low back pain vs healthy population 

Table 11 

Studies utilizing audio information. 

Paper 

Input Processing Evaluation 

Modality 

Non deep 

features Fusion M/E 

Temporal 

Exploitation Deep model 

Non deep 

model 

Learning 

Method 

Classific. 

/ Regres. Objective GT 

Number 

subjects 

Validation 

Method Dataset Metrics 

’16 [149] audio (cry) - - - - 2D CNN - SL C P O ? k-fold other 78.50 ACC 

’19 [150] audio (cry) - - - - 2D CNN - SL C P O 31 LOSO 

† NPAD 96.77 ACC ‡ 

’19 [151] audio (breathing) MFCCs, 

RASTA-PLP, 

DTD 

- FF E [2D CNN, LSTM] ∪ RFc SL C P ST 40 LOSO Sense- Emotion 64.39 ACC 

’17 [152] audio (voice) prosodic- 

spectral 

features, SF 

- FF E LSTM 

+ SVM UL, SL C P 1 , ID 

2 S 63 LOSO other 72.30 1 UAR, 54.20 2 UAR 

Non deep features: MFCCs: Mel Frequency Cepstral Coefficients RASTA-PLT: Relative Spectral Perceptual Linear Predictive DTD: descriptors from temporal domain SF: statistical features 

1
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o the frequent facial and body occlusions that are observed, study- 

ng the cries is believed to be more appropriate way for detect- 

ng pain. Specifically, Chang and Li [149] focused on studying in- 

ants’ cries in an attempt to distinguish the states of being hun- 

ry, in pain, and feeling sleepy. The authors converted the audio 

ignals to 2D spectrograms through fast Fourier transform (FFT) 

nd used these to train a 2D CNN as a feature extractor. Sim- 

larly, the authors of [150] utilized spectrograms derived from 

ecorded sounds and employed an identical model as [81] . Also, 

hiam and Schwenker [151] detected the presence of pain in adults 

hrough the analysis of breathing sounds. In so doing they ex- 

loited deep learned features resulting from spectrograms with 

el-scaled short-time Fourier transform and a plethora of hand- 

rafted cues. A CNN followed by a biLSTM captured the spatial 

nd temporal dependencies and concurrently combined low and 

igh-level features. Tsai et al. [152] scrutinized pain events during 

mergency triage, developing a framework with an LSTM autoen- 

oder to extract temporal features from verbal behavior, reporting 

romising results. 

.2. Multimodal approaches 

Since pain is a multidimensional phenomenon, a promising di- 

ection is to combine modalities in a multimodal system. Hetero- 

eneous information sources may complement each other and lead 

o improved specificity and sensitivity. Generally, as reported in 

18] , if the predictive performances of the single modalities are 

ufficiently good, their fusion tends to improve the results. Also, 

he utilization of cues that originate from diverse channels might 

rove not only helpful but also necessary, especially in clinical set- 

ings, where for various reasons, a modality may be unavailable 

 e.g., the patient rotates, and his/her face is occluded). The infor- 

ation channels might rely on the following: (1) on the same 

ardware sensor but various regions of interest, e.g., RGB facial im- 

ges & RGB body images [153] , (2) from different hardware sensors 

ut the same region of interest, e.g., RGB facial images & thermal 

acial images [29] or (3) different hardware sensor and informa- 

ion sources, e.g., RGB facial images & ECG signals [154] . Table 12 

resents the available studies employing multimodal approaches. 

.2.1. Non-Temporal exploitation 

One of the well-known and most exploited combinations of 

iosignals is the use of EDA, EMG, and ECG due to the fact that the

ey reference pain databases all include these information chan- 

els. Using these modalities, Thiam et al. [157] adopted an early 

usion technique via concatenation, created a 2D representation, 

nd fed it to a 9-layer 2D CNN. The results of their experiments 

how that EDA is highly correlated to pain intensity and that the 

usion of the three information channels did not achieve a bet- 

er performance compared to using EDA alone. Other authors em- 

loyed least generative adversarial networks (LSGANs) to augment 

he EMG, EDA, and ECG samples [158] , reporting that the classi- 

cation performance of an SVM significantly improved, utilizing 

he augmented dataset. Haque et al. [29] introduced a new pain 

ataset MIntPAIN which, in addition to RGB videos, also includes 

epth and thermal videos, to be used for the multi-class ( i.e., 5 

evels) recognition of pain. The authors merged the three visual 

odalities creating a 5D matrix (RGB+D+T), with which they fed 

he well-known pre-trained model VGG-Face [75] . Their experi- 

ents show that combining these three modalities produced a bet- 

er classification performance. 

