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Abstract The evaluation of unsupervised outlier detection algorithms is a constant
challenge in data mining research. Little is known regarding the strengths and weak-
nesses of different standard outlier detection models, and the impact of parameter
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choices for these algorithms. The scarcity of appropriate benchmark datasets with
ground truth annotation is a significant impediment to the evaluation of outlier meth-
ods. Even when labeled datasets are available, their suitability for the outlier detection
task is typically unknown. Furthermore, the biases of commonly-used evaluationmea-
sures are not fully understood. It is thus difficult to ascertain the extent to which
newly-proposed outlier detection methods improve over established methods. In this
paper, we perform an extensive experimental study on the performance of a represen-
tative set of standard k nearest neighborhood-based methods for unsupervised outlier
detection, across a wide variety of datasets prepared for this purpose. Based on the
overall performance of the outlier detection methods, we provide a characterization
of the datasets themselves, and discuss their suitability as outlier detection benchmark
sets. We also examine the most commonly-used measures for comparing the perfor-
mance of different methods, and suggest adaptations that are more suitable for the
evaluation of outlier detection results.

Keywords Unsupervised outlier detection · Evaluation · Measures · Datasets

1 Introduction

An outlier, according to the well-known definition of Hawkins (1980), is “an obser-
vation which deviates so much from other observations as to arouse suspicions that it
was generated by a different mechanism”, or according to Barnett and Lewis (1994),
“an observation (or subset of observations) which appears to be inconsistent with
the remainder of that set of data”. In the database community, the research on outlier
detection algorithms was triggered by the seminal work of Knorr and Ng (1997). Since
then, new models have continually been developed to characterize and identify out-
liers (Chandola et al. 2009; Zimek et al. 2012; Aggarwal 2013; Schubert et al. 2014b;
Akoglu et al. 2015).

The efficiency and effectiveness of outlier detection is of much interest to
researchers and practitioners. With regard to efficiency, a study by Orair et al. (2010)
examines the basic techniques for accelerating a fundamental class of algorithms, the
so-called ‘distance-based’ outlier detection models. The evaluation of efficiency can
be problematic due to the dependency of performance on many different factors, such
as the dataset size and dimensionality, the choice of parameters, the data structures
employed, and other implementation details (Kriegel et al. 2015). Nevertheless, the
efficiency of outlier detection is a well-studied topic in the literature. This is not our
focus here.

On the other hand, the effectiveness of unsupervised algorithms for outlier detection
has received far less attention than efficiency issues. One explanation for this lack
of attention is the inherent difficulty of characterizing the nature of the candidates
produced by a given outlier method. In terms of such aspects as accuracy, utility,
or conciseness, any comparison between outlier methods is inappropriate when the
natures of the outliers produced differ, or when their validity has not been established.
As has already been pointed out by Schubert et al. (2014b) andZimek et al. (2013a), the
nature of ‘outlierness’ as modelled by different algorithms is not yet well understood.
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In contrast, for other tasks of explorative data mining, the validity of results has been
the topic of some discussion in the research literature—in the context of frequent
pattern analysis, see the work of Vreeken and Tatti (2014), Zimmermann (2014), and
Zimek and Vreeken (2015); and for clustering, that of Vendramin et al. (2010), Färber
et al. (2010), and Kriegel et al. (2011b).

Another obstacle to the evaluation of outlier methods is the lack of commonly
agreed-upon benchmark data. In a preliminary attempt, Emmott et al. (2013) gave a
procedure for generating benchmark datasets according to a notion of ‘classification
hardness’. Their approach, although interesting and systematic, is not described in
detail sufficient to allow the experiments to be reproduced, nor have the resulting
datasets been made available.

Throughout the research literature, a common approach to the evaluation of outlier
detection algorithms is to test their performance on classification datasets. With some
datasets, semantic information may be associated with certain classes that suggests
that they are sufficiently unusual and distinct from the remainder of the classes, so
as to constitute a natural ground truth outlier object set. More commonly, when no
such semantic information exists, a ground truth is generated by selecting as outliers
a small proportion of data objects from a small number of classes, and as inliers the
objects from the remaining classes (Zimek et al. 2013a). This downsampling-based
strategy for generating datasets with annotated ground truth, previously pursued by
Lazarevic and Kumar (2005), Abe et al. (2006), Yang et al. (2008), Zhang et al.
(2009), Keller et al. (2012), Dang et al. (2013), Zimek et al. (2013b) and Dang et al.
(2014) (among others), conforms with the notions of outlierness as characterized
by Hawkins, and Barnett and Lewis, in that the outlier objects are selected from
distributions (classes) that are different from those of the inlier objects. Moreover,
the rarity of the outlier objects prevents them from forming a group that could be
identified through standard techniques such as clustering. However, the generation
cannot in principle be standardized, since varying the choice of classes from which
outliers are drawn, or the choice of proportions of outliers actually selected, can lead
to substantially different experimental outcomes.

In this paper, we present what is (to our knowledge) the first attempt of a broad
evaluation of a variety of general-purpose models of outlierness, with respect to a col-
lection of classification datasets previously used for the evaluation of outlier methods.
We examine the major issues that arise in the conversion of classification datasets to
outlier evaluation datasets. We review a number of outlier evaluation measures, and
assess their characteristics and potential weaknesses. We also suggest modifications
of these measures that are more suitable for the evaluation of outlier detection results
when comparing performance over several datasets. Based on the aforementioned
dataset collection, and using several evaluation measures, we perform a comparative
analysis of a broad class of unsupervised outlier detection algorithms, namely the class
of outlier models based on k-nearest neighborhoods. We focus on this class of outlier
models for several reasons. The family of unsupervised models includes both very
simple and more refined examples; the oldest and most well-known outlier methods
such as kNN (Ramaswamy et al. 2000) and LOF (Breunig et al. 2000) belong here,
as well as recent developments such as KDEOS (Schubert et al. 2014a). Although all
methods studied here make use of k-nearest neighborhoods in one way or the other, the
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exact use and meaning of the k-nearest neighbors varies across the different models.
Finally and most importantly, since all the methods considered share a parameteriza-
tion in terms of a local neighborhood size k, the relative behavior of the algorithms
can be compared across the various choices of this single parameter.

Although the evaluation of outlier methods is a motivation and an outcome of this
study, this evaluation per se is not the main goal. Rather, we propose to study and
discuss the issues surrounding any evaluation. Also, in this study we do not claim
to provide a collection of datasets that can serve as a general-purpose benchmark
for evaluation. Instead, we investigate the datasets and evaluation measures currently
used in the existing practice of outlier evaluation, and demonstrate the need for the
adoption of benchmarks by the outlier detection research community. We see as the
main contributions of this work the study, characterization, and description of datasets
in light of the outlier detection task, as well as a demonstration of the importance
of generating ground truth data according to well-considered strategies, instead of
by arbitrary selection. In the same spirit, our study does not merely evaluate and
analyze existing methods for outlier detection—it also aims to provide guidance as to
how to evaluate and analyze such methods. We also show that testing broad ranges
of parameter values is crucial when evaluating outlier methods, in order to avoid
misleading experimental outcomes.

We begin our study by describing and discussing our selection of algorithms
(Sect. 2). We then introduce the evaluation measures that will be used, as well as
our proposed modifications of these measures (Sect. 3). Next, we describe the selec-
tion and preprocessing of datasets (Sect. 4).We then summarize and discuss the results
of experiments regarding the performance of the tested methods, and the suitability
of the datasets (and their preprocessing procedures) for the outlier detection tasks
(Sect. 5). We conclude the paper with a summary and discussion of our findings and
of open issues for future work (Sect. 6).

2 Outlier detection methods

Following the seminal work on distance-based outlier detection by Knorr and Ng
(1997, 1998), a plethora of unsupervised algorithms has been developed. They define
outliers to be those objects for which a large proportion of the data lies beyond a fixed
distance threshold. Later approaches do not determine a set of outliers according to
an explicit distance threshold, but instead assign to each object a score reflecting its
‘outlierness’. Such variants of the distance-based approach are based on the distance
to the kth-nearest neighbor (the ‘kNN distance’) (Ramaswamy et al. 2000), or on an
aggregate of the distances to each of the k nearest neighbors (kNNs) (Angiulli and
Pizzuti 2005). Another family of unsupervised methods, so-called ‘local’ approaches,
has its origins in the Local Outlier Factor (LOF) (Breunig et al. 2000). In general,
methods for unsupervised outlier detection can be categorized according to themanner
in which locality is used to determine outliers (Schubert et al. 2014b). Outlier scoring
can be regarded as a comparison of a ‘local model’ or context of a test object (typically
a neighborhood set according to some distance measure) with that of a reference set.
If the reference set consists of all (or most) of the objects in the dataset, the outlier
detection strategy is considered to be ‘global’—since the reference set is fixed, points
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outscore others simply based on how their local model is rated in the outlier criterion
as compared to all other points. On the other hand, if the reference set is of a scale
similar to that of the context set, the strategy is considered to be ‘local’. The number
of different reference sets considered would be high, allowing for the discovery of
outliers throughout different regions of the data space.

