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1 AN ELEMENTARY INTRODUCTION TO ACOUSTICS   
 
Finn Jacobsen 
 
 
1.1 INTRODUCTION 

 
 Acoustics is the science of sound, that is, wave motion in gases, liquids and solids, 
and the effects of such wave motion. Thus the scope of acoustics ranges from fundamental 
physical acoustics to, say, bioacoustics, psychoacoustics and music, and includes technical 
fields such as transducer technology, sound recording and reproduction, design of theatres 
and concert halls, and noise control. 
 The purpose of this note is to give an introduction to fundamental acoustic concepts, 
to the physical principles of acoustic wave motion, and to acoustic measurements. 
 
 
1.2 FUNDAMENTAL ACOUSTIC CONCEPTS 
 
 One of the characteristics of fluids, that is, gases and liquids, is the lack of constraints 
to deformation. Fluids are unable to transmit shearing forces, and therefore they react against 
a change of shape only because of inertia. On the other hand a fluid reacts against a change in 
the volume with a change of the pressure. Sound waves are compressional oscillatory distur-
bances that propagate in a fluid. The waves involve molecules of the fluid moving back and 
forth in the direction of propagation (with no net flow), accompanied by changes in the pres-
sure, density and temperature; see figure 1.2.1. The sound pressure, that is, the difference be-
tween the instantaneous value of the total pressure and the static pressure, is the quantity we 
hear. It is also much easier to measure the sound pressure than the other quantities. Note that 
sound waves are longitudinal waves, unlike bending waves on a beam or waves on a 
stretched string, which are transversal waves in which the particles move back and forth in a 
direction perpendicular to the direction of propagation. 
 

 
 

Figure 1.2.1 Fluid particles in the sound field generated by a pulsating sphere. (From ref. [1].) 
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 In most cases the oscillatory changes undergone by the fluid are extremely small. One 
can get an idea about the orders of magnitude of these changes by considering the variations 
in air corresponding to a sound pressure level1 of 120 dB, which is a very high sound pressure 
level, close to the threshold of pain. At this level the fractional pressure variations are about 

4102 −× , the fractional changes of the density are about 4104.1 −× , the oscillatory changes of 
the temperature are less than 0.02 °C, and the particle velocity2 is about 50 mm/s, which at 
1000 Hz corresponds to a displacement of less than μm8 . In fact at 1000 Hz the particle dis-
placement at the threshold of hearing is less than the diameter of a hydrogen atom!3 
 Sound waves exhibit a number of phenomena that are characteristics of waves; see 
figure 1.2.2. Waves propagating in different directions interfere; waves will be reflected by a 
rigid surface and more or less absorbed by a soft one; they will be scattered by small obsta-
cles; because of diffraction there will only partly be shadow behind a screen; and if the me-
dium is inhomogeneous for instance because of temperature gradients the waves will be re-
fracted, which means that they change direction as they propagate. The speed with which 
sound waves propagate in fluids is independent of the frequency, but other waves of interest 
in acoustics, bending waves on plates and beams, for example, are dispersive, which means 
that the speed of such waves depends on the frequency content of the waveform. 
 

 
 

Figure 1.2.2 Various wave phenomena. 
 
 A mathematical description of the wave motion in a fluid can be obtained by combin-
ing equations that express the facts that i) mass is conserved, ii) the local longitudinal force 
caused by a difference in the local pressure is balanced by the enertia of the medium, and iii) 
sound is very nearly an adiabatic phenomenon, that is, there is no flow of heat. The observa-
tion that most acoustic phenomena involve perturbations that are several orders of magnitude 
smaller than the equilibrium values of the medium makes it possible to simplify the mathe-
matical description by neglecting higher-order terms. The result is the linearised wave equa-
tion. This is a second-order partial differential equation that, expressed in terms of the sound 
pressure p, takes the form 
                                                 

 1 See section 1.3.2 for a definition of the sound pressure level. 

 2 The concept of fluid particles refers to a macroscopic average, not to individual molecules; therefore 
the particle velocity can be much less than the velocity of the molecules. 
 3 At these conditions the fractional pressure variations amount to about 102.5 10−× . By comparison, a 
change in altitude of one metre gives rise to a fractional change in the static pressure that is about 400000 times 
larger, about 10-4.  Moreover, inside an aircraft at cruising height the static pressure is typically only 80% of the 
static pressure at sea level. In short, the acoustic pressure fluctuations are extremely small compared with com-
monly occurring static pressure variations. 
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in a Cartesian coordinate system.4 The physical unit of the sound pressure is pascal (1 Pa = 1 
Nm-2). As we shall see later the quantity  

Sc K ρ=  (1.2.2a) 

is the speed of sound. The quantity Ks is the adiabatic bulk modulus, and ρ is the equilibrium 
density of the medium. For gases, Ks = γp0, where ( is the ratio of the specific heat at con-
stant pressure to that at constant volume ( 1.401 for air) and p0 is the static pressure (  
101.3 kPa for air under normal ambient conditions). The adiabatic bulk modulus can also be 
expressed in terms of the gas constant R ( 287 J·kg-1K-1 for air), the absolute temperature T, 
and the equilibrium density of the medium,  

0c p RTγ ρ γ= = , (1.2.2b) 

which shows that the equilibrium density of a gas can be written as 

0 .p RTρ =  (1.2.3) 

At 293.15 K = 20°C the speed of sound in air is 343 m/s. Under normal ambient conditions 
(20°C, 101.3 kPa) the density of air is 1.204 kgm-3. Note that the speed of sound of a gas de-
pends only on the temperature, not on the static pressure. 
 
Adiabatic compression 
 Because the process is adiabatic, the fractional pressure variations in a small cavity driven by a vibrat-
ing piston, say, a pistonphone for calibrating microphones, equal the fractional density variations multiplied by 
the ratio of specific heats γ . The physical explanation for the ‘additional’ pressure is that the pressure in-
crease/decrease caused by the reduced/expanded volume of the cavity is accompanied by an increase/decrease 
of the temperature, which increases/reduces the pressure even further. The fractional variations in the density are 
of course identical with the fractional change of the volume (except for the sign); therefore, 

0

.p V
p V

ργ γ
ρ

Δ Δ
= = −  

In chapter 4 we shall derive a relation between the volume velocity (= the volume displacement VΔ  per unit of 
time) and the resulting sound pressure. 
 

 
 

Figure 1.2.3 A small cavity driven by a vibrating piston. 
 
                                                 

 4 The left-hand side of eq. (1.2.1) is the Laplacian of the sound pressure, that is, the divergence of the 
gradient. A negative value of this quantity at a certain point implies that the gradient converges towards the 
point, indicating a high local value. The wave equation states that this high local pressure tends to decrease.  
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 The linearity of eq. (1.2.1) is due to the absence of higher-order terms in p in combi-
nation with the fact that 22 x∂∂ and 22 t∂∂ are linear operators.5 This is an extremely impor-
tant property. It implies that a sinusoidal source will generate a sound field in which the pres-
sure at all positions varies sinusoidally. It also implies linear superposition: sound waves do 
not interact, they simply pass through each other (see figure 1.2.5).6 
 The diversity of possible sound fields is of course enormous, which leads to the con-
clusion that we must supplement eq. (1.2.1) with some additional information about the 
sources that generate the sound field, surfaces that reflect or absorb sound, objects that scatter 
sound, etc. This information is known as the boundary conditions. The boundary conditions 
are often expressed in terms of the particle velocity. For example, the normal component of 
the particle velocity u is zero on a rigid surface. Therefore we need an additional equation 
that relates the particle velocity to the sound pressure. This relation is known as Euler’s equa-
tion of motion, 

,p
t

ρ ∂
+ ∇ =

∂
u 0  (1.2.4) 

which is simply Newton’s second law of motion for a fluid. The operator ∇  is the gradient 
(the spatial derivative ( zyx ∂∂∂∂∂∂  , , )). Note that the particle velocity is a vector, unlike 
the sound pressure, which is a scalar.   
 
Sound in liquids 
 The speed of sound is much higher in liquids than in gases. For example, the speed of sound in water is 
about 1500 ms-1. The density of liquids is also much higher; the density of water is about 1000 kgm-3. Both the 
density and the speed of sound depend on the static pressure and the temperature, and there are no simple gen-
eral relations corresponding to eqs. (1.2.2b) and (1.2.3).  
 
1.2.1 Plane sound waves 
 The plane wave is a central concept in acoustics. Plane waves are waves in which any 
acoustic variable at a given time is a constant on any plane perpendicular to the direction of 
propagation. Such waves can propagate in a duct. In a limited area at a distance far from a 
source of sound in free space the curvature of the spherical wavefronts is negligible and the 
waves can be regarded as locally plane. 
 

 
Figure 1.2.4 The sound pressure in a plane wave of arbitrary waveform at two different instants of time. 

 

                                                 

 5 This follows from the fact that 2 2 2 2 2 2
1 2 1 2( ) .p p t p t p t∂ + ∂ = ∂ ∂ + ∂ ∂  

 6 At very high sound pressure levels, say at levels in excess of 140 dB, the linear approximation is no 
longer adequate. This complicates the analysis enormously. Fortunately, we can safely assume linearity under 
practically all circumstances encountered in daily life. 
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 The plane wave is a solution to the one-dimensional wave equation, 
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cf. eq. (1.2.1). It is easy to show that the expression 

),()( 21 xctfxctfp ++−=  (1.2.6) 

where f1 and f2 are arbitrary functions, is a solution to eq. (1.2.5), and it can be shown this is 
the general solution. Since the argument of f1 is constant if x increases as ct it follows that the 
first term of this expression represents a wave that propagates undistorted and unattenuated in 
the x-direction with constant speed, c, whereas the second term represents a similar wave 
travelling in the opposite direction. See figures 1.2.4 and 1.2.5. 

 
 

Figure 1.2.5 Two plane waves travelling in opposite directions are passing through each other. 
 

 The special case of a harmonic plane progressive wave is of great importance. Har-
monic waves are generated by sinusoidal sources, for example a loudspeaker driven with a 
pure tone. A harmonic plane wave propagating in the x-direction can be written 

),sin()(sin 11 ϕωϕω
+−=⎟

⎠
⎞

⎜
⎝
⎛ +−= kxtpxct

c
pp  (1.2.7) 

where 2πfω =  is the angular (or radian) frequency and ck ω=  is the (angular) wavenum-
ber. The quantity p1 is known as the amplitude of the wave, and φ is a phase angle. At any 
position in this sound field the sound pressure varies sinusoidally with the angular frequency 
ω, and at any fixed time the sound pressure varies sinusoidally with x with the spatial period 

2π 2π .c c
f k

λ
ω

= = =  (1.2.8) 

The quantity λ is the wavelength, which is defined as the distance travelled by the wave in 
one cycle. Note that the wavelength is inversely proportional to the frequency. At 1000 Hz 
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the wavelength in air is about 34 cm. In rough numbers the audible frequency range goes 
from 20 Hz to 20 kHz, which leads to the conclusion that acousticians are faced with wave-
lengths (in air) in the range from 17 m at the lowest audible frequency to 17 mm at the high-
est audible frequency. Since the efficiency of a radiator of sound or the effect of an obstacle 
on the sound field depends very much on its size expressed in terms of the acoustic wave-
length, it can be realised that the wide frequency range is one of the challenges in acoustics. It 
simplifies the analysis enormously if the wavelength is very long or very short compared with 
typical dimensions. 
 

 
Figure 1.2.6 The sound pressure in a plane harmonic wave at two different instants of time. 

 
Sound fields are often studied frequency by frequency. As already mentioned, linear-

ity implies that a sinusoidal source with the frequency ω will generate a sound field that var-
ies harmonically with this frequency at all positions.7 Since the frequency is given, all that 
remains to be determined is the amplitude and phase at all positions. This leads to the intro-
duction of the complex exponential representation, where the sound pressure is written as a 
complex function of the position multiplied with a complex exponential. The former function 
takes account of the amplitude and phase, and the latter describes the time dependence. Thus 
at any given position the sound pressure can be written as a complex function of the form8 

)j(jjj eeeeˆ ϕωωϕω +=== ttt AAAp  (1.2.9) 

(where φ is the phase of the complex amplitude A), and the real, physical sound pressure is 
the real part of the complex pressure, 

{ } { }j( )ˆRe Re e cos( ).tp p A A tω ϕ ω ϕ+= = = +  (1.2.10) 

 Since the entire sound field varies as ejωt, the operator t∂∂  can be replaced by jω 
(because the derivative of ejωt with respect to time is jωejωt),9 and the operator 22 t∂∂  can be 
replaced by -ω2. It follows that Euler’s equation of motion can now be written 

,ˆˆj 0u =∇+ pωρ  (1.2.11) 

and the wave equation can be simplified to 

                                                 

 7 If the source emitted any other signal than a sinusoidal the waveform would in the general case 
change with the position in the sound field, because the various frequency components would change amplitude 
and phase relative to each other. This explains the usefulness of harmonic analysis. 
 8 Throughout this note complex variables representing harmonic signals are indicated by carets. 
 9 The sign of the argument of the exponential is just a convention. The ejωt convention is common in 
electronic engineering, in audio and in most areas of acoustics. The alternative convention e-jωt is favoured by 
mathematicians, physicists and acousticians concerned with sound propagation. With the alternative sign con-
vention t∂ ∂ should obviously be replaced by -jω. Mathematicians and physicists also tend to prefer ‘i’ to ‘j’. 