.2.2. Temporal exploitation 

Zhi et al. [159] presented a multimodal, stream-integrated neu- 

al network utilizing videos and biosignals. The authors combined 
15 
aw facial video frames and optical flow images to capture spatio- 

emporal dependencies through 3D CNNs, which were integrated 

ith the biosignals’ features obtained from LSTMs. The whole net- 

ork is trained in an end-to-end manner achieving good results, 

hich were improved compared to their unimodal approaches. Be- 

ides the facial area, Salekin et al. [153] assessed neonatal pain 

rom videos utilizing body movements. After detecting the specific 

reas, the video frames were inserted separately into a pre-trained 

GG-16 [42] , which was connected to an LSTM to capture the dy- 

amics from the frame sequences. The authors in [160] employed 

hree information channels, specifically facial expressions, body 

ovements, and crying sounds of neonatal. The results showed 

hat the decision fusion of the modalities outperformed the uni- 

odal approaches. The authors of [161] in addition to exploiting 

he EMG, EDA and ECG biosignals, they also experimented with 

ombinations of handcrafted and learned features extracted from 

 biLSTM model. Initially, the minimum relevance method (MRMR) 

as applied to reduce the number of extracted features, obtain- 

ng good results. Some authors used deep denoising convolutional 

utoencoders (DDCAEs) for binary pain classification. In the work 

eported in [162] , the latent representation was identified for each 

iopotential, followed by a weighing stage before the classification 

rocess. In a subsequent work [163] , the same authors extended 

he DDCAE, by adding an attention mechanism that improved the 

erformance. Furthermore, they experimented with self-supervised 

earning, which can reduce the training samples drastically, achiev- 

ng very similar results. Subramaniam and Dass [164] explored the 

roperties of EDA and ECG to investigate the differences in the 

ain manifestation between men and women. They designed a 

ramework that included 4-convolutional layers followed by a 1- 

ayer LSTM as a feature extractor. The usage of both biosignals gave 

he best results for pain discrimination. In parallel, it was shown 

hat a significant performance difference exists between men and 

omen, indicating that gender-based pain recognition is challeng- 

ng yet possible. 

Besides using EDA, EMG, and ECG, several other combinations 

f biosignals have been reported in the literature. Zhao et al. 

165] employed information streams from PPG, EDA, and tempera- 

ure signals. After the concatenation of the signals, they developed 

D convolutions to extract spatial features and employed time 

indows to exploit temporal information. Another study [166] re- 

orts successful pain estimation through whole-body MoCap sen- 

ors and EMG. They used an autoencoder integrating LSTM layers 

ith an additional attention mechanism. The reported findings in- 

icate that it is feasible to achieve acceptable performance while 

ignificantly reducing the training process time due to the raw 

ata’s latent space representation. Likewise, Li et al. [167] also used 

oCap and EMG as information channels and experimented with 

everal LSTMs configurations to predict the pain intensity. They re- 

ort the best performance when a 3-layer vanilla LSTM combined 

ith a 3-layer fully connected network was used. 

. Discussion 

This section includes an analysis of the reviewed studies, fo- 

uses on answering the research questions established, provides 

 deeper analysis of the current approaches and their limitations, 

nd provides suggestions for future research directions. 

.1. Input 

Regarding the type of modalities used for the pain assessment, 

e observe a significant imbalance between unimodal and multi- 

odal approaches. Specifically, more than 86% of reported studies 

re based on unimodal approaches, although the databases used in 
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Table 12 

Studies utilizing multimodal approaches. 

Paper 

Input Processing Evaluation 

Modality 

Non deep 

features Fusion M/E 

Temporal 

Exploitation Deep model 

Non deep 

model 

Learning 

Method 

Classific. 