2.1 Methods

In this evaluation study, we focus on the following outlier detection strategies, all
of which require a user-supplied parameter k to fix the size of the neighborhood set
(which will henceforth be referred to as the ‘kNN set’ or ‘kNNs’, and the distance to
the kth nearest neighbor will be referred to as ‘kNN distance’). Since finding the kNNs
in a data set of size N = |DB| by means of a linear scan requires O(N 2) distance
computations (which can often be reduced to O(N log N ) using appropriate index
structures), the cost of finding the neighbors usually dominates the algorithm runtime
(Schubert et al. 2015b). In the following, we will focus the discussion on the execution
cost over and above that due to the computation of neighborhood sets.

As will be discussed, the following methods are representative of the main funda-
mental models of outlierness, and their variants.

kNN (Ramaswamy et al. 2000) determines outliers as those data objects having the
largest kNN distance. The intuition is close to the proposal of Knorr and Ng (1997,
1998) of using a density estimate to find low-density points. In addition to the cost of
finding the kNN sets, this only requires O(1) computation per point.

kNN-weight (kNNW) (Angiulli and Pizzuti 2002, 2005) uses the sum of distances
to an object’s kNNs to reduce variation in scores and make the score less sensitive to
a change of the parameter k. Again, a large sum of distances indicates a low density
and outliers are those objects with the largest score. Computing the sum requires O(k)
additional operations per point.

ODIN (Outlier Detection using Indegree Number) (Hautamäki et al. 2004) defines
outlierness as a low number of in-adjacent edges in the kNN graph—or equivalently,
a low hubness value, defined as the cardinality of the reverse kNN set, (the ‘RkNNs’)
(Radovanović et al. 2014). Accumulating the counts of occurrences requires O(k)
operations per data point.

ODIN, kNN, and kNNWcan be seen as a family of ‘global’ methods, making direct
use of the kNN set of each point. The other large family of methods is derived from
LOF.

LOF (Local Outlier Factor) (Breunig et al. 2000) was the first local outlier method.
It compares the local reachability density (lrd) of the kNN set of the test point, with
those of the neighborhoods of each member of the kNN set: a high value indicates
outlierness. Local reachability density is defined as the inverse average reachability
distance from the neighbors

lrd(p) := 1

/∑
o∈kNN(p) reach-distk (p←o)

|kNN(p)|
, (1)

where the (asymmetric) reachability distance in turn is defined as:
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reach-distk(p ← o) = max{k-dist(o), d(p, o)}. (2)

Intuitively, the local reachability density (lrd) is a density estimate with additional
smoothing to reduce variability.

The final LOF score then compares the locally relevant lrd values:

LOFk(p) = 1

|kNN(p)|
∑

o∈kNN(p)

lrdk(o)

lrdk(p)
(3)

The LOF score achieves its highest values when the local density estimate (lrd) of the
test point is small relative to the estimates of its nearest neighbors. If we can afford
to store the kNN and lrd values of all data points simultaneously, computing the LOF
scores requires O(k) additional operations per point (in addition to those involved in
the computation of all kNN sets).

LOF was a seminal work inspiring many variants, several of which are included in
this study. For a detailed theoretical analysis of LOF and its variants, see the work of
Schubert et al. (2014a, b).

SimplifiedLOF (Schubert et al. 2014b) replaces LOF’s reachability distance (in
Eq. 1) by the kNN distance, resulting in a simpler density estimate:1

dens(p) = 1

k-dist(p)
(4)

This density estimate arises from LOF when in Eq. 2 one substitutes k-dist(p) for
k-dist(o): since o ∈ kNN(p), d(p, o) ≤ k-dist(p) by definition of the k nearest
neighbors, from which Eq. 1 can be seen to simplify to Eq. 4. The complexity of
SimplifiedLOF is similar to LOF.

COF (Connectivity-based Outlier Factor) (Tang et al. 2002) modifies the density
estimation of SimplifiedLOF to account for the ‘connectedness’ of a neighborhood
via a minimum spanning tree (MST) rooted at the point under study. The MST can be
‘shelled’ or reduced back to the root p by progressively deleting the leaf node incident
to the edge having greatest length. Computing the total edge lengths for each of the
MSTs in the shelling, and then averaging over the MSTs, yields the ‘average chaining
distance’ for the kNN set of p:

ac-dist(p) =
k∑

i=1

2(k + 1 − i)

k(k + 1)
λ(ei ), (5)

where ek−i is the edge deleted in the i th shelling step, and λ(ek−i ) is its length. The
COF value of p is then given as a ratio of the ac-dist of p with the average of the
ac-dist values of its k-nearest neighbors:

1 While only recently defined formally, SimplifiedLOF has been implicitly used (and adapted), often
presumably unintentionally [i.e., not being aware of the special definition of the reachability distance
(Eq. 2)], in many earlier variants of LOF. Here, for the first time, it is evaluated explicitly.
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COF(p) = ac-dist(p)
1
k

∑
o∈kNN(p) ac-dist(o)

(6)

Computing the spanning tree of the kNNs requires the computation of pairwise dis-
tances, and thus the cost is in O(k2).

INFLO (Influenced Outlierness) (Jin et al. 2006) compares the local model of Sim-
plifiedLOF with the same density estimate applied to the reference set of the union of
kNN and RkNN sets. INFLO is thus an example of a local outlier detection strategy for
which different definitions of neighborhood are used for the context set and reference
set. Computing the RkNNs can be performed in a list-inversion step, which requires
O(k) operations.

LoOP (Local Outlier Probabilities) (Kriegel et al. 2009a) uses a more robust local
density estimate than SimplifiedLOF based on the quadratic mean distance:

LoOP-dens(p) = 1

/√√√√ 1

|kNN(p)|
∑

o∈kNN(p)

d(o, p)2 (7)

Furthermore, LoOP also normalizes the outlier detection scores. The compexity is the
same as SimplifiedLOF, i.e. O(k) per point.

LDOF (LocalDistance-basedOutlier Factor) (Zhang et al. 2009) defines outlierness
as the ratio of the average of the distances from the test point to its kNNs, and of the
average pairwise distances within the kNN set. LDOF favors outliers that are far from
a kNN set which is itself compact. As with COF, LDOF requires that all pairwise
distances be computed (O(k2)).

LDF (Local Density Factor) (Latecki et al. 2007) replaces LOF’s density estimate
by a variable-width Gaussian kernel density estimation (KDE) modified to use LOF’s
reachability distance; the resulting estimator is no longer a kernel density in the math-
ematical sense. In the KDE formulation, the original (Euclidean) distance is replaced
with the reachability distance of LOF (Eq. 2) to yield a local density estimation func-
tion LDE:

LDEd(p) := 1

|kNN(p)|
∑

o∈kNN(p)

1

(2π)d/2(h · k-dist(p))d e
− 1

2
reach-dist(p,o)2

(h·k-dist(p))2 (8)

The LDE densities are then compared to neighbor estimates in a similar fashion

LDF(p) =
1
k

∑
o∈kNN(p) LDE(o)

LDE(p) + c
k

∑
o∈kNN(p) LDE(o)

(9)

The complexity of LDF is the same as that of LOF.
KDEOS (Kernel Density Estimation Outlier Score) (Schubert et al. 2014a) also

incorporates KDE into the LOF framework, but unlike LDE, it keeps the mathematical
kernel density estimation intact. For comparison with neighbor densities, the KDE

123



G. O. Campos et al.

densities are standardized per point as z-scores with respect to the KDE densities of
the kNN set, and averaged over different neighborhood sizes kmin . . . kmax:

s(p) = mean
kmin...kmax

z-score
(
K DEk(p), {K DEk(o)}o∈kNN(p)

)
(10)

Treating the resulting interim score s as normally distributed, the normal cumula-
tive density function is used to obtain the final KDEOS score. For our study, we set
kmin = kmax = k for KDEOS, for ease of comparison with other outlier methods.
The complexity of KDEOS is O(k · (kmax − kmin + 1)), which is in general quadratic;
however, in our formulation, the cost reduces to O(k).

For a detailed theoretical analysis of both the kNN and the LOF families of density
based outlier detection, see the work of Schubert et al. (2014a, b).

FastABOD (Fast Angle-Based Outlier Detection) was designed as a fast variant
of angle-based outlier detection (ABOD) (Kriegel et al. 2008). The ABOD model
computes, for each point as origin, the angles to all other pairs of points, and uses
a weighted variance of these angles as an outlier factor—the complete computation
requires O(N 3) time. Themore efficient FastABODversion considers only those pairs
of points that are among the kNNs, and thus requires only O(k2) computations per
point.

