i, ot (D) W Q - Erasmus+
Co-funded by the St
Erasmus+ Programme [
of the European Union ubits
PowerLaPs

Innovative Education & Training in High Power Laser Plasmas

Plasma Physics - Theory and Experiments

-Erasmus+

N

\9§~

Output Identification: O1
Output Title: Plasma Physics - Theory and Experiments



- Erasmus+

I« { 2 4 SooN G vnvensiny
e N g, o2 (O IR Q

O1 - Plasma physics

01 - Theory

1. What iS @ Plasma?.........uuuiiiiiiiiiiiiiiieeee ettt 6-22
D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

1.1 Plasma: the fourth state of matter

1.2 Natural plasmas and laboratory plasmas

1.3 Collective phenomena in plasmas

1.4 Characteristic quantities of plasmas

1.5 Debye’s length

1.6 Collisions of particles. Mean free path and collisional frequency
1.7 Plasma oscillations. Electronic plasma frequency

1.8 Velocity distribution function

1.9 Mean macroscopic quantities

1.10 Problems

2. Movement of particles in magnetic and electric fields............ccccvunnnnnn. 23-39
D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

2.1 Uniform and continuous magnetic field

2.2 Movement in uniform magnetic and electric fields
2.3 Alternating and non-uniform electric field

2.4 Non-uniform magnetic field

2.5 Problems

3. Coulombian COISTONS.......uuiiiiee e 40-46
D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

3.1 Collisions between charged particles

3.2 Elastic collisional cross section

3.3 Momentum transfer cross section

3.4 Mean free path and collisional frequency
3.5 Problems

4. Hydrodynamic description of aplasma...........cccveviiiiiiiiiiiiieeeeeeee, 47-55
D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

4.1 Equations

4.2 Electromagnetic properties of plasma
4.3 Linear theory

4.4 Problems

5. Waves in non-magnetised plasmas..........cccccoiiiiiiiiiiiiiiieeeeeeee e 56-64
D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

5.1 Propagation of an electromagnetic wave in a plasma
5.2 Electrostatic plasma waves in hot plasma
5.3 Problems

Page |2



I« { 2 4 SooN G vnvensiny
e N g, o2 (O IR Q

6. Electromagnetic waves into magnetised plasmas..........cccceeveeeeeeennnnnen. 65-83
M. Tatarakis

6.1 Magnetised plasma

6.2 Isotropic plasma

6.3 Propagation normal to the magnetic field

6.4 Parallel propagation

6.5 Faraday rotation

6.6 Rotation for propagation at a general angle g
6.7 Nonuniform media and the WKBJ approximation

7. Kinetic description of a plasma......cccccoeieiiiiiiiiiiie e 84-91
D. Batani, E. d'Humieres, J.J. Santos, V.T. Tikhonchuk

7.1 Distribution function of particles

7.2 Klimontovich equation

7.3 Vlasov kinetic equation

7.4 Collision integral

7.5 Macroscopic field, Maxwell’s equations
7.6 Macroscopic quantities in a plasma
7.7 Problems

8. Equilibrium solutions to the Vlasov kinetic equation............ccccccceeeeenen. 92-99
D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

8.1 Equilibrium of a homogeneous plasma
8.2 Plasma in an external electric potential
8.3 Plasma in a capacitor

8.4 Plasma in an external magnetic field
8.5 Problems

9. Electromagnetic properties of an isotropic plasma...........cccccceeennn.. 100-118
D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

9.1 Dispersion equation of electromagnetic waves
9.2 General proprieties of the dielectric permittivity
9.3 General solution of the dispersion equation
9.4 Linearized Vlasov equation

9.5 Kinetics of electromagnetic waves

9.6 Langmuir waves

9.7 lon acoustic waves

9.8 Imaginary part of the dielectric permittivity

9.9 Landau damping of plasma waves

9.10 Qualitative interpretation of Landau damping
9.11 Problems

10.Instabilities of a non-equilibrium plasma.........ccccccceeiiiiiiiniee, 119-128
D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

10.1 Radiative losses of a charged particle in plasma
10.2 Instability of an electron beam in plasma

Page |3



HELLENIC { 2 4 SooN G vnvensiny
e N g, 2 () W Q

KY - Erasmus+

10.3 Instability of a mono-energetic beam
10.4 Nonlinear saturation of instabilities
10.5 Problems

11.Plasmas and RaAiatioN ... c..ouieoiei e 129-169
D. Batani

11.1 Radiative properties of plasmas

11.2 Laser-Plasma profile in the ns regime

11.3 Equilibrium (and types of equilibrium) in a plasma
11.4 Equation of radiation transfer

11.5 Radiation emission from plasmas

11.6 Radiative hydrodynamics

O1 - Experiments

1. EXP 1. FLYCHK COUC..ccuniiiiiiiiiiiii et 171-176
D. Batani, J. Trela

1. The FLYCHK code
2. FLYCHK exercises

2. EXP 2. PlasmafOCUS. ..ot a e e e 177-198
A. Skoulakis, G. Andrianaki, G. Tazes

Laboratory project aim

Theoretical background

Operation Principle

The miniature plasma focus device
Experimental procedure
Experimental results analysis

oOghkwNPE

3. EXP 3. PlasmapinCh......coooiiiiii e 199-228
A. Skoulakis, G. Andrianaki, G. Tazes

Laboratory project aim

Theoretical background

X-pinch system (apparatus & diagnostics)
Experimental procedure

Experimental results analysis

abrwnpE

01 - Annex

Supplementary educational material..........ccccceeeiiiiiiiiiiii e 229

> 01-Al-Plasma Physics (M. Tatarakis)

Page |4



s & SooN G vnvensiny
e N owggy, S O $IR Q

- Erasmus+

Ol - Theory

Page |5



HELLENIC . & P . S Goad vnvensim
universite " { i of 2
eRstTY }( “BORDEAUX | @y o York Q,

- Erasmus+

PowerLaPs

Innovative Education & Training in High Power Laser Plasmas

Plasma Physics - Theory and Experiments

Chapter 1: What is Plasma?

D. Batani, E. d'Humiéres, J.J. Santos, V.T. Tikhonchuk

Bl rasmus+

SRR Universite
ke i —=Y “BORDEAUX

> High Power Laser Plasma Physics

Page |6



o NGO
o . e ¥

HELLENIC

s & PN Qo vvvensin
B N g, ) @duk @

- Erasmus+

b oo
High Pawer Laser Plasma Physics.

1 What is a plasma?

The term plasma was introduced for the first time in 1922 by the American physicist Irvin Langmuir,
who was studying electrical discharges in weakly ionised gases. The word “plasma” has a Greek
etymological root which literally means “something that has no use”. Irvin Langmuir and his
compatriot Lewis Tonks gave this name to a gas containing charged particles, whose movement is
governed by electromagnetic forces. These two researchers were the first to discover the collective
electronic oscillations in a plasma. Langmuir waves or electronic plasma waves constitute the
fundamental (eigen) modes of a plasma.

The gpecificity of a plasma resides in its self-consistent behaviour: the charged particles them-
selves create the fields and are therefore subjected to the action of these fields in return. This
causes the particles to move collectively, sometimes in the form of waves. This coherent movement
of the particles, which recurs periodically in space and time, is what causes the natural oscillations
of plasma.

In this course, we will be studying the basic physical models and the numerical modelling
methods that can be employed to account for the collective behaviour of plasmas. In general, all
plasma models feature two combined systems: the first consists of particle movement equations and
the second describes the changes in the electrical and magnetic fields. The connection between the
movement of the electrical charges and the generation of electromagnetic and electrostatic fields is
a source of both richness and complexity in the description of plasmas and in their modelling.

1.1 Plasma: the fourth state of matter

When the temperature is increased, matter first changes from a solid state to a liquid state by
melting, and then to a gaseous state by vaporisation. The molecules, subjected to repeated col-
lisions, are split into atoms at between 5,000 and 10,000 K. At temperatures exceeding 10,000 K
the atoms themselves are split into electrons and positive ions. In this way, plasma constitutes a
fourth state of matter. The phenomenon of thermal ionisation of a gas is a consequence of impacts
(collisions) between particles. It becomes more pronounced as the temperature of the gas rises.

Conversely, when the temperature falls, the free electrons are recombined with the ions to recre-
ate atoms. This recombination may be radiative, if it is accompanied by the emission of radiation,
or a three-body recombination if a third particle participates in this process. Optical, ultra-violet
and X radiations also contribute to the ionisation of gases by the process of photoionisation or
multiphoton tonisation.

The ionised gases can be roughly divided into three major families:

o Weakly tonised gases: a few electrons move around in an ocean of neutral molecules or atoms.
The binary collisions between an electron or an ion and an atom determine the dynamics of
the charged particles (electric arcs, discharge tubes, the ionosphere, intergalactic molecular
clouds).

o Highly wonised and weakly collistonal gases: including dilute plasmas and hot plasmas whose
particle trajectories are mainly determined by electrical fields or external magnetic fields
(stars, fusion plasmas).

o Highly ionised and highly collisional gases: which include dense plasmas and cold plasmas

in which the collisions determine the behaviour of the plasma (centres of stars, metals and
semi-conductors).
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1.2 Natural plasmas and laboratory plasmas

Plasmas are found everywhere: over 99.9% of the universe is composed of matter in the plasma
state. Consequently, plasmas make up most of the matter of the sun, the stars, interstellar and
intergalactic space, white dwarfs, etc.

Figure 1: On the left: satellite photograph of the aurorae boreales appearing around both magnetic
poles of the Earth. On the right: photograph of the Tadpole galaxy: light emissions produced by
excited ions and molecules. Photography by NASA.

The aurorae boreales, which can be observed around the Earth’s magnetic poles, are a spectacu-
lar manifestation of the existence of electrons and protons, emitted by the sun (the solar wind) and
trapped within the Van Allen belts of the magnetosphere. As they pass through the atmosphere,
the energetic electrons excite the atoms which, as they are de-excited, emit the light observed dur-
ing the course of an aurora borealis. Since the electrons are trapped in the Earth’s magnetic field
lines, the aurorae appear simultaneously at the two magnetic poles (see figure 1-a).

The galaxies are made up of stars and inter-stellar gases. Their electromagnetic emissions
enable us to observe them. In particular, the emissions in the optical and infra-red fields are
caused by excited ions and molecules in the gases (see figure 1-b). The ionosphere consists of a
layer of ionised gas situated at an altitude of around 120 to 400 km above the Earth. Because of
its ability to reflect certain electromagnetic waves, the ionosphere plays a key role in shortwave
telecommunications around the Earth. Knowledge of the ionosphere’s properties is very important,
for satellite communications and for the navigation systems of ships, aircraft and motor vehicles.

Plasmas are frequently encountered in our daily lives: a candle flame is a very weakly ionised
plasma, light sources contain weakly ionised plasma discharges of rare gases; Ne, Kr or Xe. The
same discharges are found in plasma screens, but at very low levels. Plasmas are produced in
metal-welding and cutting processes that use electric arcs. Many laser processes use or produce
plasmas.

Plasmas play an important role in research on energy production issues. The fusion of light
nuclei of deuterium and tritium represents an inexhaustible source of energy that could satisfy all of
humanity’s needs for several millennia. The synthesis of light nuclei is the biggest source of energy
in the universe. All stars burn light elements for billions of years, but these nuclear fusion reactions
are only efficient at very high temperatures exceeding one hundred million degrees Kelvin.

Laboratory research on thermonuclear fusion began around fifty years ago. The main problem
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Figure 2: Characteristic parameters of plasmas in nature and in the laboratory.

is to heat the plasma up to these very high temperatures and to maintain (confine) it for the time
required for combustion. T'wo approaches are currently being studied: magnetic confinement fusion
(MCF) in which plasma is confined in a magnetic field, and inertial confinement fusion (ICF). In the
first case, a low-density plasma at approximately 102° m~2 is confined in a high magnetic field of
approximately 5— 10 T. This is carried out in tokamak or stellarator types of machines. Figure 3-a
shows a photograph of the biggest tokamak device in existence: the Joint European Torus (JET).
The characteristic dimension of its chamber is approximately 5 m. The new ITER (International
Thermonuclear Experimental Reactor) machine designed for the demonstration of thermonuclear
energy production is currently being built in France, on the Cadarache site near Aix en Provence.
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Figure 3: On the left: photograph of the interior of the JET tokamak chamber. On the right:
photograph of the laser-irradiated target for inertial confinement fusion.

Inertial confinement fusion is carried out by the compression and heating of small capsules of a
mixture of deuterium and tritium by the radiation from intense lasers. The target, of millimetric
size, (see figure 3-b) is compressed to 100 pm and the fusion reaction is produced for a fraction
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of a nanosecond. Very high-energy lasers are required to produce these conditions. They must be
capable of attaining and exceeding 1 MJ and very high power levels of above 10 TW. Two laser
chains on this scale are currently under construction. An NIF (National Ignition Facility) laser
has been built at the Livermore laboratory in California in the United States. The other laser, the
LMJ (Laser MégaJoule), is under construction at CEA/CESTA in Le Barp near Bordeaux.

The density of electrons, n., and ions, n;, within a plasma may vary significantly. From the
level of around 1 particle per m?® in the interstellar environment, it can exceed 1012 particles per
m? in the Earths ionosphere, and while there are 10! particles per m? in the solar corona and 102°
particles per m® in a magnetic fusion plasma, there are around 1032 particles per m? at the centre
of the sun or in an inertial confinement fusion plasma. Nevertheless, all of these systems can be
considered in the same manner if the characteristic gpatial scale of the process that interests us, L,
far exceeds the mean distance between the particles, n=1/3.

In comparison, a high vacuum contains approximately 10 particles per m3, whereas a gas at
atmospheric pressure under normal temperature conditions has 3 x 10%° per m3. The electron
density in a metal is around 102° particles per m?3.

As is the case for density, the plasma state covers a vast range of temperatures. In cold plasmas
(flash tubes, electric arcs, plasma torches, etc.), the temperature T barely exceeds 10,000 K. In
these cases, the mean thermal agitation energy, kpT, is insufficient to ensure complete ionisation,
and these plasmas are often weakly ionised. In hot plasmas produced in thermonuclear fusion
by magnetic confinement or inertial confinement, the temperature approaches 100 million degrees
Kelvin. In comparison, the temperature at the centre of the sun is approximately 10 million degrees
Kelvin. The plasmas exhibit a collective behaviour if the mean thermal agitation energy exceeds
the mean interaction energy between the particles, e?n'/3/4rey. Here, kp = 1.38 x 10% J /K is the
Boltzmann constant, e = 1.6 x 107! C is the elementary charge and ey = (1/367) x 107° F/m is
the dielectric constant.

The conditions

Ln1/3 s q and gy =e*n'/?/dmeokpT < 1 (1.1)

define the range of parameters in which the matter is in a plasma state. The quantity g, is what
is referred to as the plasma parameter. Figure 2, shows several examples of natural and artificial
plasmas in a density and temperature diagram (n,T).

A weakly ionised plasma consists of a mixture of electrons and ions in equilibrium with neutral
molecules and atoms. A totally ionised plasma consists primarily of electrons and ions. The degree
of tonisation of an ionised gas is the ratio of the density of ionised atoms to the total density
of atoms (ionised and neutral). Depending on the creation process, the degree of ionization of a
plasma can vary between 10719 (weakly ionized plasma) and 1 (totally ionized plasma).

Several different species of ions may exist within a single type of plasma, and there may be
several different ionisation states for a single species. For example:

e a plasma created by laser breakdown in a gas like helium may contain He' ions and Hett
ions, as well as helium atoms in the fundamental state or in excited states;

o a solid material, such as polyethylene (CH),,, that is irradiated by laser will produce a plasma
consisting of hydrogen H* ions, and carbon CT, C2t, C3*+, ... C%t ions, in addition to H
and C atoms.

1.3 Collective phenomena in plasmas

In a gas in which the particles are not charged, the forces acting between the particles are forces
that have a very small radius of action of a quantum nature. However, in a plasma, the interaction
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forces between charged particles are Coulomb electric forces with a large radius of action. The
Coulomb potential created by a charge ¢ at the distance r, in a vacuum is expressed by:

q
O(r) = . e (1.2)
Any charged particle in a plasma interacts in this way, via the attractive and repulsive Coulomb
forces, with a large number of other charged particles.

In this way, any excess charge at the local level, resulting from the disorderly thermal movement
of the electrons or a separation of charges, immediately becomes a source of intense magnetic fields
and electric currents. These fields act, in turn, on all of the other particles in the plasma. As
a result of multiple electrostatic interactions, the trajectory of an electron will be subjected to
both small disturbances due to the action of distant charges, and to occasionally strong deviations
caused by local collisions with an atom, an ion or an electron.

Therefore, a plasma, because of its sensitivity to any disturbance, can only tolerate small
deviations from electrical neutrality. In this way, all of these forces contribute to maintaining, in
equilibrium, the electrical quasi-neutrality of the plasma which is expressed by the relationship:

TeGe + Z nig; =0 (1.3)
i

in which n. and n;, g¢ = —e and ¢; = Ze respectively represent the electronic and ionic densities
and the charges of the electrons and ions. The sum concerns all ionic species and, for each gpecies,
all states of charge that exist in the plasma. In the case of a mixture of ionic species with different
states of charge, the problem is simplified by limiting ourselves to a single ionic species whose mean
state of charge (Z) and mean mass (m;), depend on the respective concentrations of each species
that makes up the mixture. There may therefore be several definitions of (Z) and (m;) according
to the physical quantity in question.

1.4 Characteristic quantities of plasmas

The mass of a proton is 1,837 times greater than that of an electron. Therefore, due to the high
inertia of the ions (me/m; < 1), we can expect the behaviour of the two components of a plasma to
be very different. In a simplified model, the ions can therefore be considered to be almost stationary
and to form a neutralising background.

Consequently, in a similar type of approach to that used for studying a gas, the plasma can be
considered to consist of two perfect fluids: electrons and ions, which are characterised by macro-
scopic quantities such as density, mean velocity, temperature and pressure. In a fluid model,
therefore, a plasma is characterised by:

¢ the density n. ;, the mean velocity #.; and the temperature 7 ; of the electrons (ions);

o the density no, the speed @y and the temperature Ty of the neutral particles (for a plasma
that is not totally ionised).

Four characteristic lengths can be defined for a plasma, namely:
¢ the mean distance between particles, d ;;
e Landau’s length, or the minimum approach distance between two particles, rq;

e Debye’s length or the charge screening length, Ap;
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Figure 4: Regular distribution of the particles in space.

¢ the mean range of a particle between two consecutive collisions, A ;.

In the same way, we define the time scale by introducing the characteristic frequencies for a
plasma. These are:

¢ the electron oscillation frequency or the electronic plasma frequency, wpe;
¢ the ion oscillation frequency or the ionic plasma frequency, wpi;

e the rotation frequency of the electrons and ions in the magnetic field, or the Larmor frequen-
cles, Wee i;

¢ the frequency between two consecutive collisions of the particles, v ;.

1.4.1 Mean distance between particles. Landau’s length

If we presume that the electrons (ions) are evenly distributed throughout the plasma (1 electron
per cubic cell, of dimension d, see diagram in figure 4), we can define the mean distance between
the electrons (ions):

de; =n /3, (1.4)

e,

Landau’s length 7 is the minimum approach distance between two electrons. It corresponds to
the distance at which the mean kinetic energy of an electron is equal to the potential interaction

energy: ,
i
§mevg = kgl = %

where v, is the most probable speed for the electron. Landau’s length is therefore expressed as:

dmegro

&2

o= dregkpT,’

(1.5)

Comparing these two characteristic lengths enables us to introduce the plasma parameter, g, =
ro/de (1.1) and to distinguish between two types of plasmas:

o standard kinetic plasmas which correspond to the condition d. > 7o (the kinetic energy is
much higher than the potential energy)

o strongly correlated plasmas in the case of the inverse condition d. < 7o (the potential energy
is higher than the kinetic energy).
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Figure 5: a) Distribution of the electronic density in proximity to an ion. b) The forces that apply
to an elementary volume of electrons.

1.5 Debye’s length

The Debye-Hiickel effect was first observed in electrolytes by the physicists Peter Debye and Erich
Hiickel in 1923. It corresponds to the charge-screening phenomenon that exists in an ionised
environment. To evaluate this effect, let us consider an ion with the charge ¢; in the plasma. The
ion, by attracting the electrons, contributes to modifying the distribution of the electronic density
ne in cloge proximity to it, around the equilibrium density n.o within the plasma (see figure 5-a),
and consequently, the effective potential of the ion ®(r) compared to the potential the ion would
have had if it were isolated.

1.5.1 Distribution of the electronic density

We are considering a plasma that is uniform in temperature, 7, = cste. However, the electron
density is not constant, because they are attracted by the ion due to the Coulomb force. The
element with a unit volume dV (see figure 5b) is subjected to the electrical attractive force

Fp=n.qFE = —neqeﬁi)(r)
and to the pressure force that results from the electronic density gradient in proximity to the ion
Fpe = —VnekpTe = —kpTeVine.
These two forces oppose each other and in equilibrium, we have:
—neqeﬁtﬁ(r) — kBTeﬁne =305
Because of the spherical symmetry of the problem (radial forces), this gives us:
idne ge dP

ne dr  kgT, dr’
After integration, and based on the fact that at a large distance from the ion, the electronic density
tends toward equilibrium density n.o, Boltzrmanns Law can be inferred:

ne(r) = 160 €Xp (-qiéfe )> . (1.6)

When the terms in the exponential function before the 1 are small, i.e. when there is a high level
of kinetic energy in relation to the potential energy (standard kinetic plasma) kpT, > e®, we can
expand the Taylor series equation (1.6):

ne(r) = neo (1 - qig) . (1.7)
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1.5.2 Distribution of potential

From the preceding results, we can derive the form of the potential ® by using Poisson’s equation:

V-E=pleo=—Adr)

or:
—€V2®(r) = nege + Miogi = (Ne — Me0)ge + (Ne0ge + Mi0gi)- (1.8)
with the condition of quasi-neutrality and the formula (1.7), this ultimately gives us:
2
Ne0q o(7)
Ad(r) = ——5®(r) = g 1.9
)= a2 =32 (19)

Here Ap. represents the Debye electron length, expressed by:

Ape = / €0kBTe/nee?. (1.10)

In spherical coordinates, the Laplacian is expressed as: A = r~2(8/8r) (r28/0r). Integration (1.9)
leads to the following expression of the Debye potential of a charge g:

__ 4 e
)_47r€0reXp< AD3>‘

The Coulomb potential (potential of an isolated charge) is therefore replaced in a plasma by the
Debye potential ®(r), and the length Ap. represents the characteristic scale of the decrease in po-
tential, associated with the screening effect. In the most general case, all of the particles participate
in the screening phenomenon. These contributions are added together in the right-hand part of the
equation (1.9). Consequently, the Debye radius in an electron-ion plasma is expressed as:

O(r

1 1 1 neods | Mind:
B, I mksl, | kel ety
In ionospheric plasmas, the Debye length is a few millimetres whereas it measures a few tens of
microns in fusion plasmas. On scales above these values, the plasma tends to maintain its neutrality
with regard to any local disruption.
There is a simple explanation for the fact that the Debye length is dependent on the temperature.
In fact, this screening effect is carried out dynamically. The trajectories of the electrons, when they
pass close to an ion, are slightly deviated and therefore tend to move slightly closer together,
whereas the ions move away from each another.
If the temperature is very high, the excited high-speed particles undergo smaller deflections
and the screening effect is therefore less effective (greater Debye length), whereas a higher particle
density will strengthen the screening effect (smaller Debye length).

1.5.3 Number of electrons in the Debye sphere

The sphere with a radius Ap. around an ion is called the Debye sphere. The Debye sheath notion
is only valid if there is a large number of electrons in the charge cloud, which ensures the validity
of the Boltzmann distribution. In practice, this means that there is a large number of electrons
Npe in the Debye sphere. The number of electrons in the Debye sphere is expressed by:
4

Npe = gnne/\%e (1.18)
for Npe > 1, the screening is strong and the individual effects are dominant. The electrons behave
in almost the same way as a gas in relation to the ions. Conversely, for Np. < 1, the screening
is weak and the collective effects are dominant. The plasma is said to be strongly correlated.
Ultimately, the plasma is degenerated.
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Figure 6: Diagram of a collision between two molecules.

1.6 Collisions of particles. Mean free path and collisional frequency

A molecule in a neutral gas follows a rectilinear trajectory between two collisions, whose length is
called the free path. The free path can have any value. We will subsequently focus on the mean
value of the free path, which is referred to as the mean free path. Insofar as there is no distant
interaction, which is not the case for plasmas, the mean free path and the frequency of molecular
collisions can easily be estimated using a simple method.

Let us liken the molecules to hard, impenetrable spheres (billiard balls) and let D be the
distance between the centres of two molecules when they come into contact (see figure 6). The
sphere shown by a dotted line represents the Debye sphere of a molecule. When a collision takes
place, the centre of one molecule is situated on the Debye screening sphere of another molecule.
Between two colligions, one molecule moves in a straight line, while the others remain stationary.
Let us consider that the movement of this molecule corresponds to the length L. It will have come
into contact with all of the molecules contained in the volume 7 D?L. For a molecular density equal
to n, it will have undergone N, = nm D?L collisions. The mean distance between two collisions is
called the mean free path, which is expressed by: A, = L/N, = 1/nrD?. In reality, the movement
of the other molecules must be taken into account, which gives us:

1
N 2nm D2’

The number of impacts per second is the collision frequency, v., which is the quotient of the mean
velocity ¢ by the mean free path A.:

3, (1.13)

v, = nrD%. (1.14)

The preceding description actually applies to a binary collision between two molecules. In a plasma,
the electron-ion collisions prove to be a more complex phenomenon due to the long range of the
shielded Coulomb potential of the ion, whose characteristic length is equal to the Debye length.
To estimate the mean free path in a plasma, we can use the formulae (1.13) and (1.14) in which
the diameter of the molecule must be replaced by the Landau length (1.5). In addition, we must
take account of nearby interactions at distances below rg, as well as collisions at long distances,
approaching the Debye length. These distant collisions lead to the additional logarithmic factor,
In A =1In(Ap/ro) = In Np,. This factor is called the Coulomnbian logarithm.

More detailed calculations give the following formula for the frequency of electron-ion colligions:

Z2en;In A
Vei =

- , 1.15
32mY?(2rkpT,)3/2 ey
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Figure 7: Separation of charges in a plasma oscillation.

The mean free path of an electron is As; = v7e /Vei, Where +/kpT./me = vr, is the thermal electron
speed. A plasma is considered to be highly collisional if the mean free path is much smaller than
the characteristic length of the problem, A.; << L. However, a plasma will be in a weakly collisional
state, or in the Knudsen mode, if there is a long mean free path A; > L. In ideal plasmas, the
mean free path is very long compared to the Debye length. Consequently, the collisional effects are
of the second order and in the following chapters, we will be focusing exclusively on non-collisional
plasmas.

1.7 Plasma oscillations. Electronic plasma frequency

Let us consider a section of plasma of length L, consisting of stationary ions and electrons. Plasma
is neutral: the electron density n. is equal to the density of the ions. Imagine that the electrons
are pulled toward the right-hand side for a distance of . In the left-hand part, there is a surplus
of ions and in the right-hand part a surplus of electrons. The system is therefore equivalent to a
charged parallel-plate capacitor. The electric field E resulting from the separation of charges is
expressed by:

E=o0,/e

where o, = ne.q.x is the surface charge density. The electrons are therefore subjected to a restoring
force, F' = ¢.F, and the equation for their movement is expressed as:

dx dvg neoqu
— = m =— 1
g © dt €0
These two equations can be reduced to an oscillator equation: d?z /dzf2 = —wgem. Therefore, the

electrons oscillate at a specific angular frequency wy,e given by:

Wpe = 4/ Me€? fmeen. (1.16)

This angular frequency is called the electronic plasma frequency, (which is actually an angular
frequency). As we shall see, the electronic plasma frequency plays a fundamental role in plasma
physics. Its inverse, w;el corresponds to the characteristic response time of the electrons to the
external disruption. There is a simple relationship between the three electronic parameters in
a Maxwellian plasma: the product of the Debye length (1.10) by the plasma frequency (1.16)

corresponds to the electronic thermal velocity:

)\Dewpe =W kBTe/me = UTe-
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1.8 Velocity distribution function

Here, we will provide a reminder of several agpects of the kinetic theory of gases that are essential
to understanding the plasma physics course.

In gases, or in ionised gases in equilibrium, the interaction forces between molecules are ex-
tremely weak and only become apparent when two of them collide. The molecules are widely
spaced and can move around almost freely. At a given moment, the velocities may be of any
possible magnitude and move in direction.

The density of atoms or molecules in a gas, or of the charged particles in a plasma, may vary from
10 to 10?2 particles per cm?®. It is easy to convince oneself that it would be completely impossible
to calculate the trajectory of each particle. We must therefore adopt a statistical approach to the
problem, and for this purpose, we must introduce the particle distribution function.

If we take an elementary volume of the medium in question, and we consider the number dn of
particles whose respective velocity components are between ¢ and @ + d@, i.e. those whose speed
components are respectively situated between v, and vy 4 dvg, vy and vy + duy, v, and v, + dv,
is given by:

dn = f(z,y, 2, Vg, Uy, Uz, t) dugduydu, = f d2v

where the function f, called the wvelocity distribution function, represents the number of molecules
at each velocity in the elementary volume of the gas. If the medium is not homogeneous and not
stationary, the distribution function will also depend on the position (z, y, ) in question, and the
time ¢. This function may also be isotropic or anigotropic in the velocity space. The function will
be referred to as ¢sotropic if it does not depend on the direction of the velocity vector, in other
terms, if it only depends on the velocity modulus. In this case, the velocities of the molecules are
randomly oriented in all directions. Otherwise, it will be referred to as anisotropic.

For example, a gas jet whose directed wvelocity is oriented in any direction is anisotropic. In
a chamber filled with a gas that is static and in equilibrium, the velocity distribution function is
isotropic. Statistically, for a given direction, there are ag many molecules moving in one direction
as there are moving in the opposite direction. In general, a velocity distribution function that is
anisotropic will, due to the collisions between molecules or with the walls of a chamber, naturally
tend towards a homogeneous, isotropic and stationary distribution function, i.e. towards a state of
equilibrium. The velocity distribution function in equilibrium is a Mazwell distribution function,

expressed as:
m e mu?
far(v) :n<27rkBT> exp (_QkBT> (1.17)

where n represents the density of the gas (number of molecules or atoms per elementary volume),
m — the mass of the molecules (atoms) and kp is Boltzmanns constant. The m /27kpT coefficient
is chosen in such a manner that the distribution function is normalised by the particle density:
n= [ f(v)d3v.

As the Maxwellian distribution is isotropic (it does not depend on vy, v, or v, but only on

— . i a2 L :
v =4 /v + vy + vz this gives us:

m \¥? mu? 3 m \¥? mu? 5
= "(%kBT) eXp< 2k3T> a ”(%kBT) exP( 2k3T> i =5 L

where f;(v) = 4rv? far (v) represents the velocity modulus distribution function in three-dimensional
space. The shape of the function fi(v) is shown in figure 8. It reaches a peak at the speed
vo = +/2kBT /m. We refer to this as the most probable speed.
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Figure 8: Velocity (modulus) distribution function f(v), for a gas in equilibrium.

1.9 Mean macroscopic quantities
1.9.1 Density and mean velocities

Knowing the particle distribution function, we can then, for any microscopic A(¥) quantity (scalar,
vectorial or tensorial), define a mean (macroscopic) value:

I}
(A(50) = [ 4@ 165,92, (L.18)
For example, the mean velocity « is in this way defined by

a@(7,t) = (7) = 2 /iz’f(?, 7,t) d®v.

5

By replacing f with a Maxwell function, we obtain: (¢) = 0. This is understandable insofar as this
distribution function is isotropic. The mean velocity modulus can also be determined:

Uiy = 0 L /v fi(v)dv = SkBT.

i ™m

At the moment a collision occurs, the velocity of a molecule varies in magnitude and direction.
To avoid the difficulty of changes in direction, we will focus mainly on either the mean velocity
modulus, or the mean kinetic energy:

1 m 3
Em = §m<vz> =g /UZfl(v) dv = §kBT' k15

On the basis of this formula, we can define the thermal velocity:

v = +/kgT/m. (1.20)

. . . . . - 1 2 . " o 1
The mean kinetic energy in one direction, €,,e = 5 m (vg), is therefore expressed as: €p,e = 5 k7.

It can be concluded that the mean kinetic energy relating to the direction z is proportional to the

temperature. Analogous relationships can also be expressed with the components according to axes

y and z. More generally, a degree of freedom is the name given to a parameter that can be used to

determine the system, and the kinetic energy associated with any degree of freedom ¢ is given by
1

This term constitutes the equepartition of energy principle.
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Figure 9: Diagram showing the collision of a molecule with a wall.

Monoatomic gas. For a monoatomic molecule, there are 3 degrees of freedom for translational
motion. The mean kinetic energy e, of the molecule is given by:

Em = Z %m(v?} = %kBT.
=x.Y,2

Diatomic gas. A molecule of a diatomic gas has a fixed position in space, and we know the
position of its centre of gravity and the direction of its axis. A molecule like oxygen, which has
a stretched form (shaped like a dumbbell) simultaneously performs three translational movements
in addition to two rotational movements around itg centre of gravity. This gives us 5 degrees of
freedom and the kinetic energy is due to 5 terms: 3 for the translational movements and 2 for the
rotational. The kinetic energy %kBT is associated with each of these degrees of freedom and the
energy of a molecule at 5 degrees of freedom is %kBT. While the distance between molecules may
vary, we must also add the vibrational movement of the two atoms: one in relation to the other.
This adds two additional degrees of freedom; therefore, the mean energy is 3kpT.

1.9.2 Pressure of a gas

If we consider a molecule of mass m colliding with a wall at a velocity of ¥, whose component
perpendicular to the wall is v,, and we accept that the collision is elastic and that the wall is
stationary, the component of velocity after reflection on the wall changes sign (see figure 9a). The
variation in the amount of movement of the molecule during the collision is therefore given by:

iy = 2Mm Uy = FAt.

It corresponds to the impulse given by the wall: F represents the force exerted by the wall at the
moment of the impact and At is the duration of the impact. The collisional frequency shall be
referred to as v, corresponding to the number of molecules that strike the wall during a period of
unit time. If ¢ = v.S'¢ molecules strike a surface S over a given period of time ¢, the variation in
the total amount of movement will be:

I, ={(giz) =28m{vty,) = Ft.

The magnitude F = 2.5 m (v v,) represents the total force provided by the wall. Tt is propor-
tional to the surface and the pressure (force per surface unit) and is therefore expressed by:

p=2vm (vz).
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Let us suppose that all of the molecules have the same velocity v,q. Half of them move towards
the wall, while the other half move away from it. Therefore, the number of molecules that strike
the wall over the time ¢ corresponds to half of the molecules contained in the volume V = S v,0t.
With n referring to the molecular density, this gives us: v = % nvyo. Considering the expression of
p = F/8, it follows that, p = nm v,.

To generalise the application of this result to the Maxwellian distribution of moleculeg, we
must take the mean over the distribution function, therefore p = nm (v2). Since the particle

digtribution function is isotropic, the means of the velocity squared are the same for all three

directions, (v2) = %(172) Using this formula and the expression (1.19) for the mean energy, we
obtain:
L w8
p:§nm<v }:§n€m:nkBT. (1.21)

The pressure of a gas is therefore proportional to the temperature.

Table 1: Several orders of magnitude for hydrogen and oxygen.

Gas HQ OQ
Molecule diameter (nm) 0.24 0.3
T (K) 300 300
p (torr) 760 760 TR 10e
n (em=2) 2.5 % 101 | 2.5 x 101° 2.5 x 10'3
Mean distance (nm) 34 34 340
U, (m/8) 1930 480 480
e (nm) 150 | 100 10°
ve (571) 1010 | 4.4x10° 4.4 x 103

The characteristic parameters for molecular oxygen and hydrogen are presented in table 1. A
gas is considered to be highly collisional if the mean free path (1.13) is very small compared to the
characteristic length of the problem, A, <« L. A gas, however, is in a weakly collisional state, or
in the Knudsen mode, if the mean free path is long, A, >>> L. Table 1 shows us that under normal
conditions, the gases are highly collisional and the mean free path is less than one micron. At low
pressures, however, the mean free path becomes long and the collisional effects can be ignored.

1.10 Problems

1. Calculate the value of the plasma parameter (1.1) for the plasmas presented in figure 2:
magnetic fusion, solar corona, arc and flame. On the graph (n, T'), plot the line g, = 1
separating the ideal plasmas, g, < 1 from the non-ideal plasmas, g, > 1.

2. Show that the inequality ro < d. also leads to de < Ape and Np. > 1. Find the relationship
between the Debye number Np, and the plasma parameter g,.

3. Calculate the Landau length (1.5), the Debye length (1.10) and the plasma frequency (1.16)
for the plasmas presented in figure 2: laser fusion, centre of the sun, ionosphere.

4. For two typical laboratory plasmas, with
(a) T, = 10,000°C, Tz = 1,000°C,n = 102 em ¥
(b) kgT. = kgT; = 1kéV,n = 102 m™3
calculate the temperatures in eV and in degrees K, the thermal velocities of the electrons and
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ions (Z = 1), the plasma parameter A = Arni3 ., the electronic Debye length Ape, the mean
distance between the particles d, = ne 1/ 3, and the electronic pressure pe.

On a diagram n. — 7, plot the lines corresponding to d. = 79 and rg = Age, Where rg =
e? /(AmegkpT) is the minimum approach distance. Identify the characteristics of the plasmas

in the spaces delimited by such lines.

5. Find the solution to the Poisson’s equation (1.9) for » # 0, with the knowledge that it has
the form ®(r) = u(r)/r. Based on the solution obtained, show the state in which the weak
coupling approximation is valid.

6. Calculate the value of the electric field produced during plasma oscillations with the electron
displacement amplitude equal to the Debye length in a laser fusion plasma. Compare it to
the value of the electric field in the hydrogen atom.

7. The plasma is treated as a classical system. The classical approximation, for a particle of
velocity v, is valid if the de Broglie length, Apg = h/mu, is shorter than the mean distance
between the particles, and shorter than the minimum approach distance for a gas of charged
particles, i.e. App < ngl/g and App < ez/kBT. This approximation is no longer valid if the
temperature is very high or very low. Calculate the temperature interval (in eV) for which
the classical approximation is valid for three plasmas with respective densities of: 10° em—3
(ionospheric plasma), 104 em~3 (magnetic fusion plasma) and 10%! em~3 (inertial fusion
plasma).

8. An ideal plasma consists of a mixture of two perfect gases of ions and electrons. Let us
consider a situation of thermodynamic equilibrium in which the particle density n.; in the
presence of an electrostatic field of potential ¢ locally follows a Boltzmann distribution:

e = ngﬂ- exp <i‘;’;> ;

We want to obtain the form of the potential around the nucleus of an ion with the charge
Ze in the plasma. To this end, we seek to resolve (in spherical geometry) the Poisson’s
equation for ¢(r), with the densities n.; plus a point charge. We will use the weak coupling
approximation, e¢ < kgT.

(a) Write the Poisson’s equation, considering the nucleus as a point source placed at the
origin of the coordinate system.

(b) Linearise the non-linear terms in ¢.

(c) Express the Laplace operator while assuming spherical symmetry.

(d)

[oN

Find the solution to the Poisson’s equation for r # 0, with the knowledge that it has
the form ®(r) = u(r)/r.

Impose the continuity of the potential found for » — oo and r = 0.

—~
@
A S

f) Based on the solution obtained, show the state in which the weak coupling approximation
is valid.

9. Let us consider nitrogen in thermodynamic equilibrium in a large chamber with an absolute
temperature 7. n refers to the mean number of molecules per elementary volume. Calculate
the velocity v and the mean free path A of diatomic nitrogen at the temperature 77 = 300 K,
under the pressure p = 1 atm, using the perfect gas approach.

AN.: molecular diameter of nitrogen ¢ = 0.47 nm and the molar mass M = 28 g/mol. Molar
constant of perfect gases B = 8.135 J/K /mol. Avogrados number N4 = 6.02 x 10%% mol—1.
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10. In a gas in thermal equilibrium, the number of molecules whose velocity vectors are situated
in a solid angle d2 and have a modulus of between v and v + dwv is:

a4 mu?
dn(v) d'U = AE v exp <M> :

With the knowledge that the volume V' of the chamber containg N molecules at the temper-
ature T, calculate the constant A.

AN. To calculate the integrals: I, = f;°z"exp(—az?)dz we will use: Iy = 3+/7/2,
Iy = 1/(2a) and the relation: I, = £I,_2(n — 1)/a.

11. Calculate the mean value of the quantities +/vZ, %mvz, |U], in relation to the thermal

velocity, defined as vr = +/kpT/m, for a Maxwellian distribution (1.17).

12. Let us consider a chamber with a volume V' containing N molecules of helium in thermody-
namic equilibrium. Numerically calculate, for T = 300 K:
a) the most probable velocity vo for the gas molecules,
b) the mean velocity vy,

b) the mean quadratic velocity vg.
AN. : Molar mass of helium: M =4 g/mol.

13. A small hole in the chamber with a section of s, allows the helium to escape into the vacuum.
Demonstrate that the expression f(v)dv of the number of molecules which are among those
escaping per second, have velocity vectors situated in a small solid angle around the normal
and a velocity of between v and v + dv. In the molecular beam emitted in this way, and for
a temperature 7' = 300 K, calculate:

a) the most probable molecular velocity v{,
b) the mean velocity vy,
c) the mean quadratic velocity wv,.
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2 Movement of particles in magnetic and electric fields

Collective effects in a plasma are the result of long-range interactions that interlink the charged
particles via Coulombian interactions. The dynamics of electrons and ions in the presence of
electromagnetic fields play a key role in determining the behaviour of a plasma and its practical
uses. The simplest way to consider a plasma is to assume that the electric and magnetic fields
are predefined and to focus on the movement of the charged particles in these fields. This will
then enable the calculation of the current and charges so that the electromagnetic fields can be
recalculated using Maxwell’s equations. This procedure, involving successive iterations concerning
the positions of the particles and the values of the fields, leads to a self-consistent description of
the behaviour of a plasma.

Consequently, to describe the influence of magnetic and electric fields on the movement of
charged particles, we ignore the macroscopic fields created by the electrons and ions within the
plasma and only take account of the applied fields created by external sources. In the presence of
an electric field E and a magnetic field ﬁ, the movement of a particle of the species o = e,7 mass
mq and charge g, is governed by the Lorentz force:

fl—j:a %:i—o;(E—I-U/\B). (2.1)
We are considering non-relativistic particles, and under these conditions, the equations of mo-
tion (2.1) are linear, acceleration d@//dt is therefore a linear function of velocity. Nevertheless,
the equation for velocity becomes quite complicated if the field values vary along the orbit of the
particle, 7(t). We shall first consider uniform and stationary magnetic fields and then those that
vary slightly in space and time.

2.1 Uniform and continuous magnetic field

Bo ion electron

Figure 10: Representation of the trajectory of an electron and an ion in a uniform magnetic field.
The field B is directed from the back towards the front of the plane of the figure.

In a uniform and continuous magnetic field, and in the absence of an electric field, the equation
of motion (2.1) is reduced to:
dv o

E:m—aU/\B:—wcab AU (22)
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where wey = go B/mg represents the angular frequency of gyromagnetic rotation and b=E8 /B is
the unit vector in the direction of the magnetic field. According to (2.1), we obtain two equations.
The equation of motion parallel to the magnetic field

dgj /dt = 0 2.3)

corresponds to the equation for a uniform rectilinear motion, z = 2o +v)t. The equation of motion,
in a perpendicular plane to the magnetic field is expressed as:

A Jdt = —weeb ATL (2.4)

which describes the rotation of particles around the lines of induction of the magnetic field. The
direction of rotation depends on the sign of the charge:

dvg [dt = weaty, duy/dt = —weats.

