

nMOS Συνοπτική Περιγραφή						
	V _{GS} < V _T	I _D = 0 off				
	$V_{GS} > V_T$	lin				
	V _{DS} <v<sub>GS-V_T</v<sub>	$I_D = \beta_n \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$				
	$V_{GS} > V_T$	$I_D = \frac{1}{2} \beta_n (V_{GS} - V_T)^2 $ sat				
	V _{DS} >V _{GS} -V _T	$I_D = \frac{1}{2}\beta_n (V_{GS} - V_T)^2 (1 + \lambda_n V_{DS})$				
$\vec{k_n} = \mu_n C_{ox} = \mu_n \frac{\varepsilon_{ox}}{t_{ox}}$ Διαγωγιμότητα διαδικασίας						
$\beta_n = \mathbf{k} = \mathbf{k}'_n \frac{\mathbf{W}}{\mathbf{L}}$ Διαγωγιμότητα διάταξης						

Uniform Body Doping

When the source/body junction is reverse-biased, there are two quasi-Fermi levels (E_{fn} and E_{fp}) which are separated by qV_{sb} . An NMOSFET reaches threshold of inversion when E_c is close to E_{fn} , not E_{fp} . This requires the band-bending to be $2\varphi_B + V_{sb}$, not $2\varphi_B$.

$$V_{t} = V_{t0} + \frac{\sqrt{qN_{a}2\varepsilon_{s}}}{C_{oxe}} \left(\sqrt{2\phi_{B} + V_{sb}} - \sqrt{2\phi_{B}}\right)$$
$$\equiv V_{t0} + \gamma \left(\sqrt{2\phi_{B} + V_{sb}} - \sqrt{2\phi_{B}}\right)$$

 γ is the body-effect parameter.

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-31

Εναλλακτική έκφραση κατάστασης κόρου				
Κόρος αν:	V _{DS} >V _{GS} -V _T			
∎ Δείξτε ότι:	$V_{DS} > V_{GS} - V_T \Leftrightarrow V_{GD} < V_T$			
∎ Απόδειξη:	$V_{DS} > V_{GS} - V_T \Leftrightarrow V_D - V_S > V_G - V_S - V_T$ $\Leftrightarrow V_D > V_G - V_T$ $\Leftrightarrow V_D - V_G > -V_T$			
	$\Leftrightarrow V_G - V_D < V_T$			
	$\Leftrightarrow V_{GD} < V_T$			
 Αυτή είναι μια εναλλακτική συνθήκη για την περιοχή κόρου Μπορεί να είναι βολική 				
TA 5017	L7: Μοντέλα MOSFET	Slide 54		

nMOS Εναλλακτική Συνοπτική Περιγραφή						φή	
		V V	(_{GS} < V _T (_{GD} < V _T	<i>I_D</i> = 0		off	
		V	′ _{GS} > V _T	[0		lin 1,,2]	
		V	_{GD} > V _T	$I_D = \kappa_n [V]$	GS – V _T)V _D	sV_DS] 2 2 ∫	
		ν	' _{GS} > V _T	$I_D = \frac{1}{2} k_n (V_G$	_S -V ₇) ²	sat	
		v	' _{GD} < V _T	$I_D = \frac{1}{2} k_n (k_n)$	$V_{GS} - V_T)^2$	$(1 + \lambda_n V_{DS})$	
	V _{GS}		- U - V	lin			
	V _{GS} V _{DS} < V	> V _T _{GS} – V _T	$I_D = \kappa_n \bigg[(V_{GS} -$	V_T) $V_{DS} - \frac{1}{2}V_{DS}^2$			
	$V_{GS} > V_T$ $I_D = \frac{1}{2}k_n(V_{GS} - V_T)$) ² sat				
	$V_{DS} > V_{GS} - V_T$ $I_D = \frac{1}{2} \kappa_n (V_{GS} - V_T)$		$(V_T)^2 (1 + \lambda_n V_{DS})$			Slide 56	

Π	Ιροσομοίωση MOSF	ET στο Microwind	
	Το Microwind έχει ένα ο οποίο επιτρέπει την προ κυκλωμάτων που σχεδια σχεδίου	λοκληρωμένο πρόγραμμα SPICE σομοίωση των ηλεκτρικών άζονται με το συντάκτη φυσικού	то
	Το πρόγραμμα προσομ MOSFET: Level 1, Level	οίωσης περιέχει τρία μοντέλα <mark>I 3</mark> , και <mark>BSIM4</mark>	
	Οι εξισώσεις των μοντέλ περιορισμό του αριθμού να μπορούν να ενσωμα φάσμα διαδικασιών κατα	ων έχουν απλοποιηθεί κάπως, μ των εισαγομένων παραμέτρων α ιωθούν δεδομένα από ένα ευρύ ασκευής.	ε ύστε
	Το περιβάλλον του προ χρήστη να επιλέγει το ετ τα αποτελέσματα, και να	γράμματος Microwind επιτρέπει α τίπεδο προσομοίωσης, να επιθει ι αλλάζει το επίπεδο αν το επιθυμ	στο υρεί ιεί.
	Εδώ, το πρόγραμμα πρ τη μελέτη των χαρακτηρ των εργαλείων CAD	οσομοίωσης θα χρησιμοποιηθεί γ ιστικών του MOSFET από τη σκα	/ια οπιά
	ΤΛ 5017	L7: Μοντέλα MOSFET	Slide 64