Both FastABOD and KDEOS have other parameters to tune for optimal results
in addition to the neighborhood size k. FastABOD uses the kernel trick, and thus an
appropriate kernel function must be chosen (we use the default polynomial kernel of
degree 2).KDEOSperformance benefits fromchoosing an intrinsic dimensionality and
a kernel bandwidth multiplier h. LDF has a comparable kernel bandwidth multiplier
constant h, and an additional score scaling constant c. We do not vary these default
settings (we use h = 1, c = 0.1), though, as we evaluate all algorithms on the same
terms, varying only the neighborhood size. For many datasets, there may be better
results obtainable with either algorithm by further exploring the parameter space.

As we can see, all the methods presented above have a comparable runtime com-
plexity, which is dominated by the database size N = |DB|: in addition to finding
the kNN, all methods need O(1), O(k) or O(k2) computations per point, yielding
an overall runtime of O(N 2 + Nk j ) (for j = 0 . . . 2, depending on the method
as discussed above). If the dataset is amenable to indexing, this can be reduced to
O(N log N + Nk j ). Assuming that only small neighborhoods of size k2 < log N are
of interest to the user, the complexity is that of k nearest neighbor search.

Efficiency issues have lately been addressed through the use of approximate neigh-
borhood search (Wang et al. 2011; de Vries et al. 2010, 2012; Schubert et al. 2015b).
In this study, however, we will focus on effectiveness, since for these fundamental
methods, beyond the asymptotic complexities given above, an empirical study of effi-
ciency is entirely dependent upon implementation details (Kriegel et al. 2015). For
this reason, the efficiency of outlier methods is beyond the scope of our study.
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2.2 Discussion

As stated above, we focus on a class of outlier detection models that are all based on
k-nearest neighborhoods, for three main reasons: (i) the popularity of this very broad
family of methods; (ii) the behavior of the algorithms can be compared across the
various choices of this single parameter k; and (iii) the parameter k nevertheless has
different interpretations and impact across the different models.

Within the family of kNN outlier detection methods, we selected the representative
algorithms as listed above so as to have proponents of both the ‘global’ and ‘local’
paradigms, with different degrees of ‘locality’ (Schubert et al. 2014b). Second, we
include variants of LOF for different choices of the typical components (Schubert
et al. 2014b) of local outlier models: the notions of neighborhood, of (reachability)
distance, of density estimate, of model comparison, and of score normalization. While
they have been studied selectively in existing papers on specific datasets, ours is the
first empirical study that evaluates them jointly and extensively on a large range of
settings and datasets.

For these different variants, the impact of the choice of k is expected to depend on
the role of locality of neighborhoods in the associated outlier model.

– Themost straightforward connection between the choice of k and the outlier model
is realized in kNN and kNNW.

– In the case of LOF and other ‘local’ methods, the method becomes more and more
‘global’ with increasing k, and density estimates become less local (and hence less
discriminative)—for k ≈ N , the ‘local’ model will be (almost) identical for all
points.

– For FastABOD, k is an approximation parameter for speed-up, but effectively
also results in a localization of the global ABOD model (i.e., the context is more
localwith smaller k). However, thewith decreasing k increasingly local FastABOD
model is still compared against all local models (i.e., the reference remains global).
As the ABODmodel is based on variance, we can expect FastABOD to deteriorate
strongly with very small values of k, due to the problems of estimation over small
sample sizes.

– For the kernel-based methods (LDF, KDEOS), the impact of k will again be dif-
ferent than for the more basic LOF variants.

– For INFLO, k constrains both the size of the reverse k-nearest neighborhood as
well as the more usual k-nearest neighborhood.

In summary, although the parameter k determines the size of neighborhoods for all
methods, the impact of the choice of k is expected to be different for different methods.

We have implemented all the aforementioned outlier methods in a common frame-
work, ELKI (Achtert et al. 2013), and made the implementations publicly available.

3 Evaluation measures

The methods studied here return a full ranking of database objects based on their
outlierness, scored according to the outlier model upon which the method is based.
In practice, however, the user of an outlier detection method is generally interested
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in obtaining a manageably-small subset consisting of the top-ranked objects of the
result. For those cases where a target number of outlier candidates n is specified in
advance, the simplest measure of performance is the precision at n (which we denote
by P@n), defined as the proportion of correct results in the top n ranks (Craswell
2009a). For a database DB of size N , consisting of outliers O ⊂ DB and inliers
I ⊆ DB (DB = O ∪ I ), P@n can be formalized as:

P@n = |{o ∈ O | rank(o) ≤ n}|
n

. (11)

Here, we assume that the outlier ranking is unique; if instead two or more objects
share a common outlierness score, we assume that the ties are broken arbitrarily but
consistently.

When using P@n to assess the general performance of an outlier ranking method,
it is unclear how to fairly choose the parameter n. Setting it to the number of outliers in
the ground truth, n = |O|, yields the popular R-Precision measure (Craswell 2009b).
Whenever the number of outliers n = |O| is very low relative to N , the values of P@n
that are typically obtained can be deceptively low, and not very informative as such. On
the other hand, when n = |O| is relatively large (of the same order as N ), deceptively
high values of P@n can be obtained simply due to the relatively small number of
inliers available. To make results with different outlier rates easier to compare, we
suggest that the precision at n should be adjusted for chance.

Adjustment for chance is a principled procedure that was discussed by Hubert and
Arabie (1985) for the validation of clusterings, but which can be applied to any index
as follows:

Adjusted Index = Index − Expected Index

Maximum Index − Expected Index
(12)

The main purpose of adjustment for chance is to allow for comparisons between
different settings where the expected values of the score (in our case, outlierness) may
vary, by bringing scores that are close to their expected values into alignment.

For the index P@n, the maximum possible value is |O|/n if n > |O|, and 1
otherwise. The expected value under the hypothesis of a completely random outlier
ranking is |O|/N , which does not depend on n.2 If n ≤ |O|, we obtain the adjustment
formula

Adjusted P@n = P@n − |O|/N
1 − |O|/N . (13)

For larger n, the maximum |O|/n must be used instead of 1 in Eq. 13.
An important challenge in both the design and evaluation of outlier methods is that

of coping with the inherent imbalance between the numbers of inliers and outliers: we
generally expect that |I | 	 |O|, and that |I | ≈ N . While the P@n and Adjusted P@n

2 In fact, the number of true outliers expected to be ranked by chance among the top n positions is a fraction
n/N of |O|, which yields P@n = n·|O|

N

/
n = |O|

N .
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measures are easily interpreted, they are sensitive to the choice of n, particularly when
n is small. For example, for a dataset with 10 outliers and 1million inliers, an algorithm
that assigns the true outliers to the (quite high) ranks 11–20 will nevertheless have a
P@10 of 0, but a P@20 of 0.5. The Adjusted P@n measure can be seen to suffer from
a similar sensitivity with respect to the choice of n. The remaining outlier measures to
be discussed in this section avoid such pitfalls by averaging across different values of n.

The use of the R-Precision (P@|O|) evaluation measure implicitly assumes that
the user has some knowledge of the number of outliers in the dataset. However, this
is not always the case, and thus attention has been given to measures that aggregate
performance over a wide range of possible choices of n. One such measure, popular
in information retrieval contexts, is the average precision (Zhang and Zhang 2009):

AP = 1

|O|
∑
o∈O

P@rank(o). (14)

Instead of evaluating only at a single value of n, the values of P@n are averaged over
the ranks of all outlier objects o ∈ |O|. There exist other variants, such as evaluating
over a sample of the ranks at fixed intervals. However, evaluation at positive (outlier)
ranks appears to be both popular and well-suited for imbalanced datasets.

Average precision can be adjusted the same way as P@n. A perfect ranking yields
a maximum value of 1, and the expected value of a random ranking is |O|/N :

Adjusted AP = AP−|O|/N
1 − |O|/N . (15)

For precision at n and for average precision, the adjustment for chance is not strictly
necessary when the performance of two methods on the same dataset (that is, with the
same proportion of outliers) are compared in relative terms. Adjustment for chance is
helpful if the measure is to be interpreted in absolute terms. Adjustment for chance
is strictly necessary if the performance is to be compared over different datasets with
different proportions of outliers—for example, when studying the susceptibility of the
method to the proportion of outliers. Such comparisons can be misleading when the
measures are not adjusted.