Electrons and ions have opposite charges and rotate in opposite directions: electrons are negatively
charged and rotate in the positive direction; ions are positively charged and rotate in the negative
direction. After derivation in relation to time, the equation (2.4) leads to the equation for a uniform,
circular motion with the angular frequency weq:

d%) 3
T = ~WealL- (2.5)
From this, we can infer that:
Uy = v cos{weat+ @), Uy =—v] sin(weat+ @) (2.6)

where ¢ is an arbitrary phase defined by the initial conditions. The trajectory of the electron at
a given instant is therefore a helix whose pitch is defined by the velocity Y, and the radius of
gyration by the velocity vy (see figure 11). The coordinates of the current point on the helix are:

v vl

il o
Sln(wcozt o5 ¢)7 Yy=1%yo +

Wea co

x=xo+ cos(weat + @), 2= 20+ y|t. (2.7)

The radius of gyration or the Larmor radius, rz,, is established by the following relation: rz, =
v] [|wea|. Consequently, it is expressed by:

MoV |

Thoa = ———.
“ |Qa|BO

(2.8)

If we add the vector of the particle’s coordinates to the perpendicular plane, 7r,, we can show the
trajectory in vector form:

FL = WealLaw B, OU 7Ly =uwyth ATL (2.9)
and the velocity of the particle is expressed by
T =3 + 0L = 9| + WeafLa Ab.

The particle’s position results from the composition of a circular movement of the particle around
a centre of rotation - the guiding centre - which itself moves at a constant velocity parallel to the
direction of the magnetic field, which is therefore expressed in the following manner:

— — — — -1 —
F=7|+7TLa = 7|+ Wea d AUL.
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Figure 11: Representation of the trajectory of an electron in a uniform magnetic field.

The first term f’” on the right-hand side represents the trajectory of the guiding centre and the
second term, which we shall designate as 774 is the radius vector representing the particle position
over the gyration circle ag shown on figure 12.

The transverse kinetic energy of a charged particle of the o species is expressed by W, =
%mavi. In this way, we can determine the expression of the Lamor radius of the particle according
to its transverse kinetic energy W, :

(2maWo )1/?
|Qa|B

T"La =

The value of Q?H’ the position of the axis of rotation zo,yo, and the radius of gyration 77, are
integration constants of the movement that vary from one particle to another. Consequently, the
number of particles with a given radius and helix pitch are determined by the ion and electron
velocity distribution functions.

A particle performing a rotation can be considered to be a current loop. The magnetic field
produced by this current is characterised by the magnetic moment, 7 = % f 7 A ; dr. In our case
Jo = qa¥18(F— Tra(t)). Therefore, by using the formula (2.9) for the Larmor radius, the magnetic
moment induced by the gyration of the particles in the magnetic field is expressed as:

By _I—)»qavi _ _gmavi
& == .

= = (2.10)

This magnetic field opposes the external magnetic field, which it therefore tends to diminish.
Plasma is a diamagnetic medium, the self-consistent reaction of the plasma is directed in such a
manner as to eliminate the external disturbance.

In this case, the plasma is agssumed to be collisionless. This description is valid provided that
the effective collision frequency v remains well below the cyclotron angular frequency (v < wea)-
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Figure 12: Guiding centre C of the particle.

In this case, the particles will be said to be “magnetised” and their trajectory can be schemati-
cally represented as a sequence of helices interrupted by occasional collisions. After the collision,
the particle’s velocity changes and, as a consequence, the radius and the pitch of the helix are
modified. However, the direction of the helix axis does not change. One species (electrons) may
also be magnetised whereas the other may not. This will be the case, for example, if wy < v € weq-

2.2 Movement in uniform magnetic and electric fields
2.2.1 Stationary electric field. Electric drift

We will now consider the case of a uniform and continuous magnetic field and of an electric field that
is also uniform and continuous (static field). The acceleration of a charged particle is described by
the equation (2.1). The component of the electric field EH directed along B produces a rectilinear
and uniformly accelerated movement in the direction of the magnetic field. As they have opposite
electric charges, the electrons and the ions move in opposite directions.

Let us now turn our attention towards the component E | of the electric field perpendicular to
the magnetic field. To simplify, we shall suppose that EH = 0 and 9}; = 0. Hence:

dv | . = da 7
W == wcab AU + i EJ_. (211)

This equation can be simplified by derivation in relation to time. This gives us:

dZ(UJ— 2 9o 7 =
——— = =W, U] — — Weab AE].
dt2 caVL T oo G
This is the same type of equation as (2.5) but in this case, it contains an additional constant term.
It can be compared to the form (2.5) with the velocity expressed as ¢y = ¥ — Ug, where

4 = BAB
p=—22 Eab="_2
MaWen B2

(2.12)

Therefore, 7y is now the gyration velocity and ¥y is the guiding centre velocity. It is perpendicular
to both the electric force and the magnetic field, and it is independent of the charge and mass
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Figure 13: Trajectories of an electron and an ion whose initial velocity was zero.

of the particle in question (electron, ion). Consequently, it represents an overall movement of the
plasma. It is called the electric drift velocity.

The trajectory of the particle propelled in a perpendicular plane to the magnetic field is the
sum of a rectilinear movement at a velocity of g and a rotational movement at the cyclotron
frequency and with a radius of vo/we,. It is a cycloid. Figure 13 represents the trajectories of an
electron and an ion with zero initial velocity. The ion starts out in the direction of the electric
field £ 1, and then, under the effect of the magnetic field, its trajectory describes cycloid arcs. The
electron starts out in the opposite direction but the curvature of the arcs is also inverted. That is
why its movement takes place in the same sense as the ion. Due to the great difference in mass, an
electron describes much smaller arcs than an ion, but it performs a much higher number of them
per second, with the result that in the end, the drift velocities of the electrons and ions are equal.

2.2.2 Alternating electric field. Cyclotron resonance

Let us now consider a uniform magnetic field g, and a uniform and alternating electric field
E = Eo sinwt with an angular frequency w. The latter has a projection of Eg over B and a
component in the perpendicular plane EO 1. As we have seen above, the movement equation (2.1)
is gplit in two: one for the movement along the axis of the magnetic field and the other in the
perpendicular plane. Let us now consider the parallel movement. The equation is similar to (2.3)
but with the oscillating external force:

W _ g
E = m—a Eoll sinwt. (213)
Here, the magnetic field does not intervene and for the trajectory of the particle, we have:

o
M2

'Z)”(t) = ’U0|| = q_a EOH COSL«)t, Z(t) =20 —|— voHt = E}w sinwt. (214)

MW
These equations describe an oscillating rectilinear trajectory with an amplitude of r,, = ‘qO‘EOH |/ Mew?.
For the movement in the perpendicular plane, the equation (2.1) takes the form

d" = —
Pl = B nil + 22 B sk (2.15)
dt Ma
By calculating the temporal derivative of this equation, we obtain a similar equation to (2.5) but
which includes the oscillating external force:

T R —wo U+ w:z—& Ey | coswt — i—awmg A Eo sinwt. (2.16)
(03 [0
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Figure 14: Trajectory of a particle in a uniform magnetic field and an oscillating electric field: a)
the ratio of the irrational frequencies w/wee = 1.39, b) the case of cyclotron resonance w/wea = 1.
Note the difference in scales.

This is a second-order differential equation with a periodic excitation. We seek the solution in the
form of a sum of the oscillations at the eigen frequency and at the excitation frequency:

T1 (1) = U1 coSweat — Uz siNweat + U3 coswt — Ty sinwt. (2.17)

By adding this form to the preceding equation (2.15) , we obtain the amplitudes of the oscillations
generated:
Yo wFo % qiwcab AFEg |

2° Mg W2, —w?

Uy = g AV, U3= (218)

Mo W2y, — w

The two other constants are defined by the initial conditions.
Ui+ U3 =0pL et wealh+wis=weab ATyL.

This enables us to obtain the formula that describes the particle’s orbit in the perpendicular plane:

— — — —

L sinweat — —2 (1 — cosweat) + ™ Sinwt — %(l — coswt). (2.19)
co Wear W (9%}

Pultl—=%5u +

The orbit of each particle is quite complex and consists of two elliptical movements. The first
movement ig produced at the eigen rotational frequency w., and with a radius of rotation rp,
depending on the initial conditions and the electric field. In the case vg; = 0, the cyclotronic

radius of rotation is
Qo W N
TBa= T 2
Me Wea Why — W

The second movement is forced by the electric field acting on the elliptical orbit. The rotational
frequency is w and the radii of this ellipse are rpy wea /w and 74 (wm/w)Q. Since the amplitudes
of the velocities in the formula (2.17) do not change, the mean energy of the movement in the
perpendicular plane is constant. The energy gain of the particle is mainly due to the work carried
out by the component of the parallel electric field. An example of a trajectory is presented in figure
14a for the case 7p = 0 and @y = 0. In the specific case of a rational frequency ratio, w/wey = n/m,
the orbit therefore takes on a relatively simple form.

It is easily seen that the preceding formulae are not valid in the specific case in which the
excitation frequency is equal to the cyclotron frequency. This is the cyclotron resonance. In this
very specific case, the particle can gain energy in the perpendicular plane. In the resonant case,
the formula (2.17) is incorrect and so we must take account of the secular terms with a linear time
dependence:

—

'Ul(t) = ('171 + 51t) COS Wealt — ('172 + c_fzt) 8in wead. (2.20)
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The new terms a2 take account of the acceleration of the particle. By adding this form to the
basic equation (2.15) for w = weq, We obtain the velocities and the amplitudes of the accelerations:

5
=y Qo a1

@i=—bAdy, @2=-— +b AT (2.21)

Eol, %=
2me, Wea

The final constant is determined by the initial condition: @ = ¥y, . This enables us to write the
formula for the particle’s orbit in the perpendicular plane in the following form:

s . v a o a dat ToL @ ait\ .
7L({t) = 7o — 2 s 21+<_2_|_ 21+ 2>coswcat—|—(0 - 22—i— 1>smwmt. (222

co Wen Weor Wiy Wea (s Wiy sy

The radius of rotation increases in a linear manner over time (see figure 14) and the energy of the
particle increases as t2. Cyclotron resonance is therefore an efficient method of heating particles in
natural and laboratory plasmas.

2.3 Alternating and non-uniform electric field
2.3.1 Ponderomotive force

Let us consider an alternating electric field and assume that its amplitude is not constant, but
that it varies along the direction of the field, E,(z,t) = Ey(z) sinwt. To simplify the analysis, we
consider the characteristic length of the amplitude variation,

dEo\ !
Ig = Eo (T;f) , (2.23)

and we assume that it is large compared to the amplitude of the electron’s oscillation in this
alternating field, r. = eFp/m.w?. In this case, the electron movement equation (2.1) is expressed
as:

dx dv
=, = %Eo(m) cos wt (2.24)

It can be solved in an approximate manner by considering . /g < 1 as the development parameter.
Consequently, the electron’s orbit, z(t) = z{9(¢) + 21 (¢), and its velocity, v, (t) = véo)(t) + vg)(t)
are developed in zero-order terms (homogeneous field) and small first-order corrections in 7./lg.
At zero order, Fy is constant and the equations (2.24) are solved as follows:

© _ %o © _ %P0 q
vg — sin wt, T — (1 — coswt). (2.25)

Here, the electron oscillates at an amplitude r, around the position, z = r, and v, = 0. To obtain

the first-order equations, we expand the field amplitude on a Taylor series by taking account of the

first two terms: .
Eo(z) ~ Eo + 2O(¢) TO =By 14 l’i (1—coswt)| .
T

E
Therefore, the first-order equations are set out in the following manner:

® S
dflt _ 0;1)7 dt:{_z — zfzioz dd% (1 — coswt) coswt. (2.26)
(4

Considering the second equation, it can be seen that the velocity vél) contains three different terms.
Firstly, there is one term oscillating at the frequency w. This is clearly a slight correction of the zero-
order term, and is of little interest. Then there is the term containing cos? wt = %(l—l—cos 2wt) which
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Figure 15: Movement of a particle in an alternating and non-uniform electric field. The field
has a positive gradient and it is 160 times greater than the amplitude of the oscillations. The
digplacement of the oscillation centre is shown by a dotted line.

gives rise to oscillations at the second harmonic and finally, there is one secular term, which never
oscillates and is actually of the greatest interest, because it describes a permanent displacement of
the electron’s oscillation centre in relation to its initial position.

To obtain a better view of the secular term’s effect, we derive the equation for velocity 17531),
averaged over the field oscillation period 27 /w:

dosd 4.Ey dE, d g2E?
s’ g __ 4 ¢F 9.07
el 2mew? dz dx dmew? ( )

The left-hand part is the mean acceleration of the electron. Consequently, the right-hand part
is a force, which is called the ponderomotive force, F,. It can be seen that this force results from
the gradient of the ponderomotive potential,

= T, (2.28)

The ponderomotive force and the ponderomotive potential represent the mean effect of an inhomo-
geneous alternating electric field on a particle. The force is directed in the opposite direction to the
intensity gradient, Eg, of the oscillating electric field. Consequently, the particle is ejected from the
area in which the field is the strongest. Note that this drift effect does not depend on the charge
of the sign: all particles - electrons and ions - are driven out by the field. Nevertheless, the lighter
electrons are subjected to a much higher force than that exerted on the heaver ions. Figure 15
shows a particle’s orbit in the oscillating field for the parameter r. /lgp = 1/160. Six oscillations are
required to displace the particle over a distance equal to the amplitude of its oscillations.

2.3.2 Electrostatic waves and particle trapping

Consider a wave whose electric field, E,(¢,z) = Egsin(wt — kz), travels in the direction z at the
phase velocity, vy, = w/k. The movement equations for a particle with mass m and charge ¢ in

this wave are: g 3

€T v
e — = ¢qFpsin (wt — kz). 2.29
g R = PR k) e
In fact, it is easier to solve this system if we position ourselves in the reference frame of the wave,
which is displaced at the phase velocity:

r=vppt+ X, v=vpp+V.
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Figure 16: Orbits of resonating particles in the phase velocity coordinate system: 1 — a free particle,
2 — the separator, 3, 4 — the trapped particles. The particles with positive velocities travel towards
the right-hand side and those with negative velocities move towards the left.

Let us accept that at a given moment ¢ = 0, the particle is in the position X = X with the velocity
V = V,. The dynamics equations are expressed as:

% =3 m%:—qusinkX.
In this coordinate system, the time is no longer clearly shown and we can calculate the first integral
of this system:
1 2 9 _ 1 2 9
—mV*— —FEycoskX = —mVy — = Egcos kXo. (2.30)
2 k 2 k

This is the energy conservation law. The particle may take energy from the field, or otherwise
it may transfer energy to it, but the total amount of energy remains the same. In addition, if we
calculate the mean for the initial coordinate of the particle, its energy remains unchanged. It is
instructive to plot a phase graph, representing the dependence of particle’s velocity according to
its abscissa, V(X). According to the equation (9.53), all particles have a periodic motion, but the
trajectory of each particle depends on the value of the parameter 2¢F/ kaOZ, which is the ratio
of the potential energy in the wave ¢Ey/k to the kinetic energy of the particle. If this parameter
is small, the particle is almost free, its velocity hardly varies and the oscillation frequency is high,
wp = kVy. It increases when the particles move away from the resonance.

However, if the parameter is 2¢FEj, /kaO2 > 1, the particle’s trajectory has ended, and we
say that this particle is trapped in the wave. It performs oscillations around the minimum po-
tential, kX, = 0, 27,.... The frequency of these oscillations is independent of the velocity,
wp = +/qkEy/m, but depends on the amplitude Fy. This fact is essential to our analysis: when
the amplitude of the field is very low, the oscillation period of the trapped particles is infinitely
long. The typical trajectories of the particles near the resonance are plotted in figure 38. Curve 2
constitutes the separator between the free particles and the trapped particles.

2.4 Non-uniform magnetic field

In the case of non-uniform magnetic fields B that vary over time, the problem cannot be resolved
as eagily as for a uniform and continuous field. The particle is not completely attached to the
field line, and performs a much more complex movement. To simplify the analysis, in this case
we assume that the magnetic field B varies slowly in space (and possibly in time). This means
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Figure 17: Movement of a particle in a non-uniform magnetic field.

redefining the characteristic times and lengths of magnetic field variation by the relations:

= -1 - = §
1 |6B\™! VLB V) Bl

and considering that we have:

2w QTFUH
Te > .t ly >rL, l” > ; (2.32)

c We

When these conditions have been met, we can assume that at all times, the particle’s trajectory
remains a helix which is progressively deformed. This is an adiabatic approximation similar to the
approach presented in the preceding paragraph 2.3.

This enables us to study the mechanisms by which inhomogeneous static magnetic fields interact
with the charged particles. The non-uniformity of the magnetic field (gradient of the magnetic
field and curvature of the induction lines) in this way contributes to the drift of particles in the
magnetic field and to their reflection due to a magnetic marror effect. The latter effect is the cause
of the aurorae boreales that can be observed in the magnetosphere. The magnetic confinement of
thermonuclear plasmas by a complex magnetic configuration is one of the key aspects of the studies
carried out in magnetic confinement fusion.

We then consider that the magnetic field intensity is constant over time. We shall consider a
zero, continuous and oscillating electric field in turn. We assume that the induction lineg, which are
mainly directed towards z, are slightly curved in the direction of z. Figure 17 shows the appearance
of the induction lines of a non-uniform magnetic field. The induction lineg draw closer together as
the field intensity increases. The velocity of a charged particle (electron, ion) can be broken down
into three components:

'17:—“—)—17]_—)—'17[1.

The first two represent the almost helical movement around the lines of force. The particle rotates
around the guiding centre C in a perpendicular plane to B with the velocity v ;. The guiding centre
of the particle moves along the field’s induction line at the velocity v. The final component vy
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Figure 18: Movement of a particle in the magnetic field gradient.

represents the drifting motion of the guiding centre, perpendicularly to the induction lines, which
as we shall see, is due to the non-uniformity of the magnetic field.

This drift velocity can itself be broken down into two terms: ¢y = ¥,+4,.. Here, ¥, is the gradient
drift velocity and U, is the curvature drift velocity of the magnetic field. For a magnetic field that
varies slightly in space, we can use a Taylor series expansion to express the field in proximity to a
point 75 in the form:

B(¥) ~ B(w) + (7 V) B(v) (2.33)

with p'= 7—7%. Positioning ourselves at a point 7 assumed to be the origin, we consider By=8 (70)-
We will now examine different magnetic field geometries.

2.4.1 Gradient perpendicular to the magnetic field. Gradient drift

Here, we assume that the magnetic field B is directed towards z (By = By = 0) and that it
varies in the perpendicular direction y, B,(y). Under these conditions, the variation in a particle’s
radius and gyration period will be manifested by a slow drift of the guiding centre. The particle
movement diagram for the particles in the magnetic field gradient is presented in figure 18. Here,
the characteristic dimension of the gradient in proximity to this point according to (2.32) can be

defined by:
1 g
==
= (53]

In proximity to point 7y = 6 considered to be the origin, the magnetic field is expressed as:
B, ~ By(1+y/l.), up to the limit of I, > rr, which gives us y/l. < 1. For an « particle, the force
exerted in perpendicular plane to the magnetic field is expressed by: F L =gt A B. From this,
we determine the acceleration components using the equations (2.1):

dv duv
d—tm = Wea <1 + %) Uy, d_ty =y (1 + %) Vg - (234)

0B,
oy

These equations are solved in a similar manner to that described in paragraph 2.3.1. Since
the nonlinear terms to the right-hand side of the equations (2.34) are second-order equations,
we develop the particle velocities and coordinates according to the small parameter, rr/l, < 1.
Ignoring the nonlinear terms in (2.34), proportional to y/I., the movement equations, dz/dt = v,
and dy/dt = v, give us the rotation of the particle at the cyclotronic frequency, at the point of
origin, see the equations (2.6) and (2.7). Then, for the nonlinear terms in (2.34), we obtain the
following expressions:

2 2
., WY e i
Yy = o 8in2(weat + @), yvs = S [1+ cos 2(weat + ¢)].
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The term y v, oscillates at twice the frequency of the cyclotron frequency. This produces a corre-
sponding movement on the z axis at the second w,, harmonic, which is not very important because
of the 7, /l. < 1 parameter. However, in addition to an oscillating term, the term y v, also contains
a secular component that is independent of time. The particle is therefore subjected to a constant
acceleration along the y axis. By calculating the mean @, over a rotation period, we obtain the
acceleration of the slow movement:

dty/dt = —v3 /2. (2.35)

This acceleration is constant; it is not dependent on y and it follows the direction of the field
gradient. This action is similar to the action of the uniform electric field, perpendicular to the
magnetic field, considered in the previous paragraph 2.2.1. By transferring this acceleration (2.35)
into the relation (2.12) instead of the electric acceleration, (gy/maq) E |, we ultimately obtain the
expression of the drift velocity (2.12), associated with any transverse gradient v 1 B of the magnetic

field:
2

— vl =, N WaJ_

Uy = 3B V1B Ab= e
It can be seen that the drift velocity is perpendicular to both the direction of the magnetic field
and the direction of its gradient. The direction of drift is opposite for the electrons and ions
and its amplitude is proportional to the energy of the particle W, in the perpendicular plane.
Consequently, a polarisation current is created. Therefore, this differs from the case of electric field
drift, considered in paragraph 2.2.1, in which the electrons and ions move in the same direction
and sense.

b AV_B. (2.36)

2.4.2 Curvature of magnetic field lines. Curvature drift

When the magnetic induction lines are curved (see figure 17), the movement following these lines

is also curved. Due to the curvature of the trajectory, there is a centrifugal acceleration whose

modulus g, = vﬁ /Re, where v) is the velocity of the guiding centre of the particle along the line of

force and R, is the local radius of curvature of the induction line. Let us suppose that the magnetic

field is mainly directed along the z axis but that it has a small component B, related to the local

curvature, s, = 1/R,, along the z axis (figure 17). The local radius of curvature is therefore given
0B,

by:
1 -

In a more general manner, the local curvature of the field line is a vector, £, defined by the following
relation:

R.= (8- V)b

Consequently, the centrifugal acceleration is also a vector, —Fa’cvﬁ /M, situated in the perpendicular
plane to the field vector. By transferring this acceleration into the relation (2.5), instead of the
electric acceleration, we obtain a drift velocity due to the centripetal force. This is the curvature
drift velocity which is expressed by:

. vi oo

Ug=———"—RKNb=——"

MaWen o

The drift velocity is therefore perpendicular to the plane defined by the magnetic field and the local

radius of curvature, in an identical manner to the gradient drift, but in this case, it is proportional
to the energy of the parallel movement, W,
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Figure 19: Movement of an electron in the magnetic field increasing in the direction of the 2 axis.

2.4.3 Gradient parallel to the magnetic field. Magnetic mirror

We shall again consider that the magnetic field is directed along z (B, # 0). It is always constant
over time, but now it is only supposed to vary in the z direction and to be increasing (8B, /9z > 0).
The appearance of the induction lines is shown in figure 19.

As the magnetic field satisfies the Maxwell’s equation V.-B= 0, there is therefore a radial field
component B, which induces a force in the 2 direction that will now be expressed in the following
way. The divergence of the magnetic field in cylindrical coordinates taking account of the symmetry
of revolution around z, is expressed as:

10 0B,
o R

Assuming that the derivative of B, does not depend on 7, the radial component B, is therefore a
linear function of r:

=i0:

r 0B,
2 8z
By considering the radius r of the electron’s trajectory to be equal to the Larmor radius rz., we
can determine the expression of the force exerted on an electron along the direction z:

B,(r) =

_meviiaBzé,
2 B, 8z °

where &,, & and &, are the unit vectors in cylindrical coordinates. The direction of the acceleration
is independent of the sign of the charge (electron, ion). The longitudinal movement of the electrons
and ions is slowed down due to the increase in the magnetic field in the direction of z.

The magnetic moment of a charged particle rotating in a magnetic field is given by the expression
(2.10):

F= —ev |89 A&, By =

e = Mgy’ /2By (2.37)

From this, we can establish that the force exerted along z is proportional to the magnetic moment
and moves in the same sense for the electrons and ions:

F, = —p.0B,/0xz.
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Figure 20: Magnetic mirror in a Helmholtz configuration. The crossed squares represent two coils
that create the magnetic field, which is stronger in the plane of the coils and decreases elsewhere.
The particle is trapped between the coils, where the magnetic field is at its minimum level.

The movement equation for the particle according to the z axis is: me dv“/dt = F,. Using the
definition of parallel velocity, dz/dt = v, we obtain:

d’U” dv” d me'Uﬁ 0B,
Me— = M) —+ = — =— :
“dt  Wdz  dz 2 8z
As the diamagnetic force is of purely magnetic origin, it does not contribute to modifying the total
kinetic energy, but it changes the distribution of the parallel and perpendicular movements of the

field. The conservation of the total kinetic energy of the particle can be presented in the following

form: i 71 i 7 i
E <§mev2> = E <§m6v2 + §mevi> = O

In this way, by using the definition of the magnetic moment (2.37), we obtain:
d (1 5

In addition, according to (2.38): —pedB, /dt+ d(peB,)/dt = 0. We ultimately obtain the magnetic
moment conservation law:

(2.38)

dpe/dz = 0. (2.39)

We can demonstrate that the magnetic moment is an adiabatic invariant: it does not change even
if the magnetic field varies over time and if the energy of the particle is not conserved. The only
important criterion for the conservation of the magnetic moment is for the characteristic field
variation time to be much greater than the cyclotron rotation period.

According to (2.38), we can observe that the longitudinal kinetic energy of the electron —%mevﬁ
decreases when it moves up towards the ascending values of the magnetic field. Consequently, its
velocity Y| decreases. At the same time, the transverse velocity v of the particle increases in
order to maintain its constant magnetic moment . (2.37). The longitudinal energy is therefore
transformed into transversal energy. In this way, if the magnetic field increases sufficiently, the
particle may then be reflected towards areas with a weaker magnetic field. This corresponds to a
magnetic marror effect.

2.4.4 Magnetic confinement. Loss cone

The magnetic mirror is used to confine the charged particles. A “Helmholtz” magnetic configuration
is shown in figure 20. The field is at its minimum level in the middle and its maximum level at the
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narrowest points. The particles that are not reflected can escape through the narrow openings. We
shall now determine the loss angle in this magnetic geometry. We consider a particle with a velocity
of vg at a point at which the magnetic induction has a minimum value of By. The maximum value
of the magnetic induction is By,. The particle will be reflected (v = 0) at the point at which the

magnetic field is such that:
1 1

2 2
Aol g = MV,

2 2

hence v) = vg. Magnetic moment conservation links the field and velocity values:

Bo _vlg _ . o

f = v—g = SIln 9
Here, ¢ represents the angle of the orbit cone in the area in which the field is equal to B. If this
angle is too small, B may be higher than B, and the particle will leave the system. Otherwise, it
will be reflected. The angle #,, of the loss cone is given by the expression sin?#6,, = By /Bm.

2.5 Problems

1. Express the ratio of the Larmor radius of an ion of mass M and charge Z to that of an electron
with the same transverse energy W, . Determine the expression of the magnetic moment of
an electron in a rotational movement in a uniform magnetic field B according to its transverse

kinetic energy W, and B. Calculate the value of the Larmor radius in the magnetic field at
the Earth’s surface (B = 50 uT).

2. Calculate the cyclotronic frequencies of the electrons and ions in a magnetic fusion plasma
(B = 5T). Compare them with the corresponding plasma frequencies. (Use the data in
figure 2 for the density and temperature values.)

3. Show that the expression (2.12) of the drift velocity can be obtained simply by making
an appropriate change of coordinate system. What is the trajectory of the particle in this
coordinate system?

4. Calculate the movement of a charged particle placed in a homogeneous magnetic field directed
along the z axis and an electric field created by a line with the electric loading of charges A
parallel to the magnetic field. Schematically plot the particle’s orbit in the plane perpendicular
to the magnetic field.

5. Tonospheric plasma is situated in intersecting magnetic and gravitational fields. Estimate the
value of the drift velocity in this configuration and plot the orbits of the electrons and ions
in these fields. The magnetic field on the Earth’s surface is 50 xT, and the gravitational
acceleration is10 m /s2.

6. Let us consider an electric wire through which a 1 kA current is flowing. Calculate the orbit

of an electron with 10 eV of energy in the magnetic field created by this current at a distance
of £ =10 cm.

7. We shall presume that the magnetic field in the magnetic mirror in figure 20 varies according
to the axis of the coil in the following manner: B, = Bo(1+ 22/L?). Calculate the oscillation
period of a particle trapped in this coil. Schematically plot the particle’s orbit. How is this
orbit modified if the field By is inhomogeneous in the radial direction?
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8. Schematically describe the movement of particles in the Van Allen belts. We will assume that
the Earth’s magnetic field is a magnetic dipole. Plot the orbits in the meridian and equatorial
planes.

9. A laser beam has a hollow intensity profile with the minimum level on the axis. Calculate
the oscillation frequency of a charged particle trapped in the laser field. Propose a trapping
criterion.
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3 Coulombian collisions

In a collision between an electron and an ion (or between two electrons or two ions), the potential
for long-range interaction is the Coulomb potential. At short range, the interaction takes place via
repulsive forces of a quantum nature that vary much more quickly than the Coulomb potential.

Here, we shall be covering elastic electron-ion collisions (in addition to electron-electron and
ion-ion collisions) in the traditional sense. Although this description is not wholly satisfactory, it
does enable us to specify certain parameters and the fundamental physical quantities associated
with colligions in plasmas.

3.1 Collisions between charged particles

Colligions between two particles play a very important role in the kinetic theory of ionised gases.
A distinction is made between two types of collisions:

e an elastic collision between two particles, in which there is no change in the internal energy
of the particles;

e an inelastic collision, in which the internal electronic state of the atom or ion is modified.
These collisions therefore contribute to changing the excitation or ionisation state of the
molecules, atoms and ions in the plasma.

3.1.1 Elastic electron-ion collisions (traditional approach)

Let us consider an elastic collision between an electron and an ion (see Figure 21). We will ignore
the electron-electron interactions and will assume that the ion is stationary in the collision. The
electron’s trajectory in the mass centre system of the colliding particles is a hyperbola, characterised
by the parameters «’, &’ and ¢’

d?=a24+¥2 and o =ccosT

where 6 is the angle of deflection, linked to the angle ¥ by the relation 8 + 2% = 7, and b is the
impact parameter in the collision: b = ¢'sin ¥. We also introduce by, which is the minimum
approach distance: by, = ¢ — a’ = (1 — cos ¥). From this, we therefore establish that:
1—cosW
byin =b———.
S sin W
In an elastic collision, two conservation laws are validated:
1. Congervation of total energy:

il 2 1 12 Z€2
MU — MV

= 3.1
2 2 47 Eobmjn ( )

The left-hand term represents the kinetic energy of the electron at infinity, because its po-
tential energy at infinity is zero; the right-hand term represents the sum of the kinetic and
potential energies of the electron at the minimum approach distance.

2. Kinetic moment conservation:
mevb = M boin (3.2)

which is valid for the central interaction forces.
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Figure 21: Trajectory of an electron during a collision with a stationary ion.

On the basis of conservation equations (3.1) and (3.2), we obtain:

v'2 B2 B2 272
et 5— = 1
bm.in

2 T 12 - G
v b 4dmegb*mu

Based on these two equations, we establish that

Ze?
cot —.

T Aregmev? 2

b

We ultimately obtain an expression that associates the impact parameter b, with the angle of
deflection &:

0
b = b, cot 5 (3.3)
where b, is the critical impact parameter, which is expressed by:
Ze?
b ————., .4
¢ Aregmov? 3.4)

The critical impact parameter corresponds to the impact parameter value for a deviation of 90°.
If, in the expression (3.4) of the critical impact parameter, we take v? = v2,_ = kpT./m., then the
critical impact parameter will be expressed in the following way:

Fe?

e ——— 3.5
O~ YneokpT. {25)

that corresponds to Z times the Landau’s distance ro (1.5), which represents the minimum approach
distance of two electrons.
3.2 Elastic collisional cross section

Let us consider a homogeneous flow ® of mono-kinetic electrons (see figure 22a). This electron beam
makes contact with a target ion which acts like a stationary scattering centre. For an isotropic
interaction potential (corresponding to the central forces), the number of electrons scattered, per
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unit of time, in a solid angle dQ2 = sin € df dy corresponding to a deflection of between ¢ and 6 + df
and ¢ and ¢ + dy is therefore given by:
dN o do(0)
dt dQ
where do /dQ} is the differential collisional cross section. To convince oneself that o does indeed
have the dimensions of a surface, one simply has to consider the equation with dimensions relating
to the number of particles scattered: 771 = L=2 x 7L

dd

Figure 22: a) Scattering of an electron beam by an ion. b) Definition of the impact parameter.

The electrons deflected between the angle cones 8 and -+ d# have impact parameters of between
b and b+ db (see figure 22b). As the cross section does not depend on ¢, we obtain:

P27bdb=®2r d;—g) sin 6 d6

From this, we therefore establish that:

do(0) b db
dQ  sinfde’ -
the basis of (3.3), we obtain the Rutherford cross section :
do(0 b2
) : (3.7)

dQ  4sin%(6/2)

This formula was devised by Professor Ernest Rutherford in 1911 in order to explain the results of
his experiments on the scattering of o particles in a thin layer of gold leaf. By measuring the angular
scattering diagram, he successfully estimated the minimum approach distance b, and showed that
it was much smaller than the radius of an atom.

3.3 Momentum transfer cross section

Several physical quantities can be defined on the basis of the differential cross section. The most
important are the total cross section, characterising the total number of collisions produced per
unit of time, and the transport cross section, characterising the slowing-down of a particle due to
the collisions with the other particles in the environment.

The total cross section for a Coulomb potential is obtained by integrating the Rutherford cross
section for all scattering angles:

oo = 2#/%@ sin @ do.

It is easy to see that this integral is strongly divergent and that o tends towards infinity. These
are small-angle collisions, i.e. for high impact parameters b, which correspond to distant collisions
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that are the cause of the divergence. Here, the calculation is performed for a Coulomb potential. In
fact, we have seen that the shielding phenomenon around an ion, resulting from an accumulation of
electrons in close proximity to it, leads to a shielded Debye potential, which decreases exponentially
with a characteristic decay length that equals the Debye electron length. Here, due to the Debye
sheath, it is therefore necessary to introduce a break by introducing a maximum impact parameter,
bmax, corresponding to a minimum angle of deflection, fp;,. This maximum impact parameter can
be considered to be equal to the Debye length, Ap.. According to (3.3), and on the basis of the
fact that Oy, is a small angle, it follows that:

b O 2
O = oot —— e : (3.8)
be 2 Omi
It must be understood that the cross section itself is not a measurable physical quantity. We
can only measure the result of the passage of a given particle through the plasma. Consequently,
there are three different definitions of the mean cross section.

o The measurement of slowing down, relating to the momentum transfer cross section.
o The measurement of angular deflection relating to the transverse scattering cross section.
o The measurement of energy losses relating to the energy loss cross section.

Each of these definitions gives specific expressions for the cross section, the collisional frequency and
the mean free path of the particle. All of these definitions will be considered in detail in the second
part of the plasma course. Here, we shall congider the most frequent phenomenon — momentum
transfer.

Let us consider the slowing down of an electron of velocity v, during its propagation through
a plasma. In a collision of this electron with an ion of very high mass, m; > m,, it undergoes a
deflection #, without the modulus of the velocity being modified. Consequently, the variation in
the amount of movement projected in the initial direction of its trajectory is AvH = meve(1—cos ).
The angle of deflection 6, corresponds to the impact parameter b given by the formula (3.3). For
a period of time A¢f, the number of collisions of this type, with an impact parameter of between b
and b+ db, is: njv.At2rbdb. According to the definition (3.6), this number of collisions leading to
the deflection of the angle 8 is expressed as:

da(8) .
niUe At 2m 10 sin 6 df.

To obtain the slowing down of the electron per unit of time, we must therefore calculate the integral
for all possible scattering angles:

dmeve

dt

. / meve(1 — cos 0) ngve 2m dzg) sinfdf = —menioy. (3.9)

We therefore introduce the momentum transfer cross section, which will be defined by the following

formula.:
2

1 —cosOmin

oy = 2#/ dzg) (1 —cosf) sinfdf = 2 b2 In
0

min

As Omin < 1, according to the equation (3.8) we ultimately obtain

b
o1(v) = 47 b2 1In I;a“ (3.10)
c
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We can see that the cross section of the Coulombian collisions is a function that is highly sensitive
to the electron velocity. The minimum approach distance is proportional to v 2, and the cross
section therefore decreases in the form of 1/v%. In contrast to neutral gases, the fastest particles
generate fewer collisions in a plasma, because the minimum approach distance diminishes with
velocity.

The cross section (3.10) is the product of the surface area of the disc with a radius of the
minimum approach distance, and a logarithm. In ideal plasmas, this Coulombian logarithm is
high, around 10 or more. The most significant contribution therefore results from collisions with
a high impact parameter of approximately the Debye length. However, collisions with low impact
parameters, of approximately b., do not play an important role. This means that in ideal plasmas,
collisions only contribute to small deflections. In this way, the particle must undergo several
collisions before a significant change in its direction of propagation occurs.

3.4 Mean free path and collisional frequency

The characteristic slowing-down time of an electron is expressed by 7.; = 1/n;ve0:. The inverse
of this time defines the collisional frequency, ve; = niveo:. By considering distributed electrons
according to a Maxwellian velocity distribution function, we can replace the electron velocity in
this relation with the thermal electron velocity, v, =~ vr.. In this way, we ultimately obtain the
expression of the mean electron-ion collisional frequency:

B niZ2%*In A
47re%mé/2(kBTe)3/2

Vei

where the quantity In A = In(Ape/bo) is called the Coulombian logarithm. Kinetic theory leads to
a similar expression of the electron-ion collisional frequency that is close, by a small factor, to the
following form:

n; Z%e*ln A
3(27)3/22ml 2 (kpT.)3/2
We define the mean free path, which represents the mean distance travelled by the electron during
the time 1/ve; by: Aei = vTe/Vei- It increases in the form of Te2 and this is the reason why hot
plasmas are only very slightly collisional.

The electron-electron and ion-ion collisional frequencies are obtained in the same manner. Ki-
netic theory leads to the following formula:

Ve; =

(3.11)

B NagsIn A
* 127r3/268my2(kBTa)3/2'

(3.12)

Vo

By comparing these expressions, it can be noted that in a quasi-neutral plasma, the ratio of the
electron-ion and electron-electron colligional frequencies is equal to Z. It follows that in plasmas
with multi-charged ions, the electron-ion collisions are dominant. For plasmas in equilibrium, where
T. ~ T}, the ion-ion collisional frequency is lower due to the high mass of the ions in relation to
the electron mass, vi; /Vee ~ 73 /me /mj. On the other hand, the mean free paths of the electrons
and ions do not depend on the masses and they are therefore of the same order of magnitude. The
mean free path of the ions is shorter for multi-charged ions.

3.5 Problems

1. Let us consider a colligion between two hard, impenetrable spheres of diameter D (like billiard
balls). The sphere shown in dotted lines in figure 6 represents the Debye sphere. Show that:
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bdb = iDz sin@df. Using (3.6), establish that the cross section o is isotropic, i.e. that it is
independent of 8.

. If we could treat ions as rigid spheres of radius R, and electrons as point features entering
into elastic collisions with the ions, what would be the cross section of the collisions between
the two species for a given angle? Choose a possible value of R to estimate the Coulombian
colligions.

. Now let us turn our attention to electron-electron collisions. Using the Rutherford cross
section, determine the differential cross section ¢ for an angle of deflection of 90°, with the
free path between two collisions at 90° being defined by A.e = 1/nec. Show that for a
conventional kinetic plasma, we have: rp < de < Ape < Ace.

. We obtained the collisional frequency v.; by considering the amount of electron movement
following colligions with ions. What is the value of the collisional frequency relating to the
variation in the movement of the ions after collisions with the electrons, v;.?7 Compare v,;
with ;.. Comment.

. Calculate the mean electron-ion collisional frequency in a plasma containing several species
of ions. State the expression of the mean charge of the ions under these conditions.
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4 Hydrodynamic description of a plasma

There are two main approaches to describing a plasma. The microscopic (kinetic) approach de-
scribeg the evolution of the distribution function of the plasma particles. Kinetic theory provides
a detailed description, but kinetic equations are very complicated to solve because the distribution
function evolves over the course of phases which have three spatial coordinates and three velocity
components. The macroscopic (hydrodynamic) approach describes the evolution of the plasma’s
average values: density, average velocity and temperature. Fluid theory gives a limited description
of plasma, assuming that the velocity distribution function is always close to a Gaussian. Fluid
theory produces results more rapidly and with sufficient precision on a large scale - far superior to
the Debye length.

We will look at kinetic theory in the second part of this lecture. Let’s begin by looking at the
fluid theory of plasma.

4.1 Equations

Fluid equations are determined from the Boltzmann equation with the Lorentz force and the col-
lision term. A demonstration is given in the second part of this lecture. It involves calculating
the successive moments of the distribution function. For now we will simply give the expressions
of the hydrodynamic equations in their final form, supposing that the plasma is isotropic and the
pressure scalar. We categorise the different species of particles based on their density n,, average
velocity @, and temperature 7.

Particle conservation equation

6na -

W + v A (na'ua) =0. (451)

Momentum transfer equation (Euler equation)

8 = = a2 — 5 — = —
. (a g gl .v> " — (E il A B) —Vpa+ Y Ras (4.2)
t
B

where p, = nykpT, is the kinetic pressure and ﬁag represents the friction force. The quantity
d/dt = 8/0t + Ua 3. represents drift in relation to time, following the movement of the fluid. This
is relevant for the highly mobile electrons whose movement is affected by binary collisions with the
ions. For those ions considered to be virtually static, in light of their inertial force, the friction
term is often disregarded.

Energy conservation equation

3 8 =3 = = =

where (), represents the heat acquired by o species particles as a result of friction with § species
particles and ¢ is the flow of heat transported by a species particles. In the absence of a magnetic
field (applied or self-generated), the thermal conductivity is given by Fourier’s theory:

G5 = —&aﬁTa
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where k,, is the thermal conductivity of the « species. Due to their high level of mobility, electrons
dominate thermal conductivity. In the presence of a magnetic field the heat flow is a tensor quantity,
the direction of vector ¢, is not parallel to the direction of the temperature gradient ﬁTa. It is
restricted in the direction perpendicular to the magnetic field by the gyration movement around
the magnetic field.

The heat flow and energy exchange between particle species are second-order effects. For a
simplified approach, we can disregard them and use the equation (4.3) to represent energy conser-

vation: i
o =% o
EW—I—TOCVuafO

Velocity 4, can be eliminated by using the continuity equation (4.1) which is similar in form:

dn Y e
d—ta + ngV -ty = 0.
Using these two equations, we can determine that there is a simple relationship between density

and temperature. This relationship can be expressed in the form:
T,/nle~l =const ou p,/n)* = const. (4.4)

This is the adiabatic condition, and with the preceding equations we arrive at «y, = % This value
is the same as that obtained for perfect neutral monatomic gases. For plasmas, it is applicable to
three-dimensional flows. We will see later on that, depending on the type of problem, the constant
Yo 18 3 for uni-dimensional flows and 1 for isothermal flows.