/ Regres. Objective GT 

Number 

subjects 

Validation 

Method Dataset Metrics 

’18 [29] F (RGB, thermal, depth) - RF - - 2D CNN 

+ - SL C ID S 20 k-fold MIntPAIN 36.55 ACC 

’19 [153] F, B (RGB) - FF - E [2D CNN 

+ , LSTM] ∪ - SL C P O 31 LOSO other 92.48 ACC ‡ 

’19 [154] F (RGB), ECG, EDA biosignals’ 

features �
FF FF - 2D CNN 

+ RFc SL C I2 S 85 k-fold BioVid (A) 74.00 ACC 

’19 [157] EDA, EMG, ECG - RF - - 2D CNN - SL C P 1 I2, ID 

2 S 87, 86 LOSO BioVid (A) 1 

BioVid (B) 

84.40 11 ACC ‡ , 36.54 12 ACC ‡ 

’20 [158] EDA, EMG, ECG Boruta 

features 

FF - - LSGAN SVM UL, SL C I2, ID 

1 S 85 hold-out BioVid (A) 82.80 1 ACC 

’21 [159] F (RGB), EDA, EMG, ECG optical 

flow 

FF FF NL, E, I [3D CNN, LSTM] ∪ - SL C, R P 1 , I2, ID 

2 S 87, 40 k-fold † BioVid (A) 1 , 

MIntPain 

68.20 11 ACC ‡ , 28.10 21 ACC 

’21 [160] F, B (RGB), sound - DF - E [2D CNN 

+ , LSTM] ∪ - SL C P O 45 LOSO NPAD 78.95 ACC ‡ 

’20 [161] EDA, EMG, ECG MRMR, 

biosignals’ 

features 

RF FF E biLSTM NN SL C P 1 , I2 S 87 LOSO BioVid (A) 83.30 1 ACC 

’20 [162] EDA, EMG, ECG - FF - I [DDCAE, NN] ∪ - UL, SL C P 1 , I2 S 87 LOSO BioVid (A) 83.99 1 ACC ‡ 

’21 [163] EDA, EMG, ECG, RSP - FF - I [DDCAE, NN] ∪ - UL, SL, 

SSL 

C, R P 1 , ID 

2 , IC S 87, 40 LOSO BioVid (A) 1 , 

Sense- Emotion 

84.25 11 ACC ‡ , 35.44 21 ACC ‡ 

’21 [164] EDA, ECG - FF - E 1D CNN, LSTM - UL C P 1 , I2 S 67 hold-out BioVid (A) 81.71 1 ACC 

’20 [165] PPG, EDA, temperature - RF - I 2D CNN - SL R ◦ P 1 , ID 

2 S 21 k-fold other 96.30 1 ACC, 95.23 2 ACC 

’20 [166] MoCap, EMG - RF - E AE, LSTM - UL, SL C ID O 23 LOSO 

† EmoPain 52.60 ACC ‡ 

’20 [167] MoCap, EMG - RF - E LSTM, NN - UL C ID O 30 hold-out EmoPain 80.00 ACC ‡ 

’21 [169] MoCap, EMG - RF - E LSTM, NN - SL C ID O 30 LOSO 

† EmoPain 54.60 ACC ‡ 

�: Not specifically described ◦: Ordinal Modality F: face region B: body region EMG: electromyography Non deep features: MRMR: Minimum Redundancy Maximum Relevance method Deep models: LSGAN: Least Square 

Generative Adversarial Networks 

1
6
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hese effort s include more than one inf ormation channel. Also, re- 

arding unimodal approaches, the contact sensor-based and audio- 

ased approaches are a minority, with only seven and four studies 

vailable, respectively, compared to 84 studies employing a vision- 

ased approach. 

Regarding the multimodal approaches, because only a limited 

umber of studies ( i.e., fifteen in total) belong to this category, 

here are no clear inferences regarding the effectiveness of particu- 

ar combination of modalities. However, there are indications about 

he value of using EDA sensors’ information over other available 

iopotentials. These data indicate that researchers have focused 

rimarily on visual information processing due to the implemen- 

ation complexity of multimodal frameworks or the limited user- 

riendliness of contact sensors for their daily use in non-laboratory 

ettings. It is evident, in our view, that further study and exploita- 

ion of diverse combinations of modalities is necessary to properly 

ssess the potential of such modalities for the task at hand, i.e., 

ain assessment. Furthermore, respecting the utilization of non- 

eep features, twenty-eight studies exploited them in order to en- 

ance the deep learned representations. 