 7

,0ˆˆˆˆ 2
2

2

2

2

2

2

=+
∂
∂

+
∂
∂

+
∂
∂ pk

z
p

y
p

x
p  (1.2.12) 

which is known as the Helmholtz equation. See the Appendix for further details about com-
plex representation of harmonic signals. We note that the use of complex notation is mathe-
matically very convenient, which will become apparent later. 
 Written with complex notation the equation for a plane wave that propagates in the x-
direction becomes 

.eˆ )j(
i

kxtpp −= ω  (1.2.13) 

Equation (1.2.11) shows that the particle velocity is proportional to the gradient of the pres-
sure. It follows that the particle velocity in the plane propagating wave given by eq. (1.2.13) 
is 

.ˆeeˆ
j
1

ˆ )j(i)j(
i c

p
c

ppk
x
pu kxtkxt

x ρρωρωρ
ωω ===

∂
∂

−= −−  (1.2.14) 

Thus the sound pressure and the particle velocity are in phase in a plane propagating wave 
(see also figure 1.2.10), and the ratio of the sound pressure to the particle velocity is ρc, the 
characteristic impedance of the medium. As the name implies, this quantity describes an im-
portant acoustic property of the fluid, as will become apparent later. The characteristic im-
pedance of air at 20°C and 101.3 kPa is about 413 kg·m-2s-1.  

 
Figure 1.2.7 A semi-infinite tube driven by a piston. 

 
Example 1.2.1 
 An semi-infinite tube is driven by a piston with the vibrational velocity je tU ω  as shown in figure 1.2.7. 
Because the tube is infinite there is no reflected wave, so the sound field can be written 

j( ) j( )i
iˆ ˆ( ) e , ( ) e .t kx t kx

x
p

p x p u x
c

ω ω

ρ
− −= =  

The boundary condition at the piston implies that the particle velocity equals the velocity of the piston: 
j jiˆ (0) e et t

x
p

u U
c

ω ω

ρ
= = . 

It follows that the sound pressure generated by the piston is  
j( )ˆ ( ) e .t kxp x U c ωρ −=  

  
The general solution to the one-dimensional Helmholtz equation is 

j( ) j( )
i rˆ e e ,t kx t kxp p pω ω− += +  (1.2.15) 
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which can be identified as the sum of a wave that travels in the positive x-direction and a 
wave that travels in the opposite direction (cf. eq. (1.2.6)). The corresponding expression for 
the particle velocity becomes, from eq. (1.2.11), 

.ee

eeˆ
j
1

ˆ
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ωρωρωρ
 (1.2.16) 

It can be seen that whereas cup x ρˆˆ =  in a plane wave that propagates in the positive x-
direction, the sign is the opposite, that is, cup x ρˆˆ −= , in a plane wave that propagates in the 
negative x-direction. The reason for the change in the sign is that the particle velocity is a 
vector, unlike the sound pressure, so xû  is a vector component. It is also worth noting that the 
general relation between the sound pressure and the particle velocity in this interference field 
is far more complicated than in a plane propagating wave. 
 

 
Figure 1.2.8 Sound pressure in a wave that is reflected from a rigid surface. (Adapted from ref. [2].) 

 
 A plane wave that impinges on a plane rigid surface perpendicular to the direction of 
propagation will be reflected. This phenomenon is illustrated in figure 1.2.8, which shows 
how an incident transient disturbance is reflected. Note that the normal component of the 
gradient of the pressure is identically zero on the surface for all values of t. This is a conse-
quence of the fact that the boundary condition at the surface implies that the particle velocity 
must equal zero here, cf. eq. (1.2.4).  
 However, it is easier to analyse the phenomenon assuming harmonic waves. In this 
case the sound field is given by the general expressions (1.2.15) and (1.2.16), and our task is 
to determine the relation between pi and pr from the boundary condition at the surface, say at 
x = 0. As mentioned, the rigid surface implies that the particle velocity must be zero here, 
which with eq. (1.2.16) leads to the conclusion that pi = pr , so the reflected wave has the 
same amplitude as the incident wave. Equation (1.2.15) now becomes 
 

( ) ( ) ,ecos2eeeeeˆ j
i

jjj
i

)j()j(
i

ttkxkxkxtkxt kxpppp ωωωω =+=+= −+−  (1.2.17) 
 
and eq. (1.2.16) becomes 
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Note that the amplitude of the sound pressure is doubled on the surface (cf. figure 

1.2.8). Note also the nodal planes10 where the sound pressure is zero at x = - λ/4, x = - 3λ/4, 
etc., and the planes where the particle velocity is zero at x = - λ/2, x = - λ, etc. The interfer-
ence of the two plane waves travelling in opposite directions has produced a standing wave 
pattern, shown in figure 1.2.9.  

The physical explanation of the fact that the sound pressure is identically zero at a dis-
tance of a quarter of a wavelength from the reflecting plane is that the incident wave must 
travel a distance of half a wavelength before it returns to the same point; accordingly the in-
cident and reflected waves are in antiphase (that is, 180° out of phase), and since they have 
the same amplitude they cancel each other. This phenomenon is called destructive interfer-
ence. At a distance of half a wavelength from the reflecting plane the incident wave must 
travel one wavelength before it returns to the same point. Accordingly, the sound pressure is 
doubled here (constructive interference).  

Another interesting observation from eqs. (1.2.17) and (1.2.18) is that the resulting 
sound pressure and particle velocity at any position are temporarily 90° out of phase (other-
wise expressed, if the sound pressure as a function of time is a cosine then the particle veloc-
ity is a sine). As we shall see later this indicates that there is no net flow of sound energy to-
wards the rigid surface. See also figure 1.2.10. 
 
 

 
Figure 1.2.9 Standing wave pattern caused by reflection from a rigid surface at x = 0. 

 
Example 1.2.2 
 The standing wave phenomenon can be observed in a tube terminated by a rigid cap. When the length 
of the tube, l, equals an odd-numbered multiple of a quarter of a wavelength the sound pressure is zero at the 
input, which means that it would take very little force to drive a piston here. This is an example of an acoustic 
resonance. In this case it occurs at the frequency 

0 ,
4
cf
l

=  

                                                 

 10 A node on, say, a vibrating string is a point that does not move, and an antinode is a point with 
maximum displacement. By analogy, points in a standing wave at which the sound pressure is identically zero 
are called pressure nodes. In this case the pressure nodes coincide with velocity antinodes.   
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and at odd-numbered multiples of this frequency, 3f0, 5f0, 7f0, etc. Note that the resonances are harmonically 
related. This means that if some mechanism excites the tube the result will be a musical sound with the funda-
mental frequency f and overtones corresponding to odd-numbered harmonics.11  

Brass and woodwind instruments are based on standing waves in tubes. For example, closed organ 
pipes are tubes closed at one end and driven at the other, open end, and such pipes have only odd-numbered 
harmonics. See also example 1.4.4. 

 
 The ratio of pr to pi is the (complex) reflection factor R. The amplitude of this quantity 
describes how well the reflecting surface reflects sound. In the case of a rigid plane R = 1, as 
we have seen, which implies perfect reflection with no phase shift, but in the general case of 
a more or less absorbing surface R will be complex and less than unity (|R| ≤ 1), indicating 
partial reflection with a phase shift at the reflection plane. 
 If we introduce the reflection factor in eq. (1.2.15) it becomes 

( )j( ) j( )
iˆ e et kx t kxp p Rω ω− += + , (1.2.19) 

from which it can be seen that the amplitude of the sound pressure varies with the position in 
the sound field. When the two terms in the parenthesis are in phase the sound pressure as-
sumes its maximum value, 

( )max i 1p p R= + , (1.2.20a) 
and when they are in antiphase the sound pressure assumes the minimum value 

( )min i 1p p R= − . (1.2.20b) 

The ratio of pmax to pmin is called the standing wave ratio, 

max

min

1
.

1
Rps

p R
+

= =
−

 (1.2.21) 

From eq. (1.2.21) it follows that 

,
1
1

+
−

=
s
sR  (1.2.22) 

which leads to the conclusion that it is possible to determine the acoustic properties of a ma-
terial by exposing it to normal sound incidence and measuring the standing wave ratio in the 
resulting interference field. See also chapter 1.5. 
 Figure 1.2.10 shows the instantaneous sound pressure and particle velocity at two dif-
ferent instants of time in a tube that is terminated by a material that does not reflect sound 
(case (a)), by a soft material that partly absorbs the incident sound wave (case (b)), and by a 
rigid material that gives perfect reflection (case (c)). 

                                                 

 11 A musical tone is not a pure (sinusoidal) tone but a periodic signal consisting of the fundamental and 
a number of its harmonics, also called partials. The n’th harmonic (or partial) is also called the (n-1)’th over-
tone, and the fundamental is the first harmonic. The pitch of the musical tone is determined by the fundamental 
frequency, which is also the distance between the harmonic components.  
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Figure 1.2.10 Spatial distributions of instantaneous sound pressure and particle velocity at two different in-

stants of time. (a) Case with no reflection (R  = 0); (b) case with partial reflection from a soft surface; (c) case 
with perfect reflection from a rigid surface (R = 1). (From ref. [3].) 

 
 
Sound transmission between fluids 
 When a sound wave in one fluid is incident on the boundary of another fluid, say, a sound wave in air 
is incident on the surface of water, it will be partly reflected and partly transmitted. For simplicity let us assume 
that a plane wave in fluid 1 strikes the surface of fluid 2 at normal incidence as shown in figure 1.2.11. Antici-
pating a reflected wave we can write 

j( ) j( )
1 i rˆ e et kx t kxp p pω ω− += +  

for fluid 1, and 
j( )

2 tˆ e t kxp p ω −=  
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for fluid 2. There are two boundary conditions at the interface: the sound pressure must be the same in fluid 1 
and in fluid 2 (otherwise there would be a net force), and the particle velocity must be the same in fluid 1 and in  
fluid 2 (otherwise the fluids would not remain in contact). It follows that 

i r tp p p+ =  and  ti r

1 1 2 2

.
pp p

c cρ ρ
−

=  

Combining these equations gives  

r 2 2 1 1

i 2 2 1 1

,
p c c

R
p c c

ρ ρ
ρ ρ

−
= =

+
 

which shows that the wave is almost fully reflected in phase ( 1R ) if ρ2c2 >> ρ1c1, almost fully reflected in 
antiphase ( 1R − ) if ρ2c2 << ρ1c1, and not reflected at all if ρ2c2 = ρ1c1, irrespective of the individual properties 
of c1, c2, ρ1 and ρ2. 
 

 
Figure 1.2.11 Reflection and transmission of a plane wave incident on the interface between two fluids. 

 
 

 
 
Figure 1.2.12 Reflection of a pressure wave at the interface between a medium of high characteristic impedance 

and a medium of low characteristic impedance. (Adapted from ref. [2].) 
 

 
Figure 1.2.13 Standing wave pattern in a medium of high characteristic impedance caused by caused by reflec-

tion from a medium of low characteristic impedance. 
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Because of the significant difference between the characteristic impedances of air and water (the ratio is about 1: 
3600) a sound wave in air that strikes a surface of water at normal incidence is almost completely reflected, and 
so is a sound wave that strikes the air-water interface from the water, but in the latter case the phase of the re-
flected wave is reversed, as shown in figure 1.2.12. Compare figures 1.2.8 and 1.2.12, and figures 1.2.9 and 
1.2.13. 
 