Themost popular evaluationmeasure in the literature on unsupervised outlier detec-
tion is based on a curve known as the Receiver Operating Characteristic (ROC), due to
its origin in signal detection. The curve is obtained by plotting for all possible choices
of n the true positive rate (the proportion of outliers correctly ranked among the top
n) versus the false positive rate (the proportion of inliers ranked among the top n). A
random outlier ranking would result in a curve close to the diagonal, whereas a perfect
ranking (in which all outliers are ranked ahead of any inliers) would result in a curve
consisting of a vertical line at false positive rate 0 and a horizontal line at the top of
the plot (indicating a true positive rate of 1 for every false positive rate > 0).

Since the false positive rate is normalized by the number of false positives (the
number of inliers), and the true positive rate is normalized by the number of positives
(the number of outliers), ROC inherently adjusts for the imbalance of class sizes typical
of outlier detection tasks.
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A ROC curve can be summarized by a single value known as ROC AUC, defined
as the area under the ROC curve (AUC). The ROC AUC value ranges between 0 and
1, and can be regarded as the average of the recall at n (true positive rate over the n
top-ranked objects), with n taken over the ranks of all inlier objects in |I |. A perfect
ranking of the database objects would result in a ROC AUC value of 1, whereas an
inverted perfect ranking would produce a value approaching 0. A random ranking
of the database objects would result in a ROC AUC value close to 0.5. Hanley and
McNeil (1982) showed that the ROC AUC value corresponds to the probability of a
pair (o, i), where o is some true outlier, and i is some inlier, being ordered correctly
in the evaluated ranking (that is, with o appearing before i).

ROC AUC := mean
o∈O,i∈I

⎧⎪⎨
⎪⎩
1 if score(o) > score(i)
1
2 if score(o) = score(i)

0 if score(o) < score(i)

(16)

The ROC AUC measure has therefore a straightforward probabilistic interpretation,
and does not require adjustment for chance.

While ROC AUC is the most popular evaluation measure for unsupervised outlier
detection methods that deliver a ranking, in this study we show its results alongside
with the results from the other aforementionedmeasures, as they can highlight different
aspects of the performance that one may wish to identify.

Note that all evaluation measures used in this study require external ground truth
(i.e., labels identifying outliers vs. inliers). There is only one internal evaluation mea-
sure for outliers available in the literature so far, IREOS (Marques et al. 2015), which
is, however, computationally very expensive.

4 Datasets

In this section, we give a systematic presentation of the datasets considered in this
study on issues in outlier evaluation. The datasets have been organized into two groups:
the first, presented in Sect. 4.2, consists of sets that have previously appeared in the
research literature in the evaluation of outlier detection algorithms; the second group,
presented in Sect. 4.3, consists of sets originally intended for the evaluation of clas-
sification methods, where one or more classes have a natural semantic interpretation
as outliers. In total, we define, collect, and make publicly available a repository of
approximately 1000 datasets (including variants), together with full details of their
preprocessing.3 We begin in Sect. 4.1 with a discussion of the issues surrounding
the compilation, preparation, and description of datasets for the evaluation of outlier
detection algorithms.

3 http://www.dbs.ifi.lmu.de/research/outlier-evaluation/.
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4.1 Dataset preparation

The UCI repository (Bache and Lichman 2013) is a valuable source of datasets for
the evaluation of data mining algorithms. While most of them have been proposed
for the evaluation of classification methods, they have also been widely used for
unsupervised algorithms such as clustering. However, since the semantics of data
clusters are often quite different from those of ground-truth classes, the appropriateness
of such datasets for the evaluation of unsupervised learning methods is debatable
(Färber et al. 2010). For the evaluation of outlier detection, the semantic mismatch is
even more problematic, since outliers are assumed to be both rare and diverse.

In the following, we outline the main issues in converting classification datasets to
outlier evaluation datasets, and discuss how these issues were handled in our study.

Downsampling A common approach in outlier detection research is to randomly
downsample a particular class to produce outliers, while retaining all instances of the
remaining classes to form the inlier set. Random downsampling often leads to great
variation in the nature of the outliers produced. Therefore, to mitigate the impact of
randomizationwhen downsampling, we repeat the procedure for each dataset 10 times,
resulting in 10 different variants for these datasets.

Duplicates The handling of duplicate instances in the dataset has received scant
attention in the literature. However, the presence of duplicates is problematic for
several methods. For example, for LOF and many of its variants, duplicate instances
can lead to distance values of zero, which introduces numerical instability into the
computation of local density estimates. For datasets containing duplicates, we generate
two variants, one with the original duplicates, and one without duplicates. It should
be noted, though, that removing duplicate records can drastically lower local density
estimates in certain cases.

Categorical attributes Transformation of categorical attributes into numerical ones
is another source of dataset variation. We employ two techniques:

– 1-of-n encoding, where a categorical attribute with n possible values is mapped
into n binary attributes for which a value of 1 (or 0) represents the presence (or
absence) of the corresponding categorical value;

– IDF, where a categorical attribute is encoded as the inverse document frequency
IDF(t) = ln(N/ft ), where N is the total number of instances, and ft is the fre-
quency (number of occurrences) of the attribute value t .

For datasets with categorical attributes we thus have three variants: one where cate-
gorical attributes are removed, and two resulting from the transformations described
above.

Normalization The normalization of datasets is expected to have considerable
impact on the results, but is rarely discussed in the literature. A full exploration of this
issue is beyond the scope of this study. However, for each dataset that does not already
have normalized attributes, we include two variants: unnormalized, and attribute-wise
linear normalization to the range [0, 1].

Missing values Standard outlier detection techniques as considered here cannot
handle data with missing values. We determine for each dataset and each attribute the
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number of missing values. If an attribute has fewer than 10% of instances withmissing
values, those instances are removed. Otherwise, the attribute itself is removed.

4.2 Datasets used in the literature

Table 1 lists those datasets of our study that are known to have appeared in the out-
lier detection literature. For each dataset, variants have been produced according to
the guidelines set out in Sect. 4.1. The details shown in the table include the number
of instances, outliers, and attributes after preprocessing missing attributes and down-
sampling but before the removal of duplicates. Full documentation of the datasets is
available on our repository website.

Some of the datasets in our collection have been the basis of benchmarking in
several publications. Unless the processed datasets were made publicly available [as it
is the case for datasets used by Keller et al. (2012)4], some ambiguity may remain as to
their construction, due to a lack of information as regards the issues listed in Sect. 4.1,
or to the use of downsampling. As an additional complication, some publications do
not give clear references to the datasets they use, or refer to datasets by ambiguous
names. Often, it is not specified as to whether only the training set, only the test
set, or both partitions of a classification dataset were used.5 In contrast, processing
datasets according to the guidelines set out earlier, as well as making them publicly
available together with their full documentation, promotes the reproducibility and ease
of comparison of future experimentation with outlier methods.

4.3 Semantically meaningful outlier datasets

Semantically meaningful datasets for outlier evaluation are those in which certain
classes can be reasonably assumed to be associated with real-world instances that are
both rare and deviating—for example, ‘sick’ patients within a population dominated
by ‘healthy’ individuals. However, it is sometimes the case that outliers within the
real-world population may be overrepresented within a given classification dataset.
For such datasets, we create several variants by downsampling the outlier class at
several different rates: 20, 10, 5, and 2 % of outliers.

As semantically meaningful datasets, we selected and processed the following UCI
repository datasets (Bache and Lichman 2013), together with an additional classi-
fication dataset, Stamps (Micenková et al. 2012), combining training and test sets
whenever both exist (summarized in Table 2).

– Annthyroid Medical data on hypothyroidism. Three classes relate to the condi-
tions ‘normal’, ‘hyperfunction’, and ‘subnormal functioning’. Classes other than
‘normal’ were defined as outliers here.

4 Available at: http://www.ipd.kit.edu/~muellere/HiCS/realworld.zip. Note that we have supplemented our
collection with some of these datasets, without further preprocessing.
5 For unsupervised learning, both training and test sets can be used together, and we assume this is the
case unless otherwise specified.
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Table 2 Datasets with semantic outliers (numbers without downsampling)

Dataset Semantics N |O| Attributes

Num. Binary

Annthyroid Two types of hypothyroidism
vs. healthy

7200 534 21

Arrhythmia 12 Types of cardiac
arrhythmia vs. healthy

450 206 259

Cardiotocography Pathologic, suspect vs.
healthy

2126 471 21

HeartDisease Heart problems vs. healthy 270 120 13

Hepatitis Survival vs. fatal 80 13 19

InternetAds Ads vs. other images 3264 454 1555

PageBlocks Non-text vs. text 5473 560 10

Parkinson Healthy vs. Parkinson 195 147 22

Pima Diabetes vs. healthy 768 268 8

SpamBase Non-spam vs. spam 4601 1813 57

Stamps Genuine vs. forged 340 31 9

Wilt Diseased trees vs. other 4839 261 5

– Arrhythmia Patients classified as normal or as exhibiting some type of cardiac
arrhythmia. In total, there are 14 types of arrhythmia and 1 type that brings together
all the other different types. However, 3 types of arrhythmia have no data. Again,
we treat healthy people as inliers and patients suffering from arrhythmia as outliers.