Plasma can be congidered to be a mixture of two fluids, conforming to macroscopic equations:
a fluid composed of electrons whose density is n. and average velocity ., and a fluid of ions with
a density of n; and average velocity #;. Using the general equations (4.1) and (4.2), we can obtain
the equations for the electrons (g, = —e):

One

o V - (neite) =0, (4.5)
o, =2 € =3 =g 1 =
6—: f i, Vil = g (E +d. A B)— nemevPe — Vei(Te — i) (4.6)
and for the ions (¢; = Ze):
8 y =5
% + V- (nait) =0, (4.7)
8@1 = Ze , o =3 1 =3
d; - Vit; = — (B 4+ d4; AB) — i 4.8
ot + ;- Vil; - ( == U ) — VPz ( )

We have ignored the friction force in the equation representing the movement of the ions (4.8)
because ions have greater mass and electron collisions have a very minimal effect on ionic velocity.
We will see later on that vie ~ veime/m; < ve;. However we cannot afford to neglect the importance
of friction in the electron movement equation (4.6) where v,; represents the frequency of the effective
collisions between electrons and ions (3.11).

To complete this system of equations, we need equations of state which make the connection
between pressure values p. = n.kpT. and p; = n;kpT; and the other physical quantities. In this
case we will use the simple model provided by the equations (4.4):

pe/nds =const and p;/n/* = const. (4.9)
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The . factor of the electron gas is 3 for one-dimensional adiabatic compression and 1 for isothermal
compression. We will also assume -y; = 3 for the ions because they behave in an adiabatic manner
in one dimension. This will be explained later on by kinetic theory.

The hydrodynamic equations are combined with Maxwell’s equations

V-E=p/e (4.10)
VAE=-8B (4.11)
V-B= (4.12)
W A B M0;+ eouoatﬁ (4.13)

via the electrical and magnetic fields, and the charge and current densities. The charge density p
and current density ;7 are self-consistent quantities produced by the plasma, itself:

P

pe+ pi = —ene + Zen; the total density of the electrical charge, (4.14)
= 7. & ;72 = —enle + Zenitl; total current density (4.15)

4.2 Electromagnetic properties of plasma

Our next objective is to solve the fluid equations, considering the fields E and B to be known
quantities. This will allow us to express the charge and current densities with reference to the
electric and magnetic fields and then use them in the Maxwell’s equations.

Plasma is an example of a dielectric field, and in this respect possesses a specific property.
Plasma sustains electromagnetic waves, it is an undulating movement that appears in the propa-
gation of electric and magnetic fields, coupled with disturbances in the current and electric charge
of the plasma. Different types of waves may exist within a plasma, and in this course we will focus
on the most simple example: linear waves spreading through a homogeneous plasma. We will
look at low-amplitude waves which can be considered to act as a slight disturbance to the initial
state. These waves can be described by linear equations, and can then be processed using a Fourier
analysis. Generally speaking, an external electric field applied to a dielectric medium will be mod-
ified by the polarisation of the molecules, which create their own electric field. Consequently, this
field will be added to the external field, creating the total field. Using the general electrodynamic
formulation, electric displacement D= eoﬁ + P is the sum of the external induction EoE and the
polarisation of the medium, P. The linear polarisation of a dielectric medium is proportional to
the applied field:

P =¢x*E, (4.16)

where y is the dielectric susceptibility. We can thus determine the electric displacement field D:
ﬁzqﬁ‘?%—ﬁzedl%—x)*ﬁzem*ﬁ (4.17)

where € = 1 + x is the relative dielectric permittivity. In neutral media these quantities, x and e,
are often considered as constants, but in plasma they depend upon space and time. For example,
the polarisation at a given moment ¢ depends upon the values of the field in previous moments,
t' < t. As a result, the relationships (4.16) and (4.17) are convolution integrals, such as

=

¢
B = / x(t— ¢) Bt dt.
This is a very common situation, even in neutral media. It is useful to recall that electrical

circuits with an alternating current containing condensers and inductors create the same type of
relationships.
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As a general rule, it is easier to use a Fourier transform, where the convolution relationship
(4.17) can be expressed in a simple multiplication:

— =, =, =, — =, =, =

Plw, k) = cox(w, k) E(w, k),  D(w, k) = eoe(w, k) E(w, k). (4.18)

The same type of relation can be calculated for the density of the electric current. Using a
Fourier transform, it can be linked to the electric field:

= = =

7w, k) = o(w, k) E(w, k) (4.19)

where o (w, E) is the electrical conductivity. This is Ohm’s law. The relation between permittivity
and conductivity is simple. Current density is linked to polarisation by the relation: f = 6ﬁ/ ot,
or the Fourier transform

;(w, k) = —tweox(w, .7;) E(w, ]2),

therefore
o = —iwegy and e=1+1i0/eqw. (4.20)

The values of the functions ¢, ¢ and x will be determined from the fluid equations in the next
section.

4.3 Linear theory

Hydrodynamic equations, which describe the movement of particles, enable us to calculate the
currents and polarisations induced by electric and magnetic fields within plasma. They represent
a system of equations whose unknowns are ne, ni, e, U, Pe, pi, and whose sources are the fields E
and B. Furthermore, we can discount the non-linear terms which exist within these equations by
assuming that the disturbances to the quantities remain very small in relation to the equilibrium
quantities. As a result, the differential equations for the unknown quantities are linear, and we
can solve them using the Fourier method. All scalar quantities of the plasma, vectoral or tensoral
a(7,t) , will be expressed in the form:

a(7,t) = ap + aV) exp (—iwt + ik - 7)

where ag represents the quantity without disturbance, homogeneous and time-independent, and
a@ is a first-order disturbance. We can assume that the first-order disturbance is very weak:
|V < |aol.

4.3.1 Linearisation of the equations

Let us consider a plasma in a state of equilibrium: homogeneous, isotropic and stationary, with
zero velocity #,o = 0, and constant densities n,o bound by their condition of quasi-neutrality (1.3):
neo = Znio. By applying the equations (4.5) — (4.8), we can take this homogeneous, stationary
plasma and add a non-zero external magnetic field, B’O, while still supposing that the external
electric field applied is null, Eo =0

Now let us suppose that the fields £ and B represent disturbances, £1) and B®. This

obviously leads to disturbances in the hydrodynamic quantities: n&l ), 11’&1 ) and p((xl ). The equations

of state (4.9) thus give:
(1) (1N "
Pal T Po _ Na0 + N

Pad T
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This is the equation of state for the gas. We can determine that

G ol
Pad = a0

and as pao = naokpTao We are left with: ﬁp&l) = yakBTaoﬁn,(ll).
The linearised equations (4.5) - (4.8) for the electrons and ions can be written as follows:

877,((51) =

= neoV - @ =0, (4.21)
pit) g st " kpTo =
sl CENNPN < BV o1 VN ) g, B0 Sy Sl )

B — (E\W + 4 A Byp) v Ving Vei (U3 B, (4.22)

5+ gV aV =0, (4.23)
(9'1:':(1) Ze = — k T =+

¢ L (1) _,(1) . kBL40 (1)
5 = o (B 4 a0 A o) — s Z R, (4.24)

It should be noted that the disturbance in the magnetic field does not appear in these equations.
In the linear approach only the electric field solicits a response from the plasma; the disturbance
associated with the magnetic field is a second-order term which can be ignored here. Here, the
same equations used in the Fourier transform are reduced to the following algebraic equations:

—iewnlD) + ineok - @) =0, (4.25)
W R W P R NG T
Me Te0Tle
—iwngl) + iniok - 'L?§1) = 41 (4.27)
T . o S dikET
—iewiD = 22 (E® 1 g A By) — ikyen{D 20 (4.28)
mi 0774

We can use this system to calculate fluid velocities, and thus determine the density of total cur-
rent (4.14):
7O = —eneoﬁgl) + Zeniod'gl) = eneo(ﬂ’gl) - ﬂ’gl)) (4.29)

and, by extension, the electrical conductivity o.

4.3.2 Electrical conductivity of non-magnetised plasma

Let us start by considering the case of a plasma without an external magnetic field, By = 0. The
equations shown above are linear and contain two vectors: the k-vector and the E vector. The
plasma response will thus depend on the orientation of these two vectors. Generally speaking, we
can break down the electric field into two components: one parallel to the wave vector and one
perpendicular: E= El + E;». We thus end up with two different systems: one for longitudinal
movement (parallel to the vector E) and the other for the perpendicular movement.

For the perpendicular movement, the velocities are also perpendicular to the E—Vector, g0 k -

1)

4,4, = 0, and the continuity equations (4.25) and (4.27) predict that the disturbances to density

atr
will be zero: nfjg, = 0. Meanwhile, the movement equations (4.26) and (4.28) give us the fluid
velocities:
- € A Sy
_Z“”th)r = Et(r) - Vei(ui(st)r - uthL (4.30)
Z b 4
il = — B, (4.31)

(2
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As you can see, pressure disturbances are not included in these equations. This is easy to explain
when we recall that a pressure disturbance can only be produced by a density disturbance, which
is zero in this case. By subtracting these two equations and using the formula (4.29) for the
density of the electric current, we finally obtain a clear expression of electrical conductivity in the

perpendicular plane:
2 i} A
o=l (— + —) . (4.32)
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It contains two contributions: from the electrons and the ions. The former is always dominant,
because Zme/m; < 1. We often ignore the ionic contribution and assume that conductivity comes
primarily from the electrons.

Electronic conductivity (4.32) conforms to the standard Drude model; it ig proportional to the
electron density and depends on the collisional frequency and the electric field frequency. It does
not, however, depend on the wave vector. In cases in which we can ignore collisions and the ionic
contribution, using the formulae (4.20) and (4.32) we can calculate the dielectric permittivity at
high frequencies:

e=1—wl juw? (4.33)

Let us now return to the longitudinal movement induced by the parallel component of the electric
field E; = Ejk/k. In this case the continuity equations (4.25) and (4.27) give us the relations which

connect the density disturbances and the corresponding velocity: n,(lll) = (k/w)naou,(lll), By adding
these values to the movement equations (4.26) and (4.28) we obtain:
. e ) . 1)k®ksTe 1 1
—zwugl) S B Ez( /- Z’Ye“;l)z m—: = Vei(u’c(sl) - ugl))’ (4.34)
Z k2 kgl
—iwu(}) it El(l) — i’)/iu(})— i ) zo. (4-35)
) m; ®ow omy
It is more convenient to write these equations for the electronic jill) = —eneougll), and ionic ji(}) =
Zenioug) currents. This gives us:
2
M) e & o @ Vei (1)
T e e Pk, T ek,

At this point we have introduced the thermal velocity vry, = +/kpTa0/ma as per the definition
(1.20). Similarly, for the ionic current density:

. Ze? w
JitT = e0

Adding these two currents together gives us a the expression of the total current density (4.29):

2
A1) _ 1) @) “pa (Y, .z Veil (1)
N~ =Tl t35 =re0w 3 I M 5.3 i
5 ¢ Q:Ze)i W — Yo kv, W — Yok vz,

where wp,, is the plasma frequency of the « species. Finally, as j; = 0y E; (4.19), as per (4.20), we
arrive at a figure for longitudinal dielectric permittivity.

2 oy
w Vei
N S oSS (& I T . 4.36
% Z w? — ya k22, ( T o — Yek2v2., ( )

a=e,i
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This expression is more complex than perpendicular conductivity. First of all, it depends on the
frequency w and the wave vector lg, and there are also contributions from both particle species,
electrons and ions. We can use this expression to determine the longitudinal normal modes of
non-magnetised plasma.

4.3.3 Electrical conductivity of plasma in a homogeneous magnetic field

Let us now consider the electrical conductivity of a homogeneous plasma subjected to a uniform
magnetic field. To simplify this analysis, we will consider the example of a cool, non-collisional
plasma. According to section 4.3.1, plasma disturbances are induced by an alternating electric
field. Let us suppose that the latter has a projection of Ej in the direction of the external field

- éo/Bo, and a component in the perpendicular plane, | :
B (E”g—l— Elél)e—iwtﬂ'k’-f*

where &, is the unit vector in the direction of the electrical field in the perpendicular plane b.
Ag we saw in chapter 2, here, the velocity of the guiding centre @ of a particle, which represents
the overall movements for each species of particle, includes three velocity components: @, U1, Ux

respectively, following the direction of the magnetic field g, the direction of the electric field in
the perpendicular plane, €| and, in the cross-cutting direction, & A €. To solve the disturbance
equations (4.25) — (4.28), we break down velocity ﬁ’&l) into three terms:

’J{(xl) = ua”b 4+ Ug |8 + ugnb AE].

According to this equation (4.26), the movement of a particle in a cold plasma (T = 0) can be
expressed as follows:

i = T B0 B ) (437)
Mo

where wey = ¢o Bo/m4 is the cyclotron frequency. This equation can be divided into three compo-
nents:

. Go , Qo p
— WUy = - E”, — WUy | = s E\| 4+ wealbanr, —tWugn = —Wealal -
& (a3

Solving the second and third equations leaves us with:

. Qo W Qo Wear
5D D Ey, tan=-——— B i
Mo W2, — W My W, — W

B (4.38)

Ug|| = 4

For each particle species, we then specify the macroscopic current density: y_';x = qanaoa&”, and
since this current is proportional to the electric field, we are left with the electrical conductivity of
a-species particles as per the formula (4.19). The total electric current density is the sum of all
electronic and ionic currents, and as such the total conductivity is the sum of the electronic and
ionic conductivities.

Now that we know the conductivity, we can calculate the dielectric permittivity using the
formula (4.20). The magnetic field induces anisotropy in the plasma, and as a result dielectric
permittivity is a tensor. If we suppose that the magnetic field follows the z axis (b, = 1), the
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dielectric permittivity can be expressed as:

w2

_ pa |
e = e e Z L
a=e,i o
w2,
ez =€ =1— Z ?; e =G =0 G = =0 (4.39)
a=e
€xy = —€yp =19 = —1 Z 7%2)&“0&
xy — - Syr — S B 5N
W (W —w
0[28,7: ( CDL)
We can also present this tensor in matrix form:
el 1g O
e=|—ig e 0 |. (4.40)
0 0 6”

The first two diagonal terms are different from the third. Within the limits of the weak magnetic
field, w, < w, this difference is a correction, and second-order in w,/w. It represents the rmagne-
toresistance of the plasma in the directions perpendicular to the magnetic field. The non-diagonal
terms +ig, which are first-order in w,/w, can be attributed to the current component which is
perpendicular to both Eo and B. This creates a Hall effect which corresponds to the creation of
an electric current in the direction perpendicular to the electric field.

Note that the g contributions of the electrons and ions are opposing signs, and the values
of the permittivity components depend heavily on the relation between frequency w, cyclotron
frequency, w.y, and plasma frequency, wy,. We should also note that the relation between the
cyclotron frequencies of the ions and electrons, we;/|wee| = Zme/m; is much smaller than the
relation between the plasma frequencies, wy; /wpe = (Zme/m;)'/2. For this reason, the magnetic
effects on the ions will be visible at very low frequencies. The zz component of the tensor is not
affected by the magnetic field, and can be compared with the formula (4.33).

4.4 Problems

1. Deduce the Maxwell’s equations for the following cases:

o ] B2E o7
iﬁA(EAEHQ L gyl 5.8 (4.42)
o Ot \ 2p0 27" A e '

What do the different terms in the equation (4.42) stand for?

2. Consider an electromagnetic planewave moving through a plasma. The electric field of the
wave can be expressed as follows: E = Re Ej e?*™~#_ Determine the relations (4.16) — (4.19)
the relation (4.20), between dielectric permittivity e and electrical conductivity o.

3. In order to calculate plasma frequency, we can assume there is a slight disturbance in the
electronic density ngl) with n,(gl) < nep. Using the Poisson’s equation V-E = p/€o, the
continuity equation for the electrons (4.21) and the equation for the movement of the elec-

trons in the electric field (4.22) created by the disturbance in density, deduce the temporal

oscillation equation for the disturbance in electronic density ngl). Consider the example of a
cold plasma, T, = 0.
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5 Waves in non-magnetised plasmas

Different types of waves exist within plasma, and in this lecture we will be looking at the most
straightforward case: linear waves in homogeneous plasma. These are low-amplitude waves which
can be likened to a slight disturbance in the initial state of the plasma.

Each of these waves is defined by two major properties: its dispersion, the relation between
the wave frequency w and the wave vector I;, and its polarisation, which represents the direction of
the wave’s electric field in relation to the wave vector and the magnetic field in the plasma. The
nature of the electrostatic waves means that the polarisation ig longitudinal. In a non-magnetised
plasma there are two types of electrostatic waves: high-frequency electronic plasma waves, and low-
frequency ionic acoustic waves. Electromagnetic waves are transverse waves, whose polarisation is
perpendicular to the wave vector. In a non-magnetised plasma, they exist in the high frequency
range, higher than the electronic plasma oscillation.

5.1 Propagation of an electromagnetic wave in a plasma

Here, we are seeking to identify the conditions in which an electromagnetic wave exists in a ho-
mogeneous plasma with no external magnetic field. Let us consider the example of a transversal
electromagnetic plane wave whose electric and magnetic fields can be expressed in the following
manner:

E =ReE, eiE‘F*M, B =ReB, eig‘ﬂi“’t (5.1)

the polarisation of the field EFy is perpendicular to the wave vector, k- Eo = 0. The spatial and
temporal evolutions of the electromagnetic fields are described by Maxwell’s equations (7.16) —
(7.19). In the Fourier transform, they take the following forms:

=

éeog~E:p; k-
EANE: —

0; (5.2)

:
(o0 o 5
The two first equations are satisfied for a transversal wave, as the density of the charges p is
necessarily zero, because as we saw in section 4.3.2, a perpendicular electric field does not induce
disturbances in the particle density and, as a result, the charge density can only be zero. Now
let us consider the equations (5.3). The first expresses the relation between the magnetic and
electric fields, and as a closing condition in the second equation, we will use Ohm’s Law (4.19) with
perpendicular electrical conductivity.
The equation for the electric field is therefore expressed as:

2 — —

w5 = o
—C—ZE:z,uowalEJr E ANkNE. (5.4)

The final term can be simplified using the vectoral identity EAEANE = E(E . E) — K2E = —k2E.
For conductivity, we use the formula (4.32). The electromagnetic field propagation equation is
therefore expressed as:

2
(0%2 (Wi i oﬂ) B=o. (5.5)

W+ e

For this equation to function, as the electric field is non-zero, the term in brackets must be zero.
This gives us: the dispersion equation for an electromagnetic wave in a plasma:

3. .2 W 2.9
w prew+iye+kc. (5.6)
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Figure 23: Dispersion curve for an electromagnetic planewave: the linear asymptote w = kc corre-
sponds to the electromagnetic wave in a vacuum.

Assuming that the collisional frequency is low, ve < wpe, We can obtain the frequency of an

electromagnetic wave in a plasma:
wem (k) = iﬂ/wge—kkzcg. (5.7)

The dispersion curve wenm (k) is shown in figure 23. The two signs correspond to the two waves
which travel in opposite directions. Both waves have two orthogonal linear polarisations between
them in the plane perpendicular to the wave vector.

The presence of the plasma modifies the dispersion of electromagnetic waves. In a vacuum,
wpe = 0, all frequencies are allowed. In a plasma, however, only electromagnetic waves with a
frequency that is greater than the plasma frequency can propagate. In a dispersive medium, i.e.
when the dielectric permittivity depends on the frequency, e(w), we can define two characteristic
wave velocities: phase velocity vy, = w/k, and group velocity v, = Ow/0k = kc?/w. Using
the dispersion equation (5.7), we begin by checking that the product of these two speeds for our
electromagnetic wave is: vppvy = c?. Therefore, vpp, 18 always higher than ¢, however, v, < c. This
latter relation defines the velocity of energy transmission in the wave.

5.1.1 Energy in electromagnetic waves

The energy of electromagnetic waves can be broken down into three terms: the energy of the
electric field, the energy of the magnetic field and the energy of the electrons moving in these fields.
Assuming that the wave is linearly polarised, the electric field of the wave can be calculated using
the formula:

Ey(t,z) = Eocos(wemt — kz)

where wep, (k) is given by the formula (5.7) and the electric field E, is perpendicular to the wave
vector k parallel to the = axis. The expression for the magnetic field can be expressed using the
Faraday equation:

Bt )= Eo cos(wemt — kx).

Wem

By calculating the mean for the wave period 27 /wem, We can obtain the density of electric and
magnetic energy:

1 1

SN N - _ oy _ 1
WE = §€0<Ey> = ZEOEQ, WB = 2—/m<Bz> = ZEO

k22
E2.

2
Wem
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Using the dispersion equation, we can see that the magnetic energy is weaker than the electric
energy, by a factor of k2 fw2,, = 1 — w2, Jw2,,.

We also need to take the energy of the plasma’s electrons into account. Using the linearised
electron movement equation (4.30), 8;i, = —(e/me) E, the average velocity of the electrons can be
expressed as:

Uey(t,2) = — sin(wemt — k).

MelWem
Therefore, the mean kinetic energy of the electron fluid is
_ e®ne o 1 wie

We = —neom. ul, ) == = -
S T e{ e’y> dmew?,, a 4wz,

eoEg .

The presence of the plasma has no effect on the total energy of the electromagnetic wave We,, =
Wp+Wp+W, = %EOEOQ, [t remains the same as it was in the vacuum, but this energy is distributed
differently. The energy of the electric field does not change, but some of the magnetic field energy
is converted into plasma current energy.

The energy Wi is transported in the plasma at the group velocity ¢, = Ec2 /wem. The flow of

wave energy is given by the Poynting vector, S = UgWem

€ —
Wem = ?0 |E0‘27 S=— We'fm (58)

so the wave energy is transmitted in the direction of propagation. This is a property of isotropic
media. As we shall see in section 6, this is not the case for a magnetised plasma.

5.1.2 Collisional absorption of electromagnetic waves

In the presence of electron-ion collisions, the dispersion equation (5.5) requires complex solutions.
The imaginary parts of the frequency and the wave vector correspond to the collisional damping
of the electromagnetic wave as it is propagated through the plasma.

Two potential physical situations can be envisaged. One situation consists of considering the
problem in its initial condition, i.e. we impose an electric field with the spatial period 27 /k at the
starting point, ¢ = 0, throughout the entire space, and we examine its development over time. In
this case, we are obliged to consider the wave number & as a real quantity and the solution to the
equation (5.6), which within the limits of v, < w gives us:

2

W
Begnlh) =t /wge + k2c2 —1¢ gp‘;l/e = twl,, — Yem- (5.9)

According to our definition (5.1) of the temporal dependency of the fields, the negative part of the

frequency corresponds to its decay over time, and thus to the damping of the initial field. This

damping is proportional to the collisional frequency and the plasma frequency, so it is proportional

to the square of the electronic density. Damping also decreases if the wave frequency increases, so

those waves with frequencies close to the plasma frequency experience a stronger damping effect.
As the wave has a complex frequency, its energy becomes a function of time,

€0 .5
Wem(t) = | Eo|Pe™27emt,
It is more convenient to express this dependency in the form of a differential equation:

at Wem _— _Q’YemWem, (5 10)
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which represents the energy conservation law for electromagnetic waves in a homogeneous, dissipa-
tive medium.

The second option is to consider the problem in spatial terms. Let us suppose that at a given
location, = 0, a generator produces an electric field E, which oscillates at frequency w. We can
now examine the spatial distribution of this field. In this example, we are obliged to consider the
frequency w as a real quantity, and the solution to the equation (5.6) within the limits of v, <« w
gives us a complex k value. Supposing that £ = k¥’ + k" and &' > k", we obtain:

1 e Wl Vg .
- o 2 o __Tpe Ter __ Jem
kem = :I:Z W —(/Jpe k}em = 02 Qk/w = vg . (511)
The two k' signs correspond to the propagation of the wave in the positive and negative directions
along the x axis. The sign of k" is always the same as k = k’. This corresponds to the attenuation
of the wave in the direction of propagation. For a plane wave which is propagated along the z axis,

this gives us E = Re Eyef®~#'2~t and as K’ > 0, the wave is attenuated exponentially. This is
collisional absorption. The energy of this electromagnetic wave diminishes in space:

Wem(2) = 2 | 5o Pe~21em/s,

This dependency, as with the equation (5.10), can be expressed as a differential equation: 8, W, =
—2(Yem/vg) Wem. In a more general example in which the wave varies in space and time, this energy
conservation equation will take the following form:

W + Ty -V Wem = —2Yem Wem- (5.12)

This clearly shows that energy is transmitted at the group velocity, establishing the link between
spatial and temporal damping.

We should also note that a real solution for & = &’ only exists at high frequencies, w > wpe.
For frequencies below the plasma frequency, the equation (5.6) gives us an imaginary solution for

k=&" = £{i/e) /wge — w2, even if there are no collisions. But this solution does not correspond
to absorption. This is non-propagation, the electric field created by the generator cannot penetrate
the plasma, but it is attenuated exponentially over the distance 1/|k| = ¢/, /w2, —w?. This is the

skin effect. Tt arises because the external electric field is shielded by the current of free electrons
induced in the plasma.

5.2 Electrostatic plasma waves in hot plasma

An electrostatic wave is a longitudinal wave (its electric field E=ReE itk T i parallel to the
wave vector Ig) The propagation of this wave contributes to a compression (as with sound waves
in gas), and thus to a disturbance in density and pressure. Moreover, the electrostatic wave does
not contain a magnetic field. This can be seen in the Maxwell’s equations (5.2) et (5.2). Bearing
in mind that k A By = 0, we can determine from the equations (5.2) that B =0and

cowh +i7=0. (5.13)

This ig equivalent to the Poisson’s equation 7 ¢g kE-E= p, due to the fact that charge density and
current density are linked by the continuity equation (4.1), wp = k- ;

In addition, by using the relation between current density and polarisation, ;: —iwP and the
definition of dielectric permittivity, we obtain the following equation for longitudinal waves ¢ F = 0,
L8

efw, k) =0. (5.14)
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The solutions to this equation represent the eigen modes of plasmas. We can define two dif-
ferent frequency domains. For high-frequency waves, w > kvr., compression is adiabatic and
one-dimensional, and as such we can use v, = 3. At lower frequencies, however, where w < kv,
compression is isothermal and gives us v, = 1.

5.2.1 Plasma oscillation

In high frequencies and in the example v, < w, the general formula for parallel dielectric permit-
tivity (4.36) takes on a simpler form:

wza 3k2v2 Vei
g=1- Y ﬁ (1+ sz“ —eU) (5.15)

a=e,

One can clearly see that in a cold plasma T, = T; = 0 with no collisions ve; = 0, the equation (5.14)
would have a simple solution:
2 2 2

— 2 ~
W = Wpe + Wpi & W

These are essentially electronic oscillations, as the contribution made by the ions is negligible on
account of their inertia. The digpersion curve w(k) is shown in figure 34.

The difference in a hot plasma comes from the ther-

mal correction term for the plasma’s characteristic frequency.

The high-frequency solution corresponds to the condition
1'? meP(kM W & Wpe > kure, Ve;. We can therefore ignore the ionic con-
0.8 tribution in (5.15), which gives us:
0.6 3 .
04 wes (k) = Eipe (1 + szv%e> — . (5.16)
0.2 e 2 2

01 82 03 0% U5 This is the dispersion equation for plasma oscillations in

hot plasma. These oscillations are also known as Langmuir

Figure 24: Dispersion curve for the waves, they represent the oscillations in an electric charge

Langmuir wave. The dotted line caused by the oscillation of electrons around immobile ions,

represents the electronic plasma fre- 55 we saw in section 1.7. The damping of these waves is
quency. caused by electron collisions.

Kinetic theory tells us that these waves exist in the case

of kApe. < 1. In the opposite scenario kAp. = 1, the adiabatic compression hypothesis does not

~

apply. The oscillation is heavily damped by its interaction with the electrons.

5.2.2 Electronic plasma wave oscillation

Let us suppose that a Langmuir wave of amplitude Ejy is excited. Using the Poisson’s equation for
the electric field E, = E( cos{west — kx), we can calculate the disturbance in electronic density ngl)
caused by the electric field:

en,@ = —eok Ep sin{wegt — kx).

The maximum density is delayed by a quarter-period in space in relation to the field maximum.
We can use the continuity equation to determine the electron velocity: & u,(gl) = wesn,(gl). This value
has the same phase as the density disturbance.
The energy of the Langmuir wa\(fe)s is divided between the electric field and the kinetic energy
1
2.

of the electrons, %eoEQ + %neme(ue By adding these two terms together, we can see that
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electrostatic energy oscillates in the form of cosz(wt — kz) and the kinetic energy of the electrons
in the form of sin®(wt — kz), although the coefficients are identical 3eoE2 = fneme(e2w?,/e?) E3,
if we take account of the dispersion equation: wgs = wf,e. As a result, the plasma waves correspond
to the oscillation in energy between the energy of the electric field and the kinetic energy of the
electrons. By calculating the mean for the plasma wave period, we find that half of the energy is
stored in the form of kinetic energy in the electrons and the other half as energy in the electric
field.

According to the formula (5.16), the group velocity of the plasma oscillations ¥, = BEv%e/w is
very weak, below the thermal velocity of the electrons and, of course, the velocity of light. Therefore
the Poynting vector is small, §es = UyWes and these waves do not transmit much energy, although
the energy density W,, may be substantial.

5.2.3 Ionic acoustic waves

There is also a solution to the low-frequency equation (5.14) , kvre 3> w > kvpi. This branch is
called the ionic acoustic wave. The phase velocity of this wave falls between the electron and ion
thermal velocities. This allows us to take 9. = 1 and «; = 3 and ignore w? and wrg; in front of
k?vZ,_ in the electronic part of the formula (4.36). The dielectric permittivity (4.36) is thus:

1 w;
— 1 - P
9T e T 23k,

using the relation Ape = vre /wpe for the Debye length of the electrons. We can see that, in this
domain, the electrons and the ions behave completely differently. The contribution of the electrons
in ¢ does not depend on the frequency, but on the number of waves k. This tells us that the
electrons are more or less static, shielding the electric field created by the ions, in a process similar
to the Debye shielding of static iong 1.4.1. However, the ions contribute dynamically, like electrons
in high-frequency conditions.

The general solution to the dispersion equation (5.14) in

the low-frequency field is shown in figure 35. The frequency
1.2 ooy (ky e of this wave is of the same order as the ionic plasma frequency
Ofli fffffffffffffffffffffffffffffffffffffffff and depends heavily upon k:
0.6 s Kk 2.2
04 (A)m', = HTQ/\ZDB ‘|‘ 3]41 UT@" (517)
0.2 KAps _ ‘

In this equation, ¢, = wpiApe = +/ZkpT./m; represents the

0.5 1 L5 2 speed of sound in the plasma.

There are two important limits to this dispersion. The

Figure 25: Dispersion curve for the long wavelength limit, kg)\% . < 1, which corresponds to the

ionic acoustic wave of ZT,/T; = 10. quasi-linear dispersion,
The dotted line represents the ionic

2
plasma frequency. Wai(k) &5 = |k|us (1 — kz)\zpe%> (5.18)
8

where vs = 4/c2 + 3’”’%1' This dispersion is reminiscent of the dispersion of an acoustic wave in a
gaseous medium, and the velocity v, acts as the speed of sound. This is also known as a pseudo-
sound wave. The analogy goes further still. Tonic acoustic waves up to kzx\%e < 1 are quasi-neutral

density oscillations, because up to this limit electrons and ions oscillate in phase nfﬁ =7 ngl), and
the electric field is weak.
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Nonetheless, there is a difference between neutral sound waves and ionic acoustic waves. The
condition required for the latter to exist is vy > vp;. This condition can only be satisfied in a
non-isothermal plasma where ZT1, > 37;. Kinetic theory tells us that ionic acoustic waves cannot
exist in a plasma in thermal equilibrium where T; = T, because the damping effect is too strong.

The mode (5.17) in the field of shorter wavelengths, kQ)\%e 2 1, is known as an ionic plasma
wave. Up to this limit its dispersion is:

3 1
waz’(k) = :‘prz (1 + akz)\zDz =3 W) 5 (519)

The dispersion of this wave is similar to the dispersion of Langmuir waves (5.16). Since the
wavelength is shorter than the Debye length, the electrons cannot shield the electric field. So below
this limit, disturbances to charge density come from the ions, while disturbances in electron density

are much smaller n,(;l) < anl).

5.2.4 The energy of ionic acoustic waves

Let us suppose that an ionic acoustic wave is excited with the electric field E, = Ep cos(wait — kw)
Let us examine how the other quantities are connected to F, within the confines of long wavelengths,
k23, < 1. For electronic and ionic velocities, we use the equations: (4.34) and (4.35). Bearing in
mind that wgi < wps, kvre, for the electrons we obtain:

EWgi

en : .
ntt) = W%) Eosin(wet — kz), ul) = EhaTo Eosin(wet — kx). (5.20)
For the ions, also bearing in mind that w,; > kvp;, this gives us:
.2 l; Bhstilnd—R), B9 20 et e (5.21)
mqum’ Mias

Using the dispersion equation (9.42) wgi ~ k?v2, we can see that the amplitudes of the electronic
and ionic disturbances are very similar, ugl) oY ugl) and ngl) o] anl). So the electric current and
charge density are very low.

With their substantial mass, the ions contribute to the kinetic energy of the wave,

=52 eoEg Sin2(wm't — kx).
Wai

W; = %’niomi (u§1)>
Their energy is higher by a factor of wfﬁ Jw?; =~ 1/k%)3, > 1 than the energy of the electric field,
Wg = %GOEE cosz(wm-t — kx). The contribution of the electrons is linked to the potential energy
of the wave. According to the law of thermodynamics, the effect of the pressure force generates
a surplus of internal energy, 6W = —P V', where 6V is the change in elementary volume. In
this case, the pressure is linked to the thermal agitation of the electrons, P = kBTeon,(gl) and
the change in volume is 6V = *ngl)/neo. So for the potential (internal) energy of the wave, we
determine that:

We

2
= %kiz;eo (n(1)> = %ﬁ%eeOEg sin?(wyt — kx).
By calculating the mean throughout the ionic acoustic wave period, we find that the energy con-
tained in the electrons is equal to that contained in the ions. So this wave represents the oscillations
in the kinetic energy of the ions and the pressure of the plasma caused by the thermal agitation
of the electrons, while the energy of the electrostatic field is weak, below kz/\zDE < 1. However,
within the limit kz/\%e < 1, the energy of the electrons is weak and the oscillations occur between

the kinetic energy of the ions and the electric field.
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5.3 Problems
1. On the basis of the phase velocity vy, = w/k, (5.7), determine the group velocity v, = dw/0k.

Pag

From this, establish that v,pv, = c?. Establish the expression of the propagation index
N = c¢/uvpp, = kc/w. What can we say about the wave for wpe 2 w?

Consider w? = n.e? /me€g Where n, is the wave cut-off density, or the critical plasma density.
From this, determine the expression of the plasma index according to neo/n.. Demonstrate
that for n.y < n,, the index can be simply expressed as N ~ 1 — ng/2n.. Show that the
electrical permittivity e can be expressed as: e = N2 = 1 — wge /w?. Note that the plasma
propagation index is less than 1.

Based on the fluid equations for the electrons, and the Poisson’s equation, and assuming that

the plasma is cold (7. = 0), calculate the plasma frequency by determining the movement
of the electrons (assume that the ions are immobile). Compare the average kinetic energy of
the electrons and the energy of the electric field.

Consider an electric plasma wave moving through a homogeneous plasma with a temperature
of kT, = 100 eV, electronic density of n, = 10'® m—3, and frequency of 1.1 GHz. What is
the wavelength in cm?

. A space shuttle returning to earth suffers a communication breakdown due to the fact that

a plasma is generated by the shock wave in front of the shuttle. If the radio frequency is 300
MHz, what is the minimum value of n. during the communication black-out?

. Calculate the dispersion relation of ionic acoustic waves using the fluid equations. Use the

quasi-neutrality condition instead of the Poisson’s equation. Compare the kinetic energy of
the ions with the energy of the electric field. Comment on the difference with the plasma
wave.
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6. The propagation of electromagnetic waves into magnetised

plasmas

6.1 Magnetised plasma

Both the z-pinch and laser produced plasmas are magnetised. The z-pinch because of the
current which flows in it and generates an azimuthal magnetic field and the laser produced
plasmas due to currents generated in the blow off plasma. Waves propagating in a magnetised
plasma are important because they determine the plasma characteristics and can also be
used as diagnostic purposes. In order to understand the propagation of an electromagnetic

wave in a magnetised plasma we start from Maxwell's equations:

Pf

V-E=—
. 6.1)
V-B=0 (6.2)
V x E=—a—B (6-3)
ot

. oE 6.4
VXB:MO(JerSoE) ©4

where E and B are the electric and magnetic field vectors respectively, eg and mg are the
permittivity and permeability of free space respectively, jf is the free electric current density

and rf is the free volume charge density.

The important equations for our purpose are the (6.3) and (6.4) where all the
electromagnetic properties of the plasma appear explicitly in the current density j. To eliminate
B we take the V x of equation (6.3) and the &/ ot of equation (6.4) and find:

ol . OE |
VxVxE =2 ugi+eoty = |
e R 65

In order to proceed we need to assume that the current is a linear function of the electric

field which means that if a variation E1 of the electric field gives rise to a current j1 and similarly
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a variation E2 to a current j2, then a variation of E1+E2 gives rise to a current j1+j2. We also
assume that the plasma is homogeneous in space and time. This means that the dielectric
constant e and the electric conductivity s are independent of the position r and time t.
Generally, a plasma is an anisotropic medium, thus the conductivity s is a tensor. Because of

the above assumptions it is possible to Fourier analyse the electric field and the current so
that,

E(r.t) = [E(k,t) e! (K70 g3y g,

j(r.0) =1 ik, 1) ' g3y g

Each Fourier mode can be treated separately since each satisfies equation (6.5). In order
to have a closed system of equations, we need to know how the electromagnetic field
influences the current. The assumption of linearity mentioned above allows us to write the
relationship between the current density and the electric field for each Fourier mode as

j(k,w)=s(k,w)-E(k,w) or j;=sysEs. This is usually referred to as the Ohm's law.

The wave equation (6.5) now becomes for each Fourier mode,

kx (kxE)=—io(1,0:E—¢g u,ioE) (6.6)

Noting that kx (k x E) =(k- E)E — (k- K)E equation (6.6) can be written as,

N

w
[kk—k21+?s)-E:0 (6.7)

where 1 is the unit matrix and e is the dielectric tensor,

i
g :(l+ — O'J (6.8)

0
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From equation (6.7) three homogeneous equations, one for each coordinate can be
written. In order to derive a non-zero solution from these equations, the determinant of the

matrix of coefficients must be equal to zero,

N

det[kk— kzl+%s) -0 6.9)

Equation (6.9) is the dispersion relation.

The plasma conductivity tensor must be calculated and hence the permittivity. For this
purpose, the cold plasma approximation is used where the thermal motions of electrons and

ions are considered to be negligible (Te=Tj=0). So, the electrons and ions are taken to be at

rest except for motions induced by the waves. Collisions are neglected as well.

We assume a uniform external static magnetic field Bg. The equation of motion is:

ov
me — =—e(E+vxBy) (6.10)

where the second order term involving vxB and the term v.Vv are neglected since we are

treating fluctuations only in the linear approximation.

Because of the cold plasma approximation the velocity is harmonic in time for a single

Fourier wave mode. Therefore,

v(r, t) =v(r)e” ' (6.11)

For convenience we choose Bg to be in the z direction, Bo=(0,0,Bg) as shown in Figure

6.1. Then on considering Fourier components equation (6.10) becomes,
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—Meiwvy =—€Ey —eByvy
—Meiwvy =—€Ey +eByvy (6.12)

If we solve for vy Vy, Vz we have:

i 1
VX: Ad Ex—l_E
oM [1 szL o Y]
032
—ie 1 [.Q 1
Vy = I—Ey+E
Y~ ome [1 QZ}LCO XTEY | (6.13)
(DZ
—ie
Vv, =——E
y4 oM y4

where W=eBg/me is the electron cyclotron frequency. Writing current as j=-enev=cE the

conductivity tensor is:

I i |
1= 0
2 1 lia . |

o = Ne€ si= 1 0 (6.14)
m.o Q|co |

1= 2

o?lo o 1-Z
L o2

This is the electron current conductivity. The ions can be treated in exactly the same way and
an identical equation is obtained with the ion mass, charge and density parameters instead of

the electron ones. Then oyt = G, G -

Having the conductivity tensor, the dielectric tensor can be found from equation (6.8). So,
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|r1 Ope I pel2 0 —:
| 02 —0? (o(coz—Qz) |
“im2.Q w2
g=! P o7\ o2 0 | (6.15)
|oo(0) - ) o" —Q |
| 2 |
| 0 0 _w_p2e|
L o |

nee?

is the electron plasma frequency. In general, if we want to consider and

where wpe =

goMe
the ion contribution for the dielectric tensor we just add the same terms but with the ions

parameters and we have,

2

®ps
g1 =& =1~ Z :
S QZ
w2 Qg
£12 :—821——'2 ( 55_92) (6.16)
(,0
€33 = =1- z )

where the index s indicates the species of the plasma (s=e for electrons and s=i for ions).

Because mj>>meg the ion contribution is small provided the frequency is high enough.

Now that the dielectric tensor is known we can solve equation 6.9 to find the characteristic
waves which can propagate in the plasma. Without loss of generality, we orient the system of

coordinates so that kx=0, which means k=k (0,sing,cosq), where q is the angle between k and

Bo as shown in figure 6.1.
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Figure 6.1 Coordinate system for wave propagation in plasma

and the refractive index

elw

2
®pe
We also define the non-dimensional quantities o = _p2 B =
™

kc
n=—"_. Then by solving equation (6.9) the determinant becomes:
®

602
kP
C
2
5 €12
2

e

e o

€31

N

c

2
®

€1 — €12
2
2 2 .2 ®?
-k~ + k®sin 9+—2
5
. Q)]
k23|necose+—23
C

€22

32

2
2 es
2

2
. Q)
k? sind cosd + — €23
c

2
Q)
—k2 + kzcos2 0+—¢
C2 33

=0  (6.17)

By substituting the dielectric elements from equation (6.15) and using the non-dimensional

guantities defined above the determinant becomes,
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We see that in the cold plasma approximation e is independent of the direction of the k,

thus this dispersion relation is a quadratic equation for k2 and therefore for h2. Solving

equation (6.18) we find,

al—a)

n=1-

1-a- —; B’sin’0+ J[@ B?sin’ 6)2 +(L— o)’ B? cos? e} (6.19)

This is the so called Appleton-Hartree formula for the refractive index. In order to
understand the properties of the waves that can propagate in the cold plasma some special

cases will be discussed.

6.2 Isotropic plasma

Let's consider a plasma without an external magnetic field Bg. Then W=0 and the dielectric

tensor can be written as,

[ 2 1
1-—5 0 0 |
W
| 02 |
€= 0 1—? 0 | (6.20)
| 2 |
|0 0 1--Be
2
L o |

We can see that the dielectric tensor is diagonal with all three elements equal,
2
®pe . . . : ,
€11 =€ = €33 =1——% = ¢ Thus the plasma is isotropic. Using equation (6.20) to find the
o

dispersion relation from equation (6.9) we obtain, assuming, without loss of generality, that k

is along the z-axis,
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k22 g 0 0
2
C
2 0)2
0 -k +?8 0 |=0 (6.21)
2
Q)
0 0 — €
C2
The solutions can easily be found:
2 032
-k“+ — &= 0 E transverse (6.22)
c
0)2
&= 0 E longitudinal (6.23)
c

There are two different modes of wave propagation. The transverse mode has a dispersion

1

. . : kc . - : . ,
relation which can be writtenas n=— =¢ 2 and is the familiar expression of simple optics.
®

The longitudinal mode, for which the electric field is parallel to the wave vector is governed

by the dispersion relation ®? = m%e. This mode corresponds to plasma oscillations.