П	οσομοίωση διαφορετικών διατάξεων
	Ι οθόνη έχει διάφορα χαρακτηριστικά τα οποία επιτρέπουν ην προσομοίωση διάφορων διατάξεων
	Οι τιμές των παραμέτρων SPICE μπορούν να αυξηθούν ή να λαττωθούν χρησιμοποιώντας τα κόκκινα (πάνω) και ιράσινα (κάτω) βέλη δίπλα από κάθε τιμή.
	Ο λόγος των διαστάσεων (W/L) μπορεί να αλλάξει σε άλλη συνήθη τιμή χρησιμοποιώντας τη ρύθμιση MOS size που βρίσκεται στο κέντρο του κάτω μέρους της οθόνης
	/πορείτε να αλλάξετε τις τιμές των τάσεων <i>V_{DS}, V_{GS},</i> και το ιέγεθος του βήματος, Δ <i>V_{GS},</i> δακτυλογραφώντας τις τιμές πιλογής στην υποδεικνυόμενη περιοχή
	Vd from 0 to:
	Vg from 0 to:
	Step Vg:
	1 5017 L7: Μοντέλα MOSFET Slide 66

TABLE 7.1	evel 1 SPI	CE MOSFET I	parameters
Parameter	Symbol	Units	Definition
VTO	V _{T0}	V	Threshold voltage
тох	t _{ox}	m	Oxide thickness
UO	μ_o	m²/ V-sec	Low-field mobility
PHI	$2 \phi $	V	Surface potential
GAMMA	γ	V ^{1/2}	Body-bias coefficient
TA 5017		L7: Μοντέλα MOSFET	Slide 69

Level 1 MOSFETs (LEVEL = 1)

$$V_{sat} = V_{GS} - V_{Tn}.$$

$$V_{DS} \leq V_{sat},$$

$$I_D = \frac{\beta_n}{2} [2(V_{GS} - V_{Tn})V_{DS} - V_{DS}^2](1 + \lambda V_{DS})$$

$$V_{DS} \geq V_{sat},$$

$$I_D = \frac{\beta_n}{2} (V_{GS} - V_{Tn})^2 (1 + \lambda V_{DS})$$
TABLE TO Side 70

Eξισώσεις Microwind Level 3 και BSIM4
Level 3
Oι εξισώσεις ρεύματος του Microwind για
$$V_{GS} \ge V_{on}$$

 $I_D = K_{eff} \frac{W}{L_{eff}} (1 + \kappa V_{DS}) V_{DE} \Big[(V_{GS} - V_T) - \frac{1}{2} V_{DE} \Big]$
όπου $V_{on} = 1.2 V_T$ και $V_T = V_{T0} + \gamma (\sqrt{2|\phi| - V_B} - \sqrt{2|\phi|})$
Oι άλλοι παράμετροι είναι
 $V_{DE} = \min(V_{DS}, V_{Dsat})$ $L_{eff} = L - 2L_D$
 $V_{Dsat} = V_c + V_{sat} - \sqrt{V_c^2 + V_{sat}^2}$ $K_{eff} = \frac{k'}{[1 + \theta(V_{GS} - V_T)]}$
 $V_{sat} = V_{GS} - V_T$ To ρεύμα υποκατωφλίου εκφράζεται ως:
 $V_c = \frac{L_{eff}}{0.06} v_{max}$ $[I_D = I_D(V_{on}, V_{DS})e^{(V_{GS} - V_{on})/V_{th}}]$

Παράμετροι Level 3					
	Parameter	Symbol	Units	Definition	
	VTO	V _{T0}	V	Long-channel threshold volta	age
	тох	t _{ox}	m	Oxide thickness	
	UO	μ_O	m ² /V-sec	Low-field mobility	
	PHI $2 \phi $ V Surface potential		Surface potential		
GAMMA γ		γ	V ^{1/2}	Body-bias coefficient	
KP <i>k'</i> A/V ²		A/V ²	Process transconductance		
	PHI	$2 \phi $	V Surface potential		
	KAPPA	κ	V ⁻¹ Saturation field factor		
	LD	LD	m	Lateral diffusion length	
	VMAX	v_{max}	m/sec Maximum drift velocity		
	NSS	1/nkT	kT V ⁻¹ Subthreshold factor		
	THETA	θ	V ⁻¹	Mobility degradation factor	
T∧ 50	17		L7: Μοντέλα Ν	MOSFET	Slide 74