1.2.2 Spherical sound waves 
 The wave equation can be expressed in other coordinate systems than the Cartesian. If 
sound is generated by a source in an environment without reflections (which is usually re-
ferred to as a free field) it will generally be more useful to express the wave equation in a 
spherical coordinate system (r, θ, φ). The resulting equation is more complicated than eq. 
(1.2.1). However, if the source under study is spherically symmetric there can be no angular 
dependence, and the equation becomes quite simple,12 

2 2

2 2 2

2 1 .p p p
r r r c t

∂ ∂ ∂
+ =

∂ ∂ ∂
 (1.2.23a) 

If we rewrite in the form 

,)(1)(
2

2

22

2

t
rp

cr
rp

∂
∂

=
∂

∂  (1.2.23b) 

it becomes apparent that this equation is identical in form with the one-dimensional wave 
equation, eq. (1.2.5), although p has been replaced by rp. (It is easy to get from eq. (1.2.23b) 
to eq. (1.2.23a); it is more difficult the other way.) It follows that the general solution to eq. 
(1.2.23) can be written 

),()( 21 rctfrctfrp ++−=  (1.2.24a) 
                                                 

 12 This can be seen as follows. Since the sound pressure depends only on r we have 

,p p r
x r x

∂ ∂ ∂
=

∂ ∂ ∂
 

which, with 
2 2 2 ,r x y z= + +  

becomes  

 .p x p
x r r

∂ ∂
=

∂ ∂
 

Similar considerations leads to the following expression for the second-order derivative, 
2 2 2 2 2

2 2 2 3

1 1 1 1 1 .p p p p x p p x p x px
r r x r r r r r r r r r r rx r r r

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + = + = + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠
 

Combining eq. (1.2.1) with this expression and the corresponding relations for y and z finally yields eq. 
(1.2.23a): 

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 3 2 2 2

3 2 1 .p p p p x y z p x y z p p p p
r r r r rx y z r r r r c t

∂ ∂ ∂ ∂ + + ∂ + + ∂ ∂ ∂ ∂
+ + = + − = + =

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
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that is 

( ),)()(1
21 rctfrctf

r
p ++−=  (1.2.24b) 

where f1 and f2 are arbitrary functions. The first term is wave that travels outwards, away 
from the source (cf. the first term of eq. (1.2.6)). Note that the shape of the wave is preserved. 
However, the sound pressure is seen to decrease in inverse proportion to the distance. This is 
the inverse distance law.13 The second term represents a converging wave, that is, a spherical 
wave travelling inwards. In principle such a wave could be generated by a reflecting spherical 
surface centred at the source, but that is a rare phenomenon indeed. Accordingly we will ig-
nore the second term when we study sound radiation in chapter 1.6. 
  

 
Figure 1.2.14 (a) Measurement far from a spherical source in free space; (b) measurement close to a spherical 

source. ––, Sound pressure; - - -, particle velocity multiplied by Dc. (From ref. [4].) 
 

A harmonic spherical wave is a solution to the Helmholtz equation 

.0ˆ
)ˆ( 2

2

2

=+
∂

∂ prk
r

pr  (1.2.25) 

Expressed in the complex notation the diverging wave can be written 

.e
ˆ

)j(

r
Ap

krt −

=
ω

 (1.2.26) 

                                                 
 13 The inverse distance law is also known as the inverse square law because the sound intensity is in-
versely proportional to the square of the distance to the source. See chapters 1.5 and 1.6. 
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The particle velocity component in the radial direction can be calculated from eq. (1.2.11), 
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 (1.2.27) 

Because of the spherical symmetry there are no components in the other directions. Note that 
far14 from the source the sound pressure and the particle velocity are in phase and their ratio 
equals the characteristic impedance of the medium, just as in a plane wave. On the other 
hand, when kr << 1 the particle velocity is larger than cp ρˆ and the sound pressure and the 
particle velocity are almost in quadrature, that is, 90° out of phase. These are near field char-
acteristics, and such a sound field is also known as a reactive field. See figure 1.2.14. 
 
 
1.3 ACOUSTIC MEASUREMENTS 
  
 The most important measure of sound is the rms sound pressure,15 defined as 

½
2 2

rms 0

1( ) lim ( )d .
T

T
p p t p t t

T→∞

⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫  (1.3.1) 

However, as we shall see, a frequency weighting filter16 is usually applied to the signal before 
the rms value is determined. Quite often such a single value does not give sufficient informa-
tion about the nature of the sound, and therefore the rms sound pressure is determined in fre-
quency bands. The resulting sound pressures are practically always compressed logarithmi-
cally and presented in decibels. 
 
Example 1.3.1 
 The fact that sin2ωt = ½ (1 - cos2ωt) and thus has a time average of ½ leads to the conclusion that the 
rms value of a sinusoidal signal with the amplitude A is / 2A . 
 
1.3.1 Frequency analysis 
 Single frequency sound is useful for analysing acoustic phenomena, but most sounds 
encountered in practice have ‘broadband’ characteristics, which means that they cover a wide 
frequency range. If the sound is more or less steady, it will practically always be more useful 
to analyse it in the frequency domain than to look at the sound pressure as a function of time. 
 Frequency (or spectral) analysis of a signal involves decomposing the signal into its 
spectral components. This analysis can be carried out by means of digital analysers that em-
ploy the discrete Fourier transform (‘FFT analysers’). This topic is outside the scope of this 
note, but see eg refs. [5, 6]. Alternatively, the signal can be passed through a number of ana-

                                                 

 14 In acoustics, dimensions are measured in terms of the wavelength, so ‘far from’ means that r >> λ  
(or kr >> 1), just as ‘near’ means that r << λ (or kr << 1). The dimensionless quantity kr is known as the Helm-
holtz number. 
 15 Root mean square value, usually abbreviated rms. This is the square root of the mean square value. 

 16 A filter is a device that modifies a signal by attenuating some of its frequency components. 
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logue or digital bandpass filters17 with different centre frequencies, a ‘filter bank.’ The filters 
can have the same bandwidth or they can have constant relative bandwidth, which means that 
the bandwidth is a certain percentage of the centre frequency. Constant relative bandwidth 
corresponds to uniform resolution on a logarithmic frequency scale. Such a scale is in much 
better agreement with the subjective pitch of musical sounds than a linear scale, and therefore 
frequencies are often represented on a logarithmic scale in acoustics, and frequency analysis 
is often carried out with constant percentage filters. The most common filters in acoustics are 
octave band filters and one-third octave band filters. 
 

 
Figure 1.3.1 The keyboard of a small piano. The white keys from C to B correspond to the seven notes of the C 

major scale. (Adapted from ref. [7].) 
 
 An octave18 is a frequency ratio of 2:1, known from musical scales. Accordingly, the 
lower limiting frequency of an octave band is half the upper frequency limit, and the centre 
frequency is the geometric mean, that is, 

,     ,2     ,2 ulcc
½

u
½

cl fffffff ===  (1.3.2a, 1.3.2b, 1.3.2c) 

where fc is the centre frequency. In a similar manner a one-third octave19 band is a band for 
which fu = 2⅓ fl , and 

,     ,2     ,2 ulccucl
6

1
6

1 fffffff ===  (1.3.3a, 1.3.3b, 1.3.3c) 

 Since 10 32 1024 10=   it follows that 10 32 10  and 1 3 1 102 10 , that is, ten one-third 
octaves very nearly make a decade, and a one-third octave is almost identical with one tenth 
of a decade. Table 1.3.1 gives the nominal centre frequencies of standardised octave and one-
third octave band filters.20 As mentioned earlier, the human ear may respond to frequencies in 
the range from 20 Hz to 20 kHz, that is, a range of three decades, ten octaves or thirty one-
third octaves. 

                                                 

 17 An ideal bandpass filter would allow frequency components in the passband to pass unattenuated, 
but would completely remove frequency components outside the passband. Real filters have, of course, a certain 
passband ripple and a finite stopband attenuation. 
 18 Musical tones an octave apart sound very similar. The diatonic scale contains seven notes per octave 
corresponding to the white keys on a piano keyboard; see figure 1.3.1. Thus an octave spans eight notes, say, 
from C to C'; hence the name octave (from Latin octo: eight).  
 19 A semitone is one twelfth of an octave on the equally tempered scale (a frequency ratio of 21/12:1). 
Since 2⅓ = 24/12 it can be seen that a one-third octave is identical with four semitones or a major third (eg from C 
to E, cf. figure 1.3.1). Accordingly, one-third octave band filters are called Terzfilters in German. 
 20 Round numbers are convenient. The standardised nominal centre frequencies are based on the fact 
that the series 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8, 10 is in reasonable agreement with 10n/10, with n = 1, 2,....., 10. 
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Table 1.3.1 Standardised one-third octave and octave (bold characters) band centre frequencies (in hertz). 

 
20   25   31.5   40   50   63   80   100   125   160   200   250   315   400   500   630   800  1000 
1250   1600   2000   2500   3150   4000   5000   6300   8000   10000   12500   16000   20000 

 
 An important property of the mean square value of a signal is that it can be partitioned 
into frequency bands. This means that if we analyse a signal in, say, one-third octave bands, 
the sum of the mean square values of the filtered signals equals the mean square value of the 
unfiltered signal. The reason is that products of different frequency components average to 
zero, so that all the cross terms vanish; the different frequency components are uncorrelated 
signals. This can be illustrated by analysing a sum of two pure tones with different frequen-
cies, 

.2/)(
sinsin2sinsin)sinsin(

22
212

22
1

222
21

BA
ttABtBtAtBtA

+=

++=+ ωωωωωω
 (1.3.4) 

Note that the mean square values of the two signals are added unless ω1 = ω2. The validity of 
this rule is not restricted to pure tones of different frequency; the mean square value of any 
stationary signal equals the sum of mean square values of its frequency components, which 
can be determined with a parallel bank of contiguous filters. Thus 
 

2 2
rms rms, ,i

i
p p= ∑  (1.3.5) 

 
where prms,i is the rms value of the output of the i’th filter. Equation (1.3.5) is known as 
Parseval’s formula. 
 
 
Random noise 
 Many generators of sound produce noise rather than pure tones. Whereas pure tones and other periodic 
signals are deterministic, noise is a stochastic or random phenomenon. Stationary noise is a stochastic signal 
whose statistical properties do not change with time. 
 White noise is stationary noise with a flat spectral density, that is, constant mean square value per hertz. 
The term white noise is an analogy to white light. When white noise is passed through a bandpass filter, the 
mean square of the output is directly proportional to the bandwidth of the filter. It follows that when white noise 
is analysed with constant percentage filters, the mean square of the output is proportional to the centre frequency 
of the filter. For example, if white noise is analysed with a bank of octave band filters, the mean square values 
of the output signals of two adjacent filters differ by a factor of two. 
 Pink noise is stationary noise that has the same mean square value in bands with constant relative 
width, eg octave bands. Thus compared with white noise low frequencies are emphasised by pink noise; hence 
the name, which is an analogy to an optical phenomenon. It follows that the mean square value of pink noise in 
octave bands is three times larger than the mean square value of the noise in one-third octave bands. 
 
Example 1.3.2 
 The fact that noise, unlike periodic signals, has a finite mean square value per hertz implies that one 
can detect a pure tone in noise irrespective of the signal-to-noise ratio by analysing with sufficiently fine spec-
tral resolution: As the bandwidth is reduced, less and less noise passes through the filter, and the tone will 
emerge. Compared with filter bank analysers FFT analysers have the advantage that the spectral resolution can 
be varied over a wide range [6]; therefore FFT analysers are particular suitable for detecting tones in noise. 
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 When several independent sources of noise are present at the same time the mean 
square sound pressures generated by the individual sources are additive. This is due to the 
fact that independent sources generate uncorrelated signals, that is, signals whose product av-
erage to zero; therefore the cross terms vanish: 

.)()()()(2)()())()(( 2
2

2
121

2
2

2
1

2
21 tptptptptptptptp +=++=+  (1.3.6) 

It follows that 

∑=
i

ipp .2
rms,

2
totrms,  (1.3.7) 

Note the similarity between eqs. (1.3.5) and (1.3.7). It is of enormous practical importance 
that the mean square values of uncorrelated signals are additive, because signals generated by 
different mechanisms are invariably uncorrelated. Almost all signals that occur in real life are 
mutually uncorrelated. 
 
Example 1.3.3 
 Equation (1.3.7) leads to the conclusion that the mean square pressure generated by a crowd of noisy 
people in a room is proportional to the number of people. Thus the rms value of the sound pressure in the room 
is proportional to the square root of the number of people. 
 
Example 1.3.4 
 Consider the case where the rms sound pressure generated by a source of noise is to be measured in the 
presence of background noise that cannot be turned off. It follows from eq. (1.3.7) that it in principle is possible 
to correct the measurement for the influence of the stationary background noise; one simply subtracts the mean 
square value of the background noise from the total mean square pressure. For this to work in practice the back-
ground noise must not be too strong, though, and it is absolutely necessary that it is completely stationary. 
 

1.3.2 Levels and decibels 
The human auditory system can cope with sound pressure variations over a range of 

more than a million times. Because of this wide range, the sound pressure and other acoustic 
quantities are usually measured on a logarithmic scale. An additional reason is that the sub-
jective impression of how loud noise sounds correlates much better with a logarithmic meas-
ure of the sound pressure than with the sound pressure itself. The unit is the decibel,21 abbre-
viated dB, which is a relative measure, requiring a reference quantity. The results are called 
levels. The sound pressure level (sometimes abbreviated SPL) is defined as 

,log20log10
ref

rms
102

ref

2
rms

10 p
p

p
pLp ==  (1.3.8) 

where pref is the reference sound pressure, and log10 is the logarithm to the base of 10, hence-
forth written log. The reference sound pressure is 20 μPa for sound waves in air, correspond-

                                                 

 21 As the name implies, the decibel is one tenth of a bel. However, the bel is rarely used today. The use 
of decibels rather than bels is probably due to the fact that most sound pressure levels encountered in practice 
take values between 0 and 120 when measured in decibels, as can be seen in figure 1.3.2. Another reason might 
be that to be audible, the change of the level of a given (broadband) sound must be of the order of one decibel.  
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ing roughly to the lowest audible sound at 1000 Hz.22 Some typical sound pressure levels are 
given in figure 1.3.2. 