The transverse mode is governed by the dispersion equation o’ = co%e +02k2. Such

waves can propagate only if the frequency is higher than the plasma frequency. This mode

has a "cut-off" at w=wpe. From the third equation of Maxwell it can be seen that this mode

involves both an electric and magnetic field which are orthogonal to each other and to the
wave vector k. Thus, the transverse mode represents an electromagnetic wave. From

2 \1/2
)

equation (22) it can be seen that if w>wpe, k=+ct ((o2 — Ope . Hence the propagation

1/2

vector is real and the wave can propagate. If w<wpe, k:iic_l(coge—oaz) and the

propagation vector is imaginary. This means that the wave amplitude decreases exponentially.

Such a wave is known as an evanescent wave.

6.3 Propagation normal to the magnetic field

We now consider propagation normal to the magnetic field, thus g=p/2. The Appleton-Hartree

formula gives,
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which are the dispersion relations for propagation of electromagnetic waves normal to the
magnetic field. The characteristic polarisations of the electric field are respectively:

2 2 2
im(m ~Ope % )E =0 (6.25)
] 3_ .

E; =E;, =0,E3#0 and B__ >
E, ®pef2

respectively. The dispersion relation corresponding to E3 #0 is seen to be identical to the

dispersion relation for electromagnetic waves in a hon-magnetised plasma. So the magnetic
field has no effect on the dispersion relation. This is because in the present case the electric
field is parallel to the magnetic field and the electrons are free to move parallel to the magnetic

field. The dispersion relation corresponding to E5 =0 is the more interesting case and is

shown in figure 6.2. The cut-off frequencies can be found:

1/2
1 (2 1 2)
01=—=Q+| O +=-Q
S N

®) =§Q+(m%e +ZQZ)

(6.26)

/2
At © =op = (coge +Q2j , there is a resonance. This frequency is known as "upper

hybrid frequency". The electromagnetic waves can propagate normal to the magnetic field for

W <O<Op, and o> m;.
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Figure 6.2 Dispersion relation for EM waves propagating transverse to the magnetic field

6.4 Parallel propagation

In this case =0 so k=(0,0,k) and the wave propagates parallel to the magnetic field. From
equation 6.19 the solutions for this case are:

1
nW=1- #(1&)3) So for o # 0= w° ;twse, nzzl—ﬁ3 or the dispersion relation
( 2
2 ©pe 2,2
07| l-——=|=c"k 6.27
L co(coiQ)J (6.27)

(22 w2 2.0 3
|‘k®2 +1‘0)2_pegz ( — Qz) 0 ||(E1\
| (-
2 2.2

1050 kéc w2 |
| w((o - ) ® o -Q || |
| 2 IL J

()]

|\ 0 0 —w—pzeJ E3
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Because (o2 # co%e it can be seen from equation (6.28) that E3=0 so the dispersion relation

(6.27) describes transverse waves.

If 032 = m%e then E3 #0 and we have the longitudinal electrostatic wave, that is, plasma

oscillations.

We now see from (6.28) that for the transverse wave, E1 and E2 have the same absolute

maghnitude but they are different in phase by 90 degrees,

(6.29)

S
I
4

that is, circularly polarised waves with left and right handed E rotation respectively with respect

to the direction of the magnetic field.

Let us examine the dispersion relation (6.27) for the case that Ope = 2Q). The w-k diagram

is shown in figure (6.3).

Figure 6.3 Dispersion relation for wp.=2Q for parallel propagation
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where wr and w_ are the cut-off frequencies for the right-hand and left-hand circular polarised

modes respectively . At ® =2 there is a resonance as it can be seen from equation (6.27) for
the L-mode which is due to the synchronism of the electromagnetic wave and the electron

cyclotron frequency. Furthermore the wave can not propagate in the range Q<o <o|_.

6.5 Faraday rotation

Consider a linearly polarised transverse wave propagating along the direction of the magnetic
field. This wave can be decomposed into two counter rotating circularly polarised waves which

are characterised by the propagation vectors given by equation (6.27) or,

1/2
ol _oh

T Ll_ o(o iQ)J

(6.30)

where only the positive signs have been kept because the wave propagates along the positive

z-direction and the "+" corresponds to the right hand circular polarised wave.

Since k, #k_, there will be a progressive phase change between the two components as

the wave propagates. The combined wave is still linearly polarised, but the polarisation of the
E vector varies with position. It was shown above that for parallel propagation (q=0) there are
two modes for the transverse electromagnetic wave propagating into the magnetised plasma.
For the right-hand circular polarisation E1/E2=+i and for the left-hand one E1/E2=-i, while the

index of refraction for these two modes is given from equation (6.30). If the amplitude of each
circularly polarised mode is Eg then the x and y component of the linearly polarised wave can

be synthesised from the circular polarised ones as follows:

E,=E, E:os(k+z ~ ot )+ cos(k_z - cot)]

(6.31)
E,=E, E:os(k+z ~ot)- cos(k_z — mt)]

and using the appropriate trigonometric formulas can alternatively be written as:
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E,=2E, cos[ K, ; S —mt}cos[ K. ; K-,
(6.32)
k, +k_ 1k, —k_
E, = 2E,cos > Z—ot (sin > z

E
If f is the angle that the electric vector makes with the x-axis then —2 = tand and from
1

(6.29) we see that ¢ = K, ; k. z.
Therefore,
[ 2 2|
® ®
9 _ Lo, k)Ll e i Pee (6.33)
dz 2 2¢c | o(o+Q) w(m—Q)J

If W<<w (b<<1) which is a condition nhormally valid for laboratory plasmas, we can approximate

the square roots using Taylor's series so that,

2 2
©Ope 1 ©Ope . Q ®pe
1-—5 o= l-—5 £ — = -
O 1+= @ 20 2 (Dpe
) O 41— —
o
Thus, equation (6.33) becomes:
d e3? n.B .
4o _ ———3 ——==, hence the total rotation of the plane of polarisation along the path
dz  8n"mgec” | _Ne
Nc

of propagation of the wave can be expressed as:
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\" nc

2 2 2
, , ®pe n Nee O Mee
and it has also taken in account that 1 - —% = 1——¢ and mge =—£— where n = —2
0] Ne €oMe e

2mC
is the critical density and | is the wavelength, A = 2 .

6.6 Rotation for propagation at a general angle q

The refractive index for propagation at a general g to the magnetic field has already been
obtained above and is given by the Appleton-Hartree formula (6.19). For considering the
Faraday rotation the characteristic polarisation for the components of the electric field
perpendicular to the direction of propagation is required. This requires solving equation (6.7)
for E. Itis possible to continue the analysis using the present coordinate system. By eliminating
k and E3 from equation (6.7) the ratio E2/E1 can be found and provided that b<<1 then
E;/E, = Fi. However for expressing the rotation of the wave polarisation is easier to consider
a coordinate system in which the propagation vector k, is along the z axis and taking the x
axis perpendicular to B as shown in Figure (6.2). Starting with the general equation for
propagation (6.7) with the k vector in the z direction and arbitrary dielectric tensor, eliminating

E3 and k, the equation for the polarisation, p= E]/Ez is obtained in the general form:

‘z

Figure 6.4 Coordinate system to study the polarisation effects
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2
—(e21833 —€31823 0 + (11633 — €22633 + €32823 —€31€13 P +

(6.35)
(e12633 —832€13)=0

The dielectric tensor for this coordinate system can be found following the same algebra

as that for dielectric tensor (6.15) and can be written as,

|_1 a ichose |aBS|n9 ]
| T i
I |chose 0‘(1 B sin 9) o cosOsin® I
TR 5 e | (6.36)
| |ochose % cos0sin® . 0‘(1‘525"‘29)|
[ 1 1-? R
p p

It can be seen that the angle between the B and k appears explicitly in the dielectric tensor
whereas using the former coordinate system the angle appeared after solving the wave
equation. However, the disadvantage of this system is that there are no zeros in the dielectric
matrix, thus the algebra is harder if the question is to find the dispersion relation only.
Therefore the present coordinate system is used only for purposes where polarisation effects
are important as opposed to the former one which is practiced when the dispersion relation

equation needs to be derived.

Using the matrix elements from (6.36) and the general polarisation equation (6.35) it is found
5 iBsin?0

forr, + +1=0 and solving this we find:
P cos 0(1-a) P J

12
E iBsin? 0 +i|_1+ B?sin*0 ]
E,  1(1-a)cosO L 41— o) COSZGJ '

If bsecq<<l and 1-a not small the above equation can be written as E;/E, ~ ¥i

Consequently, the result is that for W<<w, at all angles not close to perpendicular the

characteristic waves are circular. So the previous analysis can be applied, thus,
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The Appleton-Hartree formula gives the index of refraction for general propagation.

Retaining only first order terms in the assumed small b, can be written:

0 =1—a +apcosd (6.37)

1ol apcoso |
Substituting in the equation for the rotation angle f we obtain, ¢ = E 2 Lgﬁ )UZJ , SO the

1 m%eQ cos0
total rotation along the path of propagation is ¢ = —

dz which alternatively

2C£ 2( ©pe
® Ll— >
()
can be written:
. e)? neB-d/
~ 2 2 3
8n MeeoC” ) (1—&j (6.38)
Ne

n
where the dz has been replaced with the more general d/. Furthermore for n—e <<1 the
C

rotation angle can be approximated to,

37\’2

o~ 3In B-df (6.39)

8n° mesoc

Within the limit of the approximations applied, this is a general formula for the Faraday

rotation angle for an electromagnetic wave propagating into a magnetised plasma at any angle
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to the direction of the magnetic field. Thus, it is proportional to the parallel component of the

magnetic field, the plasma electron density and the square of the wavelength.

The above analysis for the propagation of electromagnetic waves in magnetised plasmas
is based in the cold plasma approximation which of course is not the case for a real plasma.
However, the waves which come out from the cold plasma theory retain their essential features
in a hot plasma for most frequencies, so they play an important role in the study of wave

propagation in a plasma, even if it is at a very high temperature.

6.7 Nonuniform media and the WKBJ approximation

In reality, no laboratory plasma satisfies the condition of being uniform throughout all space.
If the plasma does not vary very much over scale lengths of the order of the wavelength, then
the wave would behave locally like the homogeneous plasma solution. The wavelengths used
in optical plasma diagnostics are very much less than the electron density scale lengths and
the plasma may be considered as homogeneous layers and therefore the homogeneous wave
equation is valid in each layer. The type of approximation which treats the inhomogeneous
plasma as a slowly varying medium is generally known as the WKBJ approximation (Wentzel,
Kramers, Brillouin, Jeffreys) or more simply geometric optics approximation. In this

approximation the wave amplitude for a given frequency w is written in the form:

£ ei[ k~dl-c0t] (6.40)

where | is the distance along the plasma layer considered as homogeneous and k is the
solution of the homogeneous dispersion relation for the given w. In order for this solution to
be a good approximation the fractional variation of k in one wavelength of the wave must be
small or similarly the refractive index scale length must be very much larger than the

wavelength of the propagating wave. This can be written as:

VK 2
|—2| <<lor =55 (6.41)
k Y%

v
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7 Kinetic description of a plasma

7.1 Distribution function of particles

The most complete microscopic description of a gas, the N-particles system in a volume V, is given
by the description of the coordinates 7;(¢) and the momenta p;(t) of all particles at all time. This
allows us to determine how many particles are in a given domain of momenta (the phase space)
and in a given volume of the coordinate space. We introduce a microscopic distribution function,
fmicro(t, 7, P), characterizing the number of particles in a moment ¢ in a volume of the phase space
d3r x d3p:

dN = fuicro(t, 7, P)d3r d®p. (7.1

This microscopic distribution function has an exact expression if the positions and momenta of all
particles are known. In fact, the function fmicro i8 discontinuous; it is not zero only in the points
in the phase space that coincide exactly with the position and the momentum, 7; and p;, of one of
particles. Therefore, the function fmicro can be written as a product of the Dirac delta-functions
corresponding to the ensemble of particles:

N
Fmiero(t, 7, B) = > 8[F — 7(8)] 8[F — B (¢)] (7.2)
i=1

where §(7) = d(z)d(y)d(z) is the Dirac delta-function in three dimensions. However, such a
definition of the distribution function is totally formal. It represents essentially the ensemble of all
coordinates and momenta of all particles. Our objective is not to remain at the level of description of
discrete particles. We want to introduce a continuous description making the void space between
the particles disappear. So we make a spatial average of the microscopic distribution function
obtaining a continuous distribution function:

f(t7 F,ﬁ) = <fmicr0(t7 F7}5)>Va' (7'3)

This function gives us an approximate description of the exact number of particles in a give volume
of the phase space because fuicro i8 different from f. However, this difference 6 fimicro = fmicro — f 18
a random quantity with a zero average. This random deviation is called a fluctuation. The object
of the statistical theory is to minimize the fluctuations in order to have the most exact description
possible. But we cannot neglect completely the fluctuations: they take in account the correlations
between the particles and manifest themselves in the collisional processes.

The choice of the volume V, of averaging of the distribution function in Eq. (7.3) is not
completely arbitrary. It depends on the physical problem that we are dealing with. It is evident
that the volume V, must be sufficiently large compared to the mean volume attributed to each
particle V,, > V/N. If V, is too small, we may have a very precise spatial resolution, but, because
of a very small number of particles N, in the volume V,, the average function will be defined
with an insufficient precision. It is known from the general statistical theory, the amplitude of
fluctuations around the mean value is of the order of N, Y 2 At the same time, the volume V,
must be small enough compared to the total total V, << V in order to describe the system with a
sufficient precision.

Practically,in experiments the volume V,, is defined by the spatial resolution of our measurements
and in the numerical simulations by the number of macro-particles chosen and by the computer
performance. For example, a gas under normal conditions of pressure and temperature has a
particle density n ~ 10% m~2. The mean distance between particles is d ~ »~1/3 ~ 10 nm. So it

would be sufficient to choose the resolution distance d, = al 8 of the order of a micron. Then the
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volume V, contains N, ~ 107 particles. Thus, we will be able to measure the mean value with a
precision of a few microns and, at the same time, we maintain the fluctuations level under 0.1%.

7.2 Klimontovich equation

We are going to obtain an evolution equation for the distribution function. Let us start with the
microscopic function. According to the definition (7.2), the temporal evolution of fmicro is due
to the movements of all particles. As a consequence, the temporal derivative of the distribution
function fmicro can be written as:

N
atj:micro = dt Z 5[77_ 7?z(t)] 5W_ ﬁz(t)]

i=1

where 8; = 8/8¢ is the partial temporal derivate, and d; = d/d¢ is the total temporal derivate. As
the coordinates and the momenta of particles are the quantities depending on time according to
the equation of motion, of can write the derivative as follows:

N N
B fmicro = — »_ dei - VOIF — 74(t)| 615 — Bi(t)] — ) _ depi - 80 [p — Bi(8)] 817 — 73(t)] (7.4)
=1

i=1

where V = 0/07 is the spatial gradient and 87 = 9/9p is the partial derivate with respect to the
momentum.

Let us consider first the derivative of the particle orbits. The derivative d;7; is, by definition,
the particle velocity, ;. It is related to the to the momentum: In the classical mechanics 7; = p; /m,
and in the relativistic mechanics @; = p;/m~y, where the relativistic factor v = (1 + g; 2/m?c?)1/2.
Finally, the derivative d;p; is defined by the Newton’s law:

dips = Fi

where Fz is the force applied to the i-th particle. In the most general case, it depends on time, on
the position and on the speed of particle, F; = ﬁnﬂcm(t,ﬁ,ﬁi). The subscript of the force recalls
that it is of a microscopic origin — it can be produced either by other j # 4 particles or by external
sources.

We notice that we can remove now the subscripts of speed v; and of the force F; in Eq. (7.4)
thanks to the specific property of the Dirac delta-function: ad(z —a) = zd(x — a). So we can pull
the velocities and the forces out of the summation and write Eq. (7.4) like an equation for the
microscopic distribution function:

8tfmjcr0 + U ﬁfmicro E 5 ﬁMCro o aﬁfm.icro =0 (75)

This is the Klimontovich kinetic equation. Although it is a microscopic equation, representing an
ensemble of discrete particles, the coordinates and the momenta of individual particles are not
formally present. This allows us to develop an equation for the average distribution function.

We recall here that the force ﬁmicm has in general two components, an internal and an external:
ﬁmicm = Fest | Fint The first one is known, it is normally produced by the sources out of plasma
(capacitors, coils, laser beams, ete.). In contrast, the second one is the sum of the forces produced
by all particles in plasma. It varies very strongly in space and in time because of a random motion
of particles. Therefore, it must be replaced by an average force in the equation for the average

distribution function. So we need to establish an equation for the average strength too. Because
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that force is of the electromagnetic origin in the case of charged particles (the Lorentz force), we
must derive the Maxwell’s equations for the mean fields.

The internal, self-consistent force is at the origin of A collective behavior of plasma. We limit our
analysis to binary interactions of nearest neighbor particles, and we suppose that the correlations
of higher order are negligible. This assumption is valid for the gaseous state where the kinetic
energy of charged particles is much higher then the potential energy of their pair-wise interaction.

7.3 Vlasov kinetic equation

To obtain a regular equation for the continuous distribution function we follow the prescription
of Eq. (7.3). It means that we have to average the Klimontovich equation (7.5) over a volume
V., as it was explained in the previous section. The averaging of the derivatives does not pose a
problem because these operators are applied to average variables, even if the average is made over
the positions of individual particles. We have then:

8t +7 V5 + { Frico - Optrmicro ) = 0. (7.6)

We notice a problem with the last term: it cannot be easily averaged because it is a nonlinear
product of two microscopic quantities. To simplify this term we need to introduce an additional
hypothesis. This is the weak correlations hypothesis: we suppose that the distance between the
particles is sufficiently large, so each particle moves as if it is free and there are no other particles
around. These free trajectories are regular. They are defined by the average forces, and with the
perturbations induced by the movement of other particles are of the second order.

Then, every microscopic quantity can be presented as an average quantity and the corresponding
fluctuation. For example,

— —

fmjcro = f o 5fmicr07 ijcro =F+ 5ﬁmjcro' (77)

If we choose the volume V, over which we average the microscopic distribution function (7.3), the
amplitude of fluctuations, d fmicro << f will be small, and the mean value will be zero, (4 fmicro) = 0.
This allows us to develop the last term in Eq. (7.6) in a series of Taylor. Moreover, we have to
account for the fact that in a plasma there are several particle specieg, two at minimum: electrons
and ions. So, we define the distribution functions for every species «.. At the first order, we obtain
a standard form of the kinetic equation:

ST Vi By - O5fa =10 (7.8)

The left hand side describes evolution of the average distribution function due to the movement of
particles (the second term describes the spatial diffusion) and to the average self-consistent forces
(the diffusion in the phase space — the third term). In plasma, this is the Lorentz force that accounts
for the self-consistent electric and magnetic fields

F, = qo(E + @ x B). (7.9)

This kinetic equation with a self-consistent force is called the Viasov equation. It as been empirically
proposed by Anatoly Vlasov in 1945 to give a theoretical explication of plasma oscillations. It is
actually the basis of all kinetic models for the particles interacting through the long long range
forces: electromagnetic and gravitational.

The Vlasov equation describes evolution of the distribution function in a large scale, larger then
the Debye length, and it can be applied to low density plasmas. In contrast it does not accounts for
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the fluctuations. The collisional effects become important when the particles come closer to each
other. The interaction at short distances, smaller then the Debye length, is the domain where the
collisions are important. Therefore, the Vlasov equation can be used under the conditions where
the plasma can be considered as collisionless.

7.4 Collision integral

Let us consider now the contribution of the collisional term 6 fuicro in the microscopic distribution
function (7.7). We have to account for the fluctuation terms of the second order in Eq. (7.6):

atfoz f a'ﬁfa o ﬁa '6ﬁfoz — <5ﬁMCroa 'aﬁzéfmjcroﬁ> = Zcozﬁ- (710)
8 B

Compared to the Vlasov equation, we have a new term in the right hand side called the collision
wntegral. To find an explicit form of the collisional integral we need to solve equations for the
fluctuations of the electromagnetic field and for the fluctuations of the distribution function. We
will discuss the explicit form of the collision integral in the next chapter. Here we just present some
general comments.

First of all, the hypothesis of weak fluctuations allows us to account only for pair collisions,
between the particles of species o and g in an additive way. That means that Eq. (7.10) considers
only binary colligions, while the triple collisions are excluded. Thus, weak correlations correspond
to small perturbations of the particle orbits. In each colligion, the particle does not change much
its direction of propagation and its momentum. So, the right hand side of Eq. (7.10) describes the
scattering at small angles.

The general kinetic equation that takes into account the scattering of particles at small angles
has been developed by Fokker and Planck in 1917. We will see in the next chapter that Eq. (7.10)
is a special case of the Fokker-Planck equation.

We also notice that the collision term is local. There are no operators containing a spatial or a
temporal derivative. So the plasma is supposed to be homogeneous and stationary at correlation
scale. The spatial scale is defined by the Debye length, Ap,, by the characteristic speed of particles,
that is, its thermal speed, vr,. So the characteristic time of a collision is Apy/vre = 1/wpa is the
inverse of plasma frequency.

Finally, the collision integral in the form (7.10) satisfies the conservation laws. It preserves
the number of particles of each species, the total quantity of motion of the system and its total
energy. The mathematical demonstration of these properties is presented in Chapter 77, but it is
easy to understand it in a qualitative way. The collisional term in Eq. (7.10) takes into account
the Coulomb collisions at small angles. These are elastic collisions — in every collision the number
of particles, the momentum and the energy are preserved. So, it is not surpriging that the collision
integral has the same properties as its microscopic origin.

7.5 Macroscopic field, Maxwell’s equations

Kinetic equations (7.8) and (7.10) must be completed with equations for the mean fields, E =
(Emicro) and B = {Bmicro). The microscopic fields verify the Maxwell’s equations:

— —
X Emicro = _atBIIliCID)
nl -1
* Lmicro = €9 Pmicro,
o - o4 2
X Bmicro = J40Jmicro + € 8tEm.icr07

=

' Brﬂ.icro =0.

< < < <
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These fields are generated by the particles inside the plasma. The microscopic density

N
Pmicro(t: 7:) =4 Z 5[7?* ﬁ(t)]
=1

is the total sum of every charge multiplies for the correspondent Dirac delta-function defining the
particle position. In the same way, the density of the microscopic current is a sum of all currents
produced by particles:

N
Jmiero(t,7) = q Y 9(8) 87— 7(8)].
im1

We can present these microscopic sources utilizing the microscopic distribution function and making
an integral over the momentum:

Pm.icro(tyf) = ZQa/fmjcrooz(ty F)};)dﬁ: ;micro(tyﬂ = an / .fII‘JiCI‘OOL(t7 F:ﬁ) gdﬁ (715>
o o

Here we add also a summation over the particle species. This form of presentation of the sources in
the Maxwell’s equations allows a direct average. As a consequence, the form of Maxwell’s equations
is the same as for the microscopic equations:

=5

V x B =—-8,B, (7.16)
V-B=g! 4+ ™), (7.17)
VxB= po(;Jr ;e"t) a2 BE, (7.18)
V-B=0. (7.19)

Here, p®™* and fe"t are the density of charge and the density of external current. We can consider
them as known quantities. In contrast, the density of charge p = > pa and the density of current
f =3 ja are internal quantities, produced by the particles. They are the average of microscopic
sources (7.15):

P(t>f'):ZQOe/fcx(t7ﬁﬁ)dﬁ7 ;(t7ﬂ:ZQa/Ufa<t’ﬁﬁ)dﬁ' (7'20>

Because the electromagnetic field produces a long range force, every particle make its motion in
a collective field, created by many neighboring particles. This means that plasma demonstrates a
collective behavior, differently from a neutral gas, where the effective radius of the force created by
each particle is much smaller to the distance between two particles.

7.6 Macroscopic quantities in a plasma

Every microscopic physical quantity can find a correspondent average as, for example, we already
demonstrated for the transition from the microscopic charge density to the mean charge density.
For particles of species o we define:

e the density of particles:
Wt ) = /fa(t,F,ﬁ) dp, (7.21)

¢ the vector of mean velocity:

1
Bolts) = s [ o 7P (7.22)
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e the mean energy:
1

U t,7) =——— | ¢ t,7,p)dp, 7.23
) = s [ atlt )0 (723)
where ¥, and £,(p) are the speed and the energy of the particle. In the classical mechanics
Ty = P/me and €4 = §2/2m4. These definitions apply also to the relativistic or quantum
plasmas, where the relation of the speed, ¥,(p) and the energy of particle, £,(p), with the
momentum are more complicated functions. For example, for the relativistic case, where
p = mqc, the speed, ¥, = p/vyama, and the kinetic energy of particle, €4 = (75 — 1) mac?,

depend of the relativistic factor v,(p) = 1/4/1 — p2/m2c2.

¢ the tensor of momentum flux:
Pas(t,) = [ pivs fult,7,) 45 (7.24)
e the vector of energy flux:

Tut7) = [ eald)fult 7)) 0. (7.25)

Two last functions describe the transport processes of the quantity of motion and of the energy in
plasma. It is often interesting to separate the mean motion of particles of the species o with the
mean speed u,, and the chaotic (thermal) motion with the relative momentum p’ = p'— myd,.
This allows to divide the energy (7.23) and the fluxes (7.24) and (7.25) of all particles into the
mean and the chaotic parts. For a classical plasma the energy is

e %maﬁaz + %kBTa, (7.26)

where the temperature T, is a measure of thermal motion. It is defined by the following equation
1

kpTy = ———— | (F— matia)? folt, 7, P) dp. 727

BT = gy | = mata) (67,8 (r.27)

In the same way, the momentum flux P, ;; = maNalaitla; + Pai; contains a term corresponding
to the plasma pressure

1 — — = — =5 —
Paij = — /(p — Mala)i(P— mata); falt, 7, P) dp.

(03
The energy flux is divided in three terms:

= 1 D=y 3 — -
Epe= gmanauiua o EnakBTanz + G- (7.28)

They describe the convective transport of the enthalpy, %maﬁi + %k BT, and the heat flux:

— — 1 — — — — — —
Tt F) = /(p — Mgty (B — maily) fult, 7, ) dp. (7.29)

T 2mg,

A quasi-neutral, close to equilibrium plasma has the total charge density close to zero, > p, =~ 0,
and a Maxwellian distribution function on the momentum:

No (.5_ ma@a)z
Blf=——= ~ph =l 7.30
P) = GrmaksTa)2 ™ ( 210k T > (Ea)
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In this case the kinetic pressure is a scalar, p, ;5 = pad;; and we have the following relation between
pressure and temperature: p, = nokpT,. This is the equation of state of an ideal gas. We define
also the thermal speed of particles, vr, = (kpTy /ma)l/ 2. These relations will be utilized later in
this course.

Notice a difference between the momentum of the particle 7 and the pressure p,.

Notice that in plasma physics publications we measure the temperature in energy units without
writing explicitly the Boltzmann constant kp.

7.7 Problems

1. Verify the following relation for the Lorentz force:

4 FlR) = VF -

it
dt .

2. Using the Vlasov equation(7.8) show that the equations of Poisson (7.17) and Ampere (7.18)
are equivalent in the absence of a magnetic field. Find a relation between the charge density
and the density of current.

3. Show that the Vlasov equation (7.8) with the Lorentz force can be written as an equation of
continuity in the phase space, 7, ¥. Give the expressions for the flux in the coordinate space
and in the phase space.

4. Show that the collisional term in the Fokker-Planck equation can be written as a divergence
in the phase space.

5. Obtain the equation of continuity starting from the Fokker-Planck equation (7.10).

6. Show that for the Maxwellian distribution function (7.30) the mean energy of particles is
Ug= %k BT, Find an expression for the pressure tensor for this distribution function.

7. Supposing that all electrons have the mean energy of thermal agitation, determine the maxi-
mum radius of density fluctuation they can produce. Suppose that the ions are homogeneous
and at rest and that the fluctuation is spherical. Determine the amplitude of the electric
field and of the electrostatic potential in this fluctuation. What is the probability of this
fluctuation?

8. Verify that density and temperature for a Maxwellian distribution function satisfy the general
definitions (7.21) and (7.23) for the mean density and the mean speed of particles.

9. Demonstrate relation (7.28) for the energy flux.

10. Show that the Maxwell-Boltzmann distribution function

L)

p* q®
Fyup(7,p) = ErmkaT)o exp (ikaBT s kBT>

is a solution of a stationary Vlasov equation in the electrostatic potential ®(#). Find the
spatial distribution of the particle density. Explain the physical meaning of the constant ng.
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8 Equilibrium solutions to the Vlasov kinetic equation

8.1 Equilibrium of a homogeneous plasma

At equilibrium, the distribution function of particles is independent on time. In this case the Vlasov
equation (7.8) and the Maxwell’s equations have the following solutions. Let us consider first the
case of a homogeneous plasma, ﬁfa = 0. The term E - Opfa will be zero if the electric field is
ZEro, E =0. On the contrary, the term with the magnetic field, (¢ A é) - Opfa, will be zero in two
cases: (i) a homogeneous magnetic field and an isotropic distribution function, fo(p) or (ii) a zero
magnetic field, B=o.

The Maxwell’s equations for a zero electric field and a constant magnetic field are satisfied if
the sources are zero, p =0 et 5': 0. These condition lead to three important consequences:

e The plasma is electrically neutral: for two species of opposite charges — the ions of a positive
charge ¢; = Ze, and the electrons of a negative charge ¢q. = —e, the neutrality condition
reads: Zn; = ne.

e The electric current in plasma is zero. That condition reads
7= annaﬁa = Qini(ai = 'L—[e) =0.
(2%

That means that both species have the same mean velocities, @; = @, = @. Therefore, in
the reference frame moving with this velocity, the distribution functions of both species are

isotropic, fo(P) = ful(p).

o The distribution function has only one maximum and &,f, < 0. This third condition is is
not evident. It comes from the condition of stability of the distribution function with respect
to small amplitude perturbations. That problem will be discussed in Sec. 9.9 of this course.

Within these limitations, the particle distributions in a plasma without collisions are arbitrary and
depend essentially on the way the plasma is created. For a plasma in equilibrium the distribution
function is a Maxwellian function (7.30). This has been shown in the previous section 77.

8.2 Plasma in an external electric potential

Charged particles in an electromagnetic field exhibit a complex movement and their distribution
function is not Maxwellian anymore. We consider here a simple case: the distribution function of
particles of a charge ¢ and mass m in an external potential ®(z). We assume that the particles
move just in one direction along the z-axis under the action of the electric field E, = —38,®. The
distribution function, f(pe,z) is a solution to the stationary Vlasov equation

Ve f — q0p® By, f = 0. (8.1)

We can construct a solution of this partial derivative equation by using the method of characteris-
tics. The total differential of f is: df = dp, Op, f + dz 8, f. In order to satisfy the equation (8.1),
we should find a line in the phase space =, p,, where df is zero. Equation (8.1) will take a form of
a full differential, if the following relation is satisfied:

o _ ..
vy qdg®’
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Figure 30: Energy W{(z) (left) and the phase space p,(z) of particles (right) in an electrostatic
potential. Left: a) a potential bump: all the particles can go to infinity — the distribution function
is defined in a unique way. 1 — transmitted particle. Particle with an energy less then ¢ ®max are
reflected (2); b) a potential well: particles with a negative energy are trapped (3). Their distribution
function depends on the temporal evolution. Right — trajectories of particles: a) a potential bump
— all particles are connected to infinity; b) a potential well: particles with a negative energy are
trapped, their trajectories are closed.

We re-write this equation as p, dv, + ¢ d® = 0 which is a full differential dW = 0 of the total energy
of particle, W = pg /2m 4 ¢ ®(z). As a consequence, the general solution to the Vlasov equation
reads:

f(z,pz) = FIW(z,ps)] (8.2)

where F' is an arbitrary function. This relation comes easily from the conservation of mechanical
energy of the particle in a stationary potential. If we assume that for |z| — co the potential is zero
and the distribution function is a Maxwellian function (7.30), the solution to Eq. (8.2) is:

s q<1>(w)> .

_ 5 70 ~W/ksT _ L
) s I iy oo, _
@, p0) = F(W) @rmkgT)2 P ( omkpT  kgT

(2rm kgT)/2

This is the Maxwell-Boltzmann distribution function.
Knowing f, we can calculate the density of particles from definition(7.21):

n(z) = nge A e)fkal (8.3)

where ng is the density of particles in the point = where the potential is zero. Formula (8.3) is often
called Boltzmann distribution. For a positive potential, ¢ @ > 0, the density of particles decreases
where the potential increases. We can consider this as a partial reflection of particles from the
potential bump (see Fig. 30-a).

The case of a potential well, or a negative potential, has to be considered separately. As we see
in Fig. 30-b, a particle with a negative energy is trapped and oscillates in the well. The distribution
function of these particles is not defined in a unique way. It depends on how the potential has been
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created. If, for example, we first created a potential in a empty space and after that launched the
particles from infinity, then there are no particles with a negative energy, that is, f =0 for W < Q,
and no particles are trapped. However, if we created the potential in a plasma, some particles can
be trapped.

We consider this latter case supposing the potential is created slowly and thus the particles
follow the adiabatic evolution in time. During the time when the potential evolves, the energy of
particles is not conserved. According to the classical mechanics, there is another quantity that is
conserved: this is the adiabatic invariant — the integral of the momentum between the stopping
points:

1:2/”%(“@;_2/ V2m(W — ¢ ®(x,t)) da (8.4)

1
where ¢ ® < 0, W < 0, W > g ®min et =12 are the stopping points, ¢ &(z12) = W.

So, the distribution function of trapped particles must depend on I, but not explicitly on z.
Moreover, F(W) must be a continuous function of W, in particular, for the energy W = 0, that
separates the free and trapped particles. As W changes in time, the only possibility to satisfy this
condition is to make F(W < 0) constant: f, = F(W < 0) = F(0) = no/v/2rmkgT. In contrast,
the distribution function of free particles, f;, with W > 0, is a Maxwellian function.

The difference in the behavior of free and trapped particles can be better understood while
looking at the orbits of particles in the phase space, p,, z, presented in Fig. 30, panels ¢) and d).
In the case of a positive potential, the orbits of all the particles are connected to infinity. The
distribution function is completely defined for these asymptotic values because they are conserved
along the trajectory. In the case of a negative potential, the separatrix, p,(z), divides the space
in free and trapped particles. It is defined by the condition W = 0, 80, ps = +/—2m ¢ ®(z). The
period of oscillations of the trapped particles depends on their energy. because of that the particles
are mix up with time, and the distribution function becomes constant, equal to its value along the
separatrix.

Now we can calculate the density of particles n(z) assuming that initially the distribution
function was Maxwellian. The formula for the density reads:

0 Ds 0
— / AL / FE oy / B
=0 0 Ps

2n0ps 2ng /°° o72/amkaT—a®/kaT )
V2rmkgT ' 2nmkgT J, 2

We can calculate the last integral in two limits:

o For a weak potential, |¢ ®| <« kBT, developing the distribution function in a Taylor series,

we obtain: s
—q® 4 —q®
e L ( : )

g

kT = 3/m \ kgT

The difference from the Boltzmann distribution is in the last term.

e For a strong potential, |¢ ®| > kpT, the contribution of free particles is negligible, and we
find:

—¢®

rkpT’

In difference from the Boltzmann distribution, here the density increases as a square root of

the potential.

n = 2ng

Page |95



- Erasmus+

WELLENIC i 3 & SooN G vnvensiny
Prsi - { } 4
veRy l Um‘aol;zsnéfux n L Ak 'ﬁ o York Q

8.3 Plasma in a capacitor

Let us consider a plasma in a capacitor that is characterized by the width I and the potential U.
We would like to find the density of particles and the potential inside a capacitor agssuming that
the temperature T is uniform. The plasma is made of protons (g; = e) and electrons (ge = —e) and
the distribution functions of ions and electrons are Maxwellian in the points where the potential is
ZEro.

The electric field in the capacitor: E = —d,® depends on the electrical potential ®(z). The so-
lution of the stationary Vlasov equation (7.8) is constructed similarly as in the previous paragraph.
The distribution function depends on the total energy of particles:

foz(m’PomP%pz) = Fa[Wa(Iapw)vP%Pz}' (8'5)

where F,, is in our case a Maxwellian function (7.30):

2 2
Fiso Wo  PytPp:
Fy (W, . e :
Dz( oy Pys Pz) (QW}{;BT ma)3/2 exp ( kBT Q,kBT ma)

Let us assume first that the potential is known, the den-
sity of particles can be calculated according to the definition

(7.21):
Oz
Na () = na0 eXp <— qo;fB(T )> (8.6)
where nqo is the density in @ = —L/2, where the potential is

zero. In this case the potential is a monotone function and
there are no trapped particles.
-2 L2 The constants n.o are defined by using the condition of
conservation of the total number of particles in the capacitor
Figure 31: Distribution of the po- N;. Without an external potential the densities of unper-
tential in a capacitor in presence turbed ions and of the electrons are equal: n;0 = 1.0 = ng.
(solid line) and in absence of plasma (This is the neutrality condition.) Correspondingly, the to-
(dotted line). The plasma is in the ta] number par unity of surface is: Ny = noL. Knowing
interval @z € (—L/2,L/2). the potential, we can obtain n,o by using the condition
Ny = f_Lﬁz dx ne(z). To simplify the following calculations,
we consider the case eU <« kT, where the plasma is sufficiently hot, and we can develop the
exponential function in the Boltzmann law into the Taylor series, e? ~ 1 + ¢. This allows us to
write the density of particles in the potential ® as:

no(z) =no |1— k‘i“T (®(z) — B) (8.7)

where ® = (1/L) ffﬁg dx ®(x) is the mean potential.
Knowing now the density distribution, we can solve the Poisson equation (7.17) and find the
distribution of the potential ® (figure 31) and of the field E. Introducing the dimensionless potential
¢ = e(®—®)/kpT and the Debye length Ap = (kpTep/e?ng)'/?, we can write the Poisson equation
(7.17) as:
dip = 2250 .

We must solve this equation with the condition that the difference of potential at the borders is U:
¢(L/2) — $(—L/2) = eU/kpT. Moreover, because of the symmetry of the problem, the function
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¢(z) is an odd function, ¢(—z) = —¢(z), and therefore, ffﬁz dz ¢(x) = 0. The first integral of the
Poisson equation is:

(¢) =227 (6" + 40)
where ¢ is a constant of integration, that we will determine later. The solution of this equation is:

¢(x) = ¢o sinh(@ + 20)v'2/Ap] .

The constant is zg = 0 because the function ¢(z) is an odd function. The other constant ¢ is
defined by the condition ¢(+L/2) = +eU/2kpT. This gives the following formula for the potential

¢:
] = eU  sinh(z+v/2/Ap)
2kpT sinh(L/v2Ap)

Then, we deduce the mean potential ® utilizing the condition ®(—L/2) = 0. Finally, we obtain:

U U sinh(zv2/Ap)

S(z) = — e e
(=) 2 2 sinh(L/v2Xp)
Taking the derivate of ® we can calculate the electric field
too:
- E U  cosh(zv2/A
12 (x) < E(CU) —t (x\/—/ D)

 V2Ap sinh(L/v2Ap)

There are two characteristic limits in this formula. If the
plasma is of a low density and the Debye length is larger that
the capacitor width, Ap > L,we can develop the hyperbolic
function in a Taylor series and E ~ —U/L is a constant as in
the case without plasma (dotted line in Fig. 32). However, if
Figure 32: Distribution of the elec- AD < L, the electric field is localized near the plates of the
tric field inside a capacitor in pres- capacitor in a distance of a few Debye lengths:
ence (solid line) and in absence of
plasma (dotted line). E(z) ~ — ¥ ex (_L_—M) )

V2Ap V2Ap

In that case the plasma polarization make a strong effect. The electric field is enhanced near the
plates and a very small inside, Fig. 32. The plasma produces a screening of the electric field in
a capacitor. Utilizing (8.7), we can find the density of electrons and ions and demonstrate that
indeed, the plasma acts as a dielectric: the density of charge is not zero everywhere. The plasma
has a positive charge near of the left plate of capacitor and a negative one near the right plate.
However, inside the capacitor, at a distance of a few Debye lengths, the plasma is quasi-neutral.

It is interesting to know how much time the plasma needs to reach this stationary state?
In the stationary state, the term with the time derivative in the Vlasov equation (7.8) is very
small compared to other two terms: O;f, < ¢oF Opf,. Estimating the partial derivative O f,
as fo/mavTq, We can estimate the characteristic relaxation time to the stationary state as A¢, ~
MaVTa/ |q,lE|. ‘We see that this time is different for electrons and ions because of the mass difference:
m;/me ~ 1800. The lighter electrons reach the equilibrium in a time +/m;/me ~ 40 shorter then
the ions. We conclude that the stationary state is established in two steps: first the electrons go
to equilibrium, then, later, the ions reach it too.
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8.4 Plasma in an external magnetic field

Let us consider here a plasma in an external inhomogeneous magnetic field assuming that the field
B has the only one component B,(z). Such a magnetic field can be used to confine the plasma.
First we solve the Vlasov equation assuming that the magnetic field is known. Then we calculate
an electric current and use the Ampere equation to find the distribution of the magnetic field in
plasma.

The stationary Vlasov equation (7.8) in this case can be written as:

Uccamfa + 9o B, ('Uyaproé s U«’Eapyfoé) =0.

We solve it by using the method of characteristics. The equations for the characteristics are:

where we,, = goB;/mq is the cyclotron frequency. If the magnetic field is strong enough, the
Larmor radius, vy /we can be very small with respect to the characteristic length of magnetic field
variation, L = |B;/dB.|. In this case we can neglect the dependence of wey on the coordinate
and solve the characteristic equations explicitly: v?s + vg = vi and  + vy /wee = X. Then, we can
write the solution of Vlasov equation as:

fa(wgpac,Pyypz) = FOL[X(mv Uy)ﬂji’pz] (88)

where F' in an arbitrary function. Because the Larmor radius v,/w. is much smaller than the
characteristic length of variation of the field we can develop the first argument X in the Taylor
series. We obtain then:

fol@, pa, Py, pz) = (1 T :ja 800) Fa(w7”i>Pz)~ (8.9)
The conditions that have to be satisfied by F, are following from the conditions of neutrality,
> gana = 0, and the absence of components = and z of the current: j, = j, = 0. Using the
symmetry of F,, with respect to v, and vy, we obtain: for the density n, = f AP for = f dp' Fy,, and
for the current jo .o = go [ dPVe,sfa = ga [ dPVe.Fa. The condition j, = j, = 0 will be satisfied
if F,, is a pair function of p,.

Now we calculate the current in the direction y and inject it in the Ampere equation for the
magnetic field:

doB; = —pojy =0 > j"‘ 8, / dpv2Fo(z, 3, p2). (8.10)
o Cx

The current j, is not zero. It is produced by the differential motion of electrons and ions in an
inhomogeneous magnetic field. However, this current can be also interpreted as a drift of electrons
and ions in mutually perpendicular magnetic and electric fields. The electric field is produced by
the gradient of plasma pressure. Indeed, because of the symmetry of function F,, the integral in
the right hand side of Eq. (8.10) is the plasma pressure in the plane perpendicular to the direction
of the magnetic field:

1 —
E ma/dgpnga = E ma/dpviFa =
Then, Eq. (8.10) can be written as

4By = ity = —L28, P,

B,
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Integrating it we obtain the equilibrium criterion for a plasma in an external magnetic field:

des (2%033 + PL> i (8.11)
The sum of magnetic pressure, BE /20, and the plasma pressure, P, , is a constant. If the amplitude
of the magnetic field increases, the plasma pressure must decrease, and if the temperature is
constant, the plasma density decreases. This opens the possibility to confine the plasma in a
minimum of the magnetic field. This is the principle of magnetic confinement.