– Pima Medical data on diabetes. Patients suffering from diabetes were considered
outliers.

– Cardiotocography Related to heart diseases, describing 3 classes: normal, suspect,
or pathological. Normal patients are treated as inliers and the remaining as outliers.

– Heart Disease Medical data on heart problems, with affected patients considered
outliers and healthy people considered inliers.

– Hepatitis Prediction of whether a patient suffering from hepatitis will die (outliers)
or survive (inliers).

– Internet Ads Images from web pages, classified as ads or not, for the purpose
of learning to remove ads automatically from web pages while retaining regular
images. Ads are considered outliers.

– Page Blocks Types of blocks in document pages, relating to an essential step in
document analysis, namely to separate text from pictures or graphics. If the block
content is text, it was labeled here as inlier, otherwise it was labeled as outlier.

– Parkinson Medical data distinguishing healthy people from those suffering from
Parkinson’s disease. The latter were labeled as outliers.

– Spam Base Emails classified as spam (outliers) or non-spam.
– StampsLearning to identify forged (photocopied and printed) stamps fromgenuine
(ink) stamps based on color and printer properties. The former are outliers.
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– Wilt Differentiating diseased trees from other land covers. The former are consid-
ered outliers here.

5 Experimental results

Our study centers around the following three questions: Are the evaluation measures
capable of revealing the performance characteristics of outlier methods? How do
outlier methods perform over a broad range of datasets and parameter settings? How
can one better understand and properly characterize datasets in light of the outlier
detection evaluation task?

In our experimentation, each of the 12methods was executed over multiple variants
of the 23 datasets, determined according to whether the data were normalized, whether
duplicates were removed, on the treatment of categorical attributes, and on which
of 4 downsampling rates was employed. Each experiment was performed for each
meaningful choice of parameter value k between 1 and 100 (or the number of data
instances, if less than 100).6 In total, 1,300,758 experimental runs were performed.
The complete results, including all plots for all datasets, are available on our repository
website.7

5.1 Evaluation measures

In order to assess the quality of outlier methods, we first investigate the behavior of the
three base evaluation measures identified in Sect. 3: precision at n [P@n, where we
set n = |O| (Craswell 2009a, b)], average precision (AP), and ROC AUC. For each
evaluation measure, roughly 1000 plots were produced across the range of values of
k, of which examples are shown in Fig. 1 for two datasets, Annthyroid (7.4 % outliers)
and HeartDisease (44.4 % outliers). On these two examples, we can already observe
significant variations in performance trends across differing combinations of outlier
algorithms, datasets, parameter choices and evaluation methods (please see the web
repository for the complete results).

As noted in Sect. 3, ROC AUC is expected to be less sensitive to variation in the
number of true outliers than the other evaluation measures. This tendency is confirmed
by our experimental results, as demonstrated by the examples shown in Fig. 1. The
ROC AUC scores achieved by the methods were consistently high across the datasets,
while still being able to discriminate among the different outlier methods. In contrast,
the P@n scores were considerably lower for those datasets with smaller proportions
of outliers (as seen here for Annthyroid). Although the behavior of AP more closely
resembles that of ROC AUC, in that it assesses the ranks of all outliers, AP scores
also tend to be low when, as it is the typical case in outlier detection scenarios, the
numbers of inliers and outliers are not balanced.

6 FastABOD requires at least a set of 3 neighbors, as it computes variances of angles to neighbors. LDOF,
KDEOS, and ODIN require at least 2 neighbors.
7 http://www.dbs.ifi.lmu.de/research/outlier-evaluation/.
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Fig. 1 Results on two datasets (examples, without duplicates, normalized, no downsampling), comparing
precision at n (P@n), average precision (AP), and ROCAUC (complete results for all datasets are available
on our web repository). a Annthyroid. b HeartDisease

P@n takes into account only the number of true outliers among the n top-ranked
items, and thus its behavior is quite different from that of ROC AUC. As observed
by Davis and Goadrich (2006), the P@n measure can therefore be helpful in discrim-
inating between methods that perform more or less equally well in terms of ROC
AUC. Following their lead, we will rely mainly on ROC AUC scores in judging the
effectiveness of the outlier methods, while turning occasionally to P@n and AP for
further insights.

When P@n and AP are adjusted for chance, we obtain curves analogous in shape
to those of their unadjusted counterparts, but with an upward shift in the quality
scores. As detailed in Sect. 3, although adjustment for chance is not necessary when
comparing the performance of different methods on a single dataset, it is beneficial
(if not indispensable) when comparing across datasets with different proportions of
outliers.
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5.2 Characterization of the outlier methods

In this section, we characterize the performance of the selected outlier detection
methods using datasets introduced in Sect. 4. These datasets cover a wide range
of proportions of points considered outliers in the ground truth of the datasets—as
high as 75 % for the Parkinson dataset (without downsampling). One can argue that
ground-truth datasets with a large proportion of outliers are not appropriate for the
evaluation of outlier detection methods, since outliers are by definition assumed to be
exceptions in the data, and thus much less common than inliers. Accordingly, most
outlier detection models either implicitly or explicitly assume that outliers are rela-
tively rare — a characteristic which is confirmed by our experimental results, in the
sense that all methods performworse asmore andmore objects are included as outliers
in a dataset. The conclusions about relative performance of the methods are however
largely unaffected by the proportion of outliers in the dataset.

To compare the methods according to their quality scores we will consider initially
(1) the average performance over the range of given values of k (representing an
expected performance if the users have no prior knowledge about k), and (2) the
best-case performance, selecting the k for which the performance of a method on a
dataset is maximal (representing the optimistic case where the optimal value of k for a
method is known in advance). To show how the number of outliers in a dataset affects
the performance of the methods, we show here results that are aggregated over all
datasets, as well as results that are aggregated over only the datasets that contain up
to 5 % outliers.

In Fig. 2a, b, we show for each method the mean and standard error of the best-case
ROC AUC values (aggregated over all datasets), for normalized and unnormalized
datasets, respectively; Fig. 2c, d shows the same statistics aggregated over datasets
that contain only up to 5 % outliers.

When comparing these figures, we can make two general observations: (1) normal-
ization, on average, leads to better performance for all methods; and (2) having only
a small percentage of objects labeled as outliers in the ground truth leads to better
performance for all methods, and while some methods are more affected than others,
their relative performance does not change dramatically. Because of observation (1),
we will focus in the following on results for normalized datasets. Because of obser-
vation (2), we will focus on datasets with a small percentage of outliers in most cases
while occasionally comparing results over different percentages of outliers. However,
results for unnormalized data, as well as aggregated values for different maximum
percentages of outliers (up to 10 % and up to 20 %) are available online; the main
conclusions are the same across all these results.

Regarding the relative performance of the methods under their best parameter set-
ting, we can see that KDEOS (along with FastABOD on unnormalized data) scores
below the others in terms of ROC AUC performance. Although no one method con-
sistently and significantly outperformed the others in all experiments, Fig. 2b does
show that a group consisting of the methods kNN, kNNW, and LOF as well as the
LOF-variant LDF does stand out to some extent when averaging best performance
over all datasets. As shown in Fig. 2d, when averaging over the datasets containing
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Fig. 2 Comparison of the achieved ROC AUC values per method, over different collections of datasets
without duplicates. a Average over the maximum ROC AUC per method (selecting the optimal k for each
method)—unnormalized data, aggregated over all datasets. b Average over the maximum ROC AUC per
method (i.e., selecting the optimal k for eachmethod)—normalized data. cAverage over themaximumROC
AUC per method (selecting the optimal k for each method)—unnormalized data, aggregated over datasets
with up to 5 % outliers. d Average over the maximum ROC AUC per method (selecting the optimal k for
each method)—normalized data, aggregated over datasets with up to 5 % outliers. e Average ROC AUC
over a window of size 10 around the optimal value of k—normalized data, aggregated over all datasets. f
Average ROC AUC over all k—normalized data, aggregated over all datasets. g Average ROC AUC over
a window of size 10 around the optimal value of k—normalized data, aggregated over datasets with up to
5 % outliers. h Average ROC AUC over all k—normalized data, aggregated over datasets with up to 5 %
outliers
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only up to 5 % of outliers, in addition to LOF, LDF, kNN, and kNNW, two more close
variants of LOF also stand out: SimplifiedLOF, and LoOP.8

To study the stability of performance with respect to the choice of k, we consider
the average performance within a range of±5 around the optimal value: the less stable
the method, the greater the expected degradation in performance when aggregating
over this larger window. If necessary, the window may be shifted so that it fits entirely
within the allowable range for k for the dataset in question. The results aggregated
over all data sets are shown in Fig. 2e, and the results aggregated over datasets with
up to 5 % outliers are shown in Fig. 2g. We observe that for all methods, the overall
performance is degraded to some extent; however, this degradation is greater for some
methods than for others (indicating that the method is less stable). The method LDF is
shown to be the least stable, FastABOD shows a more stable behavior than the other
methods, whereas the stabilities of the other methods are more or less comparable.
When averaging best performance over all datasets, the methods kNN, kNNW, and
LOF stand out to some extent, and when averaging over the datasets containing only
up to 5 % of outliers, the best performing group also contains SimplifiedLOF and
LoOP.