 
Figure 1.3.2 Typical sound pressure levels. (Source: Brüel & Kjær.) 

                                                 
22 For sound in other fluids than atmospheric air (water, for example) the reference sound pressure is 1 

:Pa. To avoid possible confusion it is sometimes advisable to state the reference sound pressure explicitly, eg 
‘the sound pressure level is 77 dB re 20 μPa.’ 
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The fact that the mean square sound pressures of independent sources are additive (cf. 
eq. (1.3.7)) leads to the conclusion that the levels of such sources are combined as follows: 

,0.1
,tot 10 log 10 .p iL

p
i

L ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (1.3.9) 

Another consequence of eq. (1.3.7) is that one can correct a measurement of the sound 
pressure level generated by a source for the influence of steady background noise as follows: 

( ),tot ,background0.1 0.1
,source 10 log 10 10p pL L

pL = − . (1.3.10) 

This corresponds to subtracting the mean square sound pressure of the background noise 
from the total mean square sound pressure as described in example 1.3.5. However, since all 
measurements are subject to random errors, the result of the correction will be reliable only if 
the background level is at least, say, 3 dB below the total sound pressure level. If the back-
ground noise is more than 10 dB below the total level the correction is less than 0.5 dB. 
 
Example 1.3.5 
 Expressed in terms of sound pressure levels the inverse distance law states that the level decreases by 6 
dB when the distance to the source is doubled. 
 
Example 1.3.6 
 When each of two independent sources in the absence of the other generates a sound pressure level of 
70 dB at a certain point, the resulting sound pressure level is 73 dB (not 140 dB!), because 10log 2 3 . If one 
source creates a sound pressure level of 65 dB and the other a sound pressure level of 59 dB, the total level is 

6.5 5.910log(10 10 ) 66 dB+ . 
 
Example 1.3.7 
 Say the task is to determine the sound pressure level generated by a source in background noise with a 
level of 59 dB. If the total sound pressure level is 66 dB, it follows from eq. (1.3.10) that the source would have 
produced a sound pressure level of 6.6 5.910 log(10 10 ) 65 dB−  in the absence of the background noise. 
 
Example 1.3.8 
 When two sinusoidal sources emit pure tones of the same frequency they create an interference field, 
and depending on the phase difference the total sound pressure amplitude at a given position will assume a value 
between the sum of the two amplitudes and the difference: 

A Bj jj je e e e .t tA B A B A B A B A Bϕ ϕω ω− ≤ + = + = + ≤ +  

For example, if two pure tone sources of the same frequency each generates a sound pressure level of 70 dB in 
the absence of the other source then the total sound pressure level can be anywhere between 76 dB (constructive 
interference) and - ∞ dB (destructive interference). Note that eqs. (1.3.7) and (1.3.9) do not apply in this case 
because the signals are not uncorrelated. See also figure 1.9.2 in the Appendix. 
 
 Other first-order acoustic quantities, for example the particle velocity, are also often 
measured on a logarithmic scale. The reference velocity is 1 nm/s = 10-9 m/s.23 This reference 
is also used in measurements of the vibratory velocities of vibrating structures. 
 The acoustic second-order quantities sound intensity and sound power, defined in 
chapter 1.5, are also measured on a logarithmic scale. The sound intensity level is 
                                                 

 23 The prefix n (for ‘nano’) represents a factor of 10-9. 



 21

,log10
refI
I

LI =  (1.3.11) 

where I is the intensity and Iref = 1 pWm-2 = 10-12 Wm-2,24 and the sound power level is  

,log10
ref

a

P
PLW =  (1.3.12) 

where Pa is the sound power and Pref = 1 pW. Note than levels of linear quantities (pressure, 
particle velocity) are defined as twenty times the logarithm of the ratio of the rms value to a 
reference value, whereas levels of second-order (quadratic) quantities are defined as ten times 
the logarithm, in agreement with the fact that if the linear quantities are doubled then quanti-
ties of second order are quadrupled. 
 
Example 1.3.9 
 It follows from the constant spectral density of white noise that when such a signal is analysed in one-
third octave bands, the level increases 1 dB from one band to the next 1 3(10 log(2 ) 1dB) . 
 
1.3.3 Noise measurement techniques and instrumentation 
 A sound level meter is an instrument designed to measure sound pressure levels. To-
day such instruments can be anything from fairly simple devices with analogue filters and 
detectors and a moving coil meter to advanced digital analysers. Figure 1.3.3 shows a block 
diagram of a simple sound level meter. The microphone converts the sound pressure to an 
electrical signal, which is amplified and passes through various filters. After this the signal is 
squared and averaged with a detector, and the result is finally converted to decibels and 
shown on a display. In the following a very brief description of such an instrument will be 
given; see eg refs. [8, 9] for further details. 
 The most commonly used microphones for this purpose are condenser microphones, 
which are more stable and accurate than other types. The diaphragm of a condenser micro-
phone is a very thin, highly tensioned foil. Inside the housing of the microphone cartridge is 
the other part of the capacitor, the back plate, placed very close to the diaphragm (see figure 
1.3.4). The capacitor is electrically charged, either by an external voltage on the back plate or 
(in case of prepolarised electret microphones) by properties of the diaphragm or the back 
plate. When the diaphragm moves in response to the sound pressure, the capacitance changes, 
and this produces an electrical voltage proportional to the instantaneous sound pressure.  

 
Figure 1.3.3 A sound level meter. (From ref. [10].) 

                                                 

 24 The prefix p (for ‘pico’) represents a factor of 10-12. 
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Figure 1.3.4 A condenser microphone. (From ref. [11].) 

 

 
 

Figure 1.3.5 The ‘free-field correction’ of a typical measurement microphone for sound coming from various 
directions. The free-field correction is the fractional increase of the sound pressure (usually expressed in dB) 

caused by the presence of the microphone in the sound field. (From ref. [11].) 
 

 
Figure 1.3.6 Free-field response of a microphone of the ‘free-field’ type at axial incidence. (From ref. [11].) 

 
The microphone should be as small as possible so as not to disturb the sound field. 

However, this is in conflict with the requirement of a high sensitivity and a low inherent 
noise level, and typical measurement microphones are ‘½-inch’ microphones with a diameter 
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of about 13 mm. At low frequencies, say below 1 kHz, such a microphone is much smaller 
than the wavelength and does not disturb the sound field appreciably. In this frequency range 
the microphone is omnidirectional as of course it should be since the sound pressure is a sca-
lar and has no direction. However, from a few kilohertz and upwards the size of the micro-
phone is no longer negligible compared with the wavelength, and therefore it is no longer 
omnidirectional, which means that its response varies with the nature of the sound field; see 
figure 1.3.5. 
 One can design condenser microphones to have a flat response in as wide a frequency 
range as possible under specified sound field conditions. For example, ‘free-field’ micro-
phones are designed to have a flat response for axial incidence (see figure 1.3.6), and such 
microphones should therefore be pointed towards the source. ‘Random-incidence’ micro-
phones are designed for measurements in a diffuse sound field where sound is arriving from 
all directions, and ‘pressure’ microphones are intended for measurements in small cavities. 

The sensitivity of the human auditory system varies significantly with the frequency 
in a way that changes with the level. In particular the human ear is, at low levels, much less 
sensitive to low frequencies than to medium frequencies. This is the background for the stan-
dardised frequency weighting filters shown in figure 1.3.7. The original intention was to 
simulate a human ear at various levels, but it has long ago been realised that the human audi-
tory system is far more complicated than implied by such simple weighting curves, and B- 
and D-weighting filters are little used today. On the other hand the A-weighted sound pres-
sure level is the most widely used single-value measure of sound, because the A-weighted 
sound pressure level correlates in general much better with the subjective effect of noise than 
measurements of the sound pressure level with a flat frequency response. C-weighting, which 
is essentially flat in the audible frequency range, is sometimes used in combination with A-
weighting, because a large difference between the A-weighted level and the C-weighted level 
is a clear indication of a prominent content of low frequency noise. The results of measure-
ments of the A- and C-weighted sound pressure level are denoted LA and LC respectively, and 
the unit is dB.25 If no weighting filter is applied, the level is sometimes denoted LZ. 

 

 
Figure 1.3.7 Standardised frequency weighting curves. (From ref. [8].) 

                                                 

 25 In practice the unit is often written dB (A) and dB (C), respectively.  



  24

Table 1.3.2 The response of standard A- and C-weighting filters in one-third octave bands. 
  

Centre frequency (Hz) A-weighting (dB) C-weighting (dB) 

20 
25 

31.5 
40 
50 
63 
80 

100 
125 
160 
200 
250 
315 
400 
500 
630 
800 

1000 
1250 
1600 
2000 
2500 
3150 
4000 
5000 
6300 
8000 

10000 
12500 
16000 
20000 

-50.5 
-44.7 
-39.4 
-34.6 
-30.2 
-26.2 
-22.5 
-19.1 
-16.1 
-13.4 
-10.9 
-8.6 
-6.6 
-4.8 
-3.2 
-1.9 
-0.8 
0.0 
0.6 
1.0 
1.2 
1.3 
1.2 
1.0 
0.5 

-0.1 
-1.1 
-2.5 
-4.3 
-6.6 
-9.3 

-6.2 
-4.4 
-3.0 
-2.0 
-1.3 
-0.8 
-0.5 
-0.3 
-0.2 
-0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-0.1 
-0.2 
-0.3 
-0.5 
-0.8 
-1.3 
-2.0 
-3.0 
-4.4 
-6.2 
-8.5 

-11.2 

 
 In the measurement instrument the frequency weighting filter is followed by a squar-
ing device, a lowpass filter that smooths out the instantaneous fluctuations, and a logarithmic 
converter. The lowpass filter corresponds to applying a time weighting function. The most 
common time weighting in sound level meters is exponential, which implies that the squared 
signal is smoothed with a decaying exponential so that recent data are given more weight 
than older data: 

2 ( ) / 2
ref

1( ) 10log ( )e d .
t t u

pL t p u u pτ

τ
− −

−∞

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫  (1.3.13) 

Two values of the time constant τ are standardised: S (for ‘slow’) is exponential averaging 
with a time constant of 1 s, and F (for ‘fast’) is exponential averaging with a time constant of 
125 ms. 
  The alternative to exponential averaging is linear (or integrating) averaging, in which 
all the sound is weighted uniformly during the integration. The equivalent sound pressure 
level is defined as 
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2

1

2 2
eq ref

2 1

110log ( )d .
t

t
L p t t p

t t
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
∫  (1.3.14) 

 Measurements of random noise with a finite integration time are subject to random 
errors that depend on the bandwidth of the signal and on the integration time. It can be shown 
that the variance of the measurement result is inversely proportional to the product of the 
bandwidth and the integration time [6].26 
 As can be seen by comparing with eqs. (1.3.1) and (1.3.8), the equivalent sound pres-
sure level is just the sound pressure level corresponding to the rms sound pressure determined 
with a specified integration period. The A-weighted equivalent sound pressure level LAeq is 
the level corresponding to a similar time integral of the A-weighted instantaneous sound 
pressure. Sometimes the quantity is written LAeq,T where T is the integration time. 
 Whereas exponential averaging corresponds to a running average and thus gives a 
(smoothed) measure of the sound at any instant of time, the equivalent sound pressure level 
(with or without A-weighting) can be used for characterising the total effect of fluctuating 
noise, for example noise from road traffic. Typical values of T are 30 s for measurement of 
noise from technical installations, 8 h for noise in a working environment and 24 h for traffic 
noise. 
 Sometimes it is useful to analyse noise signals in one-third octave bands, cf. section 
1.3.1. From eq. (1.3.5) it can be seen that the total sound pressure level can be calculated 
from the levels in the individual one-third octave bands, Li, as follows: 

0.1
Z 10log 10 .iL

i

L ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (1.3.15) 

In a similar manner one can calculate the A-weighted sound pressure level from the one-third 
octave band values and the attenuation data given in table 1.3.2, 

,10log10 )(1.0
A ⎟

⎠

⎞
⎜
⎝

⎛
= ∑ +

i

KL iiL  (1.3.16) 

where Ki is the relative response of the A-weighting filter (in dB) in the i’th band, given in 
table 1.3.2.  
 
Example 1.3.10 
 A source gives rise to the following one-third octave band values of the sound pressure level at a cer-
tain point, 

Centre frequency (Hz) Sound pressure level (dB) 

315 
400 
500 
630 
800 

52 
68 
76 
71 
54 

                                                 

 26 In the literature reference is sometimes made to the equivalent integration time of exponential de-
tectors. This is two times the time constant (eg 250 ms for ‘F’), because a measurement with an exponential 
detector with a time constant of τ has the same statistical uncertainty as a measurement with linear averaging 
over a period of 2τ if the signal is random noise [9]. 
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and less than 50 dB in all the other bands. It follows that  

( )5.2 6.8 7.6 7.1 5.4
Z 10 log 10 10 10 10 10 77.7 dB,L + + + +  

and 

( )(5.2 0.66) (6.8 0.48) (7.6 0.32) (7.1 0.19) (5.4 0.08)
A 10 log 10 10 10 10 10 74.7 dB.L − − − − −+ + + +  

 
 Noise that changes its level in a regular manner is called intermittent noise. Such 
noise could for example be generated by machinery that operates in cycles. If the noise oc-
curs at several steady levels, the equivalent sound pressure level can be calculated from the 
formula 

0.1
eq, 10log 10 .iLi

T
i

tL
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (1.3.17) 

This corresponds to adding the mean square values with a weighting that reflects the duration 
of each level. 
 