According to Eq. (8.10), the confinement is produced thanks to the electric current produced
in plasma. This current goes on the direction of y-axis and it generates a magnetic field that
is directed along z-axis, opposite to the external magnetic field. This is a manifestation of the
diamagnetic behavior of plasma.

There are other configurations of plasma confinement in the magnetic field. In particular, two
configurations are posgible in a cylindrically symmetric plasmas:

¢ A G-pinch — is a plasma cylinder confined by an external magnetic field parallel to the plasma
axis. In this case the confinement is produced by an azimuthal current along the plasma
surface.

e A Z-pinch — is a plasma cylinder confined by an azimuthal magnetic field created by an axial
current in plasma.

8.5 Problems

1. Verify the conservation of the adiabatic invariant utilizing the equation of motion of a particle
in a potential ®(z,¢).

2. Draw the graph of the potential and the electric field in a plasma capacitor for the two cases,
L = 03Ap and L = 3\p. Calculate the distribution of electron and ion densities in the
capacitor. Explain how the plasma polarization contributes to decreasing of the external
electric field.

3. Analyze the distribution of the electric field in a capacitor for the intermediate equilibrium as-
suming immobile iong with a homogeneous density. Calculate the distribution of the electron
density in the capacitor.

4. Find the electron distribution function and the electric field in a semi-infinite, isothermal
plasma without collisions. Consider the case of cold ions with a constant density z < 0. The
electrons have a Maxwellian distribution at « —+ —oco with a temperature 7.

5. Consider a #-pinch. The pressure of plasma is constant inside the column, Py, and the external
magnetic field is Bg. Calculate the magnetic field inside plasma and give the criterion of
confinement. Calculate the intensity of surface current and draw the radial profiles of the
pressure, magnetic field and current. How one can realize this configuration?

6. Consider a Z-pinch with a constant plasma temperature. Find an integral condition on the
plasma density and electric current that has to be satisfied in the stationary state (the Bennet
condition). Calculate the intensity of axial current and draw the radial profile of pressure and
of magnetic field supposing that the intensity of current is a constant. How one can realize
this configuration?
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9 Electromagnetic properties of an isotropic plasma

Plasma is a dielectric medium and therefore it maintains electromagnetic waves — these are periodic
motions that correspond to propagation of the electric and magnetic fields coupled to perturbations
of the current and electric charge. Various types of waves exist in plasma. In this chapter we restrict
ourselves to the simplest case of linear waves in a homogeneous medium. These are low-amplitude
waves that can be considered as small perturbations of the initial state. These waves are described
by linear equations and they can be analyzed with the universal Fourier method.

Each wave is characterized by two main parameters: a dispersion, or a relationship between the
frequency of the wave w and the wave vector l;, and a polarization, which is the direction of the
vector of the wave electric field with respect to the direction of the wave vector. In this chapter
we show that all the wave properties of the dielectric medium are described by a single tensor,
the dielectric permittivity qj(g,w). We will study the general properties of this function before
analyzing the particular waves.

9.1 Dispersion equation of electromagnetic waves

The relation between the electric £ and the magnetic field B is described by Maxwell equation:
(7.16) — (7.19):

€ 6~E:p, &B =—-V xE, (9.1)
V.-B=0, c¢20,E=—poj+V xB
where the speed of light is defined as ¢ = eyug. We consider here the case where the external

sources are absent and the self-consistent sources are linear: the charge density p and the current
density fare linear functions of the electric and magnetic fields. In fact, it is sufficient to consider
just one relationship between the electric field F and the current f, because the other quantities are
related by linear equations. The charge density and current are related by the continuity equation

8ip+Vj=0. (9.3)

This equation is fundamental because it expresses the law of conservation of electric charge. Electric
and magnetic fields are related by the equation of Faraday. Therefore, the relation ; (E) contains
all the information about the proprieties of the dielectric medium.

The linear electrodynamics is based on the assumption of a linear relationship between the
current and the electric field. This is the Ohm’s law. The most general form of this relationship is
a convolution tensor:

A
ji(ﬁt):&ij*Ej:/df*/ 8t Go; (7 — 7t — £) By, ). (9.4)

The conductivity 6;; is a tensor because it makes a link between two vectors, ;and E. This
relationship is in general non-local and a non-stationary. The only major limitation is the principle
of causality: at a given moment of time the current can be generated only by the field at precedent
times. In addition, &;; it is a real function because the current and the field are real functions.

9.1.1 Isotropic medium with time dispersion

The number of independent components of the tensor of conductivity and the explicit form of spatial
and temporal behavior are defined by properties of the medium. Spatial dispersion arises from the
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thermal agitation, and it is especially important for low frequency waves. It is necessary to retain
the spatial digpersion for longitudinal waves, but not for electromagnetic waves. For an isotropic
medium without spatial dispersion the conductivity is a scalar. This is understandable since in
this case there is no privileged direction. The only second rank tensor available is the Kronecker
symbol, 55, s0, 635 = 6(t) d;;. The temporal dispersion comes from the finite response time of the
particles to the electric field. It is more important for the waves with a period comparable to the
characteristic time response of the medium. For example, the periods of oscillations of electrons
in atoms or the atoms in molecules. But, outside these resonances, the temporal dispersion is less
important and often we can consider ¢ as a constant. In addition, for very short excitation times,
which are smaller than all characteristic times, the media response must be very weak.

The Maxwell’s equations are linear and having a linear Ohm’s law, it is more convenient to
analyze them in the Fourier space by making the Fourier transforms in time and in space. In this
case the differential operators and the integrals are transformed mto algebralc operations and all
Fourier components are independent. Suppose that the functions E B 4 and p depend on time
and on spatial coordinate as exp(—iwt + ik - 7). Then, for an isotropic medium without spatial
dispersion the Ohm’s law takes the form j = a(w)E, where o(w) is the Fourier transform of the
function & (¢).

Injecting this relation in the equation of continuity (9.3) we obtain a formula for the charge
density induced by the electric field, p = ok - E/w We see that only the longitudinal component
of field produces the charge separation, while the transverse field induces a divergence-free, purely
rotational current.

It may be noted again that, according to the general definition, the current is related to the
polarization, j = 8,P. In a Fourier space this relation can be written, P = (io Jw) E, therefore, the
quantlty X = w/w is the dielectric susceptibility. This allows us to introduce the electric induction,
D= eOE + P and the dielectric permittivity (or a dielectric constant) by the definition D= eer
where

e=1+41i0/eow. (9.5)
These definitions allow us to simplify the Maxwell’s equations. First of all, the Poisson equation
can be written, ieoek - E = p%. Where in the real space we have

VD= pt, (9.6)

Therefore, the longitudinal electric field (electrostatic) can exist without external sources only if
the dielectric constant is zero. This can happen only in a medium with time dispersion, therefore,
the equation

elw)=0 (9.7)

is the dispersion equation for electrostatic waves.
The electromagnetic waves are described by the Faraday and the Ampere’s equations:

wB =k % & —iwege B + 7 :i/,oali; x B. (9.8)

In the absence of external sources, taking into account that in this case E-E= 0, we obtain the
digpersion equation of electromagnetic waves:

e(w) = N? (9.9)

where N = ck/w is the refraction index. We see that these waves also exist in medium without
digpersion, where € is a constant, or even in a vacuum, where ¢ = 1. The only limitation is that
the dielectric permittivity is positive.
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Equations (9.8) can be written in real space as follows:
&B=-V xE, 8D+ =u'V xB. (9.10)

This form is useful for analyzing problems with external sources.

9.1.2 Isotropic medium with a spatial dispersion

The conductivity characterizes a response of the medium — the electric current ;— to the electric field
E. The response depends on the parameters of medium at equilibrium and on the characteristics
of perturbation w and k. In the case of an isotropic medium without spatial dispersion there is
no any privileged direction. The only symmetric tensor of the second rank available in this case
is the Kronecker tensor d;;. Therefore, the conductivity is characterized by one scalar function,
0;5 = 0 d3;. In the case of medium with temporal dispersion, ¢ is a function of the frequency w.

In the case of an isotropic medium with a spatial dispersion there is one privileged direction
— the direction of the wave propagation defined by the wave vector k Therefore, we may build
a second rank tensor using the vector k and also the Kronecker tensor d35. There are only two
possible combinations, which are: d;; and k;k;/k2. It is convenient to introduce two elementary
independent tensors, k;k;/k? and &;; — k;k;/k®. The first one characterizes the response to the
longitudinal electric field, parallel to the vector k. The second tensor is related to the response
to the transversal field. Therefore, in a medium with spatial dispersion the conductivity tensor is
described by two scalar functions, ot et o*":

iy = KL gt (5ij _ k_ga> , (9.11)
According to our discussion in the preceding paragraph, the dielectric permittivity tensor has the
same structure:
¢ 1 Kik; kik;
€1j:6$j+ eo—wdw :E%—I—Ew (6”—% (912)

where " = 1 4 z'a“T/ eow are the longitudinal and the transverse permittivities. From these

equations we see that the charge perturbation is produced by the longitudinal part of the field,
p=0 /w. Thus, the Poisson equation gives us the following equation for longitudinal waves:

e (E,w) = 0. (9.13)

This equation is the generalization of Eq. (9.7) for a medium with spatial dispersion. The electro-
static waves do not exist in vacuum. The transverse part of the dielectric permittivity is involved
in the Ampere equation, which can be written in the following form: w o€ By = 2k x 5, where
E,, is the electric field component perpendicular to the vector k. Using the Faraday equation we
obtain:

&7 (E,w) = N2. (9.14)

This dispersion equation is similar to Eq. (9.9). The transverse electric field and the magnetic
field are coupled, and they are perpendicular to the direction of wave propagation, E1LB1k
However, the electric field E can have an arbitrary direction in the plane perpendicular to the wave
vector. The fact that the dispersion equation (9.14) is the same for both field components in the
plane perpendicular to k means that the electromagnetic wave is degenerate: two electromagnetic
waves with a give k have the same frequency w(k) but different polarizations.
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9.2 General proprieties of the dielectric permittivity

The dielectric permittivity plays an important role in electrodynamics. It describes the wave modes
of the system and also the fields excited by external sources. The dielectric permittivity is in general
a complex function of the wave vector k and of the frequency w. It has several general properties
that can be established without finding explicit expressions for e.

We notice that in the Ohm’ 8 law (9.4), the tensor &;; defines a linear relation between the
electrlc ﬁeld E and the current g in the real space. By introducing the vectors of polarlzatlon
y = 8,5P and the electric induction, B = eoE + P similar relations can be obtained for D in the
real space and in the Fourier space:

Di (’f: t) = fogij * Ej7 BZ(E, w) = EOeijEj- (915)

where €;; is the inverse Fourier transform of €;;:
&7, 1) = (2m)~4 / dk / dow 4R, ) =T,

These two quantities £ and D are real functions in the real space (7,¢) this implies that &;(7,¢) is
a real function. Therefore, the dielectric permittivity owns the following propriety:

el By =& E ). (9.16)

In addition, according to Eq. (9.11), the tensor €;; is an even function of the vector k. Therefore,

- —

eij(fk,w) = eij(k,w). (917)

This relationship is valid for an isotropic plasma without an external magnetic field. If the magnetic
field is present, we must reverse its direction while reversing k:

&sj(k,w, B) = es(—k,w, — B). (9.18)

Finally, for an isotropic plasma, from Eqgs. (9.16) and (9.17) we obtain:

— -

€ij(k, —w) = €;(k,w). (9.19)

We also note that for perturbations of a very high frequency the plasma has no time to respond,
that is to say, it behaves like a vacuum:

lim: €% =1. (9.20)

WO

9.3 General solution of the dispersion equation

The solutions of the dispersion equations (9.13) and (9.14) define the relationships between the
frequency and the wavelength, the eigenmodes, which may exist in a plasma without external
sources. In general, the dielectric permittivity is a complex quantity and, consequently, the solution
w(E) = w' +iw” is a complex function. The real part «' defines the period of oscillations, 27 /w/,
and the imaginary part «” defines the temporal variation of wave amplitude. If " is positive, the
amplitude grows with time, which is impossible in a stable medium. In this case we say that the
plasma is unstable. On the contrary, the negative value of w” means that there is a damping. The
wave amplitude decreases with time. In this case we call v = —w" the damping rate.
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The criterion of existence of eigenmodes is that they are weakly damped. This means that in
the range of existence of the eigenmodes, the imaginary part of w is much smaller than its real part,
v < w. Therefore, the imaginary part of permittivity in these conditions must also be sufficiently
small, and we can solve the dispersion equation by using the method of perturbations. In the case
of longitudinal waves (9.13), we separate the real and the imaginary part of ¢ and of the frequency.
Thus, the dispersion equation reads:

Reé(k, o +iw") +ilme(k,w +iw")=0.

We find the solution of this equation by developing the real part in the Taylor series, Re el(k,w’ )+
iw"8,Re €. In addition, for a small imaginary part, we may neglect «”. With these simplifications,
the real part of the dispersion equation becomes Re el(k,w’ ) = 0. The imaginary part of this
equation gives an expression for w':
Im €l(k, )
n_ e )
W' = — B.Red (9.21)
Similarly, we can deduce from Eq. (9.14) that the damping rate of electromagnetic waves is defined

as follows:
7 w'lm &7 (k,w')

A _w’aw(ReefT) +2N2°

Knowing the spectrum of eigenmodes we can define two important variables: the phase velocity

T (F) = wk /K> (9.23)

(9.22)

and the group velocity
Ug(k) = Ow /Ok. (9.24)

The first one is important for the interaction of the wave with the particles: a particle with a speed
U = Upy, sees a constant electric field of the wave, and it can easily gain or lose energy. This is the
physical basis of collisionless wave damping. The group velocity characterizes the rate of energy
transport in the wave. One can also say that it is a speed of propagation of the information in
space.

9.4 Linearized Vlasov equation

We consider linear waves, where the characteristic amplitude of the potential perturbation in plasma
is smaller than the mean kinetic energy of particles, e® < kgT. In this case, the distribution
function can be considered as a sum of a stationary function f,o(p) and a small non-stationary and
inhomogeneous perturbation, df,(t, 7, p). Electric and magnetic fields should also be considered
as perturbations as they do not exist in the equilibrium state. By injecting function foo + 6f4 in
the Vlasov equation (7.8) and considering the linear terms of the order of the perturbation & f, we
obtain a linearized Vlasov equation. In Fourier space this equation reads:

—iwOfy+ ik Tfa+ gu(BE+ 8 x B)-85fas0=0. (9.25)

In an isotropic plasma the distribution function f,o depends only on the modulus of the momentum
vector. Therefore, its derivative Opfao is directed along the velocity vector ¢/, and its scalar product
with the Lorentz force, ¥ x B is zero. Then, from Eq. (9.25) one obtains an expression for the
perturbed distribution function:

tq

§fa =——2 _E - Bsfan. (9.26)
U

=
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We must pay attention to the domain where the Fourier variables are defined because the denomi-
nator w—k - may be equal to zero. The spatial coordinates are homogeneous, there is no privileged
direction, and we can consider k as a real vector. On the contrary, we must differentiate between the
past and the future time. According to the general definition of the conductivity and the dielectric
permittivity, Egs. (9.4) and (9.5), the electric current and the electric induction at the time ¢ are
related to the electric fields at the preceding times, ¢ < ¢. Therefore, the current should be zero if
t — —oo. This is another formulation of the principle of causality. In Fourier space it corresponds
to a specific behavior of all quantities depending on the variable w. The contour of integration in
the inverse Fourier transform should be chosen in such a way that the causality principle is fulfilled
automatically.

Formally, we consider all physical quantities as analytic functions in the complex space w in
the upper half-plane, w > 0. This ensures that, while making the inverse Fourier transform, all
perturbations will be zero for { —+ —o0. In other words, the frequency w formally should always be
considered as having a positive complex part, in other words, the integration contours must always
pass below the pole w = k-0

We can justify this choice in a different way. Taking into account collisions in the kinetic
equation (9.25), we can model them with the term —v,df, on the right hand side, see Sec. 77. A
positive frequency of collisions, v, > 0, assures relaxation of any perturbation to an equilibrium.
Making a Fourier transform, we obtain an imaginary term in the denominator of Eq. (9.26) :
W+ Wy — k- @. In the limit Vo —+ O this corresponds to the same definition of singularity, that is
to say, that the contour of integration over the velocities goes below the pole w = k-

Using the perturbed distribution function (9.26), we can calculate the current that is propor-
tional to the electric field

—

=iy d [
@

The coefficient of proportionality between the current and the electric field is the electrical conduc-
tivity tensor. According to the definition (9.12), the dielectric permittivity of an isotropic collisional
plasma is:

—— E - 85fan. (9.27)
)

Wt v, —k

wtiv, — k-0

2
—F v.
e =0+ i% /dp—z*ﬁpjfao : (9.28)
(23

The positive imaginary term in the denominator of this expression means that the pole w + v, —
k- =0 is situated above the integration contour over the velocity component parallel to the wave
vector, which goes along the real axis.

The dielectric permittivity tensor, according to the general analysis of Sec. 9.1.2, contains only
two independent components: the longitudinal and the transverse part. This can be demonstrated
explicitly by considering Eq. (9.28). Choosing the wave vector direction along z-axis, the derivative
of an isotropic distribution function can be presented as: 0y, fao = vj0: fa0, Where ¢ is the energy
of the particle. So the integral term in Eq. (9.28) has the following structure:

T ViU
Gy = /dP#asfau

W+ vy — kuy

First, we see that the components outside the diagonal (i # j) equal to zero, because they are
integrals of an odd function. Among three diagonal components, the terms Gy, are Gy, are equal
because of symmetry of plasma in the plane perpendicular to the wave vector. So there are only
two independent components, G = Gy = Gy, and G =&
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In an invariant manner, the longitudinal part is obtained by multiplying Eq. (9.28) by the
tensor k;k;/k%. This gives the longitudinal part of plasma dielectric permittivity:

== =¥ 2 ];;“’ =
e(k,w)=1+ de\(k,w) where beb = Ja /dﬁ Y R Opfa0- (9.29)
29

k2eqw wtiv, — k- U

This formula can be simplified. We write the fraction k - #/(w + ivg — k - ©) as

L. W
wHivy — k-0
and we observe that the first term is zero after the integration. Therefore, the longitudinal part of
dielectric permittivity reads

9 —
§e = do (1+z’”—a>/d—qu‘aﬁfao. (9.30)

k2eq w wtitvg— k-0

To obtain the transverse part of permittivity we multiply Eq. (9.28) by the tensor %(5@" —
kik;/k?) thus obtaining:

= 2 dp " =
et'r(k,w):1—|—22k2°‘ / . (k XU x k) 0pfan -
o4

=
€W ) wtiv, — kT

Integrating by parts, we obtain a simpler form

& (Fw)=1-3" a / fao dp. (9.31)

=
. —
=~ MafW J wivg—k U

In the following sections we will use these forms to study the plasma eigenmodes.

9.5 Kinetics of electromagnetic waves
9.5.1 Dispersion of electromagnetic waves

Electromagnetic waves exist in the domain of high frequencies. Ions, due to their high inertia are
not involved in this process. Formally we can put m; — oo and the dispersion equation becomes
1+ 56?(%,&)) = NZ2. Moreover, the phase velocity w/k of high frequency electromagnetic waves
is much greater than the electron thermal velocity w/k > vr.. Thus, in the non-relativistic case
we can completely neglect the term k - ¥ in the denominator of Eq. (9.31). Then, the integral
over momentum can be performed easily, f feodp = mneo, and the expression for the transverse
permittivity takes the following form:

w2

tr e
€ =1-——\ 9.32
=t (0.32)
where wpe = (eZneo / eome)lf 2 is the electron plasma frequency. Under these conditions the trans-
verse dielectric permittivity depends only on the frequency w. So the plasma behaves as a medium
with time digpersion but with no spatial dispersion. Taking the real part of the dispersion equation
and assuming that v, < wpe, We obtain the spectrum of electromagnetic waves:
2 2 2.9
Wy Bolpe + K, (9.33)

em —
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The dispersion curve is presented in Fig. 33. In the
limit of very small wavelengths, & > wpe/c, this mode cor-
responds to the electromagnetic wave in vacuum. In this
case the frequency of the wave is higher to the one of the

w= ke plasma and so the influence of the plasma is negligible.
The plasma contribution becomes more important when

the wave frequency approaches wpe. The current induced

. in plasma by the wave electric field, according to the prin-
ciple of Le Chatelet, reduces the displacement current.

2 Because of that the group velocity is reduced. The elec-
> tromagnetic wave ceases to exist for w < wype. Because the
plasma frequency depends on the electron density, we de-

duce the critical density (or density cutoff) n, = m.w/epe?

Figure 33: Dispersion curve of a plane from the equation w = wpe- The electromagnetic wave can
electromagnetic wave: the line asymp- not penetrate into the plasma beyond the critical density.
totic w = kc corresponds to the elec- Another interesting propriety of electromagnetic waves
tromagnetic wave in a vacuum. comes from the kinetic equation (9.26). By integrating & f.
over the momentum we find that the perturbation of the

density is zero, because for a transverse wave the electric field is strictly perpendicular to the
wave vector, i L k. This means that the electromagnetic waves are not accompanied by density

perturbations.
Damping of electromagnetic waves is only due to electron-ion collisions. Taking the imaginary

part of the dispersion equation, according to Eq. (9.22) we find:

1 Veit?

- . e
—Imwem = Yem = 3 y (9.34)
The electromagnetic wave does not interact with particles resonantly, because its phase velocity is

always greater than the speed of light.

9.5.2 Energy of electromagnetic waves

The energy of electromagnetic waves is composed of three terms: the energy of electric field, the
energy of magnetic field and the energy of electron motion in these fields. Assuming that the wave
has a linear polarization, the wave electric field reads

E(t,7) = Eycos(wemt — & - 7)

where wem(lg) is given by Eq. (9.33) and the amplitude vector Ey is perpendicular to the wave
vector k. The expression for the magnetic field follows from the Faraday equation:

<5

k

Wem

B(t,7) = x o cos(wemt — & - 7).

Averaging over the wave period, 27 /wem, We obtain the density of electric energy

1 = I =
WE = §€0<E2> = ZEOECZ)
and the density of magnetic energy,
1 52 1 kQCQ =2
WB = 27”0<B > = ZEO@EQ.
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Using the equation of dispersion, we see that the magnetic energy is smaller than the electrical
energy by a factor k2c? Jw?,, = 1 — w2, /w2,

We need to account also for the energy of plasma electrons that oscillate in the wave field.
According to the linearized equation of electron motion (4.2), 8t = —(e/me) E, the electron
velocity is: .

eFo

@o(t,7) = — Sin(wemt — k - 7).

Consequently, the average kinetic energy of electrons is:

MeWem

2
1 o 1 e2ne = l: -
We = nimmlii T === 26 D= o ge eoF2.
2 4 mews,, 4wz,

Addition of three terms gives the total energy of electromagnetic wave, Wit = W+ Wp + W, =
%Eoﬁg. The presence of plasma has no effect on the expression for the total energy of electromagnetic
wave. This is the same expression as in vacuum, but thig energy is distributed differently. The
energy of electric field does not change, but some of the magnetic field energy is converted into the
energy of plasma current.

The energy Wiet is transported into the plasma with the group velocity v, = Ec? Jwem. The
energy flux of the wave is given by the Poynting vector, S = Uy Wiot. The factor vem /vy defines the
coefficient of spatial damping of an electromagnetic wave. Therefore, the wave intensity decreases
exponentially over the distance Ly = vy/2vem. If the electromagnetic wave propagates in a sta-
tionary inhomogeneous plasma, its Poynting vector is conserved. However, as the plasma density
increases, the group velocity decreases. That means that the energy density of electromagnetic
wave increases as the wave enters in a denser plasma.

9.6 Langmuir waves

Langmuir waves are longitudinal plasma waves of a high frequency. They were discovered by Tonks
and Langmuir in 1926. The effect of the spatial dispersion of these waves was calculated by Vlasov
in 1938 and Bohm and Gross in 1949. Ions are not involved in this process because of their high
inertia. As for electromagnetic waves, we can formally put m; — oo and the dispersion equation of
Langmuir waves reads: 1+ 56Z€ (E, w) = 0. Moreover, because of the assumption of high frequency,
the Langmuir wave phase velocity w/k is greater than the electron thermal velocity, w/k > vre.

These two assumptions allow to simplify the expression of the electronic susceptibility. First,
we perform an integration in Eq. (9.30) by parts

S (F,w) = a (1+73V5)/Wd15'* s (1+¢”5)/( feo dp.

k2¢q w wHive—k- -0 Me€o w wtive —k - U)?

Then we develop the denominator in a Taylor series assuming that kv/w < 1 and v, /w < 1:

14 ivefw %%<1+2E'6+3(Eﬂ)2_ﬁ>.

(w+i1/e~];~z7)2 w w w? w

The integrals f feodp = neo and f (E . 17)2 feodp = neokzv%e can be calculated explicitly. Then the
expression of the permittivity takes the following form:

= w2 kQ’UQ LV
AT (1 - 37T8 = z—e> (9.35)

w2 W
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In the limit of a cold, vy, — 0, et collision-less, v, = 0, plasma we find the formula of the electrical
permittivity in the fluid model, de, = —wge /wz. Here there is no dependence on k. Therefore, the
dependence of € on k — the spatial dispersion — is a kinetic effect produced by the thermal agitation
of particles.

The formula (9.35) is obtained with the assumption, k?v%, < w?. This allows us to solve the
dispersion equation e/ = 0 by using the method of perturbations. First, we neglect the thermal
term and solve the equation 1 — w2, /w? = 0. The solution to this equation is w® = w2,. Then we
put this expression for w in 5ele and solve a more complete equation:

a2 E202
P (1+3?;T87JVE> ~0.
w Wpe w

The solution to this equation gives the dispersion relation for the electron (Langmuir) plasma waves:

%

3
el = (1 3 51&)\%8) —~ g (9.36)

where Ape = vre /wpe is the electron Debye length. Two signs
in this expression correspond to two waves traveling in opposite

T directions along the vector k. The frequency in Eq. (9.36) is
o s a function of k, see Fig. 34. This is an effect of spatial dis-
0.8 persion. We will see later that Langmuir waves exist only in
g'g the limit kAp. < 1 and they are strongly damped for shorter
02 s wavelengths.

Langmuir waves are oscillations of the electric charge and
electron density. Using the Poisson equation (7.17), we find a

. o . relation between the perturbation of electron density dne and
Figure 34: Dispersion curve for fhe dlectic feld B:

the Langmuir wave. The dotted
line shows the electron plasma edne = icok - E .
frequency

01 02 03 04 05

The same relationship can be obtained from Eq. (9.26) by using
the dispersion law (9.36). The factor ¢ indicates that the maximum density is offset by a quarter
period in space relative to the maximum field. This wave exists only in plasma and can not be
emitted in vacuum. The group velocity of the plasma waves, v, = 3kA DeUTe, 18 very small com pared
to the thermal velocity of electrons and also compared to its phase velocity. Therefore these waves
are not able to carry the energy over long distances, they just accumulate energy locally and transfer
it to the particles.

The energy of these waves is shared between electric field and particles. According to the course
of electrodynamics, the electrostatic energy of a wave of amplitude Eo is given by the following
formula:

We = 28, (wRe ) |E|? (9.37)
E 4 (8] 0
where the factor d,,(wRe el) takes into account the energy of particle motion in the wave. This
factor is 2 for plasma waves. So half of the energy is stored in the form of kinetic energy of
electrons. This energy can be explicitly calculated from Eq. (9.26) in the limit w/k > vr.. The
average electron velocity reads:
ie =

E.

i, o) / dFE6 1. ~ f GO B Bafer =

Te0W MeW

Page | 110



";’\9 .
o NGO
e . Yo N

- Erasmus+

WELLENIC i 3 & SooN G vnvensiny
Prsi - { } 4
veRy l Um‘aol;zsnéfux n L Ak 'ﬁ o York Q

b oo
High Pawer Laser Plasma Physics.

It is a quarter period in advance of the electric field. Then the average kinetic energy is:

1 5 62’[?, = = 1 = 1
greome(ie - 0% = 5 (B B*) ~ Zeo(|E) = ge 5.

4mgw

Plasma waves correspond to oscillations of energy between the energy of the electric field and the
kinetic energy of the electrons. The plasma wave damping will be further considered in Sec. 9.9.
It comes from two effects: the electron-ion colligsions and the resonant interaction between the

electrons and the wave:
1 T Wpe 3 1
= ks - S D 9.38
Y=gt \/; EPEN exP( 2 szA%) a8

In particular, the second term is called Landaw damping. It dominates for large wave numbers and
prevents the existence of plasma waves with the wave lengths shorter than the Debye length.

9.7 Ion acoustic waves

Ion acoustic waves are low frequency oscillations of plasma density, w < wpe. Their phase velocity
lies in the range vre > w/k > vr;. They have also been discovered by Tonks and Langmuir in
1926. In this case two contributions in the dielectric permittivity are equally important — from the
ions and the electrons. The ion susceptibility, de;, is calculated in the same way that the electron
susceptibility for Langmuir waves, because the wave phase velocity is greater than the thermal
velocity of the ions. According to Eq. (9.35), we find:

wz, k2 2 ;
Sek(k,w) = TT?; (1 + 3% - %) (9.39)

where wy; = 4 /Z%en; /mieo is the ion plasma frequency. In calculation of the electron suscepti-
bility, dee, we can neglect the frequency w in the integral §el and, using the following propriety of
the Maxwellian function 85feq = —¥feo/kpTe, We obtain:

2 k- Bsfa0 &2 1
sk = _° 711651”%7/ dp= ——.
" e /w_k.g WhpToe | 09 K22

Finally, the dispersion equation for ion acoustic waves can be written as:

1 i Ko v
1+W%€_F(1+37z_zz :O (940)

To solve this equation we use the same technique as it was used in Sec. 9.6 for for solving Eq.(9.35).
The thermal and collisional terms in the ion susceptibility are small. They can be neglected in first
approximation, to obtain an approximate solution, w? ~ k%c2/(1+k?X%,), where c¢; = +/ZkpT. /m;
is the ion acoustic speed already introduced in Sec. ?7. By injecting this solution into the ion
susceptibility with thermal correction, we find a more complete solution:

k&2

= m +3k2v%i. (9.41)
e

The frequency of ion acoustic wave as a function of the wavenumber is shown in Fig. 35.
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There are two important limits in this dispersion. The

1.2 limit of long wavelengths, kzx\%e < 1, is corresponding to
1 the quasi-linear dispersion,

0.8

0.6 1

o wai(k) = * |klug (1 = gk%\%e) (9.42)

0.2

0.5 1 15 5 where v, = 4/c2 + 31)%1.. This recalls the dispersion of an
acoustic wave in a neutral medium, and the speed v, is the
speed of sound. In this limit the dispersion is weak. The
phase velocity is almost equal to the group velocity and these
waves are propagated without deformation of their shape.

The ion acoustic wave in the limit k2A%,, < 1 corresponds
to almost neutral oscillations of density associated with a very
weak electric field. This can be shown as follows. The electric
field is obtained from the Poisson equation

Figure 35: The dispersion curve of
the ion acoustic wave for ZT, /T; =
10. Dotted line indicates the ion
plasma frequency.

iegkE = Zedbn; — edn,. (9.43)

At the same time, by integrating Eq. (9.26) written for electrons over the momentum, one can
show that the electric field is o F = iek/\%eéne. Therefore, the term in the left hand side of Eq.
(9.43) is much smaller than each of terms in the right hand side. Therefore, Zén; = dne. This
is the condition of quasi-neutrality. The electric field in the ion acoustic waves is a factor kz)\%e
smaller than for the Langmuir waves of same amplitude of density perturbation.

There is a significant difference between the neutral acoustic waves and ion acoustic waves in
plasma. The condition of existence of these ion acoustic waves is v, >>> vp;. This condition can only
be satisfied in a non-isothermal plasma where Z7, > 37;. The ion acoustic waves do not exist in
a plasma in thermal equilibrium where T; ~ T..

The spectrum (9.41) extends to the domain of shorter wavelength, kz)\ZDe 2 1, see Fig. 35.
However, in the limit kzx\%‘,2 > 1, the nature of this wave is different, and it is then called ion
plasma wave. In this limit the spectrum is:

3 1
€

It is similar to the spectrum of Langmuir waves (9.36). In addition, from Eq. (9.26) we find that
in this limit the perturbation of ion density is much larger than the electron density perturbation,
Zdn; > dn.. Moreover, the relationship between dn; and FE is the same as for Langmuir waves. It
is concluded that the ion plasma waves in the limit kAp,. > 1 are also perturbation of the charge
density associated with the ions.

The spectra of Langmuir plasma waves and ion acoustic waves can be deduced also in the
two fluid hydrodynamic equations described in Sec. ?7. Nevertheless the kinetic approach is
more consistent. It helps to avoid mistakes and to get more complete results. In particular, the
hydrodynamic model must take into account the fact that the equations of state for electrons and
ions are different as they correspond to the high and low frequencies. In the limit of high frequency,
w > kurq, particles behave as an ideal gas in one dimension, which corresponds to the adiabatic
index v, = 3. This is because the particle motion in the plane perpendicular to the vector k is not
perturbed. We conclude this from the kinetic analysis, but in the hydrodynamic theory we must
postulate it.
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On the contrary, in the limit of low frequencies, w < kur,, particles behave as an isothermal
ideal gas, which corresponds to the adiabatic index , = 1. This can be explained using the kinetic
theory: the phase velocity in this case is lower then the thermal velocity and the particles can easily
reach an equilibrium before the wave phase changes. The kinetic theory also allows to analyze more
complex systemsg with distribution functions non-isotropic and non-Maxwellian.

Damping of ion acoustic waves is considered in Sec. 9.9. it comes from two effects: the ion-ion
collisions and the resonant interaction between the wave and the electrons and the ions. In the
weakly collisional limit, where the frequency of ion-ion colligions is much smaller the wave frequency,
Vii < Wi, the damping rate reads:

1 v, ™
Voi = 5”% + \/gkvs

In particular, the last term is due to the Landau damping on ions. This term depends on the relative
temperatures of electrons and ions, T, /T;, and the condition of weak damping can be satisfied only
in highly non-isothermal plasmas, 73 /T, < Z.

3
i <_> e—vf/zv%il | (0.45)
k3

Wpe VT

9.8 Imaginary part of the dielectric permittivity

The real part of the dielectric permittivity wa s calculated in Sec. 9.6 and 9.7. The imaginary part
of dielectric permittivity comes from two effects: (i) collisions between particles, which are trying
to destroy the coherence of their motion in the wave, and (ii) a resonant interaction between the
wave and the particles. The collisional damping can be calculated directly from Egs. (9.35) and
(9.40). Here, we consider the non-collisional effects.

In the previous calculation we have neglected the contribution of resonant particles. It comes
formally from the pole w = k - ¥ that corresponds to the particles having the velocity equal to
the wave phase velocity. To account this singularity we recall that, according to the principle of
causality, the frequency w has to be considered as sitting in the upper part of the complex plane.
Therefore, the contour of integration over the particle velocity must pass below the pole.

Assuming that the vector k is directed along the z-axis, let
us first integrate the expressions for the dielectric permittiv-
ity (9.30) and (9.31) over the momenta in the perpendicular
plane. Introducing the distribution function in one dimension

v Foo(pz) = [ faodps dpy, we have:

o a,, F = Fod
563— i, i ol dpz, ST = 9o /7050 2, (9.46)

T key ) w— kv, eow J w— kuy

(o

The contour of integration is plotted in Fig. 36. It makes a half
turn below the pole. Formally, this half-turn can be presented

Figure 36: Contour of integra- gg g half of residue of this pole:
tion in the formula for the di- 1 D

electric permittivity over velocity . e imd(w — kvy)
component parallel the wave vec- siiiis.. it
tor. The pole v, = w/k is marked where d(z) is the Dirac function and P means the principal part

by a black dot. (in the sense of Cauchy) of the integral. The second term in this
formula contributes to the imaginary part of permittivity:

2
s
Im 8el (&, w) = ,ﬁ% % | W (9.47)
tr quz
T e (k) = 2" Fa0 umast - (9.48)
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We see from these expression that the imaginary part comes from the resonant particles, which
propagate with a velocity equal to the phase velocity of the wave. If there is no resonant particles
and no colligions, the dielectric permittivity is real. The general condition of the plasma stability
requires that Ime is positive quantity. This implies that 8, f,o is negative for v > 0 and positive
for v < 0. This is the third criterion of equilibrium that has been postulated in Sec. 8.1.

The imaginary part of the longitudinal permittivity produces a non-collisional damping of elec-
tron plasma and ion acoustic waves. The imaginary part of the transverse permittivity does not
lead to the damping of electromagnetic waves in a homogeneous plasma, due to the fact that its
phase velocity is higher than the light velocity in vacuum, w/k > c¢. But, there is a resonant
absorption of electromagnetic waves at the edge of an overdense plasma, where |w| < wpe. This
corresponds to the anomalous skin effect.

9.9 Landau damping of plasma waves

Using formula (9.47), we can calculate the imaginary part of longitudinal susceptibility for the
Maxwellian distribution function (7.30):

2 2
I . i wwpa _ W
Im ey (k,w) = \/gk%%a exp ( 721:21)%&) : (9.49)

Injecting this formula in the general expression for the
wave damping (9.36) and recalling that 8,,(w e) = 2 for the
Langmuir waves, we find:

0.2 [y(kyo (k)
0.15 - w (/Jpe 3 1
Yepuw = 4] =735 XD (—— e 4 (9.50)
i : : REENS, 7 23,
0.05 This is the formula for the Landau damping of Langmuir
KApe waves. We see that the damping does not exist in the limit
02 04 06 08 1 12 of very large wavelengths, & — 0, because there is no reso-

nant particles at very high phase velocities. The damping
is increasing strongly with & and for kAp, ~ 0.4, it becomes
comparable to the frequency, see Fig. 37. For larger values
of k, Eq. (9.50) is no longer valid, and Langmuir waves do
not exist, because the phase velocity becomes comparable
to the thermal velocity of electrons, and the waves are very

Figure 37: Dependence of damping
of plasma waves (1) and ion acoustic
waves (2) on the wave number. The
damping is normalized by the corre-

sponding wave frequency. It was con-

sidered ZT,/T; = 10. Hpongly daped, o
Both electrons and ions contribution to Landau damp-

ing of ion acoustic waves. It can be calculated in two limits.
In the limit kAp, < 1, the dispersion relation is given by Eq. (9.41), the derivative of the dielectric
permittivity can be calculated explicitly, 9,,(w €) ~ 2/k?A%,, and, using Egs. (9.21) and (9.47), we

find: "
—— \/gkvs Wri Rl (E) e_vg/%%i} . (9.51)
?

Wpe T
The first term in brackets, describes the damping on electronsg, the second — on ions. In this limit,
the ratio between « and the frequency kv, is a constant, which depends on relative temperatures
of the electrons and ions, ZT,/T;, and the electron-ion mass ratio. The formula (9.51) is valid for
ZT./T; > 4. For smaller temperature ratio, the ion acoustic waves no longer exist due to a strong
damping. In the limit of ion plasma waves, kApe >>> 1, the damping increases strongly with &, and
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the waves does not exist for kAp; > 0.4. A typical curve of damping of the ion acoustic wave for a
Maxwellian plasma is plotted in Fig. 37.

9.10 Qualitative interpretation of Landau damping

The phenomenon of non-collisional damping was discovered theoretically by Lev Landau in 1946
and since that time has been the subject of many discussions. The main question is: how in a
completely reversible system can be produced such an effect as the irreversible wave damping?
To better understand this mechanism, we should analyze the role played by individual resonant
particles. The purpose of this section is to calculate directly the interaction between waves and
particles and to evaluate the energy balance.

We consider a longitudinal wave with the electric field, E(¢t,z) = Egsin(wt — kz), and we write
the equations of motion of a particle of mass m and charge ¢ in this wave:

dez = vy, mdw, = qFosin (wt — k2). (9.52)

As we are interested in the resonant particles, we place
ourselves in the reference frame that moves with the phase
velocity vpp = w/k:

*

N

z=uvpt+ 2, vy,=vpp+V.

%
%
5

<<2
S

X\Vpht Then the dynamic equations read:

&Z =V, mdV =—qFEysinkZ.

In this reference frame the time does not explicitly appears
in the equations, and we can calculate the first integral of
this system. Assuming that at the initial moment of time,
t = 0, a particle was at the position Z = Zy with the speed
V =Vp, we find

Figure 38: Particle orbits in the res-
onant reference frame the phase ve-
locity: 1 to 1 free particle, 2 - the
separatrix, 3,4 - trapped particles.
Particles with positive speeds prop-

agate to the right and those with i w4 A A
negative speeds to the left. va ¥ kEO RS QmVO & kEO SR e

This is the law of energy conservation. The particle having
the speed Vj in the point Zp performs a periodic movement. It can takes an energy from the field
or, on the contrary, releases energy to the field, but the total energy is conserved. In addition, if
the average is performed over the initial coordinate of particle, its energy remains unchanged. It
is instructive to consider the phase plot by representing the dependence of the particle velocity on
its position, V(Z). According to Eq. (9.53), the trajectory of each particle depends on the value
of the parameter 2¢FEy/kmV{Z, which is the ratio of the wave electric potential, ¢Eo/k, and the
initial kinetic energy of particle. If this parameter is small, the particle is almost free, its speed
does not vary much and the frequency of oscillations is high, wy ~ kV. It increases as we consider
the particles far away from the resonance.

In contrast, if the parameter 2¢Fy/ ka02 > 1, the trajectory of the particle is finite, we can say
that the particle is trapped in the wave. It performs oscillations around the minimum of potential.
Zy = 2m/k. The frequency of these oscillations near the bottom of potential is wy, ~ /gkEo/m.
It is a function of the wave amplitude Ey. This is essential for our analysis, because we consider
the case of a linear wave whose amplitude is very small (formally we consider the limit Ey — 0).
Then, the period of particle oscillations is infinitely long. Typical trajectories of particles near
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the resonance are plotted in Fig. 38. Curve 2 represents the separatrix between free and trapped
particles.
From the analysis done above, we conclude:

o if we consider a wave of finite amplitude for a sufficiently long time, much longer than the
period of oscillations of the particles, the phenomenon of Landau damping does not exist.
The particles retain their average energy and the wave does not damped;

e if we consider a wave of very low amplitude, there are still particles that do not have the
time to do a full revolution in the phase space. We will see later that they earn the wave
energy. Therefore, the wave loses energy, this is the physical process that explainsg the Landau
damping.

To determine the damping qualitatively, we consider two trapped particles A and B, see Fig. 38,
which have the same trajectory and at a given time the same speed v (the dotted line in Fig. 38)
close to the phase velocity. During the interval A¢, the particle A gains a speed Av and an energy
Aw = mvAwv. In contrast, the particle B reduces its speed and loses same energy Aw. The number
of particles in the point A is F(v)dv. So the energy gained by the particles in the point A is

dWy = AwF(v)dv.
The energy lost by the particles sitting initially at the point B is:
dW_ = AwF(v+ Av)dv.

These two quantities are not equal because the numbers of particles with velocities v and v + Aw
are not equal. Therefore, the net energy gain is:

AW = dW, —dW_ = —Aw Av8,F(v) = —muv (Av)2 9, F (v).

