Pre-Calculus Course

Dr. Maria Zakynthinaki, Associate Professor Evangelos Kokkinos, Dr. Marinos Anastasakis and Associate Professor Konstantinos Petridis, Department of Electronic Engineering, Hellenic

Mediterranean University, Greece

Pre - Calculus Course

The main objective of this module is to prepare better the graduate students from high School to follow a University level module in Calculus and Linear Algebra

The module apart of these lecture notes is also accompanied by: (a) Self - Evaluation Questions; (b) lecture notes; and (c) simulations/visualizations using GeoGebra (www.geogebra.org)

Chapter Five: Differentiation

Co-funded by the rasmus+ Programm of the European Unio

An Introduction

The aim of this chapter is: In this chapter we will learn the definition of a derivative. This can be used to calculate speed and to obtain the slope of a tangent line for instance. Then we will discuss standard derivatives and rules of calculation, followed by exercises to give you the chance to apply these rules. We will also discuss the concept of differentiability and the use of differentiation in optimization problems.

Co-funded by the Erasmus+ Programme of the European Union

Definition of the Differentiation

- The differentiation as a mathematical action is linked with the optimization process
- The differentiation is related with the slope of a function; in case of a straight track the slope of the function (the rate of its change with distance or with time) is constant; whereas in the case of a non straight track the slope changes from point to point. In the latter case we calculate the slope of a point!!!
- The differentiation is linked with the calculation of very important quantities e.g. the speed and the acceleration of a body

Definition of the Differentiation

Slope - straight track

Slope - curved track

Slope at P: $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$

Definition of the Differentiation

Speed at t
$=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}$

Definition of the Differentiation

Limits

Slope and speed are derivatives!

- Slope $=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$
- Slope at position $x=a: \quad \frac{d y}{d x}(a)$
- Speed $=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}$
- Speed at time $t=a: \frac{d x}{d t}(a)$

Definition of the Differentiation

Differentiation - the definition

Differentiation - geometrical meaning

Difference quotient:

$$
\frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

Slope of line PQ:

$$
\frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

Differentiation - the definition

The derivative of f at $x=a$:
$\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}$

Notation:
$f^{\prime}(a)$ or $\frac{d f}{d x}(a)$

Differentiation - geometrical meaning

Slope of line $P Q$:

$$
\frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

In limit: Tangent line at P Slope: $f^{\prime}(a)$

Definition of the Differentiation

Limits

Slope and speed are derivatives!

- Slope $=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$
- Slope at position $x=a: \quad \frac{d y}{d x}(a)$
- Speed $=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}$
- Speed at time $t=a: \frac{d x}{d t}(a)$

Definition of the Differentiation

Differentiation - the definition

Differentiation - geometrical meaning

Difference quotient:

$$
\frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

Slope of line PQ:

$$
\frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

Differentiation - the definition

The derivative of f at $x=a$:
$\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}$

Notation:
$f^{\prime}(a)$ or $\frac{d f}{d x}(a)$

Differentiation - geometrical meaning

Slope of line $P Q$:

$$
\frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

In limit: Tangent line at P Slope: $f^{\prime}(a)$

- First, you learn the derivatives of the standard functions. Second, you learn rules to calculate the derivative of combinations of standard functions. Important rules of calculation are the product rule and the chain rule
- The way we learn how to calculate the derivative of any function, independently how complicate could be, is the following:

1. Learn the derivative of the standard functions
2. Apply them and in combination of few rules of calculation, derive the derivatives of combinations of these functions

$$
\begin{aligned}
& f(x)=x^{0}=1 \\
& \begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{1-1}{h} \\
& =\frac{0}{h}=0
\end{aligned} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} 0=0
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x \\
& \frac{f(x+h)-f(x)}{h}=\frac{(x+h)-x}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} 1=1
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{2} \\
& \begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{(x+h)^{2}-x^{2}}{h} \\
& =\frac{x^{2}+2 h x+h^{2}-x^{2}}{h} \\
& =2 x+h
\end{aligned} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} 2 x+h=2 x
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{3} \\
& \begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{u g l y}{h} \\
& f^{\prime}(x)=\frac{d}{d x}\left(x \cdot x^{2}\right) \\
&=\left(\frac{d}{d x} x\right) \cdot x^{2}+x\left(\frac{d}{d x} x^{2}\right) \\
&=1 \cdot x^{2}+x \cdot 2 x \\
&=3 x^{2}
\end{aligned}
\end{aligned}
$$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