Example 1.3.11 
 The A-weighted sound pressure level at a given position in an industrial hall changes periodically be-
tween 84 dB in intervals of 15 minutes, 95 dB in intervals of 5 minutes and 71 dB in intervals of 20 minutes. 
From eq. (1.3.17) it follows that the equivalent sound pressure level over a working day is 

 8.4 9.5 7.1
Aeq

15 5 2010log 10 10 10 87.0 dB.
40 40 40

L ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 

  
Most sound level meters have also a peak detector for determining the highest abso-

lute value of the instantaneous sound pressure (without filters and without time weighting), 
ppeak. The peak level is calculated from this value and eq. (1.3.8) in the usual manner, that is, 

 peak

ref

20 log .p

p
L

p
=  (1.3.18) 

 
Example 1.3.12    
 The crest factor of a signal is the ratio of its peak value to the rms value (sometimes expressed in dB). 
From example 3.1 it follows that the crest factor of a pure tone signal is 2  or 3 dB.   
 
 The sound exposure level (sometimes abbreviated SEL) is closely related to LAeq, but 
instead of dividing the time integral of the squared A-weighted instantaneous sound pressure 
by the actual integration time one divides by t0 = 1 s. Thus the sound exposure level is a 
measure of the total energy27 of the noise, normalised to 1 s: 
 

                                                 

 27 In signal analysis it is customary to use the term ‘energy’ in the sense of the integral of the square of 
a signal, without regard to its units. This should not be confused with the potential energy density of the sound 
field introduced in chapter 1.5.  
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1

2 2
AE A ref

0

110log ( )
t

t
L p t dt p

t
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  (1.3.19) 

 
This quantity is used for measuring the total energy of a ‘noise event’ (say, a hammer blow or 
the take off of an aircraft), independently of its duration. Evidently the measurement interval 
should encompass the entire event. 
 
Example 1.3.13 
 It is clear from eqs. (1.3.14) and (1.3.19) that LAeq,T of a noise event of finite duration decreases with 
the logarithm of T if the T exceeds its duration: 

2 2
Aeq, A ref AE

0

110log ( )d 10log .T
TL p t t p L

T t
∞

−∞

⎛ ⎞⎛ ⎞= = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫  

Example 1.3.14    
 If n identical noise events each with a sound exposure level of LAE occur within a period of T then the 
A-weighted equivalent sound level is 

Aeq, AE
0

10log 10log ,T
TL L n
t

= + −  

because the integrals of the squared signals are additive; cf. eq. (1.3.7).28 
 
 
1.4 THE CONCEPT OF IMPEDANCE 
 
 By definition an impedance is the ratio of the complex amplitudes of two signals rep-
resenting cause and effect, for example the ratio of an AC voltage across a part of an electric 
circuit to the corresponding current, the ratio of a mechanical force to the resulting vibra-
tional velocity, or the ratio of the sound pressure to the particle velocity. The term has been 
coined from the verb ‘impede’ (obstruct, hinder), indicating that it is a measure of the opposi-
tion to the flow of current etc. The reciprocal of the impedance is the admittance, coined from 
the verb ‘admit’ and indicating lack of such opposition. Note that these concepts require 
complex representation of harmonic signals; it makes no sense to divide, say, the instantane-
ous sound pressure with the instantaneous particle velocity. There is no simple way of de-
scribing properties corresponding to a complex value of the impedance without the use of 
complex notation.     
 The mechanical impedance is perhaps simpler to understand than the other impedance 
concepts, since it is intuitively clear that it takes a certain vibratory force to generate me-
chanical vibrations. The mechanical impedance of a structure at a given point is the ratio of 
the complex amplitude of a harmonic point force acting on the structure to the complex am-
plitude of the resulting vibratory velocity at the same point,29 

                                                 

 28 Strictly speaking this requires that the instantaneous product of the ‘event’ and any of its time shif-
ted versions time average to zero.  In practice this will always be the case. 
 29 Note that the sign of the imaginary part of the impedance changes if the e-iωt convention is used in-
stead of the ejωt convention. Cf. footnote no 9 on p. 6. 
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.
ˆ
ˆ

m v
FZ =  (1.4.1a) 

The unit is kg/s. The mechanical admittance is the reciprocal of the mechanical impedance, 

.ˆ
ˆ

m F
vY =  (1.4.1b) 

This quantity is also known as the mobility. The unit is s/kg. 
 
Example 1.4.1 
 It takes a force of F=a·M to set a mass M into the acceleration a (Newton’s second law of motion); 
therefore the mechanical impedance of the mass is 

 m

ˆ ˆ
j .

ˆ ˆ j
F FZ M
v a

ω
ω

= = =  

Example 1.4.2 
 It takes a force of  F=ξK to stretch a spring with the stiffness K a length of  ξ (Hooke’s law); therefore 
the mechanical impedance of the spring is 

 m

ˆ ˆ
.ˆˆ jj

F F KZ
v ωωξ

= = =  

 

 
 

Figure  1.4.1 A mass hanging from a spring. 
 
Example 1.4.3 
 A simple mechanical oscillator consists of a mass M suspended from a spring with a stiffness constant 
of K, as sketched in figure 1.4.1. In order to set the mass into vibrations one will have to move the mass and 
displace the spring from its equilibrium value. It follows that the mechanical impedance of this system is the 
sum of the impedance of the mass and the impedance of the spring,  

 ( )( )2
m 0j j j 1 ,

j
K KZ M M Mω ω ω ω ω
ω ω

⎛ ⎞= + = − = −⎜ ⎟
⎝ ⎠

 

where 

 0 K Mω =  
is the angular resonance frequency. Note that the impedance is zero at the resonance, indicating that even a very 
small harmonic force at this frequency will generate an infinite velocity. In practice there will always be some 
losses, of course, so the impedance is very small but not zero at the resonance frequency. 
 
 The acoustic impedance is associated with average properties on a surface. This quan-
tity is mainly used under conditions where the sound pressure is more or less constant on the 
surface. It is defined as the complex ratio of the average sound pressure to the volume veloc-
ity, which is the surface integral of the normal component of the particle velocity, 
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ˆ ˆ d ,
S

q = ⋅∫ u S  (1.4.2) 

where S is the surface area. Thus the acoustic impedance is 

a avˆ ˆZ p q= . (1.4.3) 

The unit is kgm-4s-1. Since the total force acting on the surface equals the product of the aver-
age sound pressure and the area, and since nuSq ˆˆ =  if the velocity is uniform, it can be seen 
that there is a simple relation between the two impedance concepts under such conditions: 

.2
am SZZ =  (1.4.4) 

This equation makes it possible to calculate the force it would take to drive a massless piston 
with the velocity nû . In other words, the acoustic impedance describes the load on a (real or 
fictive) piston caused by the medium. If the piston is real, the impedance is called the radia-
tion impedance. This quantity is used for describing the load on, for example, a loudspeaker 
membrane caused by the motion of the medium.30 
 The concept of acoustic impedance is essentially associated with approximate low-
frequency models. For example, it is a very good approximation to assume that the sound 
field in a tube is one-dimensional when the wavelength is long compared with the cross-
sectional dimensions of the tube. Under such conditions the sound field can be described by 
eqs. (1.2.15) and (1.2.16), and a tube of a given length behaves as an acoustic two-port.31 It is 
possible to calculate the transmission of sound through complicated systems of pipes using 
fairly simple considerations based the assumption of continuity of the sound pressure and the 
volume velocity at each junction [12].32 The acoustic impedance is also useful in studying the 
properties of acoustic transducers. Such transducers are usually much smaller than the wave-
length in a significant part of the frequency range. This makes it possible to employ so-called 
lumped parameter models where the system is described by an analogous electrical circuit 
composed of simple lumped element, inductors, resistors and capacitors, representing masses, 
losses and springs [13, 14]. Finally it should be mentioned that the acoustic impedance can be 
used for describing the acoustic properties of materials exposed to normal sound incidence.33 
 
                                                 

 30 The load of the medium on a vibrating piston can be described either in terms of the acoustic radia-
tion impedance (the ratio of the sound pressure to the volume velocity) or the mechanical radiation impedance 
(the ratio of the force to the velocity). 
 31 ‘Two-port’ is a term from electric circuit theory denoting a network with two terminals. Such a net-
work is completely described by the relations between four quantities, the voltage and current at the input ter-
minal and the voltage and current at the output terminal. By analogy, an acoustic two-port is completely de-
scribed by the relations between the sound pressures and the volume velocities at the two terminals. In case of a 
cylindrical tube such relations can easily be derived from eqs. (1.2.15) and (1.2.16) [12]. 
 32 Such systems act as acoustic filters. Silencers (or mufflers) are composed of coupled tubes. 

 33 In the general case we need to describe the properties of acoustic materials with the local ratio of the 
sound pressure on the surface to the resulting vibrational velocity. In most literature this quantity, which is used 
mainly in theoretical work, is called the specific acoustic impedance. In many practical applications the proper-
ties of acoustic materials are described in terms of absorption coefficients (or absorption factors), assuming ei-
ther normal or diffuse sound incidence (see chapter 1.5). It is possible to calculate the absorption coefficient of a 
material from its specific acoustic impedance, but not the impedance from the absorption coefficient.  
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Example 1.4.4 
 The acoustic input impedance of a tube terminated by a rigid cap can be deduced from eqs. (1.2.17) and 
(1.2.18) (with x = -l), 

 a j cot ,cZ kl
S
ρ

= −  

where l is the length of the tube and S is its cross-sectional area. Note that the impedance goes to infinity when l 
equals a multiple of half a wavelength, indicating that it would take an infinitely large force to drive a piston at 
the inlet of the tube at these frequencies (see figure 1.4.2). Conversely, the impedance is zero when l equals an 
odd-numbered multiple of a quarter of a wavelength; at these frequencies the sound pressure on a vibrating pis-
ton at the inlet of the tube would vanish. Cf. example 1.2.2. 
 
 

 
 

Figure 1.4.2 The acoustic input impedance of a tube terminated rigidly. 
 
 At low frequencies the acoustic impedance of the rigidly terminated tube analysed in 
example 1.4.4 can be simplified. The factor cotkl approaches 1/kl, and the acoustic imped-
ance becomes 

2

a j ,
j

c cZ
Slk V
ρ ρ

ω
− =  (1.4.5) 

where V = Sl is the volume of the tube, indicating that the air in the tube acts as a spring. 
Thus the acoustic impedance of a cavity much smaller than the wavelength is spring-like, 
with a stiffness that is inversely proportional to the volume and independent of the shape of 
the cavity. Since, from eq. (1.2.2b), 

2
0 ,c pρ γ=  (1.4.6) 

it can be seen that the acoustic impedance of a cavity at low frequencies also can be written 

0
a ,

j
p

Z
V

γ
ω

=  (1.4.7) 

in agreement with the considerations on p. 3. 
 
Example 1.4.5 
 A Helmholtz resonator is the acoustic analogue to the simple mechanical oscillator described in exam-
ple 1.4.3; see figure 1.4.3. The dimensions of the cavity are much smaller that the wavelength; therefore it be-
haves as a spring with the acoustic impedance  
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2

a ,
j

cZ
V

ρ
ω

=  

where V is the volume; cf. eq. (1.4.5). The air in the neck moves back and forth uniformly as if it were incom-
pressible; therefore the air in the neck behaves as a lumped mass with the mechanical impedance 

 m effj ,Z Slωρ=  

where leff is the effective length and S is the cross-sectional area of the neck. (The effective length of the neck is 
somewhat longer than the physical length, because some of the air just outside the neck is moving along with 
the air in the neck.) The corresponding acoustic impedance follows from eq. (1.4.4): 

 eff
a

j l
Z

S
ωρ

= . 

By analogy with example 1.4.3 we conclude that the angular resonance frequency is 

 0
eff

.Sc
Vl

ω =  

Note that the resonance frequency is independent of the density of the medium.  
 It is intuitively clear that a larger volume or a longer neck would correspond to a lower frequency, but 
it is perhaps less obvious that a smaller neck area gives a lower frequency. 
 

 
Figure 1.4.3 A Helmholtz resonator. 

 
 Yet another impedance concept, the characteristic impedance, has already been intro-
duced. As we have seen in section 1.2.1, the complex ratio of the sound pressure to the parti-
cle velocity in a plane propagating wave equals the characteristic impedance of the medium 
(cf. eq. (1.2.14)), and it approximates this value in a free field far from the source (cf. eq. 
(1.2.27)). Thus, the characteristic impedance describes a property of the medium, as we have 
seen on p. 12. The unit is kgm-2s-1. 
 