In order to calculate the total energy energy exchange between the field and the particles in the
interval At, we must average this expression over all trajectories and integrate over all initial
velocities:

o —— f v (Av)2) BpF (v) do. (9.54)

The average of (Av)? is a positive quantity. So, the sign of AW;.t depends just on the sign of the
derivate of the distribution function. This is in complete agreement with the formula of Landau
damping (9.47).

To determine the coefficient in the formula of Landau damping we must calculate the gain in
velocity of the particles during the time At from the equation of motion (9.52) in the laboratory
frame. We use the method of perturbations. First, we neglect the electric field and determine the
trajectory z1(t) = 20 + v, At, where zo is the initial coordinate. Then, we inject this solution into
the equation of motion and we calculate the gain in velocity due to the electric field:

& _Fo
m kv, —w

Av = [cos(kzo + (kv — w)At) — cos(kzo)] .

Then, we calculate the average (Av)? by considering that the initial coordinate zp is a random
variable in the interval (0, 27 /k):

k 22 E? At
2y 2 _ 4« 0 i B _
((Av)*) = Tt /(Av) dzo = o= 4(#% —y sin®(kv, — w) 5 -
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Injecting this expression in Eq. (9.54), we find the energy absorbed by the particles per unit time,
AWt /At. Due to the energy conservation, this is the energy lost by the wave. , the we can define
the imaginary part of dielectric permittivity:

Imé = —AVVtOt/At
weoE2/2

We still need to calculate the integral over the velocities in Eq. (9.54). It extends over the velocities
near the phase velocity of the wave. Thus, we introduce a new variable £ = (kv — w)At/2. We can
take out of the integral the velocity v and the derivate of the distribution function, 8, F(v), as they
vary slowly compared to ((Av)?). This leads to the following expression:

2 0 g2
q sin“ €
Ime = _Fokz BUF('U) |’U:1)ph / dg ;

—a &
The last integral is just a numerical coefficient in the expression for the imaginary part of permit-
tivity. Its value is 7, and thus we find formula (9.47) without making any assumption about the
analytical proprieties of the distribution function in the complex plane. This analysis confirms the
physical explanation of the phenomenon of Landau damping.

9.11 Problems

1. Calculate the contribution of ions in the dispersion relation of Langmuir waves. Explain
why this contribution is small. Calculate the group velocities and the phase velocities for
Langmuir waves.

2. Derive the formulas for the dielectric permittivity tensor of an isotropic and ultra-relativistic
plasma, assuming that the distribution function is fo(p) o exp (—cp/kpT).

3. Using the formula for the dielectric permittivity of the previous problem, calculate the
spectrum of Langmuir waves in a ultra-relativistic plasma, where the electron tempera-
ture kpT. is much greater then mec®. The electron distribution function in this case is

feo(p) o< exp (—cp/kpTe).

4. Consider a strongly degenerate plasma with the electron temperature 7, t much lower than
the Fermi temperature Tp. (This case corresponds to electrons in metals and semiconductors.)
The distribution function of electrons in this case is

1 si p<pr,
feO(p) & { ;
0 si p>pr
where Tp = p% /2mekp. Find the relation between the Fermi momentum pr and the electron
density. Calculate the spectrum of Langmuir waves in such a plasma. Compare the result
with the spectrum of Langmuir waves in an ultra-relativistic case kg7, > Mec?.
5. Find the dispersion relation for plasma and ion acoustic waves from the fluid model (4.1) et
(4.2). Choose the adiabatic indexes in the equations of state for electrons and ions according
to the wave phase velocities. Explain the choice.

6. Show that the relation, B = iZekX%, e0dni;, can be obtained from Eq. (9.26) written for the
ions.
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7. Calculate the energy density of ion acoustic wave in the limit kAp. < 1. Compare the energy
contributions associated with the field and the particles. How is the energy distributed
between the electrons and the ions?

8. Calculate the dispersion and the damping of Langmuir waves in a plasma with cold ions and
the following distribution function of electrons: f. () o (v +v?)~2 (distribution of Lorentz).

9. Find the trajectories of free and trapped particles by considering approximate solutions of
the system (9.53) in the two limits: 2¢Eo/kmvg > 1 and 2¢Eo/kmv2 < 1. Calculate the
time required to perform a full oscillation.
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10 Instabilities of a non-equilibrium plasma

In previous chapters we considered stable plasmas, where small perturbations propagate in form of
damped waves. But this is not always the case. Often the velocity distribution of particles is not
Maxwellian and waves become unstable. Then an initial perturbation will be increasing in time or
in space. Here we give some examples of instabilities induced by particle motion. First we consider
a charged particle propagating in a plasma with a given speed #. We show that it loses its energy
by exciting the Langmuir and ion acoustic waves, and thus the energy of these waves grows in time.
Then we consider a group of particles propagating through a plasma with a given distribution in
velocities. We find that these particles may emit plasma waves coherently, and that the growth
rate of these waves is given by the formula of Landau damping, but in this case with an opposite
sign. Finally, we consider the stabilizing processes, which stop the growth and produce a non-linear
saturation of unstable waves.

10.1 Radiative losses of a charged particle in plasma

Landau damping is an example of a more general phenomenon of resonant interaction between
waves and particles propagating with a velocity close to the phase velocity of the wave. Here we
congider another effect where a particle loses energy by exciting waves in a plasma. This process is
similar to the Cherenkov effect of emission of electromagnetic waves by a particle that propagates
at a speed higher than the speed of light in that medium.

Let us consider a particle of a charge ¢ propagating with the speed # in a homogeneous plasma,
in a thermodynamic equilibrium. We want to calculate the electric and the magnetic fields created
by this charge. Recall that in the limit & = O this charge creates a screened electrostatic field:
E=-V®and ¢

— —7/ADe
B = dregr e/
where the screening (Debye) length depends on the plasma temperature and density. The field
created by a moving charge may be deducted from Maxwell equations (7.16) — (7.19) with the
external charge density p™* = ¢&(7 — @t) and the external current joxt = qud(7 — dt). The
self-consistent current and charge density depend on the perturbation of distribution function of
plasma particles induced by our test (external) particle.

Assuming that the perturbation is sufficiently small, we can use the linear theory. Equations
(9.8) describe the Fourier components of electric and magnetic fields induced by the external current
JEXt(E,w) =2 qud(w— k- @). The resolution of these equations gives the following result for the
electric field:

B oty | Bw = BRERE ), # o (10.1)
’ k2eqw ek,w) k2% /w? — ér(k,w)

The first term in square brackets describes the effect of dynamic Debye screening. In the limitw — 0
it reduces to the electrostatic screening. The second term describes excitation of the transverse
electromagnetic field by a moving charge.

The quantity we are interested to is the energy lost by particle per unity of time, w. Knowing
the field E, we can calculate the work done by the electric field on the current. According to the
law of energy conservation, the rate of energy loss is equal to the work done by the electric field
with the opposite sign:

W=— /d?jext E = —qit- E(it, t).
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The coordinate ¥ = @t in the argument of electric field corresponds to the position of particle.
In order to calculate the electric field in the position of particle, we perform the inverse Fourier
transform of Eq. (10.1). Injecting then this field in the expression for W we have:

. ig® [ dk k-@ 1
WZS_O/(QW)?) 52 - ¥l 1 (10.2)

dk,k-7) k22— (k- @)% (k,k - @)
Two terms in the square brackets describe the energy losses associated with the emission of elec-
trostatic and electromagnetic waves. As the real part of the dielectric permittivity is an even
function of the wave vector, the energy loss depends on the imaginary part of dielectric permittiv-
ity. Otherwise, the integrand in Eq. (10.2) would be odd, which would means that the integral is
ZEro.

While considering the imaginary part of €, we note that it is small compared to the real part
and that so the significant contribution may come only from the points where the real part is close
to zero. Therefore, the radiative losses are associated with excitation of the plasma eigenmodes
given by the solution of the digpersion equations:

Reel(k,k-@) =0 and (k- @)°Red"(k,k @) = kc2. (10.3)

The first equation corresponds to excitation of the electrostatic modes — the electron plasma waves
and ion acoustic waves. According to the assumption that the imaginary part of dielectric permit-
tivity is small, we simplify the calculation of the integral by taking the limit Im ¢ — 0. Using the
definition of the Dirac delta function, 78(z) = limg .o s/(z? + s2), we can present the imaginary
part of the first term in the integral (10.2) as

Im 7} = 7 signw d[Re € (k,w)].
é(k,w)
Here, the sign of w = k - i takes into account the fact that the imaginary part of permittivity is an
odd function.

The second dispersion equation is the same as Eq. (9.14), it describes the excitation of elec-
tromagnetic waves. According to Sec. 9.5.1, the frequencies of these waves are such that w > ke.
However, in the case of Eq. (10.3) we are looking for solutions such that w = k - @. The ratio
k- /k < u is always smaller than c. Therefore, the solution to the dispersion equation for electro-
magnetic wave does not belong to the domain of integration. Thus the second term in the integral
(10.2) is zero. Qualitatively, this is explained by the fact that particles in plasma do not interact
with electromagnetic waves. This is different from the case of a neutral medium (dielectric), where
fast particles may emit the electromagnetic waves. This process is called the Cherenkov effect. The
difference comes from the fact that in a plasma the transverse permittivity (9.32) is smaller then
1% =1 = wge /w2. In contrast, the dielectric permittivity of a dielectric can be greater then 1.
Therefore, the phase velocity of electromagnetic waves is lower then ¢, which gives a possibility to
have a resonant interaction with the particles.

Taking into account the previous analysis, Eq. (10.2) can be written as:

27

5 8 - |- W
W = Wq}/dk o [Rec! (R, K - )] (10.4)

Here, the Dirac delta function takes into account all eignmodes, that is the Langmuir and ion
acoustic waves. According to one of the properties of the Dirac delta function, we have:

)= 3 lde| 6w — )
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where z; are the zeros of this function: ¢(z;) = 0. In our case, the points that contribute to the
integral (10.4) are the solutions of equations

(k-2 = w2 (k)

k3

where w;(k) are the frequencies of the electrostatic waves which were discussed in Secs. 9.6 and
9.7. We see that the test particle can excite waves with the phase velocity lower then u, because it
is the necessary condition to have a solution of equation Re el(E, k- ) =0.

We can go further by considering two limits: a slow particle v < v, and a fast particle v > vp,.
If the particle is slow, that is, its speed is smaller than the electron thermal velocity, v < v, it
may interact with the ion acoustic waves. Then, Eq. (10.4) reads:

£ 2 = wailk =3
where the derivative d,Re e is caleulated for w = wai(k). One can verify that the largest contri-
bution in the integral (10.5) comes from the greatest possible k, that means that we may limit
ourselves to consideration of ion plasma waves (9.44) which exist in the domain /\Bt <k< /\B%,
Then, we have the following approximate expressions: k-~ +wyp; and |0,Re el\ /2 2/wpi. Using
these expressions in (10.5) we see that the radiative losses appear if the particle speed u 2 wpiAp;.
Then the losses decrease as the speed increases:

2.2
q Wy A
pt T De

W~ — :
8m2co0u  ADg

Higher radiation losses occur for particles with the speeds above the electron thermal velocity,
where the excitation of Langmuir waves becomes possible.

10.2 Instability of an electron beam in plasma

The physical and mathematical analysis of the imaginary part of dielectric permittivity presented
Sec. 9.9 shows that the sign of Landau damping depends on the shape of distribution function of
particles. Stable distributions functions corregpond to a decreasing number of particles with the
energy. However, under certain conditions it is possible to find a situation where the distribution
function is not monotonic. Then the damping rate v < O is negative, and the amplitude of plasma
waves increases with time exponentially, E, o exp(—y¢). That means that plasma is unstable.
As the energy of unstable waves grows rapidly, very quickly the linear approach is no longer valid.
Theory and modeling of nonlinear effects in plasma or nonlinear plasma theory is a broad field
that covers important applications. Linear analysis remains always necessary because it defines the
conditions of instability, the thresholds and the growth rates.

An example of an unstable plasma is a Maxwellian plasma where a beam of fast electrons is
injected. Assume that the electrons of plasma have a density n. and a temperature 7.. The beam
electrons have a much lower density, n < n., a mean velocity u; and a temperature 7. We are
interested here in excitation of Langmuir waves. Therefore, the beam velocity is supposed to be
higher than the electron thermal velocity. The ions are assumed to be immobile. They constitute
a stationary background to ensure the electrical neutrality, Zn; = n. + np. Using the Maxwellian
distributions for the plasma and beam electrons in Eq. (9.29), the real part of dielectric permittivity
in the domain w > kvre, kvt reads:

2 0.3 2 2.2
— k W k
Reé(F,w) =1 — -2 <1+3 ”§"€> - 2b pg—— t6 T (10.6)
w w (w—F )2 (w—Fk - )2
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The beam contribution has a form similar to the main plasma with only difference that the frequency
is Doppler-shifted, w — w — k - @ as the beam is propagates with the velocity 4} in the laboratory
reference frame. In the imaginary part we have also two terms:

=y ww? w? = (w—l;'&fb)wa (w_]:‘f[)z
Tm Sel(R,w) = 4/ =~ 2% — \ﬁ—p e LB
m 0 (k) \E s, TP\ T, ) TV T mg, P 2k%2, (10.7)

The second term comes from the electrons of the beam. We see that this term can be negative if
w<k- Up, wWhich leads to the development of the instability.

We can obtain explicit formulas for the growth rate in the case where the beam has a very low
density, ny < ne, and a very high velocity, us >>> vre. We can neglect then the beam contribution
in the real part (10.6) and find the standard expression for the Langmuir mode frequency w = wpe.
According to our assumptions, in the imaginary part (10.7) we can neglect the contribution of
plasma since electrons are cold. From this we have:

2 S

T S, WoeWpp (wpe — K - Up)
= B B _Wpe — K Up)" } 10.8
¥ \/8— e W, eXp( 2202, s

The damping becomes negative for k > wpe /up, that is
to say, for waves with a phase velocity smaller then the

0.12 M (K) ©pe velocity of beam. The growth rate becomes maximum for
0.1 kup — wpe ~ kurp. This gives us the following estimate:
0.08
0.06 2 o
0.04 Yoo B 2 B
0.02 O Wpe UTp
De
—0.02 0.1 82— 03 A typical dependence of the growth rate of the beam-

plasma instability on the wave vector is presented in

Fig. 39. The unstable plasma waves have a phase ve-
Figure 39: Dependence of the Lang- |ocity lower then the average speed of the beam. In this
muir wave damping on the wavenumber cage the electrons of the beam transfer their energy to the
for an electron beam with parameters: ayves. This is a process of deceleration of the beam by
up = 8ure, np = 0.03ne et Ty = 2Te. pyqiative losses similar to the radiation losses considered
The unstable waves are excited in the ip the previous section 10.1.
interval kApe € (0.13 —0.27). This process of beam instability is also similar to the

Cherenkov effect, but instead of electromagnetic radia-
tion produced by a particle propagating in a medium with a speed greater than the phase velocity
of electromagnetic waves, in our case we obtain a coherent emission of electrostatic waves by the
beam particles.

This is a kinetic instability, because it comes from the imaginary part of permittivity and is
agsociated with the resonant particles of the beam. It can be seen from Eq. (10.8), that the growth
rate increases when the temperature of the beam decreases or the beam density increases. The
formula (10.8) is valid if ymax < kvrp ~ wpevTs/up, which gives the limit for the temperature of
the beam: v > ub(nb/ne)l/g.

10.3 Instability of a mono-energetic beam

In the opposite case of a cold beam, vy < up(np/ne)™? the instability still exists, but it takes place
in the hydrodynamics regime, when all particles in the beam emit the wave coherently. In this
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case we cannot neglect the contribution of the beam in the real part of permittivity (10.6). On
the contrary, the thermal effects are not important in this limit. Correspondingly, we have the
following dispersion equation:

2 2

1 Yee “pb

w2 (w—k @)
This is a fourth order algebraic equation for w, that can have complex roots. We solve it in the
limit of a low density beam, n; < n.. From the previous solution, we can assume that the unstable
solution corresponds to a frequency close to wpe and to a phase velocity close to up. Therefore,
we assume that w = wpe + 0w and k = wpe /up in Eq. (10.9). Developing this equation in a series
of dw assuming that the frequency correction is small, dw < wpe, we deduce a cubic equation,
D> = wpewgb, that has a complex root with a positive imaginary part,

(10.9)

A 1/3
_ 1+_“/ng6 (”b> : (10.10)
Te

dw = 5473

This unstable root, Im dw > 0, corresponds to a hydrodynamic instability as we did not consider
here the kinetic effects that are contained in the imaginary part of parmittivity. We note that for
this unstable root, the derivative of dielectric permittivity is negative, &Je(l_{,w) < 0. This means
that the energy of the wave (9.37) is negative. We can say that this is an instability of a negative
energy wave. It has a growth rate higher than the kinetic instability considered above.

This instability corresponds to the excitation of Langmuir waves by a beam of electrons. It
ig called a Buneman wnstability. Other types of instabilities are also known. For example, in a
hot plasma, where u; < vre the ion acoustic waves become unstable if the following condition is
verified:k - = kcs.

10.4 Nonlinear saturation of instabilities
10.4.1 Mono-mode saturation, particle trapping

The exponential growth of the amplitude of unstable waves occurs for a limited time when it may
be considered as a small perturbation. After this time, the growing wave amplitude becomes too
strong and we must take into account its interaction with other particles and waves. It is said,
that the instability enters a nonlinear stage, where the amplitude of wave grows slower then the
exponential or it becomes constant. A nonlinear behavior of instabilities is a very complicated
phenomenon and it is difficult to describe it analytically in general. The numerical simulations are
often used to study the plasma in the nonlinear stage.

Powerful computers provide a detailed analysis of the nonlinear behavior of plasma. However,
it is still useful to have some qualitative ideas about possible nonlinear states and estimates the
amplitude of the saturated wave. The results of non-linear plasma theory for large amplitude
waves depend strongly on the excitation conditions. Here we discuss two examples: the first one
corresponds to a regular regime and the second example — to a turbulent regime. Let us consider
first the hydrodynamic instability (10.10) where the non-linear saturation occurred through the
trapping of beam particles in the wave.

We recall that the frequency of a wave is defined in an accurate manner only if the amplitude is
constant. In the case where the amplitude increases or decreases with the growth rate v, the wave
possesses a spectral width Aw ~ |y|. Therefore, if a wave amplitude increases with the growth
rate (10.10), its phase velocity is defined with a precision Awyy, ~ wp(np/ne)/3, which is much
greater than the thermal velocity of the beam,v;;,. Therefore, all electrons in the beam interact
with a single coherent wave.
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In the linear model we consider the evolution of the wave assuming that the beam distribution
is given. The dominant nonlinear effect is a modulation of the electron beam density and velocity
by the wave electric field. According to the analysis of Sec. 9.10, the electrons can be trapped in the
wave if it has a finite amplitude. The conservation of energy in the beam reference frame allows us
to write a relation between the electron energy loss and the wave field amplitude: e® ~ %meAug,
where & ~ E/k is the wave potential and & = wp./up is its wave vector. The wave growth stops
when the beam electrons are falling out of the resonance, that is, Auy 2 Aup,. Then the criterion
of saturation reads:

1
eFgattp fwpe ™ Emeug(nb/ne)g/e’. (10.11)

This qualitative estimate gives us the wave energy at saturation and consequently the energy lost
by the beam:

1 1
Wg ~ §€0E52at B §meu§nb(nb/ne)1/3. (10.12)

Recalling that ny < n., we see that the energy density of a plasma waves is lower then the energy
density of the beam. One can interpret this instability saturation in a different way. The trapping
of electrons in the wave produces a broadening of the electron energy distribution in the beam.
Because the electrons are trapped in all possible phases, the initially mono-energetic electron beam
distribution function is transformed into a plateau in the interval £+/e®ga;/me = Avpy. So the
beam distribution function obtains an effective temperature with a thermal velocity of the order of
Auwpyp,. This beam does not verify the criterion of hydrodynamic instability and therefore, the growth
stops. In reality, it does not stops completely, but the hydrodynamic instability is transformed in
the kinetic instability with a smaller growth rate.

10.4.2 Multi-mode saturation, a quasi-linear theory

The saturation of the kinetic instability occurs differently. According to our analysis in Sec. 10.3,
the growth rate of kinetic instability v ~ wmnbv%b/neug is smaller than for the hydrodynamic
instability, while the width of the spectrum of excited waves, Ak ~ wpeva/u?), is larger, so that
Ak > «y/up. Therefore, the plasma beam excites simultaneously several modes with different wave-
lengths. The phases of these waves are not correlated and constitute a broad turbulent spectrum.

The interaction of electrons with several incoherent waves takes a stochastic character. The
chaotic motion of an electron is made of an addition of the electric fields of several waves with
slightly different frequencies and phases. Then, instead of a regular oscillatory motion in one wave,
the electron motion is incoherent waves takes a character of diffusion. The evolution of the average
distribution function of electrons in the field of many incoherent waves is described by a quasi-linear
theory. The total electric field of plasma waves having a wave number % is presented in the form
of a Fourier spectrum:

B(z,t) = % /dk Ew(t) exp <~z’ /t wi(t)dt +@'kz> .

For sake of simplicity, we consider here a one-dimensional situation of a homogeneous plasma of a
length L. The time dependence of the amplitude Fj is described by the imaginary part of mode
frequency, Imwy. It is the solution of the dispersion equation, el(k,w) = 0. However, in the
quasi-linear theory, ¢ depends on the electron distribution function that is described by the Vlasov
equation.

Thus, in difference from the linear theory, here, the distribution function evolves in time and
the mode growth rate also changes with time. At first glance it may be considered contradictory
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as, according to the linear theory, the dielectric permittivity depends on the frequency, but not on
time. However, here we are considering the average distribution function, which is approximately
constant at the plasma wave period but it varies in time scale comparable to the wave amplitude
growth time. Consequently, we need to derive from the standard Vlasov equation a new quasi-linear
equation for a slowly varying part of the electron distribution function.

Such an equation is derived by using the perturbation method. The distribution function of
electrons is represented as a slowly varying part fo(¢,v) and the fast varying components

fe(t, z,v) = folt,v) + 8 fo(t,v) = folt,v) + % /dk fi(t,v) exp (—7) /t wi(t) dt -|-7Lkm> . (10.13)

The oscillating components f;, are small compared to fo. They describe the linear electron response
to each plasma mode. Differently from the linear model, here we assume that the function fy is
not stationary, but may vary over time slowly.

This is the main hypothesis of the quasi-linear theory — the separation of two time scales: the
short time is of the order of the wave period, Aty ~ 27 /wy, =~ 27 /wpe, and the long time scale is
of the order of the wave rise time, At; =~ 1 /. First of all, we obtain equations for the oscillating
components of the distribution function. Inserting Eq. (10.13) in the Vlasov equation we linearize
it considering the long time as a parameter. Then, for components fi(v) we obtain the following
equation:

—twg fo+1kv fr + g ExOpfo =0. (10.14)

This equation is similar to Eq. (9.25) except that the function fo, the electric field Ey, and the wave
frequency wy, vary now in the slow time scale. Injecting the solution of this equation in the Poisson
equation, we obtain the dispersion equation el(t,w, k) = 0, depending on time. Its solution gives us
the wave frequency wy(¢) and the growth rate, yx(¢). Differently from Eq. (10.8), the distribution
function in this equation is an arbitrary function. Correspondingly, the wave growth rate depends

also on time:
7T€2me

Vr(t) = —"JWTQ60 Opfo lumunfk - (10.15)

Knowing the instantaneous growth rate, we can describe the evolution in time of the energy of
each wave mode (9.37),

s 1 2
Wk = §eoaw(w Reel) ‘Ek|2.

The mode amplitude Fj(t) varies in time as o« exp[— ft v (t') dt']. Correspondingly, variation in
time of the mode energy satisfies the following differential equation:

Wi = —2viWi. (10.16)

As the modes are incoherent, the total plasma wave energy is just a sum of all unstable modes,
that is

_ 1 _
B = i LT 10.17
2 an/ " ( )

This expression for the energy density can be obtained explicitly by averaging the energy density
of the electric field over the plasma length L:

Wg = %aw(w Re el)/dsz(a:, b=

t t
ﬁﬁ/dx/dk/dk/EkEk’ = (‘@/ wkdt’*i/ wk’dt/+ikw+ik’x>.
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First of all, we calculate the integral over the coordinate z: [ dx exp i(k+k')z = 2r 6(k+&'). Here
we need to take into account that E_j = Ej, because the electric field F(z,t) is a real quantity
and the wave frequency is an odd function, w_j = —wz. Then, integrating over k', we obtain the
formula (10.17).

Now we can derive the equation for the average dis-
£ tribution function fy. Inserting the distribution function
(10.13) in the Vlasov equation and averaging it over the
plasma length we obtain:

€

O fo= E/de(m, t) 00 f (¢, 2, v).

2 -
. 3 i e m._ Similarly as in the previous formula for Wg, the inter-
w, v ference between modes can be neglected. Retaining the
W, b coherent contribution of modes with k+&' = 0, the equa-
tion for fo takes the following form:
) 2
ie |k
i Orfo=—=0, | dk O fo- 10.18
.t 114 0= g p/ P (10-18)
<402 :
, / H Similarly as in the calculation of Landau damping in Sec.
4 __1' 9.9, we present the denominator in this equation as the
whiy ok sum of the principal part and the residue,
1 P et i
Figure 40: Evolution of the distribution w—kv  w—kv G ‘.

function of the electrons (a) and of the
wave spectrum (b) in the quasi-linear re-
laxation: 1 - in the linear phase, 2 - dur-
ing relaxation, 3 - after the saturation.

The imaginary part of this integral is an odd function and
its contribution is zero. Thus only the pole contribution
w — kv = 0 remains. That corresponds to the resonance
interaction of a particle with the velocity v with the wave
mode having the same phase velocity. The equation for
the average distribution function takes finally the following form:

2 —
Bifo = By (6;% Ww/vapfo> : (10.19)

This is a diffusion equation in the phase space. The diffusion coefficient is proportional to the
spectral energy of the waves Wy with the resonant wave number k = w /v.

The system of two equations for the spectral intensity of the waves (10.16) and for the average
distribution function (10.19) describes the evolution of plasma in the long time scale in the case
of excitation of several modes with non-correlated phases.. Each of these equations is linear, but
with coefficients depend to the other function. Therefore, this is a quasi-linear system.

Let us consider qualitatively the evolution of distribution function in the case of the kinetic
instability of an electron beam. First, the growth rate (10.15) is positive in the range of velocities
(v1, v2) where the derivative 8, fo is positive. In the corresponding interval of wave numbers
(w1 /vy, wa/vg) the spectral intensity of the wave grows exponentially. According to Eq. (10.19) it
is causing a diffusion of the distribution function in the velocity space. Similarly to the diffusion
in the real space, the diffusion in the phase space leads to flattering of the distribution function.
Therefore, the derivative of the distribution function in the domain of diffusion decreases with time,
and the instability growth rate decreases correspondingly. Thus, the quasi-linear diffusion leads to
saturation of the kinetic instability.
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The diffusion stops when the distribution function is constant in the velocity interval corre-
sponding the wave numbers where the energy density Wj is non-zero. A constant distribution
function corresponds to a zero growth rate. However, as it can be seen in Fig. 40, stabilization of
the modes in the initially unstable domain of wave numbers leads to destabilization of the waves
with smaller phase velocities. Therefore, the process of growing of the waves and of particle dif-
fusion continue until all domains of positive derivatives fo will be eliminated. The initial electron
beam distribution widens towards smaller velocities producing general slowing of the beam elec-
trons. Upon the saturation, the distribution function of the beam is a plateau between the thermal
velocity of the plasma electrons and the initial beam velocity ;.

As we can see, the quasi-linear evolution ends up with a stable but non-Maxwellian distribution
function. Further relaxation to the thermal equilibrium takes place in a longer time scale due to the
electron-electron collisions. In contrary, the collisional effects are not important in the quasilinear
time scale where the collective effects of wave-particle interaction play a dominant role.

10.5 Problems

1. Using the expression for the energy loss rate (10.5), calculate the radiative losses of a fast
particle having the velocity v > vre.

2. Find the condition of instability in a plasma with a current of electrons. Consider the case
where the average velocity of the electrons w, is in the range vy, > ue > vp; and ZT, > T;.

3. Show that the maximum growth rate of instability of a beam of the electrons in the kinetic
regime is given by the following formula: max |y| = wpe(ns/ne)us/v3,. Taking into account
the Landau damping of the electrons of the plasma, find the wave number k&, where y(k,) = 0.

4. Consider a homogeneous plasma of electrons and positrons have the density n and the temper-
ature T'. Calculate the longitudinal dielectric permittivity for high frequency waves, w > kvr.
Find the frequency of plasma wave and the Landau damping rate. Find the relative velocity
of the electron and positron component where these waves become unstable. Calculate the
maximum growth rate of this instability of inter-penetrating electron and position beams and
the wave vector corresponding to the maximum growth for the case of a cold plasmas, vy — 0.
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11. Plasmas and Radiation

11.1 Radiative properties of plasmas

The radiative properties of plasmas may be summarized to:

e Radiation emission from plasmas (bound-bound, recombination, bremsstrahulng,
with some remarks on H-like and He-like spectra)

e Line broadening mechanisms

e Equilibrium in a plasma (Maxwell, Boltzmann, Saha)

e Photon absorption and opacity (in particular collisional absorption)

e Equation of radiative transfer and blackbody limit

11.2 Laser-Plasma profile in the ns regime

The ns regime is dominated by hydrodynamics:

Shocked region Plasma Expansion

& Overcritical plasma
(conduction region)

n / LASER
5 4| ' < :

| Ta~~ 1 Kev

- Undercritical plasma
(plasma corona)

v

and has the characteristics:

Critical density
_1.1x10*" em™

v A(um)’

w; =@, +c k n=

Energy balance at critical density: Absorbed flux ~
Energy flux carried away by thermal electrons

al, =n,v,1T,

21 2 12
n,=n,=10"/4 v, «T

>

electron thermal velocity Ve = (kTe/?ne)l/z
NRL Plasma formula
( ) — 4,19 x 107T."/2 cm /sec
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Coronal temperature s
T (eV) =107° (IL(W [ em® ))\.z(lum))_ _
Ablation (Shock) Pressure
P=n,T,

€

14 2\
P(MBar) zlo(]L”O (W7 cm ))

A7 (um)
Conduction zone

11.3 Equilibrium (and types of equilibrium) in a plasma

Free electrons are in equilibrium when they have a Maxwellian distribution of velocities:

dN

3
E(E) v exp(-mv” /2T) dv
a\T

E"exp(-E/T) dE

3

Clearly this cannot be applied to the relativistic regime since it implies v>c.

m’
vidy

1 12
~1/2 - 2
E° dE = (Emv ) mvdy =

Where E is the kinetic energy of electrons.

The electron-electron collision time is:

3/2 3/2
T (se0) =17 %104 —Le V) _y 7,403 €D
log A}?(} (Cﬂ?_k ) n, (Cﬂ?_‘ )
302
7,:(se¢) = —— = 3x 104 Le V)
v, n,cm ")

2] -
T, =1lkeV n,= 10* em™ =71, =0.1ps

Coulomb collisions, Spitzer's model, A Coulomb logarithm.
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Bound electrons are distributed on the electronic levels of atoms (ions) in agreement with
Boltzman'’s statistics:

n(E) » g exp(-E /T)

where g is the density of states.

Planckian distribution of photons (black body emission). Number of photons per unit volume
and frequency:

o)

V- 1
¢ exp(hv/T)-1
E =hv

ph

dN(v)= 8

Energy per unit volume per unit frequency:

8xhv’ 1
up(v) = ;
¢ expthv/T)-1

Radiation emission from the surface of a black body:

Energy density (per unit frequency)‘

3
u (v)= Sjr]zv ! (J/m’)/ (Av)
: ¢ exp(hv/T)-1

Energy flux from surface (per unit
frequency, time, and unit solid angle) S

—
u,(v)c _

Bp(v)=—— —

2hv? 1

W im*)/ (AvQ
¢ exp(hv/T)-1 ( )¢ )

But photons, in the more general case of a grey body, follow Kirchoff’s law
en

XD - g,(n)

a(n)

a(v) absorptivity: proportion of incident radiation absorbed, a blackbody has a(v) =1 at all
wavelengths

&(v) emissivity

At equilibrium, there is a direct link between emission and absorption (“opacity” problem)
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Kirchoff’s law

Thermal equilibrium: Ty j.ciedy=Tereypody (27 law of thermodynamics),

r reflectivity, a absorptivity, ¢(v) grey body emission Bp(v) blackbody
emission

B,(v) and e(v) units of W/m2, a without dimensions

rB
r=0 S 0 <r<1
B
a=7 2 Gy a=I-r
&(v)

Between the body the radiation is exactly balanced

Bp (v)=¢e(v)+ rBP

z%=l—r5a =e¢e(v)=aB, (v)

What is the equilibrium for ions?
Atomic processes in a plasma:

Collisional excitation (between quantum states n and n’)
Z+ — Z+ -
AT t+e <= A +e
Collisional ionization and 3-b%dy recombinatic%nz 0
F - +1)+ - -
Al +e <= A +e +e
Spontaneous radiative decay

7 V4
An i = An'+ + h"vmz'
Radiative recombination

Z +1 - Z
AV pem < AL +hvy,
Collisional excitation from ions ‘

A"y H < AST +HY

Charge exchange

A(Z+1)++H9A5++H+
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lonization equilibrium in a plasma

dN(Z) _

= N. [ — SN (Z) — sl Z)N(Z)

+8(Z —1)N(Z -1+ a(Z + 1)N(Z + 1)]

Here S(Z) is the ionization rate. The recombination rate a(Z) has the form
a(Z) =a,.(Z)+ N.az(Z), where a, and aj are the radiative and three-body
recombination rates, respectively.

Z+1

a(Z+1) S(2)
Z

a(Z) S(Z-1)
Z-1

Ionization from ion ground state, averaged over Maxwellian electron distribu-
tion, for 0.02 £ T./EZ < 100 (Ref. 35):

Tr EZ 1/2 zZ
(T./ °°) 'x) cma/scc,

12 S(Z) =10"°% -
(12) L) (EZ)3/2(6.0 + T./EZ) °"p( T,

Due to the exponential term, there is no significant ionization if T << EZ_,
the ionization energy of the considered ion. Usually T ~0.1 EZ_, is enough
to get significant ionization

Collisional (three-body) recombination rate for singly ionized plasma:*®

(15) az = 8.75 x 107277, 7*% cm® /sec.
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Electron-ion radiative recombination rate (e+ N(Z) — N(Z — 1) + hv)
for T./Z? < 400eV (Ref. 37):

il Tl 1
(13) a-(Z2)=52x10"12 (I—x) [0.43 - In(EZ /T.)

+0.469(EZ /T.)~ 1""3] cm® /sec.

For 1eV < T./Z? < 15eV, this becomes approximately®®

(14) ar(Z) = 2.7 x 1073 2%7.7 /2 cm® /sec.

In stationary conditions (equilibrium)

WND) 1, [-S@IN @) -a@IN (2 +
+SZ-DNZ-D+a(Z+D)NZ+1)=0
@ = n,[-SON (©0) +aMN 1] =0
r
= (fma){) = ??e[_a(zmax N (Zmax) + S(Zmax - DN(Zmax - 1)] =0
dat
EN(Z) =N,,, =const
07 Z+1
a(Z+1) $(2)
VA
a(2) S(Z-1)
Z-1
NZ+1)  SZ) $(Z)

NZ) — aZ+1l) a (Z+D)+n,a;(Z+1)

Z+1

I a(Z+1) S(2)
V4

I a(2) S(z-1)
Z-1
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Example for helium‘ - s - bare He
a(2) S(1)
1 - H-like He
a(1) S(0)
O - neutral He
dgo = n,[-S(O)N, + (DN, ]=0 D
t

d§1 =n [-SAN,—a(@)N,;+SO)N, +a2(2)N,]=0 (2)
[

dg2 =ne[—a(2)N2+S(1)N1]=O (3)
t
From (1)
n,[-S(ON, +a()N,]=0 = N, _500)
| N, a)
And from (3)
n,[-a(2)N, + SN, ]=0 = N, _SQ)
| _ N, a®)
Also notice that S
a(2) S(1)
1 - H-like He
NO + N1 +N, = Nmr = CONnst a(1) S(0)
; ] 0 - neutral He

n,=N +2N,
At very high densities

NZ+D) S
N (Z) n,o5(Z+1)

This is Saha’s distribution (or Saha-Boltzman distribution).

Page | 136



H ENIC o " !.: ,"“‘V\, 9, A univensiTy
Y niversite - { § 4 A
wERSTY } UM goRDEAUX 1 At & o York Q,

- Erasmus+

Physical meaning of Saha’s law:

N(Z +1) S(2)
»
N@Z) — neay(Z+1)
lons recombine mainly due to collisions. Radiative de-ionization become negligible. At high

densities (or long plasmas) the emitted photons are re-absorbed before they scape the
plasma, therefore they do not contribute to recombination

Notion of “optically thick” plasma.
Saha’s distribution.

In a steady state at high electron density,

(18) N.N*(2) . S(Z -1)
4\'*(2 —-— l) (& 31 '
Saha equilibrium:*°
N.N; * ‘Z, ~('3,.'2 ‘Z_ B
(17) L@ = 6.0 x 10%! 9% exp | — E}iﬁi—l—)— cm 3,
Nn*(Z - 1) gz T.

where qf is the statistical weight for level n of charge state Z and Ei(n.l)

is the ionization energy of the neutral atom initially in level (n,l), given by
Eq. (2).

At very low densities

N(Z+1)= S(Z) _ S(Z)
N(Z) alZ+1) a.(Z+1)

This is called “Coronal equilibrium” CE (typical of the
low-density corona of the sun)

N(G+1)

IE
L =721012 T4 fexp (--1)
N() T
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Physical meaning of “Coronal equilibrium”

The low density of the plasma or its short extension imply that as
soon as a photon is emitted it escapes from the plasma and
therefore cannot be re-absorbed and re-ionize other atoms.
Notion of “optically thin” plasma

The low density of the plasma also implies that collisions are rare
events. So not much possibility of getting electrons in excited
states.

However radiative de-excitation (which is dominant over collisional
de-excitation) is preferentially towards the ground state which is

therefore overpopulated
Rate for spontaneous decay n — m (Einstein A coefficient)3*

(6) Apm = 4.3 X 10" (gm /0r) frren (A Enm)? sec™?.

At intermediate densities

N@Z+l) _ S@) _ S(Z)
NZ) aZ+) a(Z+D)+n,a,(Z+1)

This is called “Collisional Radiative Equilibrium” CRE
Conditions of validity for Saha distribution

n,(em™)zTx10% 207" (T 1 E;)"
~1.7x10%7 (eV)"? (E°°

Z max )

(n principal quantum number)

Corona model is applicable if

n(cm™) <10 T(eV)"”
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In CE ionization degree is independent on electron density:
- N@Z+D)  S(2)
N(Z) a(Z+1)

On the contrary in Saha equilibrium, ionization decreases when electron density increases
(more collisions bringing to recombination)

NZ+D)  S@)
N©Z) n,oyZ+1)

108

1000

100 |oosd
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lonization states

Thermal effects produce a Saha-like distribution of ionization states.

This is related to EOS.
With short pulses field and tunnel ionization may also be important

| 1 e ———— .
C"* Cl”Cl‘o‘ 11e 14+
Usually 3 % % % cf ¢l
ionization 0"
states §
dominatein  $
the plasma %
8.10“
a.
1 19 N
9 50 100 300

Bulk Electron Temperature(eV)

Average lonization degree in a plasma

In CE ionization degree is independent on electron density
T (KeV) )1/ 2
1+ (26/Z)T (KeV)

In CRE the dependence is not big

Z" = Min(Z,%(ATg (V)" 3)

Z*=26(

Such formulas need to be corrected because at T=0 Z*=average number of electrons per atom
in the conduction band (e.g. Z*=3 for Al). This result is obtained by Quantum models of

plasmas at high density and low temperature (e.g. Thomas-Fermi model).
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N
=]

Zx
He=
=

II‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIIIIIIIIHI

0 [ [ [ IIIIII [ [ [ IIIIII [ [ 11111
10 100 1000 10*
T (eV)
Average ionization degree for gold at density p = 0.1 g/cm?®) vs. temperature.

Squares: coronal limit, Circles: Thomas Fermi model, Dashed line: CRE formula,
Continuous Line: CE formula

Types of equilibrium in a plasma

o Free electrons follow Maxwell distribution

¢ lonization equilibrium:
Low densities - CE

¢ Intermediate densities - CRE

e High density - Saha distribution

e The high density case corresponds to LOCAL THERMODYNAMIC
EQUILIBRIUM (LTE)

In LTE we have that:

Free electrons follow Maxwell distribution

Bound electrons follow Boltzman distribution

lonization equilibrium follows Saha distribution
n, L
But they follow the space
and time evolution of the
plasma parameters
n. and The

Overcritical region

Terv 1 Kev
This is possible ONLY if
the variations are slow

(adiabatic approximation)
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In the low density case (CE) photons escape the plasma as they are emitted: the spectrum
emitted by the plasma exactly reflects that of individual atoms (ions).

We can “see” inside the plasma

In the high density case, photons are reabsorbed and remitted many times before they can
escape. Therefore the radiation is strongly affected and tends to become a thermal radiation.

We can only see the surface of the plasma

When the radiation becomes thermal we speak of complete local thermal equilibrium or we
say that there is equilibrium between matter and radiation.
In this case the temperature in Planck’s formula is the electron temperature

If there is no dependence on position, we have the true “Thermodynamic Equilibrium”

11.4 Equation of radiation transfer

d_ .,
d—S—J(W) a(w)

Between tgo points along a ray, intensity increases because of (spontaneous)
emission and decreases because of absorption. We neglect scattering to simplify the

equation. We also neglect stimulated emission.

o =» linear absorption coefficient
J = emission of radiation (energy per unit
volume, unit time, and unit frequency)

dl .
— = j(w)-a(w)l
LSY
If there is no emission, we get Lambert-Beer’s law for absorption of

e.m. radiation in a medium

dl
—=—a(w)I
ds

[(s)=1 exp(-a(w)s)=1 exp(-s/s, (w))

Here s,=1/a is the photon mean free path in the medium.
Transmission is

T=1/1=exp(—as)
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On average, only the photons emitted within a mean free path s, can escape from the surface

of the medium (those at larger depths are absorbed before reaching the surface)

)

o
—

—

&(v)

This gives a relation between the emission coefficient per unit
volume of the material j(v) [units W/m?] and the emissivity of the
medium g(v) [units W/m?]

(for simplicity here we neglect the per unit frequency and per unit
solid angle, so £ and / have the same units)

I=¢=j@)s,@) =I-e=L2
a(w)
dl .
d_S = _]((U) - OC((U)] W/em2 W/em3  1/cm

Between to points along a ray, intensity increases because of
emission and decreases because of absorption

A
.