Finally, regarding approaches that exploit the temporal dimen- 

ion of information, we identified three main strategies which cap- 

talize on the temporal information of video frames or signal seg- 

ents; non-machine learning-based, machine learning-based (im- 

licit), and machine learning-based (explicit). The non-machine 

earning-based approaches, for example, are based on motion his- 

ory images [142] or temporal distillation [90] , which are tradi- 

ional computer vision techniques, are constitute more straight- 

orward but less sophisticated methods. On the contrary, machine 

earning-based approaches [100,140] comprise richer temporal in- 

ormation about the corresponding modality and provide the flexi- 

ility to fine-tune them to our specific needs, e.g., emphasize on 

pecific video frames. From the studies reviewed, 55% exploited 

eatures with a temporal dimension; the most common approach 

nvolved explicit methods, specifically the LSTM models. It is our 

iew that, considering the fact that several studies report a su- 

erior performance when the temporal dimension of the informa- 

ion is exploited as compared to the non-temporal dimension ap- 

roaches, an increased focus on such approaches is required. 

.2. Processing 

Concerning the machine learning approaches, various models 

nd techniques have been employed in pain estimation. CNN mod- 

ls have been the most popular approach and have been applied 

n most studies. Specifically, more than 75% of all studies have uti- 

ized either 1D, 2D, or 3D filters, indicating that the operation of 

onvolution is currently the fundamental element of deep learn- 

ng. These models are followed in popularity by sequential models, 

.e., RNN, GRU, LSTM, and biLSTM. In addition, almost half of the 

tudies have utilized a pre-trained model to achieve the desired 

erformance, which may indicate that the available pain databases 

re not optimal for training a deep learning model from scratch. 

egarding the non-deep learning models, twenty-six studies have 

dopted such an approach as an auxiliary decision component of 

he extracted deep-learned features, with SVMs and shallow neu- 

al networks being the most popular choice. It is obvious, in our 

iew, that there is room for adopting newer types of deep machine 

earning architectures. Particularly the transformer-based models 

ppear to be best suited regarding the explicit temporal exploita- 

ion of modalities since they are well known for their state-of-the- 

rt performances in many other AI research fields [170] . 

The learning method employed is primarily supervised, al- 

hough sixteen papers adopted or experimented with a different 

ethod, i.e., unsupervised [40,54,89,99,127,144,146,152,158,162,166] , 

elf-supervised [90,163] , semi-supervised [40] , weakly supervised 
17 
100,101] , and federated [110] . It is our view that self-supervised 

earning is the most appropriate method due to the limited pain 

ata resources available and should therefore be utilized more of- 

en by the research community. 

Finally, it is worth reporting that most studies, i.e., approxi- 

ately 70%, approach pain assessment as a classification problem, 

ot a regression problem. It is our view again that the latter is 

losest to reality due to the continuous nature of pain sensation. 

.3. Evaluation 

The main objective of the studies reviewed was (i) the estima- 

ion of the pain intensity in a discrete scale ( i.e., multi-class clas- 

ification), (ii) the estimation of the pain intensity in a continu- 

us scale, and (iii) estimating the presence or absence of pain ( i.e., 

inary classification). Twenty-five studies focused on the issue of 

ain detection rather than the estimation of pain intensity, which 

s, in our opinion, less important clinically since it does not pro- 

ide adequate information relevant to the management of pain. It 

s also evident that, from an engineering standpoint, detecting the 

resence or absence of pain is a less complicated and demanding 

ask. 