1.5 SOUND ENERGY, SOUND INTENSITY, SOUND POWER AND SOUND AB-
SORPTION  
 
 The most important quantity for describing a sound field is the sound pressure. How-
ever, sources of sound emit sound power, and sound fields are also energy fields in which 
potential and kinetic energies are generated, transmitted and dissipated. Some typical sound 
power levels are given in table 1.5.1.  

It is apparent that the radiated sound power is a negligible part of the energy conver-
sion of almost any source. However, energy considerations are nevertheless of great practical 
importance in acoustics. The usefulness is due to the fact that a statistical approach where the 
energy of the sound field is considered turns out to give very useful approximations in room 
acoustics and in noise control. In fact determining the sound power of sources is a central 
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point in noise control engineering. The value and relevance of knowing the sound power ra-
diated by a source is due to the fact that this quantity is largely independent of the surround-
ings of the source in the audible frequency range.  
 

Table 1.5.1 Typical sound power levels. 

Aircraft turbojet engine 10 kW 160 dB 

Gas turbine (1 MW) 32 W 135 dB 

Small airplane 5 W 127 dB 

Tractor (150 hp) 100 mW 110 dB 

Large electric motor (0.5 MW) 10 mW 100 dB 

Vacuum cleaner 100 μW 80 dB 

Office machine 32 μW 75 dB 

Speech 10 μW 70 dB 

Whisper 10 nW 40 dB 
 
 
1.5.1 The energy in a sound field 
 It can be shown that the instantaneous potential energy density in a sound field (the 
potential sound energy per unit volume) is given by the expression 

( ) ( ).
2 2

2

pot c
tptw

ρ
=  (1.5.1) 

This quantity describes the energy stored per unit volume of the medium because of the com-
pression or rarefaction; the phenomenon is analogous to the potential energy stored in a com-
pressed or elongated spring, and the derivation is similar. 
 The instantaneous kinetic energy density in a sound field (the kinetic energy per unit 
volume) is 

( ) ( )2
kin

1
2

w t u tρ= . (1.5.2) 

This quantity describes the energy per unit volume represented by the mass of the particles of 
the medium moving with the velocity u. This corresponds to the kinetic energy of a moving 
mass, and the derivation is similar. 
 The instantaneous sound intensity is the product of the instantaneous sound pressure 
and the instantaneous particle velocity, 

( ) ( ) ( )t p t t=I u . (1.5.3) 
This quantity, which is a vector, expresses the magnitude and direction of the instantaneous 
flow of sound energy per unit area, or the work done by the sound wave per unit area of an 
imaginary surface perpendicular to the vector.  
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Energy conservation 
 By combining the fundamental equations that govern a sound field (the conservation of mass, the rela-
tion between the sound pressure and density changes, and Euler’s equation of motion), one can derive the equa-
tion  

( )( ) ,w tt
t

∂
∇ ⋅ = −

∂
I    

where ( )t∇ ⋅ I  is the divergence of the instantaneous sound intensity and w(t) is the sum of the potential and 
kinetic energy densities. This is the equation of conservation of sound energy, which expresses the simple fact 
that the rate of change of the total sound energy at a given point in a sound field is equal to the flow of converg-
ing sound energy; if the sound energy density at the point increases there must be a net flow of energy towards 
the point, and if it decreases there must be net flow of energy diverging away from the point. 
 The global version of this equation is obtained using Gauss’s theorem,34 

( ) ( )( )d ( ) d (t)d ,
V S V

E tt V t w V
t t

∂ ∂
∇ ⋅ = ⋅ = − = −

∂ ∂∫ ∫ ∫I I S    

where S is the area of an arbitrary, closed surface, V is the volume inside the surface, and E(t) is the total instan-
taneous sound energy within the surface. This equation shows that the rate of change of the total sound energy 
within a closed surface is identical with the surface integral of the normal component of the instantaneous sound 
intensity. 
 
 In practice the time-averaged energy densities, 

,
2
1             ,

2
2
rmskin2

2
rms

pot uw
c

pw ρ
ρ

==  (1.5.4a, 1.5.4b) 

are more important than the instantaneous quantities, and the time-averaged sound intensity 
(which is usually referred to just as the ‘sound intensity’), 

( ) ( ) ( ),t p t t= =I I u  (1.5.5) 

is more important than the instantaneous intensity I(t). It can be shown that the integral of the 
normal component of the sound intensity over a closed surface is zero, 

d 0
S

⋅ =∫ I S  (1.5.6) 

in any sound field unless there is generation or dissipation of sound power within the surface 
S. If the surface encloses a source the integral equals the radiated sound power of the source, 
irrespective of the presence of other sources of noise outside the surface:  

ad
S

P⋅ =∫ I S  (1.5.7) 

 Often we will be concerned with harmonic signals and make use of complex notation, 
as in chapters 1.2 and 1.4. Expressed in the complex notation eqs. (1.5.4) and (1.5.5) become 

2
2

pot kin2

ˆ 1 ˆ,              ,
44

p
w w u

c
ρ

ρ
= =   (1.5.8a, 1.5.8b) 

                                                 

 34 According to Gauss’s theorem the volume integral of the divergence of a vector equals the cor-
responding surface integral of the (outward pointing) normal component of the vector.  
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{ }*1 ˆ ˆRe
2

p=I u . (1.5.9) 

(Note that the two complex exponentials describing the time dependence of the sound pres-
sure and the particle velocity cancel each other because one of them is conjugated; see the 
Appendix.) The component of the sound intensity in a certain direction is 

{ }*1 ˆ ˆRe
2r rI pu= . (1.5.10) 

Inserting the expressions for the sound pressure (eq. (1.2.13)) and the particle velocity (eqs. 
(1.2.14)) in a plane propagating wave into eq. (1.5.10) shows that 

c
p
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Ix ρρ

2
rms

2

2
ˆ

==  (1.5.11) 

in this particular sound field. Moreover, inserting the corresponding expressions for a simple 
spherical wave, eqs. (1.2.26) and (1.2.27), into eq. (1.5.10) gives the same relation: 
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 (1.5.12) 

It is apparent that there is a simple relation between the sound intensity and the mean square 
sound pressure in these two extremely important cases.35 However, it should be emphasised 
that in the general case eq. (1.5.11) is not valid, and one will have to measure both the sound 
pressure and the particle velocity simultaneously and time integrate the instantaneous product 
in order to measure the sound intensity. Equipment for such measurements has been commer-
cially available since the early 1980s [3].  
 
Example 1.5.1 
 It follows from eq. (1.5.11) that the sound intensity in a plane propagating wave with an rms sound 
pressure of 1 Pa is 2 3 1 2(1 Pa) (1.2 kgm 343 ms ) 2.4 mW m− −⋅ . 
 
Example 1.5.2 
 The sound intensity in the interference field generated by a plane sound wave reflected from a rigid 
surface at normal incidence can be determined by inserting eqs. (1.2.17) and (1.2.18) into eq. (1.5.10):  
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This result shows that there is no net flow of sound energy towards the rigid surface. 
 

Under conditions where the sound pressure and the particle velocity are constant over 
a surface in phase as well as in amplitude we can write 

                                                 
 35 Eq. (1.5.11) implies that the sound intensity level is almost identical with the sound pressure level in 
air at 20°C and 101.3 kPa:  

  ( ) ( ) ( ) ( )2 2 2 2
ref rms rms ref ref refref10 log 10 log ( ) 10 log 10 log 0.14 dB .I p pL I I p c I p p cI p L Lρ ρ= = = − −  
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aˆˆ Zqp =  (1.5.13) 

(cf. eq. (1.4.4)), and the sound power passing through the surface can be expressed in terms 
of the acoustic impedance: 

{ } { } { }
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q
P pq q Z Z= = =  (1.5.14) 

This expression demonstrates that the radiated sound power of a vibrating surface is closely 
related to the volume velocity and to the real part of the radiation impedance.  

Equation (1.5.7) implies that one can determine the sound power radiated by a source 
by integrating the normal component of the sound intensity over a surface that encloses the 
source. That is the sound intensity method of measuring sound power. Note that special 
equipment for such measurements is required. 

In an environment without reflecting surfaces the sound field far from any source of 
finite extent is locally plane, as mentioned in section 1.2.2, and therefore the local sound in-
tensity is to a good approximation given by eq. (1.5.11). With eq. (1.5.7) we now conclude 
that one can estimate the radiated sound power of a source by integrating the mean square 
pressure generated by the source over a spherical surface centred at the source: 

( )2
a rms ( ) d .

S
P p c Sρ= ∫  (1.5.15) 

However, whereas eq. (1.5.7) is valid even in the presence of sources outside the measure-
ment surface eq. (1.5.11) is not; therefore only the source under test must be present. In prac-
tice one measures the sound pressure at a finite number of discrete points. This is the free-
field method of measuring sound power. Note that an anechoic room (a room without any re-
flecting surfaces) is required. 
 Yet another method of measuring sound power requires a diffuse sound field in a re-
verberation room.  
 
1.5.2 Sound absorption 
 Most materials absorb sound. As we have seen in chapter 1.2 we need a precise de-
scription of the boundary conditions for solving the wave equation, which leads to a descrip-
tion of material properties in terms of the specific acoustic impedance, as mentioned in chap-
ter 1.4. However, in practical applications, for example in architectural acoustics, a simpler 
measure of the acoustic properties of materials, the absorption coefficient (or absorption fac-
tor), is more useful. By definition the absorption coefficient of a given material is the ab-
sorbed fraction of the incident sound power. From this definition it follows that the absorp-
tion coefficient takes values between naught and unity. A value of unity implies that all the 
incident sound power is absorbed. 
 

 
 
Figure 1.5.1 A standing wave tube for measuring the normal incidence absorption coefficient. (From ref. [15].) 
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In general the absorption coefficient of a given material depends on the structure of 
the sound field (plane wave incidence of a given angle of incidence, for example, or random 
or diffuse incidence in a room). Here we will study only the absorption for plane waves of 
normal incidence. 
 Consider the sound field in a tube driven by a loudspeaker at one end and terminated 
by the material under test at the other end, as sketched in figure 1.5.1. This is a one-
dimensional field, which means that it has the general form given by eqs. (1.2.15) and 
(1.2.16). The amplitudes pi and pr depend on the boundary conditions, that is, the vibrational 
velocity of the loudspeaker and the properties of the material at the end of the tube. The 
sound intensity is obtained by inserting eqs. (1.2.15) and (1.2.16) into eq. (1.5.10):  
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where the last equation sign follows from eq. (1.2.20). The incident sound intensity is the 
value associated with the incident wave, that is,  
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The absorption coefficient is the ratio of Ix to Iinc, 
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where we have introduced the reflection factor and the standing wave ratio (cf. eqs. (1.2.19) 
and (1.2.22)). Note that the absorption coefficient is independent of the phase angle of R, 
which shows that there is more information in the complex reflection factor than in the ab-
sorption coefficient. Equation (1.5.18) demonstrates that one can determine the normal inci-
dence absorption of a material by exposing it to normal sound incidence in a tube and meas-
uring the standing wave ratio of the resulting interference field. 
 

 
Figure 1.5.2 Standing wave patterns for various values of the absorption coefficient: 0.9 (–––); 0.6 (– –); 0.3 

(···). 
 
Example 1.5.3 
 If the material under test is completely reflecting then |R| = 1, corresponding to an absorption coeffi-
cient of zero. In this case the standing wave ratio is infinitely large. If the material is completely absorbing, R = 
0, corresponding to an absorption coefficient of unity. In this case there is no reflected wave, so the sound pres-
sure amplitude is constant in the tube, corresponding to a standing wave ratio of one. 
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1.6 RADIATION OF SOUND 
 
 Sound can be generated by many different mechanisms. In this note we will study 
only the simplest one, which is also the most important: that of a solid vibrating surface. As 
we shall see, the most efficient mechanism for radiation of sound involves a net volume dis-
placement. 
 