I(s,)=1(s,)e"™ ™" + fj(w)ew'D:)ds

21
Reabsorption is taken into account.
D(s) is the optical depth (or optical density)

D(s) = j.a(a))ds
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Physical interpretation

/ (50) » I(sp)exp(-a(s-sp))= I(s,) exp(-D,)
J  J' ds exp(-a(s;-s"))=j’ ds exp(D-D,)

W

S J” ds exp(-a(s,5"))= j” ds exp(D”-D,)

Sop S s S5

[(s,)=1(s, Ye 2 +fj(a)) e PP (s

0

D(s)= fa(a))ds =oa(w)L (L =5, — SD)
S
For a uniform plasma slab of thickness L

I(s,) = I(So)e'D2 +fj(u)) e "

0

=1(s,)e” + T(j(w)/a(w)) " dD

=I(s,)e"” + (j/a)[l - e"DZ]

D(s)= j‘a(a))ds =a(w)L (L=5,-5,)
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Relation between a absorptivity and a linear absorption
coefficient

T=1/1,=exp(-alL)
_!O, ; Lambert-Beer’s law
— a=1-1/1,
=a=1-e“

When the optical depth is >>1 the plasma is said to be
optically thick. This means absorptivity is close to unit

al.>>1 =a=1

I(s,)=1(s;)e™” +(jla)[1-e"]

When the optical depth is >>1, i.e. the plasma is
optically thick then

D(s) = ja((u)ds >> 1

I(s,)=(j/)

as it was “guessed” before
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Integral vs. local form of Kirchoff’s law

ev)lav)=B,(v) 4=

But if the optical depth (aL >>7) is large

[=(j/a)
|dentifying | and ¢ we get

e~(jla)=aB,(v)
a=1-exp(—al)

But a~71 from which
JW/lav)=B (v) 4

The relation jv)la(v) = BP (v)

has been obtained for optically thick plasmas but it is always valid
(it is “local”)
Ten teh equation of radiation transfer can be writte as follows:

a = j(w)-a(w)] =
ds

= a(v)|B,(v)-1]

During propagation the ligth becomes more and more similar to a
black body
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In general o however depends on frequency. Let’s take
the collisional absorption coefficient u

. Z’nn In(A)1-e ™"

U=a=cons _ g
| 12 3 ff
nli, v
 Zn’ In(A
~ 3.1x107 (3/,,)
nw ;"

at low frequencies

Then there is a “transition frequency” w which gives an
optical depth D=1

0 Zn’ In(A)

u=a=3.1xl

nrwznyz
D=a(w)L=1
2.
w2 =3.1x107 Z”eT n(A) [, ~1]

()

For m<<wr, the plasma emits a black body spectrum
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At low frequencies, w<<w, the plasma emits a black
body spectrum.

The maximum of black body emission is at (Wien’s
law)

And Stefan Boltzman’s law implies that

,
oT* =1, /2

Where o ~ 70° with Tin eV and /, in W/cm2

If the plasma is thin (w>>w7)

D(s)=a(w)L <<1 I(s,)=0
I(s,))=(j/a)[1-e™™]=(j/a)[1-(1-D,)]= JL
but

j=B a
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If we take the limit of high frequencies (hv>>T)
2hv? 1

B (v)=—
P ¢ expthv/T)-1

Z'nn,In(A)1-e™"
nT" v

: 2m’ 1 ZnnIn(A)1-e ™"
J — OCBP(V)= - e ;1M( ) .
¢ expthv/T)-1 nT, - v

_ 2hZznenf In(A)g, 1- e ™ Zznen,, In(A) e

= Cconst
2 2 hviIT 1/2
nT, ¢ e —1 T

4

o = const

s

g

Bremsstrahlung emission
(eh\’,"lT _ 1 —~ eh\’,"lT and 1 _ e—h\’f{kT ~ 1)

For w<<wy, long plasma and low frequency, the plasma
emits a black body spectrum.

0 =3.1x107 ZA)

It is a surface emission. We cannot see inside the

plasma, photons are reabsorbed, we only see the
surface

[(s,)=(j/a)=B,(v)

Since photons are reabsorbed and density is high, we
are likely in LTE conditions
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For w>>wy, thin plasma and high frequency, we see the
inner part of the plasma. It is a volume emission.

At high frequencies bremsstrahlung-like emission

I(sy) = jL = j,exp(~hv / kT)

Photons escape from the plasma and density is low. We
are likely in CE conditions

11.5 Radiation emission from plasmas

Three types of emission:

Free-Free emission (continuum) or “bremsstrahlung”

Free-Bound emission Continuum
(continuum) lonization
13.6 threshold

Excited levels

1,/7" (eV)

Bound bound emission
(lines)

Ground level
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Line emission

The emissivity of a spectral line arising from a p --> q transition
for an ion with charge Z* is related to the electronic population
N(Z*, p) of the upper level p

7 } Continuum
ezt e, =N(Z7.p)Alp. q)

éxcited levels

I,[Z° (eV)

where A(p, q) is the transition probability
(Einstein’s coefficient for spontaneous
emission)

A J

Ground level

o= <

(here ¢ is in term of number of emitted photons per unit time. To get the real
emissivity one must multiply by the photon energy corresponding to the
transition)

The problem of line emission is to find the population on each level.

£, =N(Z". p)Alp. q)
dN(Z". p)

=N p)Ak)« £, ()= N[z p) o)+ R.(p)

A(p)= Y A(p.p")

Where the first term -NA gives the depletion towards the lower levels due
to radiative decay, R represents the population increase of the level due to
radiative processes (absorption), -NC represents collisional depletion
towards lower levels, and the fourth term the collisional increase in
population.

In stationary conditions

Alp,
7. pa = A(p()p+ ((l%p) [Rr (p) + R, (P )]
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High Pawer Laser Plasma Physics.

At equilibrium, the population on each bound level follows Boltzmann’s
distribution

E,, = N(Z*, p) A(p, q) =

__A(p.q)
A(p)+C(p)
g.exp(=E. /T)A (p, q)

[R.(P)+R.(P)]

Cross section (Bethe approximation) for electron excitation by dipole
allowed transition m — n (Refs. 32, 33):

—13 fmng(n, m) 2
—— ~ cm

3 = 2.36 x 10
( ) Tmn CAERT}'I ’

where fmn is the oscillator strength, g(n,m) is the Gaunt factor, € is the
incident electron energy, and AFE,,,, = E, — E,,.

Electron excitation rate averaged over Maxwellian velocity distribution, X,

= Ne(omnv) (Refs. 34, 35):

(4) Xomn = 1.6 x 10

—5 f‘mn (g(n,m))f\re exp _M& SeC_l
AEn?nTi/z Te !

where (g(n, m)) denotes the thermal averaged Gaunt factor (generally ~ 1 for
atoms, ~ 0.2 for ions).

Rate for spontaneous decay n — m (Einstein A coefficient)>?

(6) Apm = 4.3 % 10" (g /9n) frun (AEnm )2 sec ™1,
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Line emission in CE equilibrium

In coronal equilibrium the ground level is “over-
populated”.

The total radiative decay of each level is dominated by
the radiative decay towards the ground level

dN(z". )

P N(z".p)Alp)+ R, (p) - N(Z". p)Clp) + R, (p)

A(p)= Y A(p.p) = A(p.0)

The same applies for collisional excitation

In CE (and CRE) bound electrons do not necessarily
follow Boltzman.

In coronal equilibrium:
Intensity emitted per unit volume from the transition n — m in an optically
thin plasma:

(7) Inm = 1.6 x 107 A, Ny AE,,,, watt/cm®.

Condition for steady state in a corona model:
(8) NoNc{oonv) = NpAno,

where the ground state is labelled by a zero subscript.

Hence for a transition n — m in ions, where (g(n,0)) =~ 0.2,

(9)  Tpm =5.1x10"
CcI11

25 f‘nm gm*'l\re *'I\'TO AEn?n 3 AEnO watt
w2 \AE, ) "\ T 3
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Line emission: K-shell spectra

Simple spectra: very good for diagnostic and for generation of quasi-
monochromatic sources.

He

Li

nm

Simple spectra: very good for diagnostic and for generation of quasi-
monochromatic sources.

n E(eV)
¥ .
Hydrogen (Bohr’s formula): N 000
é -0.38
5 g 054 Ercited
v=fF —F 4 085 xcite
l’” bm bn 3 ‘u"\r‘ 151 states
2 72 Paschen '
E —— 1,7 _ RhcZ Py e
" 2 2 2 Balmer e
n n series
I, =13.6eV -
Lyman
Series
{ YYYYY ey Ground
For Z =7, these lines enter the ' state

X_ray domain (hv ~ 1 kEV) Energy levels of the hydrogen atom with some of the
transitions between them that give rise to the spectral

lines indicated
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Simple spectra: very good for diagnostic and for generation of quasi-

monochromatic sources.
. Or= s
Helium: fundamental state 1s2 N -
(the ground level is 1s as in zs“ ; / .
Hydrogen) 5l {w 2
i :

. 1| : Hyd
Alkaline metals, one valence electron il ol
(the ground level is 2s) fff

-10F .Hi1
RheZ? o i Pasahotum Ortoheliam
En.l == 2 }‘I{rl‘ : L

' n—A(n,l )_ g St P =
( (n.D) 20 ﬁ;l" : Helium
“li‘p i energy
JI  levels

2 3 0 1 2 3

A(n,l) is the “quantum defect”. Effect
25—
Orbital anguiar momentum [

of the Z screening electrons on the
effective nuclear charge. At large
distance Z=1, on the fundamental

level Z g=2

Line emission: L-shell spectra

Spectral characterised by «bands» of lines
Hydrogen light spectrum

Helium light spectrum

Neon light spectrum
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Line emission: K-shell, L-shell, M-shell spectra

cl Hew
Transition from simple spectra
tep K shell with a few liens (K-shell)
. .
He¥ * .
t To bands of lines (L-shell)
35 P P > MA)

To a quasi continuum (M and

Ne —like lines

" N-shell)
L shell
The generation of X-rays
increases with Z, i.e. with the
25 ; e, ) «shell index»
B M shell
M band
w5

Characteristics of (X-ray) emission from plasmas

o N
Emitted lines 80 [ A
vs. Z of target o0 =T — .
 — - M
Scaling with Z2 60 |- -
2 50 w _
Ly | —=—— v
N
o] 1 1 %0 _' = — ]—_1_
hv=1,2"| —=-— V.
n m 0 L |
10 7T T k-
i i 2 0 . L1 o1 sl ]
Scaling with Z / o 1 —
hv (keV)
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Bremsstrahlung emission

For single electrons 7 }

‘Y 13.65 -

. Ol —
- CO

We will follow an approximate derivation. For a more complete treatment see [2]
and [1]. We will consider an electron—proton plasma.
Definitions:

1k -«

b: impact parameter

v: velocity of the electron

n.: number density of the electrons

np: number density of the protons

T: temperature of the plasma: mv? ~ kT — v~ (kT /m)"/2.

e o o o o

Calculation of the spectral power emitted by a single electron

1) the electron interacts with the ion only when it passes close to it, hence
for a characteristics time t ~b/v, corresponding to a characteristic
frequency w=1/t~ v/b

2) The typical acceleration is a~Ze</m_b-

3) Larmor’s formula gives the power emitted during the collision
(acceleration) time P~2e“a°/3c3=e°/mc3b?

4) The power per unit frequency will be P(w)= e®/m_c3vb?

5) The impact parameter is estimated from the density of ions b°~7/n,,,

Calculation of plasma emissivity j(w)

1) P(w)is multiplied by the density of electrons and dividing by 477 to
calculate emissivity per solid angle (isotropic emission)

2) This j(w) is integrated over the maxwellian distribution of electrons in the
plasma 7(v)dv
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For a Maxwellian population of free electrons the shape of bremsstrahlung
emission is exponential. The quantity gff is the Gaunt factor (which has a

quantum origin)

le
“H_15%107 gy exp(-hv/T, ENZ‘ J (T, )exp(-hv /T,
d(hv) '/2

The total power emitted (W/cm?3) is %}
136

P, =1.5x10nT/* Y N Z;

1 /2" (eV)

Attention: the important parameter in plasma emission is not the average
ionization degree but the effective ionization degree (higher charges

contribute more to emission)
de 32 N, 2
d(Tﬁ;) ~1.5%x107 TS exp(—hfv/TQ)gNiZi
=J,(T,)exp(-hv/T,)

|
=N—2N(Z)z

tot

1 2
Z,, = N—EN(Z)Z

tot
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Recombination emission

de n - l(n} (n) ,(n) (/W } Ii( )) (n)
b = -32 e 2 4 nj \n n

=15x10 ENizi g 1" exp| —~———~ b_(hv - 1, )
d(hv ) 7—;33/2 I ; !13 gﬂ? p T X

Continuum 1
2 VA
o hv =—mv. + E~
lonization 2 e e n
136 threshold

Excited levels

X(h.'v -~ If.(”)) =

Ground level

1, [Z* (eV)

(n)

i

[O perhv < [
11 per hv = 1{.(”)

0= <

A photon is emitted when an ion with charge Z; captures an electron. Initial
states have a continuous distribution implying a continuum spectrum.

However spectra are characterized by jumps corresponding to
recombination edges

- Bremsstrahlung
E + recombination
- 3y _ n-32 N,
= P.(W/cm)=15x%x10 <_(eV)
= b 12
5|2 T
Tls
1 co
= .
dE xYNZ 31"
hrad bremsstrahlung i i
B exp(-hv /T ) t n=1
| | 1 | |
0 5 10 15 20 25

hv /Z* (eV)
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11.6 Radiative hydrodynamics

Hot matter emits radiation. But radiation is absorbed in matter
heating it up = matter radiation coupling = radiative
hydrodynamics.

From the radiation transfer equation

A _ () B (@)~ ()]

ds

the quantity on the right represents the difference between
outgoing flux (generation of radiation) and incoming flux

(absorption). /
\ E /

/" \
The transfer equation can be rewritten in terms of the energy
density of radiation

du(w)

=c a(ow)|u,(w)-u(w)]

u,(w)c
We recall that for black body radiation B, (W) =———
Then we can define the quantity T

q= Cf a(w)lu,(w)-u(w)ldw

g represents the energy lost in a plasma unit volume = difference
between emission and absorption.

If g>0 the plasma radiates more energy than it absorbs (radiation

cooling). If g <0 the energy loss is negative and the plasma is heated
by the excess of absorbed radiation
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Divergence of radiation flux

We can also define the radiation flux S coming out of a volume in all

directions & _ L
S = [1€2dQ

Applying the theorem of divergence it is possible to see that
q = fV'S(a))da)= VS
0

Where the divergence of the radiation flux Sis:

V-S(w)=a(w)ll,(w)-1(w)]=c a(w)[u,(®)-uw)]

du(w)

=c a(w)lu,(®)-u(w)]

It is analogous to the continuity equation for matter

V(o) T=p
dt
oM _ -
? = —fVV : (pV)dV = _J‘SJ dS
Continuity equation for radiation:
du(w) —-V-S()
dt

V-§(w)=c a(w)u,(w)-u(w)]
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Energy equation for a fluid (plasma) taking into account the
contribution of radiation

J pu” pou

—| pe+— ==V |pule+—+—||-

8t(p 2 P ( p 2 K
9 p£+ﬂ =-V-| pu er 2 1 +S
dt 2 p 2

p density, p pressure, ¢ internal energy per unit mass, v fluid
velocity

Diffusion Approximation

We can express the flux S(w) as a function of u(w). From the
transfer equation

dl

—=a(w)[B (w)-1(w

= (@) B, ()~ ()]
In 3D

a_g.vy

ds

The transfer equation becomes

f—

Q-VI = a(w)[B,(w)-1(w)]

= ca()[u, () - u()]
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Integrating over all directions

IQ(Q-VI)d§2= f@(ca(w)[up(w)—u(w)])dé

fQ u, () dS2 =0 since black body radiation is isotropic.

Then the terms on right and on left respectively become

f@(ca(a})u(a})) dQ = a(a))ffz(l(a))) dQ = a(w)g

= (= = C
IQ(Q | VI) die= EVM(CO) and finally

_ cl(w)

|
Il

Vu(w)

-~

The expression [ ¢
o

S(w)=-

Vu(w)

-

Where /, = s, is the mean free path of the radiation of frequency o,
represents the “diffusion approximation” of radiation transport.
S(w) is expressed as a function of the gradient of u(w).

Since the black body radiation is isotropic the net flux of this
radiation is zero. We can also say that the gradient of u,(w) is zero.
Maintaining isotropy requires uniformity of energy density. If this is
not uniform the flux will not be zero.
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Considering the density of photons N(w) at frequency » one gets

S() = —L2€ V()
u(w)=N(w)hw S(w)=cN(w)hw =J(w)hw
J(@)=-D(@)VN(w) D(w)=" . <

The usual particle diffusion relation between the flux and the
density.

In both cases the factor 1/3 comes from the integration over all
directions (in 3D)

u(w)

We can consider that V() =

X

where x is the typical distance over which the radiation density
changes. Then /

S(w)=-——cu(w)
X

In the case of optically thick plasmas, [ <<x and the radiation flux is
very small in comparison with cu(w). The smaller is [ <<x, the
smaller the flux and the more exact the diffusion approximation.

The case
S(w)=-cu(w)

corresponds to when the photons travels all in the same direction
(maximum anisotropy)
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In the case of optically thin plasmas, / >>x and one would get
S(w)> cu(w).

S(w) =- 1—"“ cu(w)
X

This means that the diffusion approximation cannot be used with
optically thin plasmas

Steady state radiation in an infinite medium of constant temperature would be in
thermodynamic equilibrium. The intensity if independent on direction and determined by
Planck formula. Photons arriving at any point in space are born in the vicinity of that point at
typical distances comparable with the photon mean free path. Photons generated further away
are absorbed.

Hence only the immediate vicinity of a point “participates” in establishing the equilibrium
radiation. Even if the temperature at farther distance is different from the temperature of this

region there is no practical effect at the considered point.

Therefore, in a sufficiently extended optically thick medium the intensity will be very close to

the equilibrium value corresponding to the local temperature.

We can get the total radiation flux integrating over frequency w
c
S = fS(a))a’a) = —;flw Vu(w)dw

In the case of weak anisotropy and slowly varying plasma
parameters

40T
f u(w)dw = f u (w)dw=u,= —
if /was independent on w we would get
3
cl160T"
S =- VT
3 ¢
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cl 160T

In the general case we can still write § = — VT

3 ¢
where /is the “Rosseland mean free path” and is averaged over
frequencies as follows

[ Vu, = [1,Vu,(@)do

_ fleu,;(a))da) _ flw(d“p(w)/dT)da)
VMP d“p /dT

) [ 1, (du,(w)/dT)dw
~ [(du,/dT)do

Rosseland mean free path

/is given by [ = J'[(UG(u)du

5 4)—u _
G =l
471 (l—e_”) kT

Or, if we consider explicitly the absorption coefficient a(w)

l—f—G (u)du

()
15 u'e™

Ea (1 —e™ )3

G'(u)
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Radiation losses from a heated “thick” body

The total energy lost by the body per unit time is the integral over
volume of the radiation losses g (variation of energy per unit time
and unit volume)

0= [qdv=[s,ds
lc [

4
~—uU,~—0l
X X

This can be used to define a “brightness temperature” T,, of the

body which is close to the temperature of the surface layer
1/4
[

Tbr =|— T
X

Only if /~xthen T,, ~ T

4
S, =0ol,

br

Radiation losses from a heated “thin” body

For an optically thin body /[ >>x which brings to a physical absurd
(a body cannot emit more than a blackbody at the same
temperature)

In reality if [ >>x is large almost all photons emerge from the
surface and only a fraction x/I << of photons are absorbed. The
radiation density is x//, of its equilibrium value (so much smaller
than the equilibrium value)

Since the body is optically thin in first approximation we can write
J = f J(w) dw =
M}r) (a))
=c f a(w)u (w)dw =c f 2 " dw
P l

w

Page | 168



- Erasmus+

HELLENIC ¢ 2 ) SooN G vnvensiny
universite o { } ,
veRy } BORDEAUX | Ay @ o York Q

if /was independent on w we would get

4

c 40T
J=—fu (w)dw =———

[V " [

In general, as in the case of thick plasmas, we can still write

4o0T*

J=—
[

1

where we have introduced an “averaged” optical mean free
path /; (Planck’s mean free path)

Planck mean free path

%fup(a))da) =J‘a(a))up(a))dcu

a(w)u (w)dw
o, = 1_ f (@)u,( = fa(a))Gl(a))da)
[, fup(a))da)
15 u hw
G = -
(=5 T

Planck opacity applies to the case of optically thin bodies,
Rosseland opacity to the case of optically thick bodies

» 0O1-Annex: Chapter 11 Supplementary educational material.
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Plasma Physics - Theory and Experiments

EXP 1: FLYCHK

D. Batani, J. Trela
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> High Power Laser Plasma Physics
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Powurlabs
High Pawer Laser Plasma Physics.

1. The FLYCHK code

The How To FLYCHK

For FLYCHK is a kinetic code mainly used for X-ray spectroscopy.
Developed by Richard It contains information on elements from helium to gold with detailed
W. Lee and co-workers information, where appropriate, on the beryllium-like, lithium-like, helium-
{original version like and hydrogen-like ion stages.
November 1995)

The code requires the user to specify the atomic number and information
on the electron temperature and density of interest. This information can
Los Alamos & NIST be provided in a file that contains the time history of the plasma evolution
or by specification of a grid of temperatures and densities.

Some notes by \{\)Iith theste indput: tthe code c_alcul!iates:‘th e e vof
- in a steady-state approximation either non-LTE, or LTE, a set o

D.Batani & J.Trela populations for the ion stages and the detailed levels or

2) atime-dependent evolution of the populations.

Starting from this, the code calculates emission or absorption spectra.
These are very accurate for K-shell spectra while for L-shell spectra the
1 2 description is only approximate.

Flychk GRID

Steady-state solution can be in LTE (Local-Thermal Equilibrium)
giving Saha’s distribution

User: dbatani

— /|

Title of this run: RunFLYCHK)  Clear)
(o v - o U Runflle Input Diagnostics output: ~
1 - "1 &
e [ 1.66x10 Nc 5 =) n::'m"w Nuclear Charge & 3 ©
il iyl Hintory o upload file:
Results Initial Condition @ Non-LTE Stesdy Stats & Sceqll fle  nessuno salszionato.
i System Evolution @ Nov-LTE Stesdy Slate
B L " 3 time ne te tog out -
(here U =1,/T, T, isin eV and N, in cm), 0.0¢-12 1.06+21 01.00 ¢ Elction Tompareture | o, 0 st 0 | e 1
or in non-LTE but stationary conditions 1.0e-12 1.0e+21 10.00 DR VEST eoms 3
. 8 A 2.00-12 1.00421 50.00 Iniial: 1220 Final: ‘ez | Increment: 10
(max 10 values) @
{i.e. for instance coronal equilibrium. 300121 05421 50.00 X
4.0e-12 1.0e+21 50.00 Mixture & Zot Pereant: T
Otherwise time-evolution can be bl0g-12 f:0e 2 150.00 Opacity 3 g, orbistoryfl:
_ e : 6.0e-12 1.0e+21 50.00 TonTi(eV] @ Tt Fixed T or history fie:
obtained by specifying time-dependent 7.0e-12 1.0e+21 50.00 B = 2
. . . . 2M T, [eV] andTe: 10000 Fraction: 0.1 Or history file:
parameters in a « history » file (this can £.0¢:12.1.0e+21,90.00 e
R 9.0e-12 1.0e+21 50.00 & Toat Dilution : O history file:
also be the results of a hydrodynamic 1.0e-11 1.0e+21 50.00 e
simulations) 1.1e-11 1.0e+21 50.00 3 = Scegi fle  ressuno selezorsto
1.2e-11 1.0e+21 50.00 EEDF @ Sceqlifle  nsssuno sslszionato
1.3e-11 1.0e+21 50.00
s 4 RunFLYCHK) Clear)
'H »
How to “install” FLYCHK How to run FLYCHK /1
There is multiple way to run FLYCHK, depending on the complexity of the
FLYCHK is a full online simulation tool for atomic population and emission/ problem.
absorption spectra calculation. Therefore, it does not require a real installation
but since it use Java applets, which are considered out-dated, it make it not Webpage - History Grid
compatible with most of the web browser. Here are some steps to do to be able FLYCHK allows to specify everything directly on the interactive webpage. While it
to run FLYCHK simulations (for windows 10) can be very convenient, the inputs must be re-enter at every simulation. And
 Install Internet Explorer 11 (it is the only browser supporting Java). there is no log of the input off line.
O Install Java In grid mode, only steady state calculation can be done (LTE or non-LTE). The

“ Go to https://java.com/en/download essential parameters to set are the material (z) and the grid point in density

** Click on Free Java Download (electron, ion or mass) and temperature.

<+ Agree and Start Free Download

< Execute and install java Webpage - History File
O Configure Java In the history webpage, the grid is no longer specified directly but it must be

++ Open Java configuration on the computer given with a file. This file contains time step (which for steady state calculation

% Go to security and modify the Exception site list are ignored but allows to separate the different simulations).

« Add http://nlte.nist.gov to the exception. There is also the possibility to run time dependent simulations. In this case the
Note that if Java is not supported on recent web browser, it is due to the time depends of what have been specified in the history file is use (if it not
potential security flaws and it is not advice to use IE11 with Java for regular specified otherwise on the webpage).
browsing.

5 6

Page | 172



& ik

v - Erasmus+

& o &
MEDITERRANEAN universiié .
UNIVERSITY “BORDEAUX  }:01it

awer Laser Plasma Physics.

How to run FLYCHK / 2

There are multiple ways to run FLYCHK, depending on the complexity of the Some topics contained in FLYCHK which will
problem. not be described during the theoretical
Runfile - History Grid course on Friday...

It is also possible to write the key word + value in a file and to upload it directly
to FLYCHK. This allows to run the same simulation or slightly different simulation
more easily. %+ Hot electrons
Using the grid option for the history keyword, | could not make FLYCHK work...
% K-a generation
Runfile - History File
In the case where the keyword history is used with the option file, both files (the % Opacity effects
file with all keyword + the history file) must be in a .zip archive. Here are the
steps for working in this way: % Line profiles
Write keyword and their value in a file named “runfile”
Write the temperature and density in a file named as in the runfile (at keyword % Satellite lines
history)
Compress both file in .zip (not .rar or other) % Continuum Lowering
From the FLYCHK webpage, upload the archive (the name of archive does not
matter).

Hot electron propagating in a multilayer target

When an intense laser source interacts with a plasma, non-linear process such as K-She” ionization and K-O' emission
Stimulated Raman Scattering can occur. This process can lead to the production of supra .
thermal electrons {called Hot Electrons). This HE can travel deep in the solid target and The Ka emission from the target tracks the fast electron beam transport
heat it. The understanding of the HE population (temperature, total number) is very ——o—

important and still not very well known. A fast electron ionizes the 0
Atypical set up for the characterization of HE consists of a two-layer target: inner shell of an atom in -0

¢ Alow Z material in the front for the interaction with the laser (Carbon graphite for theipropagationimedium / K shell

example) ® — —=—9-
¢ Ahigh Z material in the back for the characterization of the HE {Copper)
—o—o— N °
oy Plasma —o—o—

Bremsstrahl ung radiation The atom in the subsequent
Bremsstrahlung radiation is produce by “collision” of - Ko photon recombination process emits a

the electrons with ions (Free-Free transition). The l photon called Ka photon, the
spectrum is characterized by the distribution: - —a— emission is completely isotropic

Cu C Laser
1, (T.v)=1I,exp(-hv/kT,)
Is therefore possible, by studying x —ray emission, to get information on
For a given temperature T and in logarithmic scale, the bremsstrahlung spectrum is a the fast electrons propagating into the target
straight line with a slope characteristic of T.

10
Spectrum from an Al-Cu target Shift of K- emission vs. ionization degree (i.e.
Spatial Cu-Ka182 A5+ AlKa background temperature)
axis
Target heating induces a blue shift of the Ka line (See for example : Akli
et al. Phys. Plasmas 14, 023102 2007)
300 @ I P [P54
310 Aluminium Ke Culwre Kat 3
Spectral axis S ke : Z ool .
1108 ;J zﬂ{\' g 1
bl fu e N & aml- J
8400 8200 8000 7800 7600 2 (MA) Z
mA = i
3
X-ray spectrum recorded with a conical crystal spectrometer on the rear side of the g 8100
target (Al (11 pm)-Cu-Al) at 45° to the equatorial plan. The spectrometer records the Al-
Cu lines from 8.4 A to 7.2 A on a DEF film. On a typical spectrum, we observe the Cu-Kot
doublet (7.7 - 7.72 A, Sthorder) and the Al-Kc lines (8.269 - 8.3396 A, 1st order). 00y o
E. Martinolll, D. Batani, et al.“Fast Electron Transport and Heating of Solic Targets in High Intensity Laser P. Palmeri, G. Boutoux, D. Batani, and P. Quinet «Effects of target heating on
" Interaction Measured by Ka Fluorescence” Physical Review E, 73, 046402 {2006) 12  experiments using Ko and KB diagnostics» PHYSICAL REVIEW E 00, 003100 (2015)
Line broadening and line shapes
Influence of fast electrons on spectra
Doppler broadening: Gaussian profile
T T V2 2
2 21, M=0° m2\" 1 (A-2,)
= =|—= ] —(In2)~——2~
The presence of fast T Tes200 oV, ne H0AB1. Mt i ( ) o 3
electrons [ scicitiiles : 1 z ) AL (A%)
constitutes an
additional way of AA s Av =3.86x10°° T,(eV)
“over-populating” 2 " % - = - M
the upper levels by DD 2 o
collisional effects. Stark broadening (pressure broadening, collisional
Therefore they can [ ] broadening): Lorentz profile
change the spectra
sensibly A I 1
: : IRy
2 7)
TAAL+(A=2,) 1 (AR)
Cl spectrum from chlorinated /\L A 3 3 14
plastics (C, H, Cl) o Ai(nm)=A Av/v, =0.04n, [n, =n,(cm”)/107]
4.4586 44724 44855 4.49088 “
b > Aangstrom)
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Line broadening and line shapes

Convolution of Doppler and Stark broadening: Voigt
profile

Line broadening and line shapes

Opacity broadening
Optically thick lines (absorption)
Need to consider the opacity (a) and the plasma extension (L)

When the plasma medium has a finite size the emitted radiation may
eventually escape the medium. For spatially uniform plasma of geometrical
path length / one must consider the radiation mean free path before
absorption and re-emission, 1/k, where K is the opacity, and the optical depth
is T = k/, which represents the number of mean free paths.
When radiation has t> 1 the plasma is called optically thick with the result
that the rates of the radiative processes are effectively reduced compared to
cases where T<< 1, i.e., the optically thin case. FLYCHK treats the effect of
finite optical depth using an escape probability formalism where the radiative
rates are reduced by an escape probability as a function of optical depth.
Rij=ni (Ajj+ Bjj Jj) -njBji Jij = njAjj A

where
hvij

e S
Rfﬁj = Bijj 7= and, Jj = fJ(v) @(v) dv,

17

1 -D,
D=0.8 Blackbody I(s5,w) = I(sy,w)e™
) = s — Ndv —D=16 limit 3 ; -Dy
) fll(\ VL, ()dv o8| D16 o ) ,a(w))[l_e D,]
0.6 - : T .| %
A
D(s)= fa(m)ds =a(w)L
0.4
2 2 2 ; %
Av®=Av; +Av; (both gaussian) | Lines can be optically thick
Av=Av, +Av, (both lorentzian) :':i:h:tc;r;tz;;:g optically
, 2 (). 5346 ,2 2 : . | | Strong lines can be thick
Av=0.5346Av, +1¢0.21(>6A1 7 +Avi  (gaussian + lorentzian) o e — gt it s e
15 16
Opacity effects /1 Opacity effects /2

A has values that range from zero, when the optical depth is high and the line
transition saturates at the local blackbody limit, to unity, when there is no
radiation field, .i.e., Jij = 0. The escape factor depends on the line profile, ¢(v),
and the optical path length of the plasma. In Flychk, the optical path length is
determined by a user specified plasma size, L, and the Doppler line profile

e
Ty =1 6 L g(v)

2
VD)

j TR i weeddrin? -1/—1' H
(V) = Vv (/Hz); Vp=4.63x Vij Il(Z)

Finally the escape factor is given by

1

A= ———F—— forTp=2.5
To V T In(Tp)
N o VT for To < 2.5

18

IONIZATION POTENTIAL DEPRESSION

In addition to the ionization and excitation processes, plasma
electric fields can effectively reduce the ionization potential of
an ion and hence affect the charge state distributions of a
plasma. Such “Continuum Lowering” has two limits for low
densities (Stewart & Pyatt)

T,(eV)

Ap(em) =743 | ——————
n,(cm™)(1+ Z¥)

2
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2. FLYCHK exercises

1) Emission from Al plasma in LTE
Consider a plasma made from Al (Z=13) at the electron density n.= 1019, 10*' and 10%cm > and T=0.5,1and
1.5 keV.
<+ Study the mean ionization Z* as a function of temperature and density. Justify the dependence on
density.

X3

o

Study the free-free radiation losses and compare with the formula for bremsstrahlung radiative
S 3 -3 o
emission. From NRL (ne, N; in cm™ and T, in eV)

P, (W/ cm’)=1.5x% 10‘3’2116]"61/22Nl.Zl.2

% Choose one value of n, and T, and consider the emission spectrum. Compare the slope of the
continuum spectrum to the temperature.
Identify the hydrogen-like spectrum and compare to Bohr's formula

V43
where |y is the ionization potential of hydrogen-like aluminum. Identify the lines as H-a, H-f3, H-y, ...
(corresponding respectively n=2, 3, 4, ...) and the ionization threshold H.

2) LTE vs. non-LTE steady state

From the previous exercise, consider the case n.= 10” ¢m® and T.= 0.5 keV. Plot the distribution of ionic states
in LTE and non-LTE steady state.

Compare the ratio of the density of hydrogenoid to heliumoid ions to what can be obtained from Saha’s
formula and comment.

3) Hot electron propagating in a multilayer target
Consider Al at density ne= 10" cm™ and Ne= 10%cm™ (respectively representing the critical density for 1 pm
laser and a near-solid density state). Initially, consider the following history file:

time ne te

0.0e-12 1.0e+21 01.00
1.0e-12 1.0e+21 10.00
2.0e-12 1.0e+21 50.00
3.0e-12 1.0e+21 50.00
4.0e-12 1.0e+21 50.00
5.0e-12 1.0e+21 50.00
6.0e-12 1.0e+21 50.00
7.0e-12 1.0e+21 50.00
8.0e-12 1.0e+21 50.00
9.0e-12 1.0e+21 50.00
1.0e-11 1.0e+21 50.00
1.1e-11 1.0e+21 50.00
1.2e-11 1.0e+21 50.00
1.3e-11 1.0e+21 50.00

study the evolution of the ionization degree vs. time in the two cases and comment. What happens at different
temperatures or different densities?
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4) Hot electron propagating in a multilayer target
When an intense laser source interacts with plasma, non-linear process such as Stimulated Raman Scattering
can occur. This process can lead to the production of supra thermal electrons {called Hot Electrons). This HE
can travel deep in the solid target and heat it.
Atypical set up for the characterization of HE consists of a two-layer target:

*  Alow Z material in the front for the interaction with the laser {Carbon graphite for example)

*  Ahigh Z material in the back for the characterization of the HE {Copper)

Plasma

Cu C Laser

4.1 = Bremsstrahlung radiation from C
Bremsstrahlung radiation is produce by “collision” of the electrons with ions (Free-Free transition). The
spectrum is characterized by the distribution:

I (T, v) ﬁe%
For a given temperature T and in logarithmic scale, the bremsstrahlung spectrum is a straight line with a slope
characteristic of T.
Plasma without HE
Plasma conditions: n, = 10%° em™, T =1 keV. Verify the plasma temperature from the spectrum slope.

Plasma with HE
Same plasma condition. HE parameters: T, = 40 keV, i, = 5%. Show the emissivity between 1 and 10 keV.
Verify the plasma temperatures from the spectrum curve.

Solid Cwith HE

Solid C conditions: p = 2 g/cm3, T =1 eV. Same HE parameters has Plasma with HE

Show the emissivity between 1 and 10 keV and compare to the previous ones. Comment on the slope and
absolute emission.

4.2 = K, emission of Cu

HE are so energetics that they can knock off an electron from the inner shell {k-shell) of the copper atoms. The
ions created this way are not in their fundamental state and they will relax by a chain of bound-bound
transition. The most energetics of these bound-bound transition is the one from 2p->1s {to check) and is call
the K, line. For copper this line is around 8.2 keV.

Cold K,

Copper parameters: p =9 /cmg, T = 1 eV.Same HE parameters as before.

Show the ion distribution and the spectrum around the K, line of Copper. What is the shape of the line and
why ? {(gaussian, lorentzian, voigt ?)

Hot K, (Steady State)

The copper, with its high, density has a good stopping power of the HE and might get warm due to their energy
deposition.

Make a history file with constant density of 9 g/cm® and a temperature that range from 1€V to 500 eV. Keep
the same HE parameters.

Show the spectra obtained and the ion distribution {(evolution of mean ion charge ?).

How does the K, line evolved with the temperature and why ?
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1. Laboratory project aim

The laboratory project aims to make the student familiar with basic experimental and
diagnostic techniques used in magnetic compression plasma physics research. The student
will learn about techniques for generation of high temperature Z-pinch plasmas and be able
to understand the physics underlying the common plasma diagnostics methods. Experimental
techniques for generation of Z-pinch plasmas will be exemplified by studying the systems at
the “miniature dense plasma focus” magnetically compressed non cylindrical pinch device at
CPPL. In addition, the student will gain practical experience of using some diagnostics that are
available at CPPL and analyzing real measurement data. Physics concepts underlying the
plasma diagnostic methods will be introduced during experimental procedure, using a
systematic approach from first principles. A number of plasma diagnostic applications will be
introduced in more detail.

After passing the experimental procedure, the student should be able to

e explain the principles and experimental techniques for generation of high temperature Z-
pinch type plasmas,

e explain the underlying physics principles and technical features of some commonly used
basic plasma diagnostic applications,

e demonstrate the practical usage of some selected plasma diagnostics that are available at
CPPL,

e write simple computer codes for acquiring, analyzing and plotting data from some selected
plasma diagnostics using a commercial software packages that is commonly used in plasma
research,

e perform common data analysis tasks, such as curve fitting, numerical computation and
signal filtering using available software routines,

® Present analyzed data in graphic form in short reports, that includes written material that

describes the diagnostic setup and the data analysis methods used.
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2. Theoretical background
A Dense Plasma Focus (DPF) or Plasma Focus (PF) device is a coaxial-pulsed plasma

accelerator that produces very high density and high temperature plasma that lasts for a very
short duration. This discharge-based device is not only a source of high density and high
temperature plasma but also a rich source of energetic radiations like intense x-rays, EUV,
visible light, and energetic particles like neutrons, electrons and also ions depending upon the
working condition. In addition, this device exhibits various interesting plasma phenomena
such as macro- and micro-instabilities, turbulences etc [1].

There are two types of PF discovered the same year by Mather (USA) [2] and Fillipov (USSR)
[3]. For our experiment we are going to use a Mather type Miniature DPF, which was
constructed by our group. MPF delivers smaller amounts of energy but is portable and can

achieve high repetition rates.

7\‘ Electrodes

Capacitor Bank » Insulator Sleeve

L

3. Operation Principle
A Plasma focus device consists of a fuel chamber which contains two cylindrical coaxial

»  Sparkegap
(a)

electrodes, separated by an insulator sleeve which covers a part of the inner electrode, as
seen in Figure 1. The electrodes are closed in one end, usually the inner one is the anode and

the outer is grounded. The chamber is filled with a gas (the gas selection depends on the
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application being studied) in the appropriate pressure range. A capacitor bank switched by a
spark-gap provides the power and the area between the electrodes acts as an accelerator of
the plasma created. So, when a high voltage pulse is applied between the electrodes the
dielectric break down of the gas across the insulator takes place and an asymmetric current
sheath forms around the insulator. This current sheath moves towards the open end of
electrode assembly by /] X B force. During this movement, the current sheath sweeps the gas
above it and ultimately compresses the gas at the top of the anode producing hot and dense
plasma.

The dynamic processes taking place during the operation of PF device can be classified into
three distinct phases, a) breakdown or inverse pinch phase, b) axial acceleration phase and c)
radial collapse phase. As seen in Figure 2, the phases can be distinguished in time and space,

as they take place successively.

Phases of DPF

Break
e 1 Axial acceleration phase E:dlﬂl
E .=
L Swsitch Phase :
= = A
L S B B @ bty B
_\ I 1
P /
L
P = —F
c__ '1,-_" :_}.
: : )
'-t_:r & @ @@ 4 ,+ | .
- X - : =
|
|
Insulatod Cathode Anndp
Sleeve |

ool ()

Sl 1 TR )

T v

Figure 2: DPF Phases [1]

a) Breakdown or inverse pinch phase: When a high voltage is applied, it is found that the
initial breakdown along the insulator surface occurs after the time delay of few nanoseconds
[4]. When a high voltage pulse is applied between the electrodes, a high electric field is

developed across the insulator. This field accelerates the primary free electrons, initially
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present in the working gas, towards the surface of the insulator. Consequently, emission of
secondary electrons takes place through collisions, which ionizes a thin gas layer near the
insulator surface [5]. A sliding discharge then appears along the insulator surface. When the
sliding discharge reaches the closed (bottom) end of the insulator, it generates initial current
filaments (plasma configuration) through which the discharge current flows. Due to the
interaction of this current with itself induced magnetic field, the current filaments drag away
radially from the insulator surface in an inverse pinch manner. When the current filament
reaches the inner surface of the outer electrode, its conductance increases substantially and
it forms a uniform current sheath. This is the end of the break down phase and the current
sheath enters into the axial acceleration phase [1].
b) Axial acceleration phase: Once the current sheath is formed across the insulator sleeve
between the anode and the cathode, it starts to accelerate towards the open end of the
electrodes along the Z-axis by its own J X B force. The axial acceleration phase ends when
the current sheath reaches the open end of the electrodes and enters in the next phase i.e.
the radial collapse phase. The duration of the axial phase is important for the subsequent
formation of the hot and dense plasma at the radial compression phase [1].
c) Radial Phase: The radial phase starts when the current sheath reaches at the open end of
the central electrode the J X B force drags the current sheath radially inward. This inward
radial force compresses the snowplowed plasma carried by the current sheath on the top of
the central electrode. The shape of the current sheath changes to fountain like hollow
cylindrical column. This fountain like column is squeezed inwards with azimuthal symmetry.
The compressed plasma is further squeezed adiabatically to form a very high density and high
temperature plasma column [1].
Based on experimental observations radial phase can be divided in four distinct sub-phases:

e Compression Phase: Plasma under the affect of the magnetic field is compressed.

e Quiescent Phase: After the stagnation, this phase indicates the beginning of the

expansion of the plasma column in the axial as well as in the radial direction.
e Unstable Phase: Instabilities like sausage (m=0) and king (m=1) develop in the plasma.
e Decay Phase: A very large, hot and thin plasma cloud is formed due to the complete

breaking of the plasma column [6].
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Taking to account a standard geometry of a PF device, the operation of a PF can be controlled
by changing the initial voltage applied to the electrodes and the pressure of the gas in the

chamber.

4. The miniature plasma focus device

Design and Construction
To design a MPF device [8], one usually starts by determining the energy stored in the

capacitor bank that will eventually be transferred to the fuel inside the chamber. Our
capacitor bank consists of ten identical capacitors (C =200 nF, V=30kV, L = 15 nH) yielding a
total capacitance of 2.0 uF. Depending on their charging voltage, the capacitor bank may
provide electrostatic energy ranging from 200 to 400 J. The electric circuit diagram of the
assembly is depicted in Figure 3. A high voltage power supply charges the capacitors up to the
desired voltage. To trigger the discharge, we use an in-house designed trigger unit that
produces a 2.5 kV, 1 us impulse that is then transmitted to the pseudo spark switch (PSS) via
a pulse shaping circuit[9] The load of the capacitors is finally carried to the fuel through 4
planar lines in order to reduce the total resistance. The PSS unit is a TDI1-150k/25 type
(copper arc thyratron) capable of producing currents well above a hundred kA. Moreover, it
has a lifetime of 10° shots (for E ~ 100 J), and therefore, it can operate continuously at a few
Hertz for several weeks without undergoing repairs. Yet another advantage of the TDI1-
150k/25 type PSS is its reliability of firing practically in 100% of cases with a jitter time less

than 4 ns.