It is also of interest that a small number of studies investi- 

ated the issue of pain estimation from a different perspective. In 

pecific, a study [89] attempted to detect genuine pain over acted 

ain. Also, the authors in [152] studied the pain events in emerg- 

ng triage rather than laboratory settings, while in [154] , they ex- 

mined the potential to achieve pain detection on IoT devices in 

eal time. Furthermore, in [63,64] , the authors attempted to over- 

ome the occluded faces problem. Finally, according to sociodemo- 

raphic and psychological determinants, the authors in [164] con- 

ucted experiments related to gender, whereas in [104] , they stud- 

ed pain estimation in elders suffering from dementia. The limited 

umber of studies exploring the pain phenomenon beyond ordi- 

ary settings or considering a different context is, in our view, an 

ndication of the limitations of current approaches regarding their 

pplicability in real-life environments and circumstances, i.e., clin- 

cs, hospitals, etc . 

Regarding ground truth, several annotation types exist, such as 

elf-reported ratings, FACS, and other observer scales. As previously 

entioned, the extracted temporal features are crucial for accu- 

ate pain intensity estimation. Therefore, the temporal granular- 

ty of the ground truth is also essential. Several studies indicate 

hat the PSPI scores are not considered objective pain metrics. For 

xample, it is mentioned in [171] that the PSPI may be zero, al- 

hough the person feels pain or, in other cases, there are no vis- 

ble facial pain movements in low-intensity pain events. In addi- 

ion, pain expressions can exist that are not described in the FACS 

ystem, such as raising eyebrows or opening the mouth [172] . Fur- 

hermore, PSPI scores do not consider head and body movements 

elated to pain, something valuable, especially in newborns [173] . 

e suggest avoiding using the PSPI scores as ground truth for the 

forementioned reasons. Instead, we recommend the adoption of 

elf-reports and observer scales on the video-segment level. 

Nearly 54% of the studies adopted the leave-one-subject-out 

LOSO) validation method. This fact proves that the specific ap- 

roach is widely thought of as being more objective and that it 

etter supports the generalizability of the models. However, on a 

ractical level, adopting LOSO may prove to be non-optimal, con- 

idering the models’ size and the time required for their train- 

ng. When the researchers utilize other validation methods, e.g., k- 

old, hold-out, etc., it is necessary to consider the circumstances 

here consecutive, highly correlated frames from the same sub- 

ect are used for training and validation, leading to flawed esti- 

ation. Finally, when the researchers employ their own valida- 

ion/testing sets, as expected, it proved impossible to compare the 
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esults among studies, especially between classification and regres- 

ion approaches. For these reasons, we believe it would be bene- 

cial if specific evaluation protocols were developed for each pub- 

icly available database. 

.4. Pain databases 

The availability of appropriate public databases is perhaps the 

ingle most significant element in studying and solving the prob- 

em of automatic pain assessment. In evaluating available datasets, 

ne should consider several aspects, such as the number of sub- 

ects, and characteristics of subjects, i.e., age, sex, health status, and 

ace. Furthermore, the truth given needs to be objective and offers 

eal insights into the painful situation of the subject [76] . 

In Fig. 1 , we present the number of papers in relation to the 

ain database used in every study. It is evident from this fig- 

re that the UNBC and BioVid were the most used public datasets. 

t should be noted that the subject’s age in UNBC is not recorded, 

hich is known to be a factor that influences pain manifesta- 

ion [174,175] . Also, whereas in BioVid, the age is documented, the 

lder subjects are only 65 years old. This is important, since pain 

nd pain management is a growing concern among citizens aged 

5 and older [176] . A similar situation exists regarding other pain 

atabases ( i.e., X-ITE [36] , EmoPain [34] , and SenseEmotion [35] ). It

s also known that age causes skin changes, ( e.g., texture, rigidity, 

nd elasticity) that affect emotional face recognition tasks [177] . 

arious race-related factors also lead to erroneous pain estimation 

ue to differences in the expression of the subjects [178] . It should 

e noted that one study, i.e., Nerella et al. [117] mentioned that 

heir model achieved low performance when tested with African 

merican patients. We also found one study [104] dealing with 

he issue of pain estimation in elders with dementia. In conclusion, 

eveloping objective, automated, and generalizable deep learning- 

ased pain assessment systems will only be feasible if representa- 

ive and balanced data are available for training and external vali- 

ation. 