1.6.1 Point sources 
 The simplest source to describe mathematically is a sphere that expands and contracts 
harmonically with spherical symmetry. In free space such a source generates the simple 
spherical sound field we studied in section 1.2.2. Say the source has a radius of a. From eq. 
(1.2.27) we know that the particle velocity on the surface of the source is 
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The boundary condition on the surface implies that the vibrational velocity tU ωje must equal 
the normal component of the particle velocity; therefore  
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ρ ρω
= =

+ +
 (1.6.2) 

where we have introduced the volume velocity of the pulsating sphere, 

 24π ,Q a U=  (1.6.3) 

by multiplying with the surface area of the sphere. Inserting into eq. (1.2.26) gives an expres-
sion for the sound pressure generated by the source, 
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 (1.6.4) 

We can now calculate the radiation impedance of the pulsating sphere. This is the ratio of the 
sound pressure on the surface of the sphere to the volume velocity (cf. eq. (1.4.3)): 
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where the approximation to the right is based on the assumption that ka << 1. Note that the 
imaginary part of the radiation impedance is much larger than the real part at low frequencies, 
indicating that most of the force it takes to expand and contract the sphere goes to moving the 
mass of the air in a region near the sphere (cf. example 1.4.1). This air moves back and forth 
almost as if it were incompressible.  
 In the limit of a vanishingly small sphere the source becomes a monopole, also known 
as a point source or a simple source. With ka << 1, the expression for the sound pressure 
generated by a point source with the volume velocity je tQ ω becomes 
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A vanishingly small sphere with a finite volume velocity36 may seem to be a rather academic 
source. However, the monopole is a central concept in theoretical acoustics. At low frequen-
cies it is a good approximation to any source that produces a net displacement of volume, that 
is, any source that is small compared with the wavelength and changes its volume as a func-
tion of time, irrespective of its shape and the way it vibrates. An enclosed loudspeaker is to a 
good approximation a monopole at low frequencies. A source that injects fluid, the outlet of 
an engine exhaust system, for example, is also in effect a monopole. 
 The sound intensity generated by the monopole can be determined from eq. (1.5.10): 

{ } ( )2
*

*
2 2

1 1 j j 1ˆ ˆRe Re 1 .
2 2 4π 4π j 32πr r

QQ QI pu
r r c kr r c

ρωρω ρω
ρ ρ

⎧ ⎫⎛ ⎞−
= = − =⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
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By multiplying with the surface of the area of a sphere with the radius r we get the sound 
power radiated by the monopole, 
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We could also obtain this result from eqs. (1.5.14) and (1.6.5), of course. Note that the sound 
power is proportional to the square of the frequency, indicating that a small pulsating sphere 
is not a very efficient radiator of sound at low frequencies. 
  
Reciprocity 
 The reciprocity principle states that if a monopole source at a given point generates a certain sound 
pressure at a another point then the monopole would generate the same sound pressure if we interchange listener 
and source position, irrespective of the presence of reflecting or absorbing surfaces. This is a strong statement 
with many practical implications. 
 
 It is easy to take account of a large reflecting plane surface, say, at z = 0, if one makes 
use of the concept of image sources. If the surface is rigid the boundary condition implies 
that uz = 0 at z = 0, and simple symmetry considerations show that this is satisfied if we re-
place the rigid plane with an image source; see figure 1.6.1. The resulting sound pressure is 
simply the sum of the sound pressures generated by the source and the image source, 
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The parenthesis shows the effect of the reflecting plane, that is, it represents the sound pres-
sure normalised by the free field value. The normalised equation can be used for studying 
outdoor sound propagation over a hard surface, and it is common practice to present the 
‘ground effect’, that is, the effect of reflections from the ground on outdoor sound propaga-
tion, in this form. 
 At very low frequencies k(R1 - R2) << 1, and the rigid surface can be seen to have the 
effect of increasing the sound pressure by a factor of 1+ R1/R2. Destructive interference oc-
curs when the second term in the parenthesis is real and negative, and the first interference 
                                                 

 36 The volume velocity of the monopole is sometimes referred to as the source strength. However, 
some authors use other definitions of the source strength. The term ‘volume velocity’ is unambiguous. 
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dip occurs when k(R1 – R2)  = π, corresponding to (R1 – R2) being half a wavelength. Figure 
1.6.2 shows the sound pressure relative to free field for sound propagation over a rigid plane 
surface. 

 
 

Figure 1.6.1 The sound pressure generated by a monopole above a rigid plane is the sum of two terms: direct 
sound and the contribution from the image source.(From ref. [16].) 

 

 
 

Figure 1.6.2 The sound pressure in one-third octave bands generated by a monopole above a rigid plane and 
shown relative to free field for five different source-receiver distances.(From ref. [16].) 

 
 If the distance between the source and the observation point is much longer than the 
distance between the source and the reflecting plane (see figure 1.6.3) we can make use of the 
far-field approximation and let 1 2r r r  in the denominator of eq, (1.6.6) and 

1 cosr r h θ−  and 2 cosr r h θ+  in the complex exponentials. The resulting sound pressure 
now becomes 
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Inspection of eq. (1.6.10) leads to the conclusion that the sound pressure in the far field de-
pends on kh and on θ unless kh << 1, in which case the sound pressure is simply doubled. 
 

 
Figure 1.6.3 Far field sound pressure generated by a monopole near a rigid plane surface. 

 The sound power of the monopole is affected by the presence of the reflecting surface 
unless it is far away, kh >> 1. We can calculate the sound power by integrating the sound in-
tensity over a hemisphere, cf. eq. (1.5.7). (Since the normal component of the particle velocity 
is zero at all points on the plane between the source and the image source, the normal compo-
nent of the intensity is also zero, so this surface does not contribute to the integral.) Moreover, 
the considerations that lead to eq. (1.5.15) are also valid for combinations of sources. It fol-
lows that 

2 22
π 2 2π π 22 2

a 0 0 0

2 22 2
2

0

ˆ
sin d d cos ( cos )sin d

2 4π

sin(2 )cos d 1 .
4π 8π 2

kh

p ck Q
P r kh

c

ck Q ck Q khx x
kh kh

ρ
θ ϕ θ θ θ θ

ρ

ρ ρ

= =

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

∫ ∫ ∫

∫
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Figure 1.6.4 shows the factor in parentheses. It is apparent that the sound power is doubled if 
the source is very close to the surface, and that the rigid surface has an insignificant influence 
on the sound power output of the source when h exceeds a quarter of a wavelength, corre-
sponding to kh = π/2. 

 
Figure 1.6.4 The influence of a rigid surface on the sound power of a monopole. 

Example 1.6.1 
 It can be deduced from eq. (1.6.11) that two identical monopoles in close proximity (two enclosed loud-
speakers driven with the same signal, for example) at very low frequencies will radiate twice as much sound 
power as they do when they are far from each other. The physical explanation is that the radiation load on each 
source is doubled; the sound pressure on each source is not only generated by the source itself but also by the 
neighbouring source. Alternatively one might regard the two loudspeakers as one compound source with twice 
the volume velocity of each loudspeaker. Because of the quadratic relation between volume velocity and power  
(cf. eq. (1.6.8)) this source will radiate four times more sound power than one single loudspeaker in isolation. 
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 Two monopoles of the same volume velocity but vibrating in antiphase constitute a 
point dipole if the distance between them is much less than the wavelength; see figure 1.6.5. It 
is clear that the combined source has no net volume velocity. A point dipole is a good ap-
proximation to a small vibrating body that does not change its volume as a function of time. 
Such a source exerts a force on the fluid. The oscillating sphere shown in figure 1.6.6, for ex-
ample, is in effect a dipole, and so is an unenclosed loudspeaker unit. Other examples include 
vibrating beams and wires. 
 

 
Figure 1.6.5 A point dipole. 

 
The sound pressure generated by the two monopoles is  
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The near field of this combination of sources is fairly complicated. However, the far field is 
relatively simple. We can calculate the sound pressure in the far field in the same way we 
used in deriving eq. (1.6.10),  
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Note that the sound pressure is proportional to h|Q|, varies as cosθ and is identically zero in 
the plane between the two monopoles.37  

The sound power of the dipole is calculated by integrating the mean square sound 
pressure over a spherical surface centred midway between the two monopoles: 
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Note that the sound power of the dipole is proportional to the fourth power of the frequency, 
indicating very poor sound radiation at low frequencies. The physical explanation of the poor 
radiation efficiency of the dipole is of course that the two monopoles almost cancel each 
other. 
                                                 

 37 The quantity 2hQ is referred to by some authors as the dipole strength. However, other authors use 
other definitions. 
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Figure 1.6.6 Fluid particles in the sound field generated by an oscillating sphere. (From ref. [1].) 
 
1.6.2 Sound radiation from a circular piston in an infinite baffle 
 Apart from the pulsating sphere, a vibrating circular piston in an infinite, rigid baffle is 
one of the simplest cases of a spatially extended sound source that can be dealt with analyti-
cally. It is often used in connection with loudspeaker modelling.  
 The basic approach to extended sound sources is to consider them as composed of 
many simple sources, just as a dipole is made up of two monopoles. Thus, the piston is the 
sum of many monopoles that all radiate in phase. Because of the presence of the infinite baf-
fle, just as many monopoles, vibrating in phase with the first ones, must be considered just on 
the other side of the baffle (images sources, cf. eqs. (1.6.9) and (1.6.10)). Let the piston vi-
brate with the velocity je tU ω . It follows that the volume velocity of each elementary mono-
pole is UdS. By linear superposition we conclude that the sound pressure radiated by the pis-
ton can be evaluated at any position in front of the baffle simply by integrating over the sur-
face of the piston, 
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where h is the distance between the observation point and the running position on the piston, 
and S is the surface of the piston of radius a (see figure 1.6.7).This is a special case of what is 
known as Rayleigh’s integral, which can be used for computing the sound radiation into half 
space of any plane infinite surface with a given vibrational velocity [17]. Note the factor of 
two in the denominator instead of four for the monopole, which is due to the contribution of 
the image sources.  
 

 
 
 
 
 
 
 
 
 

Figure 1.6.7 Definition of the variables. (From ref. [18].) 
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 The far field sound pressure, that is, the sound pressure at long distances from the cen-
tre of the piston compared with the radius and the wavelength, can be calculated by expanding 
h in the complex exponential, 
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while retaining only the first term of eq. (1.6.16) in the denominator (cf. eq. (1.6.10)). Thus 
the expression for the sound pressure becomes 
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The calculation makes use of the Bessel functions J0(z) and J1(z), defined by 
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(see figure 1.6.8), and leads to the following expression for the far field sound pressure, 
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where we have introduced the volume velocity of the piston, Q = π a2U. The factor in brack-
ets is called the directivity of the piston, which is a frequency dependent function that de-
scribes the directional characteristics of the source in the far field,  
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This function has its maximum value, unity, when θ = 0, indicating maximum radiation in the 
axial direction all frequencies. Figure 1.6.9 shows the directivity for different values of the 
normalised frequency ka. Note that the piston is an omnidirectional source (a monopole 
placed on a rigid surface) at low frequencies, just as one would expect. At high frequencies 
the radiation of the piston is concentrated in a beam near the axial direction. 
 

 
Figure 1.6.8 Bessel functions. 
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E

 
 

Figure 1.6.9 Directivity of the piston as a function of the normalised frequency ka. (From ref. [18].) 
 
 The sound pressure on the axis of the piston can be evaluated fairly easily. Since sin θ 
= 0 on the axis, the expression for the distance h reduces to 
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from which, 
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Thus the sound pressure on the axis is given by 
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If we introduce the quantity 

( ) ,222 rar −+=Δ  (1.6.25) 

the sound pressure can be written 
[ ]( ) ).sin(ej2ˆ j Δ= Δ+− kcUp rktωρ  (1.6.26) 

It can be seen that the sound pressure is zero when k) is a multiple of π, that is, when ) is a 
multiple of half a wavelength, corresponding to the positions 
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on the axis, where n is a positive integer. In a similar way, the sound pressure assumes a 
maximum value for 
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(where m is a positive integer), that is, for 
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Figure 1.6.10 shows the normalised sound pressure on the axis of the piston as a function of 
the distance, which for a given frequency is defined by the corresponding ka-factor.  

  
Figure 1.6.10 Sound pressure on the axis of a baffled piston for ka/2π = 5.5. (From ref. [19].) 

 
It may seem surprising that the sound pressure is zero at some positions right in front of the 
vibrating piston. The explanation is destructive interference, caused by the fact that the dis-
tance from such a position to the various parts of the piston varies in such a manner that the 
contributions cancel out. 
 
Example 1.6.2 
 In the far field, when r >> a and r >> a2/λ, one obtains 
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and the sound pressure reduces to 
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This expression agrees with eq. (1.6.20) for θ = 0 (D(f) = 1), as of course it should. This asymptotic expression is 
plotted as a dashed line in figure 1.6.10. 
 
Example 1.6.3 
 The distances at which the minima occur, normalised by the radius of the piston, are given in terms of 
normalised frequencies by
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4π
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Minima of order n only occur for ka ≥ 2πn > 6. Thus for a loudspeaker with a radius of 50 mm, minima only 
occur at frequencies higher than 6900 Hz, that is, far above the frequencies at which the piston approximation is 
valid. It follows that the minima are never observed in front of loudspeakers in real life. 
 