$$
\begin{aligned}
& \frac{d}{d x} \frac{1}{x}=\frac{d}{d x} x^{-1}=-x^{-2}=-\frac{1}{x^{2}} \\
& \frac{d}{d x} \sqrt{x}=\frac{d}{d x} x^{1 / 2}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \\
& \frac{d}{d x} x^{\pi}=\pi x^{\pi-1}
\end{aligned}
$$

Attention: the highlighted formula is valid

Attention: the highlighted formula is valid
only for superscripts that are constants only for superscripts that are constants

$$
\begin{aligned}
& \frac{d}{d x}\left(2+4 x+5 x^{2}+7 x^{3}-x^{4}\right)= \\
& \quad=2 \cdot 0+4 \cdot 1+5 \cdot 2 x+7 \cdot 3 x^{2}-4 x^{3} \\
& \quad=4+10 x+21 x^{2}-4 x^{3}
\end{aligned}
$$

helm Standard Derivatives \& Rules of Calculation

Regarding the derivatives of functions of the type of a^{x} please remember the following:

$$
\begin{aligned}
& x=\exp (\ln x) \Leftrightarrow a=\exp (\ln a) \\
& \Leftrightarrow a^{x}=\exp [\ln a] \Leftrightarrow\left(a^{x}\right)^{\prime}=\exp [\ln a] \\
& \ln a \Leftrightarrow\left(a^{x}\right)^{\prime}=a^{x} \cdot \ln a \\
& e g\left(e^{x}\right)^{\prime}=e^{x}
\end{aligned}
$$

- \times elstandard Derivatives \& Rules of Calculation

S. No.	$f(x)$	$f^{\prime}(x)$
1	x^{n}	$n x^{n-1}$
2	$\operatorname{Sin} x$	$\operatorname{Cos} x$
3	$\operatorname{Cos} x$	$-\operatorname{Sin} x$
4	$\operatorname{Tan} x$	$\operatorname{Sec} 2 x$
5	$\operatorname{Cot} x$	$-\operatorname{Cosec} 2 x$
6	$\operatorname{Sec} x$	$\operatorname{Sec} x \operatorname{Tan} x$
7	$\operatorname{Cosec} x$	$-\operatorname{Cosec} x \operatorname{Cot} x$
8	$\log x$	$1 / x$
9	$a \operatorname{constant}$	$Z \operatorname{Zero}$
10	e^{x}	e^{x}
11	$a x$	$a \times \log a$
12	\sqrt{x}	$1 /(2 \sqrt{x})$

Standard Derivatives \& Rules of Calculation

- We know that the derivative of a function at a point corresponds to the tangent line at this point of the function's graph
- It is very important in order to realize the properties of a function, around a point, to derive the equation of this line, $y=a * x+b$

The tangent line - example

$$
\begin{aligned}
& \text { Slope }=f^{\prime}(1)=2 \\
& f^{\prime}(x)=\frac{d}{d x}\left(x^{2}+2\right)=2 x
\end{aligned}
$$

The tangent line - example

$$
\begin{aligned}
& \text { Slope }=f^{\prime}(1)=2 \\
& 2=\frac{\Delta y}{\Delta x}=\frac{y-3}{x-1} \\
& y-3=2(x+1)
\end{aligned}
$$

The tangent line

Tangent line:

- slope $f^{\prime}(p)$
- through $(p, f(p))$

$$
f^{\prime}(p)=\frac{y-f(p)}{x-p}
$$

Equation tangent line:

$$
y=f^{\prime}(p)(x-p)+f(p)
$$

Non Differentiable Functions

- Can we differentiate any function? Can we differentiate any function at any point? The answer to all of these questions is no! What is the 'wrong' thing with the non differentiable functions?
- A function is not differentiable at a point, when a tangent line passes through this point with a finite slope does not exist

The function f is differentiable at a if
$\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}$
exists.