PlanarLinet n H2 —reservoir heater power
supply

Planar line4

5
CL SparkGap CL Impulse

Rch ' 1
+12-20KY Trigger Unit
e i

H.W.
Power | | |

Supply ;
v
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Figure 3: The electric circuit

The assembly is capable of operating at a few Hz without cooling and producing a peak
discharge current of ~45-65 kA (measured by a Rogowski coil) with a quarter cycle of ~260
ns. A key aspect for constructing a fast PF is to keep inductance as low as possible. For small
devices, this strongly depends on the connections, and therefore, components must be
connected in compact configuration. The external inductance of the assembly, including all

electric components and the chamber, is slightly less than 50 nH.

The MPF fuel chamber (see figure 4), consists of a coaxial electrode assembly - a tapered inner
electrode that acts as an anode and made of copper of a length 21.6 cm with a 9.5 mm
diameter at the closed end and 6.5 mm diameter at the tip, and a solid impermeable
cylindrical outer electrode of stainless steel, having inner diameter of 48 mm that acts both
as a cathode and the chamber wall. A tapered inner electrode is preferred to have a hole of 3
mm diameter over a solid cylinder because in the latter case the material erosion takes place
from the tip due to bombardment of electron beam which contaminates the plasma column.
An insulator sleeve of Pyrex glass, with a break down length of 14.6 mm is placed between

the anode and the cathode.

Figure 4: MPF fuel chamber

Current Monitor (Rogowski groove)
In order to verify the generator was performing properly current monitor were used. The

monitor consisted of a Rogowski coil (Rogowski groove type) to capture a portion of the

current signal within the fuel chamber.
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The Rogowski groove placed around a return current wire close to the fuel chamber(fig. 5(a))
and is made up of an annular conductive ring placed around a current conductor(fig. 5(b)).
In our case, the registered voltage is solely dependent on dl/dt (the current probe operates
in I-dot mode).

Therefore, the registered voltage is:

dl
Varoove = _LE (13)

Where L is the self-inductance of the rogowski groove.

Figure 5: Load Current Monitor (Rogowski groove)

Optical Probing
In order to gain information concerning the refractive index (n) and hence the electron

density of a plasma (ne), an Nd-YAG (Neodymium-doped Yttrium Aluminum Garnet) laser was
used to backlight the experiment. Light can only pass through a plasma if the frequency of the
plasma wp is lower than that of the probe beam wlight. The maximum density which can be

probed, known as the critical density nc, in a compact form is:

ne. = 10212 cm™3 (1)

Where A is in microns.

The refractive index of the plasma is given by:
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(2)

The Nd-YAG laser emits light in the near infra-red (A=1064 nm) which then traverses a KDP
harmonic generating crystal. This doubles the frequency of the light resulting in a A of 532nm
(green). Substituting this wavelength into equation (1) yields a critical density n.=4 x 10%!

electrons per cubic centimeter.

Interferometry
Interferometry is a very useful technique in order to gain quantitative information regarding

the electron density of the plasma. A common interferometric set up is the Mach-Zehnder
interferometer. The working principle can be seen in figure 4. The beam splits into two
identical collimated beams each one traveling thought a different path. The first one will
propagate undisturbed, thus stand as reference, while the other will pass though the region
of interest experiencing a phase shift relative to the reference beam. The two beams will
recombine at the end of their path on a detector. Their interference will result into a pattern

of bright and dark fringes.

plasma

source beam splitter probe beam

mirror

reference beam

CCD

mirror beam combiner

Figure 6: Images showing the propagation of light rays through a shadowgraphy system. Light is focused by a lens and
after crossing through the focal point propagates to the image plane.

The refractive index of the plasma will result to a phase shift A of the probe beam. This will
lead to a shift of the interference fringes.

a(x,y) ax,y) (3)
AP = (pprobe - (pref = J kplasmadz - f kodz
0 0
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Where d(x,y) is the physical path of propagation inside the plasma as shown in figure 4

ko=2m/Ao is the wavenumber of the laser propagating in air and kpiasme While it propagates in

plasma.
2 Ao
kplasma = /1— »Aplasma =
plasma
21
=> kplasma = /1_n
0
(4)
Substituting ko and kpiasme in equation 3
21 (4®xY) d(xy) 21 [2xY) (5)
AP = — ndz—J 1dz =— n—1dz
Ao Jo 0 Ao Jo

Where n is n(x,y,z). This fringe shift corresponds to the line integral of the refractive index

taken along the path through the plasmaf n.dl. One can obtain the formula that connects

phase shift to the index of refraction substituting 2 to 5

AP

_ 27-[ d(xry) ne T Jd(ny) (6)
0

Ao Jo 2n, — Aone

Figure 7: Interferogram of plasma from a plasma focus devise taken with a Mach-Zehnder interferometer.

Another useful expression of the equation 6 is as a function of ko, and wo:
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Abel Inversion

Interferometry measures the average value of some quantity along a path through the plasma
such as plasma electron density. To deduce local values of this quantity from the available
chordal measurements one can use the mathematical properties of the Abel Transformation.
This stands only for cylindrically symmetric plasmas, that is, they are independent of 6 and z
in a cylindrical coordinate system (r,0,z). Considering any cylindrically symmetric quantity f(r)
like electron plasma density ne it relates to the phase shift induced to a probe beam F(y)

traveling along an optical path:

+/a2-y? (8)
F(y) = f f(r)dx
—Jaz=yz
By changing the x integral into an r integral
‘ r (9)
F = Zf r)——=dx
M =2] 1) ==

The inverse transform relates the quantity f(r) to an integral of F, as follows:

1j“F(y) dy (10)

=2 & =

T
With this formula one can obtain the radial profile of f(r) from measurements of chord

integrals F(y). This proses is called Abel Inversion.

——

a £

5. Experimental procedure
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Procedures for the first shot
Setting up vacuum in the chamber (see figure below)
» Open (turn anticlockwise) the A- and C- valves.
» Turn the vacuum gauge on and wait for the pressure to reach a value of 1000 mbar
(the reading looks like “—or”).
Close (turn clockwise) the A- and C- valves.
Turn on the roughing pump.

Open (turn anticlockwise) the D- valve and then C- valve.

YV V VY V

Wait for the pressure to reach less than 1 x 10'mbar.

Common procedures for each shot

1. Setting up vacuum in the chamber(see figure below)
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Turn on the roughing pump.
Open (turn anticlockwise) D- valve and then C- valve.

Wait for the pressure to reach less than 1 x 10'mbar.

Filling the fuel chamber

Close C- and D- (turn clockwise) valves.

Turn off the roughing pump.

Open (turn slowly anticlockwise) the flow control B-valve to give start for inflow of the
gas (in our case the ambient air will be used).

Wait for the pressure to reach the optimum value and then close (turn quickly
clockwise) the flow control B-valve.

Capturing the reference image

The active menu that appears on the remote control pad should be "Pk 1".

>
>

Press the button “OP” (on the remote control pad) to start laser operation.

Press and release the button “SEL” (on the remote control pad) 2-3 times to give start
and test for pulses packet (single pulse in our case).

In order to give start for image capture (“Extended shutter” =10,000,000 ps), press the
“single” button “= |” (on the virtual control panel of the camera) by using the left click
on mouse.

Press and release the button “SEL” to give start for single pulse and then wait for the
capture time interval to expire.

Press the button “OP” (on the remote control pad) to stop laser operation.
Save the image as ref PF_AirXX_VoltYY_shotZZ.BMP, where XX is the absolute

pressure of the air inside the fuel chamber, YY is the working voltage and ZZ is the
#number of the experimental shot.
Firing the pseudo-spark switch

v' Make sure the fuel chamber is under nominal (1-20 mbars) pressure.

v' Make sure the “Power On” switch of the “high voltage power supply
(H.V.S.) is turned to “0” position.

v' Make sure the Key-switch of the “high voltage power supply (H.V.S)
“control unit is turned to “Off”’ position.

Page | 189



- Erasmus+

HELLENIC { 2 4 SooN G vnvensiny
e N g, 2 () W Q

v' Make sure the 2-way switch is turned to “emulation” position (SYNC
IN cable must be connected together with the “emulation” one).

v" Make sure the predefined output voltage of the H.V.S. is of 12.5 kV by
pressing the “preset” button of the H.V.S control unit.

v Make sure the “Power On” switch of the “Pseudo-spark switch
triggering unit” is turned to “Off” position.

v' Make sure the active menu of the “laser remote control pad” looks like
"Pk 1"(single shot of one pulse packet).

» Set the oscilloscope to trigger once (single- shot acquisition) by pressing the “single”
trigger button.

» Turn on the H.V.S. by turning the “Power on” switch (yellow) to the “1” position.
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Preset button
Voltmeter (kV)

Key-switch
Ampere-meter (mA)

“On/Off"(rear panel)

Voltage
volume

High voltage power

Pseudo-spark supply control unit

switch trigger unit

“Emulation”

“SYNC IN”

“power On” —\ “Experiment”
switch
(yellow)

High voltage
power supply

2-way switch

» Press the button “OP” (on the remote control pad) to start laser operation.

» Press and release the button “SEL” (on the remote control pad) 2-3 times to give start
and test for pulses packet (single pulse in our case).

» Relay the 2-way switch by changing the connection of the “SYNC IN” cable with
“emulation” terminal to with the “experiment” terminal.

» Turn on the “pseudo-spark switch” triggering unit by turning the “Power on” button

(rear panel) to the”On” position.
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In order to give start for image capture (“Extended shutter” =10,000,000 ps), press the
single button “c|” (on the virtual control panel of the CCD camera) by using the left
click of the mouse.

Give start for charging phase by turning the key-switch of the “H.V.S control unit” to
the “On” position and wait (charging time interval of about of 2 seconds) for the
voltage to reach the nominal value (read on voltmeter) and then terminate the charge
by turning the key-switch back to the “Off” position.

Press and release the button “SEL” (on the remote control pad) to give start for a single
pulse. The discharge creates a lightning and a short and absence noise.

Press the button “OP” (on the remote control pad) to stop laser operation and then
wait for the imaging capture time interval to expire.

Save the image to a file by setting a file name as shot_PF_AirXX_VoltYY_shotZZ.BMP,
where XX is the absolute pressure of the air inside the fuel chamber, YY is the working
voltage and ZZis the #number of the experimental shot.

Turn off the “pseudo-spark switch” triggering unit by turning the “Power on” button
(rear panel) back to the ”Off” position. .

Turn off the H.V.S. by turning the “Power on” switch (yellow) back to the “0” position.
Relay the 2-way switch by changing the connection of the “SYNC IN” cable with
“experiment” terminal to with the “emulation” terminal.

Save all the displayed waveforms into corresponding files for binary and ASCII data
format by using a suffix file name as “_PF_AirXX_VoltYY_shotZZ”, where XX is the
absolute pressure of the air inside the fuel chamber, YY is the working voltage and Z7Z
is the #number of the experimental shot.

Print the screen image to a file by using a file name as “PF_AirXX_VoltYY_shotZzZ”.

Recognize the miniature PF

Recognize some main parts of the PF devise and fill in the corresponding callout frames

their names.
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2. Recognize the experimental equipment
Recognize the experimental equipment and diagnostics and check their inter-

connections by using the wiring diagram that is shown below:
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Trigger unit pseudo
spark

Enable
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®
I-dot i
i %
1 o
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! Laser external
| triggering unit
| Terminating
! resistance (50Q)
i Delay unit (1..999 ns) £§ ¥
: .

Logic switch for all
sources

TTL source

I Used ds a pair of lfn
coupled switches pjsaple

*7 Buffer circuit

SYNC IN

LASER Delay unit

> Control unit (experimental time
> Power supply unit ¢ interval emulator)

> Cooling unit SYNC oUT l_f
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3. Optical probing set-up
For experimental purposes, we have implemented a Mach-Zehnder interferometer that
consit(see figures below) of a beam expander & collimator (L1 and L2 lenses) , a imaging

system (CCD and L3) and a set with various aditional optical elements.

M: Mirror (100% reflectivity)

BS: Beam Splitter

L1 L2

Laser (probe beam):

A0=532 nm,At=150 ps

I: Interference filter
(A0=532 nm, 6A=10

nm) (50/50)

BS(50/50)

L3=+200 mm chamber

1
|
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
\

s2
ND
ND: Neutral I — .Y __. .
: filter 0 Mach- Zehnder interferometer
e}
\ o

-~ -
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» Calculate the magnification (G) of the imaging system(see figure 6), taking into

account i) a vertical field of view(FOV) with a length of 15 mm (10 mm will be used
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for the height of the plasma column ) and ii) the corresponding specifications of CCD
(Resolution 1292 (H) x 964 (V), Pixel size 3.75 um x 3.75 um).

S, vertical size of the image

G = —
Sia + Sip FOV

» Then calculate (by using the thin-lens equation) and adjust the imaging system
assembly (use the reference beam alone) for a +200 mm focal lens (be careful so that
the focus of the laser beam is always in front of the corresponding camera).
» In order to achieve an interferogram with horizontal fringes, adjust the knobs of the
Mirror (M1).
» In order to determine the spatial resolution of the imaging system (um/pixel) use the
magnification factor (G) you calculated.
4. Perform shots for 10 diferent delay times
The setting value of the delay time unit (0...999 ns) should be of 0 ns.
(See Procedures for the first shot)

1) Set up vacuum in the fuel chamber.
(See Procedures for the each shot)

2) Fill the fuel chamber with air at pressure of 3 mbar.

3) Fire the pseudo-spark switch.

4) Increment the setting value of the delay time unit (0...999 ns) by a value of 10 ns.

5) Set up vacuum in the fuel chamber.

6) Repeat steps 2-5.

6. Experimental results analysis
1) Complete the following table

#shot Rise time of Image Plasma
current (10- | captured phase (or
90%) in ns time after sub-phase)
the current
startin ns
1

2) Analyze the interferograms to extract quantitively information for the: a) overall areal

electron density, b) cubic electron density along a straight line (1D) that transverse a
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the axis of symmetry at height you choice (Abel inversion), c) plasma sheath rundown

velocity during the axial phase, and d) plasma compression velocity during the radial

phase.
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1. Laboratory project aim

The laboratory project aims to make the student familiar with basic experimental and
diagnostic techniques used in magnetic compression plasma physics research. The student
will learn techniques capable to generate high temperature Z-pinch plasmas and
simultaneously understand the physics underlying the common plasma diagnostics methods.
Experimental techniques for generation of Z-pinch plasmas will be exemplified by studying the
systems at the “X-pinch” magnetically compressed cylindrical pinch device at CPPL. In
addition, the student will gain practical experience of using some diagnostics that are available
at CPPL and analyzing real measurement data. The physics concepts that underlie the plasma
diagnostic methods will be introduced during the experimental procedure, using a systematic
approach from first principles. Moreover, a number of plasma diagnostic applications will be
introduced in more detail.

In the end of the experimental procedure, the student should be able to

« explain the principles and experimental techniques for generation of high temperature Z-
pinch type plasmas,

 explain the underlying physics principles and technical features of commonly used basic
plasma diagnostic applications,

» demonstrate the practical usage of selected plasma diagnostics that are available at CPPL,
« write simple computer codes for acquiring, analyzing and plotting data from some selected
plasma diagnostics using a commercial software package that is commonly used in plasma
research,

+ perform common data analysis tasks, such as curve fitting, numerical computation and signal
filtering using available software routines,

 present analyzed data in graphic form in short reports, that includes written material that

describes the diagnostic setup and the data analysis methods used.

2. Theoretical background

Over recent decades, various pulsed power generators were developed in order to produce
magnetized plasma with magnetic fields in the 100-1000 T range. Such generators able to
deliver 1-100 TW of power to a load are established in pulsed power exploding wire
experiments, thereby reliably providing an open scientific field for studying High Energy
Density Physics (HEDP) [1], with applications such as in inertial confinement fusion [2],

laboratory astrophysics [3] and point projection radiography [4].
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The X-pinch is a plasma device in which plasmas are produced by using two or more fine
wires that are crossed and touch in the middle, in the form of an X. This then forms the load
in the anode-cathode gap of a pulsed power generator. Ohmic heating causes the wires to
explode into a hot, dense plasma. However since a plasma is very efficient at carrying a
current, the current continues to flow and the induced magnetic field around the wires acts to

confine the plasma.

Figure 2.9 Current flow in a 2 wire X-pinch

In a two wire X-pinch the current is divided between the two legs, with the full current (1)
only being concentrated at the central crossing point (Figure 2.1). At that point the magnetic
pressure that confines the plasma has a maximum value. Typically, a small instability will lead
to plasma implosion under the magnetic pressure at the central crossing point, resulting in an
intense burst of X-rays that lasts for only a few nanoseconds. The characteristics of the
electromagnetic radiation emitted from an X-pinch machine depend on the material and
diameter of the wires as well as the electrical characteristics of the generator. Typically, the
wires are metallic (10 — 50 um diameter) and the current characteristics vary from 40 kA to 1
MA with the rise time of 40 ns to a few microseconds. Unlike the Z-pinch (created using a
single wire), the X-pinch can produce a predictable single point source almost every time (the
instability leading to the pinch will sometimes not occur). The major application of the X-pinch
is as a bright-point source of X-ray radiation for a point—projection radiography of plasmas [4-
5], biological samples [5-6], and other objects [7]. However, the small size and predictable
location of the radiation source(s) within the X-pinch make it attractive for applications such
as x-ray backlighting [8] and microlithography [9]. It may also be possible to use the X-pinch

for EUV lithography due to the point source of radiation.
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Each leg of the X-pinch experiences a local, self-induced magnetic field (Bioca)), While the
configuration as a whole is surrounded by a global magnetic field (Bgioba). In areas with a
dynamically significant Bgiobai, the coronal plasma is accelerated from the wires by the J x
Bgiobal force (where J is the current density) towards the vertical axis of the X at a rate well
approximated by an analytical rocket model [10]. The plasma streaming from these wires takes
on a quasi-periodic wavelength shape, visible in Figure 2.2. X-ray backlighting data
demonstrate that the wire cores remain in their initial positions for the majority of the
experiment [11]. The ablation of the wire cores slows once adequate coronal plasma exists
for the bulk of the current to shift to the less resistive plasma, but the wire cores ablate until
they no longer exist, feeding the coronal plasma throughout the current pulse. Upon arrival at
the axis the radial momentum of the streams thermalizes and the axial momentum is
conserved, contributing to the formation of plasma jets which propagate bi-directionally
towards the electrodes, which are also labeled in Figure 2.2. AlImost immediately after the
generation of the X-ray pulse, the neck breaks and a gap forms in which the plasma density
is several orders of magnitude lower than that in the neck. This process leads to the formation

of a mini-diode and the generation of electron and ion beams [12].

Location
of micro
Z-pinch

[ globéd' 4’,(.""

Quasi ¥ “i’:’glasma
periodic & by - ¥ electrodes
ablation iy AN
modulation :

Figure 10.2 Shadowgraphy image of a 5 pm tungsten two-wire X-pinch with identifiable
structures labeled. The image were taken 35 ns after the start of the current
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3. X-pinch system (apparatus & diagnhostics)

3.1 Pulsed power generator

The design and construction of the X-pinch device has been implemented during a funded
EU Marie Curie Transfer of Knowledge excellence grant “DAIX” (Development of an Innovative
X-ray source) on pulsed power X-pinch plasma devices.

The device is a Capacitive Energy Storage Generator (CESG) type that consists (see
Figure 3.1) of a high voltage pulsed power supply (the popular Marx generator), a high voltage
& current coaxial cable, a pulse forming line (PFL), a self-breaking spark gap switch (SBS)
and a load chamber (vacuum chamber).

The Marx bank is a capacitor bank consisting of four capacitors (0.22 pF, 50 kV, 25 kA)
which are charged in parallel and discharged in series. Once the capacitor bank is loaded, a
trigger pulse is send to the spark gap to break the circuit to release the energy. The current
flows into the PFL through the coaxial cable which acts as a peak current limiter (<20 kA). The
PFL consists of two co-axial cylinders separated by deionized water (1-10 uS) which act as a
dielectric. The load chamber is separated from the PFL by a spark gap chamber which is filled
with SFg (sulfur hexafluoride). The pressure of the SF6 is adjusted to the optimum value so
that the circuit breaks at the desired voltage (160-220 kV). The load chamber is under high
vacuum (< 6 x 10 mbar), thus ensuring that there is no air plasma generated. Voltage (V-
dot) and current (Rogowski groove) monitors are attached at the end of the pulse forming line
and at the anode (fit around one of the four current return posts) of the load chamber,
respectively. The load chamber has eight viewing ports allowing multiple diagnostics for single

shot.
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3.2 Voltage and Current Monitoring

The generator described above is capable of delivering a peak current of about 45 kA pulse,
with a rise time of about 35 ns (10-90%). In order to verify that the generator performs
properly, voltage and current monitors are used. The monitors consist of a capacitively
coupled probe for monitoring the voltage in the PFL (Ver) and a Rogowski coil (Rogowski

groove type) to capture the current signal within the vacuum chamber.

3.3 PFL Voltage Monitor

The probe (Figure 3.2(b)) is made up of an isolated conducting plate in the outer conductor
and is capacitive coupled to the inner conductor of the PFL with a self-capacitance of Cprobe
(Figure 3.2(a)).

to scope

.

isolator

plate

Equivalent circuit

Cp robe

o

Flgure 3.2 Pulse forming line voltage monitor

Assuming the voltage probe can be treated as a parallel plate capacitor due to its relative
small size it holds

Agye
Cprobe = % @)

where A is the area of the conducting plate, ¢ represents the relative permeability of the

dielectric of the PFL (de-ionized water) and d represents the distance between the plates.
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The equivalent circuit is given in Figure 3.2(c), where Rem is the terminating resistance. The

circuit equation can be written as follows:

VprL = VCprobe + Vscope <

t
fidt'+Vscope o
0

VprL =
probe

t
VppL = C—Rf Vscope dt' + Vscope or 2)
probe f'term Jo

dVPFL _ V;cope stcope
dt Cprobe Rterm dt

av, .
If Vicope > Cprove Reerm S;;’pe, then from (eq. 2) one can obtain

dVPFL
Vscope = Cprobe Rierm 7 3

Under this condition, the monitor can be used to measure the time derivative of the voltage
(V-dot mode).
3.4 Load Current Monitor (Rogowski groove)

The current monitoring was performed using a Rogowski groove placed around one of four
return current posts close to the load (Figure 3.3(a)) and is made up of an annular conductive

ring placed around a current conductor (Figure 3.3(b)).
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Figure 3.3 Load Current Monitor (Rogowski groove)

Figure 3.3(d) shows the circuit diagram of the probe with its current represented by I,
inductance represented by L., the groove resistance represented by R, and the terminating
resistance represented by Rterm. The current I;, driven by the induced voltage (Ving) generates
a voltage Vgroove measured across the terminating resistance Rierm Where Vgroove=Ir X Riem.

In our case the probe acts as a toroidal coil (Rogowski coil) which consists of one winding
turn (N=1) and has a core with rectangular cross-section (fig. 3.3(c)). The central post carries
a current | which gives rise to a magnetic field B

gl 4)
27r

Let ® denote the magnetic flux through a cross-section (S) of the probe, due the current I.
Now, by varying | with time, there will be an induced emf (Ving) associated with the changing
magnetic flux in the probe
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Where, M = = ZR(”) is the mutual inductance of the Rogowski groove.

As the flux changes through the coil, an induced emf (Vemt) Opposes this change. The self-

induced Vent in groove, due to changes in I;, takes the form

dl,

2 6
T dt ©)

Vemf = —L
According to Ampere’s law, the magnetic field B;is given by (N=1)

R I .
f}gBr.dl=Br9?€ dl = B.(277) = Nty I, @BF% 0 @)
C C

where |, and dl are the current located in the bounded surface by ‘C’ and the line element of
path (C) respectively.
The total self-magnetic flux ®; through the probe may be obtained by (N=1):

a
win )
¢T=ijBr'dszTIT=Lrlr (8)
S
Therefore, the self-inductance is:
a
zIn(+
erﬂzuo—(b)zM!” 9)
L. 21

The circuit equation of the current measuring systems of Figure 3.3 (d) is:

Vina = _Vemf + LR, + Vgroove =

dl Reerm>Ry
Vina = Ly d_; + L. (Ry + Rierm) (10)
L
Vina = Ly E + L Rierm

In our case, the registered voltage is solely dependent on dl/dt (the current probe operates in
I-dot mode). The condition for this mode is
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Equation (10) taking into account condition (11) becomes

(5) dl
Vina = L Rterm < _ME = L Rterm (12)
Therefore, the registered voltage is:
dl
Vgroove = _ME (13)

3.5 Optical Probing

In order to gain information concerning the refractive index (n) and hence the electron
density of a plasma (ne), an Nd-YAG (Neodymium-doped Yttrium Aluminum Garnet) laser was
used to backlight the experiment. Light can only pass through a plasma if the frequency of the
plasma wp is lower than that of the probe beam wig. The maximum density, which can be

probed, known as the critical density n¢, in a compact form is:
n. = 10212 cm™3 (14)

where A is in microns.

The refractive index of the plasma is given by:

(15)

The Nd-YAG laser emits light in the near infrared (A=1064 nm) which then traverses a KDP
harmonic generating crystal. The frequency of the light is double resulting in a A of 532 nm
(green). Substituting this wavelength into equation (14) yields a critical density nc=4 x 102

electrons per cubic centimeter.
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3.6 Shadowgraphy

Ray trajectory for plasma state
Ray trajectory for neutral state

Unperturbed ray trajectory
Test  Shadowgram pe Y lrajector)

section plalne LensL,
= 1

Focal
plane

:' Image
0 L plane
—rIF 1 3 . 3

==+ _.Muyuifkar&au(s:}rz} =

2 5 1 52

Figure 3.4 Images showing the propagation of light rays through a shadowgraphy system.
Light is focused by a lens and after crossing through the focal point propagates to the image
plane

In shadowgraphy (Figure 3.4), the light that propagates through regions with large density
gradients is diverted significantly, leaving that portion of the image dark. The refracted
radiation brightens undisturbed areas of the image, or in the case of very high density
gradients, the light will be lost from the system. The intensity variations arise from the second
derivative of the refractive index. The intensity incident (I) on the CCD (image plane) compared
to the intensity of an undisturbed beam (lo) will be [13]:

02 02 1,y — 1o
<6x2 + 6y2> f Nexy,z) 42 = 1 I, (16)
0

where x and y are the coordinates orthogonal to the propagation direction of the beam, and L
is the distance between the object (test section) and the shadowgram plane (a conjugate plane

of the image plane).
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3.7 Time-resolved soft x-ray detector

The low cost BPX65-PIN (silicon intrinsic (I) semiconductor between a p-type (P) and an n-
type (N) semiconductor regions) (figure 3.5(c)) diodes with a fast response (hanosecond
timescale) are chosen for X-ray measurements using our X-pinch source. The BPX65 PIN
diodes of the smaller sensitive area (1 mm x 1 mm) are mounted on the SMA female
connectors with a variety of filters (Figure 3.5(b)). A set of five filtered BPX65-PIN diodes (fig.
3.5(a)) is designed to measure the x-ray fluence in the range of 1 keV to 10 keV. An illustration

of the bias circuit diagram can be seen in Figure 3.5(d).

—{.}1“ The glass cover has
< been removed
7/ lu BPX-B5 sensitivity
A I | oscilloscope 0.25
' . 0.20 o
=
BPX§5 <« 500hm So1s
L ~ g
¥ 9 Lo
d
0os
N
0.oa
n 5 10 1 an

Phatan Enargy [ke'v]

Figure 3.5 Time-resolved soft x-ray detector

A reverse bias is imposed on the diode which causes the intrinsic layer to act as an
insulator, stopping current while setting up an electric field across the | layer. As photons are
absorbed by the silicon they liberate charge carriers which are accelerated by the electric field,
producing a current which is recorded. The transient signal is coupled out through a capacitor
along 50 Q semi-rigid cable to an oscilloscope where the voltage across a 50 Q termination is
measured. A curve of the diode sensitivity can be seen in Figure 3.5(e), the diodes are
sensitive for 0.5-15 keV. The use of filter sets in conjunction with PIN diodes can provide
spectral resolution to these diagnostics, supplying information concerning the emission
characteristics of the central plasma. The detector spectral sensitivity (Sy) in the presence of

a filter has been calculated by the following equation
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where S is the sensitivity of the BPX65 diode for the radiation at energy E and T, JE and

T are the transmission coefficient, absorption coefficient and thickness of the filter, respectively

The transmission curve, as well as the detector response convolved with various filters are

shown in Figures 3.6(left) and 3.6(right), respectively.

Filter Transmission — Al 15um BPX-65 + filter sensitivity
0.08
] —FeSum 0.07
0.8 Cu 10um .06 =P |4l 15um}
0.6 —Ti15um = 5 — P |FeSum)
'E-— 0.04 B3 [Cu 100
0.4 V — 003 ——PDO |Ti 15um)
0 0.02
.01
o 0.0
o E 10 15 i o 5 10 15 E
Photon Enargy [kev] Fhetan Energy (keW)

Figure 3.6 Transmission curves of various filters and the plot of BPX65-PIN diode response
convolved with that filters

3.8 X-ray Imaging

Pinhole cameras provide spatially resolved, time integrated information regarding radiation
from the X-pinch [11, 14]. They show (Figure 3.7) intense radiation from the small micro-pinch
source in addition to the large source from energetic electron (electron beams accelerated
across “mini-diodes” near the X-pinch crossing point) radiation. The pinhole images directly
show a small central spot from the micro-pinch. They also show the main features of the X-
pinch limbs on the anode side. No features are observed on the cathode side. This means
that electron beam interactions with the plasma or the cooler wire material play a very

important role in the X-ray emission.
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Anode

Figure 3.7 A typical time-integrated Pinhole Camera Image of a tungsten two-wire X-pinch

The complicated structure and small dimensions of the emitting regions, which are of the most
interest, require the use of high-resolution pinhole cameras having a low luminosity. Due to
their small dimensions, the recorded images are difficult to analyse even at a relatively large

magnification.

3.8.1 Slit step-wedge (SSW) camera

Another well-known device is a slit most often applied in spectrographs to obtain one-
dimensional spatial resolution in the direction perpendicular to the dispersion direction.
Devices using a slit turned out to be rather convenient in studies of Z-pinches due to the axial
symmetry of the latter. One such device, namely, a slit camera with step-wedge filters (slit
step-wedge (SSW) camera (Figure 3.8)), was designed especially for pinch experiments [11,
15-17]. The use of such a camera made it possible to overcome many difficulties in studying

the spatial structure of the pinch.
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Figure 3.8 Scheme of a slit step-wedge (SSW) camera and scheme of image recording

The SSW camera provides spatial resolution in one dimension, by the use of a slit, taking
advantage of the fact that the central part of the X pinch has very little radial extent. The slit is
oriented perpendicular to the z-axis to give us spatial resolution along the z-direction. The
various filter thickness in the SSW give us an idea regarding the photon energies radiated
from different locations along the z-axis. Likewise with a pinhole camera, the SSW camera is
able to show a narrow intense spot from the micro-pinch in the centre with more diffuse
radiation from energetic electrons. In our case, the image is recorded on one film through a
six-step attenuator made of aluminium foil with thicknesses of 15 ym. The number of layers
was chosen to be multiple to 2". Due to the sufficiently large step width (on the order of 3 mm),
the image dimensions were large enough to perform averaging of the optical density, thereby

appreciably improving the signal-to-noise ratio and identify even weak images.

3.8.2 Point projection radiography

Point projection radiography is a technique that is able to capture calibrated areal density
maps of a plasma sample [18, 19] (in our case an aluminum wire is used). This begins with a
point source of photons such as an X-pinch. These photons are released isotropically and
impinge upon a plasma sample. A fraction of the photons that interact with the plasma are
absorbed. The resulting non-uniform distribution behind the plasma is collected on a detector.

This is illustrated in Figure 3.9.
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Figure 3.9 Scheme of a Point projection radiography and scheme of image recording

A calibration is obtained by simultaneously imaging a step-wedge (Figure 3.9) made from
the same material as the plasma under study. The step wedge is often placed near the
detector and far away from the object plasma. When preparing to collect such an image, it is
important to ensure that the image of the plasma does not overlap the step-wedge. This will
cause errors during the calibration since some steps may receive a higher flux than others.
The resolution of a point projection system with a geometry like that shown in Figure 3.9 is
primarily determined by the size of the photon source. A finite source size causes the true
image of the sample plasma to be blurred. This limits the image resolution to the order of the

source size. The hotspot of an X-pinch provides a micron (um) scale source size [20].
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4. Experimental procedure
4.1 Recognize the X-pinch system

Recognize some main parts of the X-pinch system and fill in the corresponding callout frames
their names.

4.2 Recognize the experimental equipment

Recognize the experimental equipment and diagnostics and check their inter-connections by
using the wiring diagram that is shown below:
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Filtered (Fe 5um) PIN S

™ 9 :
PIN (Optical probing ) S«
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+
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'. ' Laser
i triggering unit
Trigger unit To
Enable &8
. Marx
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! Disdble .
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Delay unit
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» Control unit
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4.3 Create and install an X-pinch load

» Carefully unwind about 10 cm of the tungsten wire.

» Place a fishing weight at each end.

» Introduce the two ends in the anode. Use these holes to get a crossing angle of about
55°;

» Install the anode on the anode plate, the weights should go in the corresponding holes
of the cathode.
» Twist the X-pinch of 180°-190°. Use the port on the top of the chamber to check if the

two wires are in contact.

tation 185
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4.4 Optical probing set-up

For experimental purposes, we have implemented a 3-frame Mach-Zender interferometer
(or shadowgraphy setup) that consists (see figures below) of a beam expander & a collimator
(L1 and L2), a set of two optical delay lines (delay time 7.8 ns & 6.5 ns, respectively), a three-

frame imaging system (CCD1..3 and L3) and a set of various additional optical elements.
M: Mirror (100% reflectivity)

BS: Beam Splitter

L1 L2 iris

Laser( probe beam): M

Ao=532 nm,At=150 ps I

— 37
. . , 5 2
\ Optical delay lines A, @
AN /S~
~N — JE— w
e S --- -~
/,, i
7/ AY
\

," I: Interference filter BS
(Ao=532 nm, 6A=10
nm)

(50/50)

BS(50/50)

. Beam stopper for the
; shadowgraphy setup
CCD1 F M
M

i | ND
:. ND: Neutral Mach-Zender interferometer

v filter /shadowgraphy setup ;
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» Calculate the magnification (G) of the imaging system (see Figure 3.4), taking into
account i) a vertical field of view (FOV) with a length of 15 mm (height of the X-pinch
load) and ii) the corresponding specifications of CCD (Resolution 1292 (H) x 964 (V),
Pixel size 3.75 ym x 3.75 ym)

S vertical size of the image
T L+S, FOV

G

» Then calculate (by using the thin-lens equation) and adjust the imaging system
assembly for a +200 mm focal lens (be careful so that the focus of each laser beam is
always in front of the corresponding camera).

» In order to achieve a distance (L) of 10mm (see Figure 3.4) move each CCD camera
towards [Why?] imaging lens (L3) at a displacement of about Sz ¢4 -G*S;.

» In order to determine the spatial resolution of the imaging system (um/pixel) use the

magnification factor (G) you calculated.

4.5 Capture the reference image(s)

The active menu that appears on the remote control pad should be "Pk 1".

» Press the button “OP” (on the remote control pad) to start laser operation.

» Press and release the button “SEL” (on the remote control pad) 2-3 times to give start
and test for pulses packet (single pulse in our case).

» In order to give start for image capture (“Extended shutter” =10,000,000 pus), press the
“single” button “c |” (on the virtual control panel of each camera) by using the left click
on mouse. Quickly repeat this procedure for each active CCD camera.

» Press and release the button “SEL” to give start for single pulse and then wait for the
capture time interval to expire.

» Press the button “OP” (on the remote control pad) to stop laser operation.

» Save the image(s) as ref wsum_delayXX_shotYY_55.BMP, where XX is the total
optical delay time (Ons, or 7.8ns, or 14.3 ns), YY is the #number of the experimental

shot and 55 is the crossing angle.

4.6 Fill the spark gaps of the Marx Bank

Attention please: Don’t turn the valve of the pressure regulator
» Open (turn anticlockwise) the A-valve. B- and C-valves should be already closed

(handle of the ball valve must be perpendicular to the hose axis (flow) when closed).
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» In order to replace the gas in the spark gaps, open the B- and C-valves (the handle
must lie flat in alignment with the flow) and wait for a few seconds. Then close the C-
valve.

» Close (turn clockwise) the A-valve. Adjust the gas pressure to a value about 1.3 Bars
(read on the low-side pressure gauge) by using the C-valve.

» Close the B-valve and then disconnect the quick coupler connector.

4.7 Fill the self-breaking switch

» Use the quick coupler to connect the outlet hose of the SF¢ cylinder together with the
inlet hose of the self-breaking switch.

» Repeat all the steps (except the last one) you did for the sub- procedure -5.
hsid Low-side
High-side N\ / pressure
pressure

gauge Marx bank
gauge
Quick coupler
connector

Spark
a
Low side gap
pressure .

N regulator TTTTTTTTTTTmTmoooes

cylinder

4.8 Set up vacuum in the chamber

» Turn the vacuum gauge on and wait for the warm-up time to be expiring (wait for the
pressure to reach a value of 1000 mbar).

» Close the chamber with the joint and the cover. All ports of the chamber must be
closed.

» Close (turn clockwise) the A-valve. B- and C-valves should be already closed.

» Turn on the roughing pump.
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» Open B- (pull up the black colored piston) and C- (turn anticlockwise) valves.

» Wait for the pressure to reach less than 5 x 10?mbar.

» Turn the turbo-molecular pump box on by using the rear switch. Wait for the four lamps
to turn off.

» Press the “Start/stop” button. The lamp turns on.

» Wait for the pressure to reach less than 5 x 10“*mbar.

A

|
1B [ Turbo pump

|
C

Roughing pump
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4.9 Fire the Marx Bank

Emulation Signal lamp (green) Main lamp

“SYNC IN” (red)
“ . " Main switch
Experiment

Enable
trigger
source
indicative
lamp
(red)

\ » S ) Enable /

disable

Voltmeter .

Marx 2-way switch trigger
(Voltage .

“er Charging source
monitoring for the .
- Panel (variac) switch

1 to capacitor,

which is stacked in Marx trigger unit

the Marx bank)

The active menu that appears on the remote control pad should be "Pk 1".

» Set the oscilloscope to trigger once (single- shot acquisition) by pressing the “single”
trigger button.

» Press the button “SEL” together with “A” (on the remote control pad) to select “Home”
menu (display looks like “XX = YYYm”, here: XX -amplification level and YYY-reading
of energy meter in mJ) and then switch the amplification system of the laser off by
simultaneous pressing buttons “A” and ” V “(XX-amplification level indicator starts to
blink).

» Press the button “OP” (on the remote control pad) to start laser operation.

» Turn the left (main) switch of the Marx trigger unit on (main lamp must turn on with a
red color) and wait for the warm-up time to expire (should be five minutes long), then

under normal conditions the signal lamp must turn on with a green color.
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Turn slowly and clockwise the turning button of the Marx Charging Panel. The read
values on the voltmeter LCD at the right increase. Note that values are divided by a
factor of 1/100. So "100 V" indicates a voltage of 10 kV.

When a 34 kV (340 V on the LCD) voltage is reached:

>

Switch the amplification system of the laser on by simultaneous pressing buttons “A”
and” V “(XX-amplification level indicator stops to blink), and then press the button
“SEL” together with “V” to select “Single-shots” menu.

Press and release the button “SEL” (on the remote control pad) 2-3 times to give start
and test for pulses packet (single pulse in our case).

Relay the 2-way switch by changing the connection of the “SYNC IN” cable with
“‘emulation” terminal to with the “experiment” terminal.

Turn the "enable/disable triggering source” switch of the "Marx trigger" unit into the
"Enable" position (the corresponding indicator must be turned on with a red color).

In order to give start for image capture (“Extended shutter’ =10,000,000 us), press the
single button “=|” (on the virtual control panel of each camera) by using the left click
on mouse. Quickly repeat this procedure for each active CCD camera.

Quickly turn the turning button of the Marx Charging Panel anticlockwise to zero.
Press and release the button “SEL” (on the remote control pad) to give start for a single
pulse. The discharge creates a lightning and a short but intense noise.

Press the button “OP” (on the remote control pad) to stop laser operation and then wait
for the imaging capture time interval to expire.

Save the image(s) as shot_w5um_delayXX_shotYY_55.BMP, where XX is the total
optical delay time (0 ns, or 7.8 ns, or 14.3 ns) and YY is the #number of the
experimental shot.

Turn the "enable/disable triggering source" switch of the "Marx trigger" unit into the
"Disable" position (the corresponding indicator must be turned off).

Turn the left (main) switch of the Marx trigger unit off.

Relay the 2-way switch by changing the connection of the “SYNC IN” cable with
“‘experiment” terminal to with the “emulation” terminal.

Save all the displayed waveforms into corresponding files for binary and ASCII data
format by using a suffix file name as “_w5um_shotXX_ 55", where XX is the #number
of the experimental shot.

Print the screen image to a file by using a file name as “w5um_shotXX_55".
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5. Experimental results analysis

5.1 Voltage & current monitoring

I.  In order to describe the electrical behavior of the x-pinch device (i.e. PFL charging
phase,..) analyze the screen image of the oscilloscope.
II.  Moreover, measure the time interval for each individual phase by using the build-in
cursors of the oscilloscope. In addition, determinate the rise time (kA/ns) of the current.
II. Comment on the shape of the waveforms (i.e. linear, constant rate,...).
IV. Calculate the peak value of the PFL voltage by using a Cprobe capacitance of 3.5 pF
and a terminating resistance of 50Q.
V.  Calculate the peak value of the total (Note: total current is four times the current flowing
through one post) load current by using a Lr self-inductance of 1.5 nH.
VI.  Check the validity of the assumption that the probes measure the time derivative (d/dt)
of the signals by setting the d/dt as 4/T, where T should be considered the period of

the spectral component with the maximum frequency of each specific signal.
5.2 Optical probing

I.  Use an image processing program (e.g. ImageJ) to measure on the shadowgrams the
size (height and width) of selected plasma structures, namely the jets, the legs, the
plasma electrodes, the mini-diode (if any), and the central z-pinch column of the x-
pinch load. Then, calculate the effective average rate of the plasma expansion (and/or
compression) for these above structures.

II.  Analyze the waveform of the PIN diode that measures the optical probing captured
time moment in order to determine the timing(after the start of the current) of the
shadowgrams were taken.

lll.  Calculate the areal electron density along a straight line (1D) that transverse a plasma

streamer modulation you choice.

5.3 Time-resolved soft x-ray measurement

I.  Check the waveform of the filtered PIN diode for the proof of a successful pinching,
and if any, measure the time that appears after the start of the current.

II.  Determine the energy bins of the x-ray flow measurement.
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5.4 X-ray imaging

Study the results obtained using the slit step-wedge camera to identify various emitting
regions. Compare the hardness of radiation that emitted from these different regions
and comment on the spatial structure of the X-pinch load.

Analyze the results obtained using the point projection radiography to plot the areal
density of the step-wedge filter as a function with the optical density of the radiogram
as well as the its fitting curve and to determine the averaged (select 5 points) areal
density along the axis of symmetry of the test object (Al-wire with a mass density of
2.7 gr/cm?) using the fitting curve you calculated. Then calculate the diameter of this

test object.
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