.5. Interpretation 

In recent years, AI models have begun to demonstrate state- 

f-the-art performances in nearly every scientific field and to 

utperform humans at specific diagnostic tasks [179] . However, 

I solutions in general, and deep neural networks in particu- 

ar, lack transparency, leading to the term “black box AI”, re- 

erring to the fact that these models learn complex functions 

hat are inaccessible and often incomprehensible to humans [180] . 

his non-transparency is a primary reason for the criticism that 

eep learning methods are receiving [181] . Several techniques have 

een developed that provide insights into how the models work, 

.g., visualizations, gradients-backpropagation emphasizing specific 

nits, etc. Interested readers should refer to the recent review 

182] about the explanatory techniques of deep learning. 

Table 13 presents the various approaches implemented to pro- 

ide an interpretation of the model’s decision. It is evident that 

nly a small percentage of studies, 20 out of 110, have imple- 

ented interpretation methods to explain how the model operates 

nd on what features and elements it focuses. We would like to 

ndicate at this point that interpretable machine learning is a use- 

ul umbrella term that captures the “extraction of relevant knowl- 

dge from a machine-learning model concerning relationships either 

ontained in data or learned by the model” [183] . In summary, it 

s worth mentioning that: (i) 18% of the studies reviewed present 

n approach to support the interpretability of the model’s deci- 

ion, (ii) all of the methods implemented relate to studies that 

se facial images as an input modality, and (iii) approximately 

0% of the studies were implemented from three specific research 
18 
roups. These observations indicate that the issue of interpretabil- 

ty/explainability in the context of deep learning methods is an 

rea that demands additional focus. This is especially true when 

utomatically classifying pain severity levels. 

.6. Current challenges & future research 

This section addresses open challenges in automatic pain as- 

essment and suggest future research effort s to advance the field. 

egarding the available pain databases, it is clear that several lim- 

tations exist. Most of the subjects’ important demographic char- 

cteristics ( e.g., sex, gender, age) are absent. The narrow diversity 

f the subjects’ race is also evident. However, it is known that 

he facial structure and emotional expressions of Caucasians differ 

rom the Asian and African populations [184] . In addition, it would 

e beneficial to include social interactions influencing pain man- 

festation. For instance, to record the subjects while accompanied 

y a partner of the same and different gender [185] . Another vi- 

al component of an automatic pain assessment system, especially 

or infants or people with communication disabilities, is estimat- 

ng the specific location of the pain source. Future databases need 

o include pain stimulations applied to several body locations. Fur- 

hermore, the existing databases incorporating visual information 

rovide videos with low to medium-resolution and frame rates, 

nable to capture facial micro-expressions. Regarding the modali- 

ies, a limited number of databases include audio which could be a 

aluable information channel. Additionally, based on audio is feasi- 

le to extract linguistic features and adopt multimodal approaches, 

ntegrating natural language processing (NLP) methods. Similar re- 

earch efforts have already existed in affective com puting literature 

186] . Also, present and future datasets must provide specific vali- 

ation protocols to establish an objective and accurate comparison 

latform between scientific studies in the community. 

Regarding the research efforts for automatic pain assessment 

rom the engineering standpoint, we believe that attention to sev- 

ral issues is needed. First, developing multimodal approaches is 

equired to establish effective systems with adequate capabilities. 

eyond the superior estimation performances reported over uni- 

odal methods, it is also necessary for real-world scenarios where 

 modality channel may often disappear. In addition, the exploita- 

ion of the temporal dimension of each modality is necessary. 

e strongly encourage the adoption of machine learning models 

r other techniques capable of incorporating the dynamic nature 

f pain. Further, multi-level and low-intensity pain estimation re- 

uires additional effort s to achieve improved results. Another open 

esearch topic is the relation of pain with other affective states, 

uch as negative emotions, which presumably coexist in painful 

vents. Identifying these emotions could be valuable, enabling bet- 

er pain assessment. The existence of occlusions or poor illumi- 

ation conditions in vision-based systems also demands further 

onsideration. We strongly recommend that researchers investigate 

hese or analogous conditions, even if the available databases do 

ot encompass similar scenarios. Similarly, the real-time applica- 

ion of an automatic assessment system is critical. For this rea- 

on, we suggest that future studies include throughput measure- 

ents for the developed models, e.g., the number of images per 

econd in the inference phase. An additional essential aspect of ev- 

ry AI system is its generalization capabilities. Since there are sev- 

ral available pain databases, evaluating the trained system/model 

cross diverse data could be valuable. Finally, adopting AI systems 

n the clinical domain requires explainability capabilities for its de- 

isions. The development/adoption of methods supporting the in- 

erpretability of model decisions would greatly enhance the clinical 

ranslation of tools supporting automatic pain assessment. 
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Table 13 

Interpretation approaches. 