Nondifferentiable functions

Functions f that are not differentiable $x=a$:

- f is discontinuous at $x=a$.
- The graph of f has a kink at $x=a$.
- The graph of f has a vertical tangent line at $x=a$.

- More 'exotic' functions, e.g. $x \sin \left(\frac{1}{x}\right)$.
- An example of non-differentiable function is: $f(x)=x^{1 / 3}$ at zero. Can you explain why?
- Another example of a non-differentiable function is: $f(x)=a b s(x)$. Can you explain why?
- For optimization it is important to be able to find the minima and maxima of a function
- There are two types of maxima and minima within a graph: the global ones (the highest or the lowest value across the function's domain) or the local ones (the lowest or the highest one around a specific point)
- Graph contains points that can be called either (a) critical points (where the derivative is zero); (b) singular points (where the derivative is not defined); or (c) boundary points (where the derivative is not zero) - Among these points we should check for maxima or minima points!!

Minima and maxima


```
Global
maximum at }x=
minimum at }x=
Local
maximum at }x=
    and }x=
minimum at }x=
    and}x=
```


Minima and maxima

Minima and maxima

$$
\begin{aligned}
& f^{\prime}(x)>0 \Rightarrow \text { increase } \\
& f^{\prime}(x)<0 \Rightarrow \text { decrease } \\
& \text { at extrema: } f^{\prime}(x)=0
\end{aligned}
$$

Non-differentiable functions

Boundary points

Minima at feet f^{\prime} exists $f^{\prime} \neq 0$ at feet Boundary points

Finding minima and maxima

Given

- function f;
- point a such that $f(a)$ is local extremum;

Then

- $f^{\prime}(a)=0$,
- or $f^{\prime}(a)$ does not exist,
- or a is a boundary point.

$$
\begin{aligned}
f(x) & =x^{3} \\
f^{\prime}(x) & =3 x^{2} \\
f^{\prime}(0) & =0
\end{aligned}
$$

No extremum at $x=0$

Finding local extrema

1. Find:

- critical points: $f^{\prime}(x)=0$
- singular points: $f^{\prime}(x)$ does not exist
- boundary points

2. Check at each at these points:

- local minimum?
- local maximum?
- neither?

Higher order differentiation

If f is a differentiable function and $f^{\prime}(x)=\frac{d f}{d x}$ its first derivative in respect to the variable x, then
the derivative of $f^{\prime}(x)$ (if it exists) is denoted as

$$
f^{\prime \prime}(x)=\frac{d^{2} f(x)}{d x^{2}}
$$

and is called second derivative of f.

Higher order differentiation

The same way, the derivative of the second derivative (if it exists) is denoted as

$$
f^{(3)}(x)=\frac{d^{3} f(x)}{d x^{3}}
$$

And is called the third derivative of f.

Continuing this process, from the $(v-1)$-th derivative of f we can derive the v-th derivative of f.
The v-th derivative is called derivative of order vand is denoted as $f^{(v)}(x)=\frac{d^{v} f(x)}{d x^{v}}$.

Higher order differentiation

Example:

Assume $f(x)=x^{3}-3 x^{2}+2$.
Then

- $f^{\prime}(x)=3 x^{2}-6 x$,
- $f^{\prime \prime}(x)=6 x-6$,
- $f^{(3)}(x)=6$ and
- $f^{(4)}(x)=0$.

Higher order differentiation

The Derivatives Dance

Differentiation

- If you want to learn more about differentiation please check the following video lectures:

1. https://www.youtube.com/watch?v=xd703YLsLAY\&feature=youtu.be
2. https://www.youtube.com/watch?v=Rpum6FRM2UU\&feature=youtu.be