If we widen the window to include all values of k in the range 1 to 100, the
performances of all methods degrade even further, as one would expect (Fig. 2f, h).
Here, the topgroupofmethods least affected by the variation of k are the distance-based
methods kNN and kNNW, as well as FastABOD, followed by LOF, when averaging
over all datasets, and also followed by SimplifiedLOF and LoOP, when averaging over
the datasets containing only up to 5 % of outliers.

We applied the Friedman test (Friedman 1937) to examine whether there is a signif-
icant difference between the results of the algorithms on collected datasets. The null
hypothesis for this test assumes that there is no significant difference between the algo-
rithms. If the calculated probability is low (p-value less than the selected significance
level) the null hypothesis is rejected, which indicates that at least two algorithms are
significantly different from each other. The Nemenyi post-hoc test (Nemenyi 1963)
can be applied in this scenario so as to reveal which pairs of algorithms exhibit such
differences (if any). In the usage of both tests, we follow Demšar (2006).

The Friedman test was applied to the collection of datasets normalized and without
duplicates, with the exception of ALOI and KDDCup99, since not all algorithms have
provided results for these two datasets. We base the test on the best achieved quality
in terms of ROC AUC (i.e., we chose for each method the best-performing parameter
setting (k) for each dataset independently). Due to the assumption of independence
between variables of the test, the results for those datasets with multiple subsampled
variants were grouped by averaging the best results over all variants for each method.

The Friedman test returned a p-value of approximately 2.891E-10, which suggests
that the null hypothesis is extremely unlikely. The results for the Nemenyi post-hoc

8 We see the same overall tendency (althoughmuchweaker due to overall low values) if we use P@n andAP
(both adjusted and unadjusted) instead of ROCAUC. This is expected since (Adjusted) P@n and (Adjusted)
AP can yield additional insights when comparing results that are very good in terms of ROC AUC. In this
aggregated evaluation, however, many results with weak scores are included. The corresponding plots are
available online.
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test are shown in Table 3. The symbols ‘+’ or ‘++’ indicate that the columnmethod is
better than the row method with 90 % (‘+’) and 95 % (‘++’) confidence, the symbols
‘−‘ or ‘−−‘ indicate significantly worse performance. Two main observations can
be made: (i) KDEOS is statistically worse than kNN, kNNW, LOF, SimplifiedLOF,
LoOP, COF, LDF, and INFLO at the 95% confidence level; and (ii) LOF is statistically
better than three competitors (ODIN, KDEOS, and FastABOD) at the 95% confidence
level, better than LDOF at the 90 % confidence level, and is the “winner” from this
particular perspective.

These findings also shed some light as to how the evaluation of new methods could
be performed. It is always possible to find cases (specific parameter settings for specific
datasets) where one particular method outperforms its competitors. As was demon-
strated here, best practice dictates that the behavior of outlier detection methods be
studied across a range of parameter settings, as the results for different parameter val-
ues can vary widely. Even if the methods to be compared share a seemingly analogous
parameter (such as a neighborhood size k), setting it to the same values for all meth-
ods may still not allow for a direct comparison. As indicated in Fig. 1, the methods
may depend on the parameter in different ways, and reach their peak performances
for different choices of a seemingly identical parameter such as neighborhood size.
Surveying the research literature would suggest that best practice is not always fol-
lowed. There are many publications in which methods are compared and conclusions
are made based on only a single, arbitrary choice of an important parameter (see the
work of Müller et al. (2011, 2012), Liu et al. (2012), Keller et al. (2012), Ting et al.
(2013) for some recent examples published at high quality venues).

To summarize these findings, wemay conclude that after about 15 years of research,
in general, the seminal methods kNN, kNNW, and LOF remain the state of the art,
especially in datasets with possibly larger amounts of outliers. The methods Simpli-
fiedLOF and LoOP that are closely related to LOF perform similarly well in datasets
with few outliers, but not better than LOF, on average. LDF shows a relatively good
peak performance but is rather unstable w.r.t. the choice of k. The peak performance
of FastABOD is a bit below average but FastABOD is very stable w.r.t. k. It seems
that none of the more recent developments offer comprehensive improvement over
the classic methods, on average. It would indeed seem that there is no free lunch for
unsupervised outlier detection.

5.3 Characterization of the datasets

We now characterize the properties of the studied datasets, and discuss their suitability
for the evaluation of outlier detection methods. For this analysis, we examine the
collective performance of our representative set of outlier detection methods on these
datasets, based on notions of ‘difficulty’ of outlier detection, and a notion of ‘diversity’
of the results.

To obtain a better understanding of the relative difficulty of the datasets, we first
consider performance scores for each dataset, aggregated over all methods. For this
purpose, for a given dataset, we determine for each method the best performance
score obtained over a range of parameter settings, and then average these scores over
all methods. For each dataset to which random downsampling is applied over multiple
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Fig. 3 Comparison of the best achieved quality per dataset, over all datasets (without duplicates, normal-
ized)

runs, we also show the standard error as an interval about the mean score. Figure 3
shows the results for the datasets from Tables 1 and 2, for each of the performance
measures considered.

The first (top) row in Fig. 3 shows the results using Precision at n (P@n). One can
clearly observe a wide variation in P@n across the different datasets. For example, on
the Parkinson dataset variants, the methods achieve an average P@n of approximately
0.75, whereas on the Annthyroid variants the scores fall below 0.2. Overall, we note
a trend towards higher P@n scores as the proportion of outliers in a dataset increases
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(for these proportions, see Tables 1 and 2; for the datasets in Table 2, we also show
results for variants with smaller downsampling rates). As discussed earlier, this trend
is due at least in part to the fact that a random ranking leads to an expected P@n
score of |O|/N , independently of the value of n. Increasing the proportion of outliers
therefore increases the expected P@n score for random rankings.

In order to control for differences in the proportions of outliers, we introduced
the adjusted precision at n, Adjusted P@n, which is shown in the second row of
Fig. 3. Here, the trend regarding increasing numbers of outliers is attenuated (or even
reversed in some cases), in particular when comparing variants of the same dataset
across different downsampling rates. Indeed, the results for Adjusted P@n indicate
that an increasing number of outliers can lead to a lower quality score (as in the case
of the Cardiotocography set), which suggests that the outlier class may begin to form a
cluster as the sample size increases. For datasets where the scores are already very low,
such as Annthyroid, Pima, and SpamBase, increasing the number of outliers does not
have a significant effect. As discussed earlier, both P@n and Adjusted P@n consider
only the first n positions of a ranking. If n is low, the resulting scores may be very low,
or highly variable, and thus inconclusive.

The third row in Fig. 3 shows the Average Precision, AP, for each dataset. As
discussed in Sect. 3, AP attempts to overcome the deficiencies of P@n by computing
scores over multiple choices of n. However, the figure shows that as with P@n, AP
scores tend to be higher for datasets with larger proportions of outliers. To a large
extent, this effect can be explained by the increases in the expected P@n values of
which AP is the average.

The fourth row in Fig. 3 shows Adjusted AP. Again, the adjusted AP scores tend
to be more stable than the unadjusted AP scores when the proportion of outliers is
increased.

The fifth row in Fig. 3 shows the results obtained with the most commonly-used
performance measure for outlier detection methods, ROC AUC. Like the Average
Precision (both adjusted and unadjusted), ROC AUC takes the entire outlier ranking
into account. The ROC AUC scores show a clear decreasing trend as the proportion
of outliers is increased. This trend is clear even for those datasets (such as Spambase)
where Adjusted P@n was less discriminative. However, it is also clear that a relatively
high ROC AUC score indicates only that, in the overall ranking, outliers are more
likely to be ranked ahead of inliers; it does not necessarily mean that the top rankings
are dominated by outliers. We would therefore argue that one cannot rely solely on
ROC AUC scores in judging the quality of an outlier method—rather, ROC AUC and
AdjustedP@n complement each other, as they reveal different aspects of an outlier
ranking, both of which are relevant in practice.