Paper Year Modality Method 

[45] 2021 F (RGB) visualization (saliency maps) 

[49] 2018 F (RGB) visualization (heat maps) 

[51] 2021 F (RGB) visualization (saliency map) 

[54] 2016 F (RGB) visualization (learned filters) 

[55] 2021 F (RGB) visualization (learned filters) 

[56] 2019 F (RGB) visualization (heat maps), values of learned weights 

[59] 2018 F (RGB) visualization (saliency maps) 

[62] 2021 F (RGB) visualization (attention maps) 

[63] 2021 F (RGB) visualization (saliency map) 

[64] 2021 F (RGB) visualization (activation maps) 

[74] 2020 F (RGB) visualization (pixels contributions) 

[87] 2017 F (RGB) visualization (average saliency map) 

[89] 2019 F (RGB) visualization (generated intermediate representation) 

[104] 2020 F (RGB) visualization (saliency maps) 

[106] 2020 F (RGB) weights per AU (contribution of AUs) 

[115] 2019 F (RGB) visualization (feature maps) 

[116] 2021 F (RGB) visualization (integrated gradients) 

[131] 2021 F (RGB) visualization (heatmaps) 

[132] 2020 F (RGB) visualization (attention maps), values of learned weights 

[133] 2019 F (RGB) visualization (attention maps) 

4

d

T

d

s

c

I  

b

a

a

r

a

f

t

f

m

p

t

T

o

p

5

s

i

e

s

n

l

o

o

c

p

h

m

d

c

s

p

e

d

o

D

c

i

A

H

m

t

u

S

f

R

.7. Potential threats to validity & limitations 

The present SLR includes articles retrieved from three 

atabases: Scopus, IEEE Xplore, ACM Digital Library and PubMed. 

here exist many potential databases which could also use in or- 

er to find original studies. However, it is difficult to imagine that 

tudies on automatic pain assessment were not found in the spe- 

ific databases or from the reference lists in the retrieved articles. 

n addition, as depicted in Fig. 3 , access to two studies could not

e obtained, and they are not, as a result, included in the review. 

As mentioned in Section 3 , in the present review we did not ex- 

mine preprocessing methods and techniques, e.g., face detection, 

lignment, etc . However, such processes could influence the final 

esults of the pain estimation. Likewise, we do not discuss data 

ugmentation techniques and strategies, which are very important 

or deep learning approaches. However, we would like to point out 

hat most of the studies included in this review do not provide in- 

ormation on the data augmentation techniques used, if any. 

Finally, in most cases, this review presents the highest perfor- 

ance of each study and the deep learning-based methods that 

rovide this performance. However, several articles reviewed con- 

ain information on experiments with more than one approach. 

he results of such experiments may be valuable in the context 

f specific research studies, but the lack of available space did not 

ermit us to include all this information. 

. Conclusions 

Research on developing automatic methods supporting pain as- 

essment has, to date, yielded many interesting results, promising 

deas, and successful approaches. This is particularly true when 

mploying deep learning methods, which, in many cases have 

hown that it is feasible to achieve great results. Despite the sig- 

ificant progress observed, there are several limitations and chal- 

enges associated with deep learning approaches; the development 

f such models requires specific hardware, and significant amounts 

f data are required to extract rich and valuable features. Also, the 

omputational cost under specific situations is a trade-off between 

erformance and speed. In addition, further investigation in en- 

ancing the interpretability of the developed models is an area de- 

anding increased attention because model uptake in the clinical 

omain requires at least some degree of explanation to persuade 

linical users to its adoption. Finally, with respect to the pain as- 
19 
essment community, the development of harmonized evaluation 

rotocols enabling the comparison among studies is, in our view, 

vident. In addition, the creation of balanced, publicly available 

atabases of adequate size for the training, validation, and testing 

f AI-based models is essential. 
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