Εξισώσεις BSIM4		
Το Microwind χρη εξισώσεων BSIN προσομοιώσεις. Η χρησιμοποιεί περ υλοποίηση Microv πιο σημαντικές τι εξισώσεις	σιμοποιεί ένα απλοποιη 14 το οποίο επιτρέπει γρ Η πλήρης περιγραφή Βξ ίπου 200 παραμέτρους, wind βασίζεται σε περίπ μές. Εδώ παρουσιάζοντα	ιμένο σύνολο ήγορες SIM4 , ενώ η ου 20 από τις αι οι βασικές
TA 5017	L7: Μοντέλα MOSFET	Slide 75

Eξισώσεις BSIM4
Η τάση κατωφλίου στο μοντέλο BSIM εκφράζεται ως

$$V_T = V_{T0} + K_1(\sqrt{2|\phi|} - V_{BS} - \sqrt{2|\phi|}) - K_2 V_{BS} + \Delta V_{T, SCE} + \Delta V_{T, NULD} + \Delta V_{T, NULD} + \Delta V_{T, DIBL}$$
όπου
ΔV_{TSCE} :ελάττωση εξαιτίας φαινόμενων βραχέως καναλιού (short channel effects)
ΔV_{TNULD} :λόγω της της πλευρικής ανομοιόμορφης νόθευσης
ΔV_{TDIBL} :αλλαγή της τάσης κατωφλίου εξαιτίας του φαινομένου Drain-Induced Barrier
Lowering (DIBL).
Η ενεργή (effective) ευκινησία είναι

$$\mu_{eff} = \frac{\mu_o}{1 + (u_A + u_C V_{BS, eff}) \left[\frac{1}{t_{ox}} V_{GS, eff} + 2(V_{T0} - V_{FB} - \phi_S)\right]^{EU}},$$
όπου EU = 5/3 για nFETs, και EU = 1 για pFETs. $L_{eff} = L - 2L_{int}$
TA5017

Εξισώσεις BSIM4

Το ρεύμα υπολογίζεται από τη σχέση

$$I_{D0} = \mu_{\text{eff}} \frac{\varepsilon_{\text{ox}}}{t_{\text{ox}}} \frac{W_{\text{eff}}}{L_{\text{eff}}} V_{GS, \text{eff}} \left[1 - \frac{A_{\text{bulk}} V_{DS, \text{eff}}}{2V_{GS, \text{eff}} + 4V_t} \right] \left[\frac{V_{DS, \text{eff}}}{1 + (V_{DS, \text{eff}}/(v_{\text{sat}}L_{\text{eff}}))} \right]$$

Σε αυτή την έκφραση,

 $L_{\rm eff} = L - 2L_{\rm int}$ kai $W_{\rm eff} = W - 2W_{\rm int}$

Είναι το ενεργό μήκος και το ενεργό εύρος καναλιού, αντίστοιχα.

Το απλοποιημένο μοντέλο χρησιμοποιεί L_{jnt} και W_{jnt} ως διορθωτικούς παράγοντες οι οποίοι ορίζονται από το χρήστη.

Η θερμική τάση σημειώνεται ως Vt = (kT/q), και οι ενεργές τάσεις της διάταξης, $V_{GS,eff}$ και $V_{DS,eff}$ χρησιμοποιούνται για να παρέχουν ομαλή μετάβαση στις αλλαγές της κατάστασης λειτουργίας.

Το μοντέλο Microwind BSIM4 παρέχει, επίσης εξάρτηση από τη θερμοκρασία και τις χωρητικότητες με το συνηθισμέχος τρώτος ετο Slide 77

Παράμετροι BSIM4 Parameter Symbol Units Definition Long-channel threshold voltage VTO V_{T0} V V VFB Flatband voltage V_{FB} m тох Oxide thickness $t_{\rm ox}$ K₂ V^{1/2} 2nd-order body-bias factor К2 DV_{T0} V DVT0 1st-order short-channel factor DV_{T1} V DVT1 2nd-order short-channel factor LPE_0 LPE0 Lateral non-uniform doping parameter ETA0 DIBL coefficient E_{TA0} NFAC NSubthreshold turn-on factor μ_O m²/V-sec Low-field mobility υo UA m/V Vertical-field mobility factor μ_A V⁻¹ uc Body-bias mobility factor u_C P_{SCBE1} V/m 1st substrate-induced body-bias factor PSCBF1 P_{SCBE2} V/m 2nd substrate-induced body-bias factor PSCBE2 m/sec Saturation velocity VSAT v_{sat} WINT m Channel-width offset parameter Wint m Channel-length offset parameter LINT L_{int} V Temperature coefficient (V_T) KT1 K_{T1} *u_{TE}* ∨ Temperature coefficient (μ_0) UTE VOFF Subthreshold offset voltage $P_{\rm CLM}$ PCLM Channel-length modulation parameter TA 5017 Slide 78