To eliminate the percentage of outliers as a factor that can influence the relative
performance of methods, we will restrict the following analysis to datasets with a
comparable proportion of outliers, selecting a variant from those datasets with between
3 and 5 % of outliers. Since every dataset from Table 2, and the datasets ALOI,
Glass, Lymphography (for which we select Lymphography_idf), Waveform, WBC,
and WDBC from Table 1, all have a variant where the proportion of outliers falls in
this range, this will still include a variant of the majority of the different types of data.
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Fig. 4 Average best ROC AUC scores for datasets with between 3 and 5 % of outliers (without duplicates,
normalized), arranged from left to right by increasing dimensionality

Since it is often presumed that the dimensionality of a dataset can be a contributing
factor in how well a method performs on the dataset (Houle et al. 2010; Zimek et al.
2012), we first address the question whether this is the case for the given datasets and
methods. In Fig. 4, we show the ROC AUC scores for each method (using the best k
parameter for each method) on each of the datasets with between 3 and 5% of outliers,
averaged over the different variants where available. The datasets are arranged on the
x-axis of the plot from left to right in order of increasing dimensionality (see Tables 1
and 2 for the dimensionalities of the datasets). Values that are not available (FastABOD
on ALOI) are omitted, i.e. the function of FastABOD is discontinuous. One can see
that there is no clear pattern that would indicate an effect of the dimensionality for
these datasets. In fact the lowest dimensional dataset Wilt (5 attributes) is among the
most ‘difficult’, and InternetAds, even though very high-dimensional (1555 attributes)
is of intermediate difficulty for most of the methods. Furthermore, all methods show
a similar behavior for most datasets, suggesting that the difficulty of the datasets is
independent of their dimensionality.

To further analyze the suitability of the datasets for outlier detection, we consider
now first one variant for each of the datasets: for ALOI, Glass, Lymphography, and
Wilt these are just the given ‘base’ datasets; for the other datasets, one of the 10
downsampled versions is chosen at random. As always, the full details for all datasets
can be found in the web repository.

In Fig. 5, for each of the selected datasets, a heat map is shown that represents for
each outlier detection method (x-axis) the (binned) rank it gives to the outliers in the
ground truth (y-axis)—using the best overall solution (the best value for k) according
to ROC AUC. In other words, the (x, y) position in a plot for a dataset represents the
(binned) rank that the method x has given to ground truth outlier y. The outliers for
each dataset are ordered along the y-axis of the corresponding plots according to the
average of ranks achieved over all methods, with the top-ranked outliers appearing at
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ALOI
A B C D E F G H I K L

Annthyroid
A B C D E F G H I J K L

Arrhythmia
A B C D E F G H I J K L

Cardiotocography
A B C D E F G H I J K L

Glass
A B C D E F G H I J K L

HeartDisease
A B C D E F G H I J K L

Hepatitis
A B C D E F G H I J K L

InternetAds
A B C D E F G H I J K L

Lymphography
A B C D E F G H I J K L

PageBlocks
A B C D E F G H I J K L

Parkinson
A B C D E F G H I J K L

Pima
A B C D E F G H I J K L

SpamBase
A B C D E F G H I J K L

Stamps
A B C D E F G H I J K L

Waveform
A B C D E F G H I J K L

WBC
A B C D E F G H I J K L

WDBC
A B C D E F G H I J K L

Wilt
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A kNN
B kNNW
C LOF
D SimplifiedLOF
E LoOP
F LDOF
G ODIN
H KDEOS
I COF
J FastABOD
K LDF
L INFLO

Fig. 5 Diversity of outlier ranks in 17 datasets (without duplicates, normalized, with 3–5 % outliers). The
(binned) ranks refer to the best solution obtained by each method with respect to k, according to ROCAUC.
Note that FastABOD is missing for ALOI (due to excessive space requirements for this large set)

the bottom of the heat map. For the heat maps, the ranks are binned and color coded
in the following way. Given n = |O| outliers in the ground truth of a dataset, and a
ranking of all N points in that dataset by an outlier method, the first n rank positions are
assigned to Bin 1 (thus outliers whose rank falls into this bin would have contributed
to the P@n score for that method), the second n positions are assigned Bin 2 (outliers
falling in this bin would have contributed to the P@2n for that method but not to
the P@n score), and so on, up to Bin number 9,9 and all ranks higher than 9 · n are
assigned to bin 10. Bin 1 is assigned the color dark blue, Bin 10 is assigned the color
dark red, and the other bin colors are assigned in consecutive order within the color
spectrum, as indicated in the legend of Fig. 5.

9 Therefore, as a side effect, such heat maps can also serve to visualize the profile of performance in terms
of P@(x · n) for x = 1, . . . , 9.
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Since for each method we take account only of the best result achieved, these plots
tell us less about the overall performance by a method on a given dataset, but more
about how difficult the individual outliers are to detect (with blue outliers being easiest
to detect), and the differences in the level of (best-case) difficulty across the various
methods. For several of these datasets, most of the outliers are relatively easy for the
majority of methods to detect. The Parkinson dataset variant shown is an extreme
example in which all of the methods tested place all n outliers within the top 2n ranks.
In the WDBC variant, most outliers are placed in the top ranks by most methods,
with only two outliers that all methods essentially failed to identify. In the Waveform
variant, roughly one third of the outliers are easily identified by most methods, while
roughly half are not identified in almost all cases. Overall, we see a wide spectrum of
difficulty of detection, where some outliers are easily identified by all methods, some
are ranked highly by some methods but not others, and some outliers are not detected
at all among the top-9n by any of the methods.

To characterize the properties of the datasets across different downsampling rates,
and to facilitate the discussion of their suitability for evaluating outlier detection meth-
ods, we formalize notions of ‘difficulty’ and ‘diversity’ of a specific dataset variant
over a given set of representative outlier detection methods.

Difficulty of a dataset is simply defined as the average of the (binned) ranks of all
outliers in the dataset reported by the given set of outlier methods (for each variant
shown in Fig. 5, this is the average bin number depicted in the corresponding plot).
Datasets with low difficulty score contain outliers that are relatively easy to detect by
the majority of methods. A high difficulty score indicates that most or all methods
have difficulty in finding the outliers.

Diversity characterizes the agreement of a given collection of outlier methods with
respect to the scores they give to the outliers. For each individual outlier o, the diversity
score of o is defined as the standard deviation of the (binned) ranks reported for this
outlier by the different methods. The diversity score for a dataset is then computed
as the Root Mean Square (RMS) of the diversity scores of all outliers in the dataset.
If a dataset has a low diversity score, the methods largely agree on the difficulty
of identifying the outliers of the dataset. A high diversity score indicates a large
disagreement on the ranking of the outliers.

Figure 6 shows the position of each dataset with between 3 and 5 % outliers in
the space of diversity vs. difficulty. For each dataset with downsampled variants, the
95 % confidence ellipse is also shown to indicate the extent to which the difficulty and
diversity can varywith downsampling. The datasets with only one variant are shown as
filled dots. The plot also includes artificial points that indicate certain boundary cases:
(1) in the lower left corner, a point representing a ‘perfect’ result, with a diversity
score of 0 (all methods agree on the binned ranks of all outliers) and a difficulty score
of 1 (all methods identify all n outliers within the top n ranks); (2) in the upper right
corner, points representing the difficulty and diversity scores that would be obtained
if each of the 12 methods returned a uniform random ranking of all dataset objects;
(3) in the lower right corner, points representing the results for a set of 12 identical
random rankers, resulting always in a diversity score of 0, but varying in difficulty by
chance.
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Fig. 6 Diversity versus difficulty of datasets with 3–5% outliers (without duplicates, normalized). For each
dataset with different downsampled variants, the 95 % confidence ellipse is shown as well as the individual
points for each variant. The means of the ellipses, which do not correspond to actual data instances, are
indicated by an ‘×’ labeled with the corresponding base dataset. The scores of random rankers are the
results of 100 simulations with a dataset of 200 points, of which 10 are outliers

Note that diversity and difficulty are not completely independent of each other. On
datasets of very low difficulty, it follows from the definition that outlier methods must
then also tend to agree on the rankings of the outliers. It is impossible to have at the
same time high diversity in outlier rankings and a low difficulty score, and thus one
would not expect to find datasets in the upper left area of the plot. Also, for the model
of identical random rankers, if by chance a larger number of outliers is found in top
positions of the ranking, which themajority of the rankers agree on, we can also expect
to see a lower difficulty score. While individual random rankers may occasionally, by
chance, obtain a high ranking, it is much less likely for many independent rankers to
achieve it simultaneously. As one can observe in the figure, this leads to a much lower
variance in difficulty scores for the 12 independent random rankers than for the 12
identical rankers.

From Fig. 6 we can also observe that most of the datasets considered in this study
are of moderate difficulty and diversity. Such datasets are of greatest interest in outlier
evaluation, as they have significant variety in their performance characteristics, and
allow for the possibility of a new method to demonstrate its general superiority over
existing methods by detecting the outliers in these datasets more consistently.

The observed scores also indicate that the outliers in the given datasets exhibit at
least some of the properties that themethods attempt tomodel. The 12 studiedmethods
lead, in general, to difficulty scores that aremuch lower than that of the random rankers,
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ALOI
Annthyroid
Arrhythmia

Cardiotocography
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InternetAds
Lymphography
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SpamBase

Stamps
Waveform
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Difficulty Score

Fig. 7 On the left the distribution of observed difficulty scores for each dataset. On the right for each
dataset the distribution of difficulty scores obtained after randomly permuting the ground truth labels. For
datasets where only a single variant has between 3 and 5 % of outliers, only a single value is plotted

indicating that a significant proportion of the objects labeled as outliers can indeed be
considered as outliers by the outlier models corresponding to the different methods.

Datasets that are centrally-located in Fig. 6 can potentially offer insights into the
strengths and weaknesses of different outlier methods. However, in most cases we
observe a large variance in both diversity and difficulty scores for different downsam-
plings of the same base dataset (indicated by the error ellipses). This variance can be
extreme (as in the case of Parkinson10), ormoremoderate (as inAnnthyroid). The large
observed variances indicate that, in general, the use of a single downsampled dataset
is not appropriate when evaluating the performance of outlier detection methods.

To investigate whether the observed results are significantly different from those of
a set of random rankers with the same dependency between them, we also performed
experiments in which we computed the difficulty score for each dataset based on the
ranking by the 12 methods, but after a random permutation of the ground truth labels.
The results are shown in Fig. 7. The figure shows for each dataset the distribution
of observed difficulty scores as a boxplot (in light blue), together with a boxplot
of the distribution of difficulty scores obtained after randomizing the ground truth
labels (in red), combining 1000 randomizations per dataset variant. The results clearly
demonstrate that (at least some of) the objects labeled as outliers agree with the outlier
model. For each base dataset with 10 different downsamplings, not a single random
result in 10,000 is even close to the observed difficulty values; for the datasets with
only a single variant none of the 1,000 random results is close to the observed value.

10 This is not surprising given the relatively large amount of outliers (≈75 %) in the base dataset.

123



G. O. Campos et al.

6 Conclusions

In this experimental study, we addressed a constant challenge in unsupervised outlier
detection: the evaluation of algorithms in terms of effectiveness. We have discussed
the notorious lack of commonly accepted, well-understood benchmark datasets with
annotated ground truth. We also elaborated on commonly used evaluation measures,
their strengths and weaknesses, and how several measures can be used in combination
to provide insights into the relative performance of outlier methods. For precision at
n and for average precision, we proposed an adjustment for chance, which allows
meaningful comparisons of the performances of methods on different datasets.

Using the study of evaluation measures as a foundation, we performed an extensive
experimental analysis of a representative set of both classical and recent unsupervised
outlier detection methods, on a large collection of datasets.

Papers proposing a novel method often justify its performance based on a specific
evaluationmeasure, on few datasets, and for few parameter settings. By using a diverse
collection of datasets, several evaluation measures, and a broad range of parameter
settings, we argue here that it is typically pointless and unjustified to state the superior
behavior of any method for the general case. For optimization problems in machine
learning, this fact is captured in the ‘no free lunch’ theorem (Wolpert 1996). For
unsupervised learning approaches, it has been conjectured that the quest for a truly
general and superior method is futile [at least for clustering, this has been discussed by
Estivill-Castro (2002), Kriegel et al. (2009b), and von Luxburg et al. (2012)], but there
is no common understanding of the implications of this conjecture. We therefore show
here that in the evaluation of new algorithms for outlier detection, the goal should be
to analyze where their strengths and (perhaps more importantly) weaknesses lie, when
confronted with datasets of different characteristics.

The gist of our findings is that, when considering the totality of results produced in a
systematic way across different parameter settings and a diverse collection of datasets
(rather than specific parameter settings for specific datasets), the seminal methods
kNN, kNNW, and LOF still remain the state of the art—none of the more recent
methods tested offer any comprehensive improvement over those classics, while two
methods in particular (LDF and KDEOS) have been found to be noticeably less robust
to parameter choices. However, by picking appropriate parameter values, one may
cast any of the methods tested in a favorable light, which emphasizes the importance
of systematic testing across a range of parameter values.11

These findings should be taken with a grain of salt, as our selection of meth-
ods included—among general, rather abstract methods such as kNN and LOF—also
rather specialized methods such as FastABOD (high dimensional data) or KDEOS
(kernel-based, where the choice of a kernel allows for adaptation to very specific
application problems). Recall (Sect. 2) that both FastABOD and KDEOS (and also
LDF) require other parameters in addition to the neighborhood size—parameters that
have not been studied here but that have reasonable default settings. Furthermore,

11 Prima facie, this conclusion is valid, based on our experiments, for the dependency of related methods
on a parameter choice regarding cardinality of a local neighborhood. Common sense suggests that we can
have a similar expectation, mutatis mutandis, for other types of parameters for other kinds of methods.
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KDEOS was designed as ensemble method and was tested here as individual method,
putting it at a disadvantage. The evaluation of ensemble methods for outlier detection
(Zimek et al. 2013a) poses different questions and challenges for future work.

Thus our findings do not allow us to conclude that these two methods perform
worse than the others in general. If a method does not compete well on arbitrary
datasets with classic, generic solutions like kNN or LOF, this does not at all mean
that the same method cannot excel on particular domains. Our findings do suggest,
however, that novel methods should not be proposed without also indicating those
domains or application scenarios where this method is particularly well suited. Merely
demonstrating that the method excels on a few datasets for a few parameter settings
does not suffice. Most importantly, broad ranges of parameter choices should be tested
for the competitors.

Another source of arbitrariness in the outlier evaluation research literature is the
very common practice of producing datasets with outlier ground truth by means of
class downsampling (along with other preprocessing steps). Our study shows that
observations based on downsampling can vary considerably from sample to sample,
and thus experimentation on only a small number of downsampled sets may not pro-
duce meaningful outcomes. Since for some sets there may be significant variance even
when many downsampled variants have been considered, for the sake of reproducibil-
ity, the dataset samples that are adopted in an evaluation should be made publicly
available, as we have done in our web repository.

On the positive side, our experimental study has provided a better understanding
of the characteristics of datasets in current use, according to their suitability for evalu-
ating outlier detection methods. Our characterizations can in principle be extended to
other datasets, and thus our methodology could eventually serve to establish a com-
monly accepted collection of benchmark datasets for the evaluation of outlier detection
methods. The extensive collection of results in our web repository can serve as a basis
of comparison between established outlier methods and any new methods that may
be proposed in the future, over a variety of datasets and a broad range of parameter
settings, while avoiding the need to run new experiments on the established methods.

For a typical scenario where this study can be useful for future research in this
domain, let us consider the situation in which researchers have developed a new outlier
detection method, and have available to them for the evaluation of the method some
dataset with annotated ground truth. Such researchers can make twofold use of our
results.

1. They can test their method on the datasets provided in our repository and directly
compare its performance with the results of the 12 standard methods we used.
In addition to summaries and statistics, we provide also all raw results on our
webpage. If the new method is competitive on our datasets, and if the authors
can identify a scenario where their new method is particularly well suited (be it
more generally applicable across many types of data—such as categorical, graph,
or sparse vector data—or be it adapted to more specific purposes—such as high-
dimensional data, or a particular domain), much more evidence can be generated
for the advantages and disadvantages of the novel method than can be found in
many publications today.
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2. They can run the 12 standardmethods from our collection on their new dataset, and
perform the analysis as presented in Sect. 5.3. In this way, the new dataset can be
situated within the space of diversity vs. difficulty (cf. Fig. 6), and the ground truth
can be compared with random labelings as in our analysis in Fig. 7. Ideally, a new
dataset adds value to the portfolio by providing different but equally reasonable
challenges.

In this paper, we do not claim to have delivered the ultimate benchmark dataset collec-
tion for outlier detection. Furthermore, the selection of outlier detection methods used
in our study is not exhaustive. The online repository could be extended to accommodate
both novel methods and additional datasets. We provide online all scripts and imple-
mentations required to repeat our experiments. The same scripts and implementations,
using ELKI 0.7 (Schubert et al. 2015a), can be easily used to extend the experiments,
including more methods and more datasets. We plan to extend the repository in both
directions and offer to include also methods and datasets as suggested or provided by
users.

This study focused on representative unsupervised outlier detection models based
on neighborhoods in Euclidean space. Future extensions of our study could include
approximation methods [assessing speed-up as well as approximation quality, extend-
ing the work of Orair et al. (2010)], special methods for high-dimensional data (Zimek
et al. 2012), or recently-developed ensemble techniques (Zimek et al. 2013a).
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