 In the near field there is no possible approximation except on the axis. However, by 
developing the spherical monopole field in cylindrical coordinates, the force exerted on the 
piston can be calculated analytically. The calculations are rather complicated (see ref. [19] or 
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[20] for a complete treatment), and lead to an expression in terms of special functions such as 
Bessel and Struve functions. The result is, 
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where H1 is the first Struve function.  
 The radiation impedance is the impedance seen by the piston, that is, the ratio of the 
average sound pressure to the volume velocity, 

.
e
ˆ

e
ˆ

jjra, tt SQ
F

Q
pZ ωω =

><
=  (1.6.31) 

Combining eqs.(1.6.30) and (1.6.31) gives 
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Figure 1.6.11 shows the normalised, dimensionless radiation impedance (the bracket in eq. 
(1.6.32)), 
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At low frequencies and at high frequencies the radiation impedance takes simple expressions: 
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Figure 1.6.11 Radiation impedance of a piston as a function of the normalised frequency. (From ref. [19].) 
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The first expression is fundamental for designing loudspeakers. Note that the real part of the 
radiation impedance equals that of a small pulsating sphere, eq. (1.6.5), multiplied by a factor 
of two because of the rigid plane. The quantity ma,r can be interpreted as the acoustic mass of 
the air driven along by the piston. Interference effects in the near field make it different from 
the imaginary part of impedance of the pulsating sphere. However, as in the case of the pul-
sating sphere, eq. (1.6.5), the imaginary part of the acoustic radiation impedance diverges 
when the radius a goes to zero. 
 
Example 1.6.4 
 The mechanical radiation impedance is given by eqs. (1.4.4) and (1.6.33) as Zm,r = ρcπa2(R1+jX1). Its 
low frequency approximation is therefore: 

 
4 2 3

m,r
π 8j .

2 3
a ck aZ ρ ωρ= +  

The imaginary part of this impedance is the impedance of the mass of a layer of air in front of the piston. This 
layer of air is moving back and forth as if it were incompressible. 
 
 The radiated sound power is defined in chapter 1.5 as the integral of the normal com-
ponent of the sound intensity over a surface than encloses the source. This method can also be 
used for computing the sound power of a piston in an infinite baffle. However, by far the sim-
plest approach is to use eq. (1.5.14), which expresses the sound power in terms of the mean 
square volume velocity and the real part of the acoustic radiation impedance: 

{ }2 2 2 11 1 1
a a,r 12 2 22 2

J (2 )Re 1 .
π π

kac cP Q Z Q R Q
a a ka

ρ ρ ⎡ ⎤= = = −⎢ ⎥⎣ ⎦
 (1.6.35) 

At low frequencies this becomes, with eq. (1.6.34a), 
22

a ,
4π

ck Q
P

ρ
=  (1.6.36) 

which is just what we would expect since the piston acts as a monopole on a rigid plane in 
this frequency range (cf. eq. (1.6.11)). 
 
Example 1.6.5 
 Instead of using the volume velocity and the acoustic impedance we could equally well compute the 
sound power from the mean square velocity and the real part of the mechanical radiation impedance, since, with 
eq. (1.4.4), 

 { } { }2 21 1
a a,r m,r2 2Re Re .P Q Z U Z= =  

 
Example 1.6.6 
 Equation (1.6.36) shows that the sound power of the piston is proportional to |ωQ|2 at low frequencies,  
that is, the sound power is independent of the frequency if the volume acceleration is independent of the fre-
quency. This implies that the displacement of the piston should be inversely proportional to the square of the 
frequency if we want the sound power to be independent of the frequency. In other words, it implies very large 
displacements at low frequencies. Since mechanical systems such as loudspeakers only allow a limited excur-
sion, the low frequency sound power output of a loudspeaker is always limited: the only way to increase the 
sound power is to increase the size of the membrane. This explains why very large loudspeakers are found in 
subwoofers. 
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 The directivity factor of a source is defined as the sound intensity on the axis in the far 
field normalised by the sound intensity of an omnidirectional source with the same sound 
power. From eq. (1.6.20) the sound intensity on the axis is 
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(see also example 1.6.2). Normalising with Pa/4πr2 (eq. (1.6.35)) gives the directivity factor 
Q(f), 
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The directivity factor of the piston is plotted in figure 1.6.12 as a function of the normalised 
frequency ka. Note that the directivity factor approaches two at low frequencies rather than 
one, reflecting the fact that all the sound power is radiated in only half a sphere. 
 In practice, one often uses the directivity index, defined by 

).(log10)( fQfDI =  (1.6.40) 
                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6.12 Directivity factor of a piston in a baffle. (From ref. [18].) 
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1.9 APPENDIX: COMPLEX NOTATION 
 
 In a harmonic sound field the sound pressure at any point is a function of the type 
cos(Tt + n). It is common practice to use complex notation in such cases. This is a symbolic 
method that makes use of the fact that complex exponentials give a more condensed notation 
that trigonometric functions because of the complicated multiplication theorems of sines and 
cosines. 
 We recall that a complex number A can be written either in terms of its real and 
imaginary part or in terms of its magnitude (also called absolute value or modulus) and phase 
angle, 

,ej j
ir

AAAAA ϕ=+=  (1.9.1) 

where 

1j −=  (1.9.2) 

is the imaginary unit, and 
 

{ } { } ,sinIm,cosRe ir AA AAAAAA ϕϕ ====  (1.9.3, 1.9.4) 
2
i

2
r AAA +=  (1.9.5) 

 
(see figure 1.9.1). The complex conjugate of A is 

;ej j
ir

* AAAAA ϕ−=−=  (1.9.6) 

therefore the magnitude can also be written 

.*AAA ⋅=  (1.9.7) 

Multiplication and division of two complex numbers are most conveniently carried out if they 
are given in terms of magnitudes and phase angles, 

.e,e )j()j( BABA

B
A

BABAAB ϕϕϕϕ −+ ==  (1.9.8, 1.9.9) 

 

 
 

Figure 1.9.1. Complex representation of a harmonic signal. 
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 Complex representation of harmonic signals makes use of the fact that 

xxx sinjcose j +=  (1.9.10) 

(Euler’s equation) or, conversely, 

( ) ( )j j j j1 1cos e e , sin j e e
2 2

x x x xx x− −= + = − − . (1.9.11a, 1.9.11b) 

In a harmonic sound field the sound pressure at a given position can be written 

,eˆ j tAp ω=  (1.9.12) 

where A is the complex amplitude of the sound pressure. The real, physical sound pressure is 
of course a real function of the time, 

{ } { } ),cos(eReˆRe )j(
A

t tAApp A ϕωϕω +=== +  (1.9.13) 

which is seen to be an expression of the form cos(ωt + φ). The magnitude of the complex 
quantity |A| is called the amplitude of the pressure, and φA is its phase. It can be concluded 
that complex notation implies the mathematical trick of adding another solution, an expres-
sion of the form sin(ωt + φ), multiplied by a constant, the imaginary unit j. This trick relies on 
linear superposition. 
 

Figure 1.9.2. Two simple harmonic signals with identical frequencies. (From ref. [21].) 
 
The mathematical convenience of the complex representation of harmonic signals can 

be illustrated by an example. A sum of two harmonic signals of the same frequency, A1ejωt 
and A2ejωt, is yet another harmonic signal with an amplitude of |A1 + A2| (see figure 1.9.2). 
Evidently, this can also be derived without complex notation, 
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where 
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but the expedience and convenience of the complex method seems indisputable. 
Since 

 

,eje
d
d jj tt

t
ωω ω=  (1.9.16) 

 
it follows that differentiation with respect to time corresponds to multiplication by a factor of 
jω. Conversely, integration with respect to time corresponds to division with jω. If, for exam-
ple, the vibrational velocity of a surface is, in complex representation, 
 

j( )jˆ e e ,Bttv B B ω ϕω += =  (1.9.17) 
 
which means that the real, physical velocity is 
 

{ } ),cos(ˆRe BtBvv ϕω +==  (1.9.18) 
 
then the acceleration is written 
 

,ˆjˆ va ω=  (1.9.19) 
 
which means that the physical acceleration is 
 

{ } { }jˆRe Re j e sin( )t
Ba a B B tωω ω ω ϕ= = = − + , (1.9.20) 

 
and this is seen to agree with the fact that 
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In a similar manner we find the displacement, 
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which means that 
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in agreement with the fact that 
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 Acoustic second-order quantities involve time averages of squared harmonic signals 
and, more generally, products of harmonic signals. Such quantities are dealt with in a special 
way, as follows. Expressed in terms of the complex pressure amplitude p̂ , the mean square 
pressure becomes  
 

,2ˆ
22

rms
2 ppp ==  (1.9.25) 

 
in agreement with the fact that the average value of a squared cosine is ½. Note that it is the 
squared magnitude of p̂  that enters into the expression, not the square of p̂ , which in general 
would be a complex number proportional to e2jωt. 
 The time average of a product is calculated as follows, 
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in agreement with the fact that 
  

).cos(ˆˆ
2
1)cos(ˆ)cos(ˆ yxyx yxtytxxy ϕϕϕωϕω −=++=  (1.9.27) 

 
Note that either x̂  or ŷ  must be conjugated. 
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2 Ear, Hearing and Speech 
Torben Poulsen 

 

2.1 Introduction 
 
The aim of the present chapter is to give the student a basic understanding of the function of 
the ear, the perception of sound and the consequences for speech understanding. The content 
covers the basic psychoacoustic aspects of a situation where two persons speak to each other. 
The major topics are: the ear and its functional principles, basic psychoacoustics (hearing 
threshold, loudness, masking) and speech intelligibility.  
 

2.2 The Ear 
 
 

 
Figure 2.2.1 Drawing of the ear. A is the outer ear. B is the middle ear. C is the inner ear. From [1] 

 
The ear may be divided into four main parts: The outer ear, the middle ear, the inner ear and 
the nerve connection to the brain. The first three parts (the peripheral parts) are shown in 
Figure 2.2.1. Part A being the outer ear, B is the middle ear and C is the inner ear. The sound 
will reach the outer ear, progress through the outer ear canal, reach the tympanic membrane 
(the ear drum), transmit the movements to the bones in the middle ear, and further transmit 
the movements to the fluid in the inner ear. The fluid movements will be transformed to 
nerve impulses from the hair cells in the inner ear and the impulses are transmitted to the 
brain through the auditory nerve. 
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2.2.1 The outer ear 
The outer ear consists of the pinna (or the auricle) and the ear canal. The Pinna plays an 
important role for our localisation of sounds sources. The special shape of pinna produces 
reflections and diffraction so that the signal that reaches the ear will be dependent on the 
direction to the sound. The pinna has common features from person to person but there are 
big individual differences in the details. Localisation of sound sources is difficult if a hearing 
protector or a crash helmet covers the pinna. The outer part of the ear canal is relatively soft 
whereas the inner part is stiff and bony. At the end of the ear canal the tympanic membrane is 
situated. The length of the ear canal is approximately 25 mm and the diameter is 
approximately 7 mm. The area is approximately 1 cm2. These numbers are approximate and 
vary from person to person.  
 
The ear canal may be looked upon as a tube that is closed in one end and open in the other. 
This will give resonances for frequencies where the length of the ear canal corresponds to 1/4 
of the wavelength of the sound. With a length of 25 mm and a speed of sound of 340 m/s the 
resonance frequency will be 
 

kHz
m
smfres 4,3

025,0*4
/340

==  

 
This calculation is correct if the ear canal was a cylindrical tube. Most ear canals will have 
one or two bends. This implies that it is usually not possible from the outside to see the 
tympanic membrane at the end of the ear canal. It’s necessary to make the canal straighter, 
which may be done by pulling pinna upward and backwards. 
 
The tympanic membrane is found at the end of the canal. The membrane is not perpendicular 
to the axis of the ear canal but tilted approx. 30 degrees. The tympanic membrane is shaped 
like a cone with the top of the cone pointing inwards into the middle ear. The thickness is 
approx. 0.1 mm. 
 
 

2.2.2 The middle ear 
The middle ear consists of three small bones: hammer, anvil and stirrup. The Latin names are 
also often used: Malleus, Incus and Stapes. These bones are the smallest bones in the human 
body. A drawing is shown in Figure 2.2.2. The function of the middle ear is to transmit the 
vibrations of the tympanic membrane to the fluid in the inner ear. From Figure 2.2.2 it is seen 
that the hammer (Maleus, M) is fixed to the tympanic membrane (1) from the edge and into 
the centre of the membrane (the top of the cone). The anvil (Incus, I, 2) connects the hammer 
and the stirrup (Stapes, S) and the footplate of the stirrup makes the connection into the inner 
ear. This connection is sometimes called the oval window. The footplate rotates around the 
point marked (3). The middle ear is filled with air and is connected to the nose cavity (and 
thus the atmospheric pressure) through The Eustachian tube (ET, 4). The fluid in the inner 
ear is incompressible and an inwards movement of the stirrup will be equalised by a 
corresponding outward movement by the round window (5). 
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Figure 2.2.2 Drawing of the middle ear. See text for details. From [2] 

 
 
Usually the Eustachian tube is closed but opens up when you swallow or yawn. When the 
tube is open, the pressure at the two sides of the tympanic membrane is equalised. If the 
Eustachian tube becomes blocked (which is typically the case when you catch a cold) the 
equalisation will not take place and after some time the oxygen in the middle ear will be 
assimilated by the tissue and an under-pressure will build up in the middle ear. This causes 
the tympanic membrane to be pressed inwards and thus the sensitivity of the hearing is 
reduced.  
 
The chain of middle ear bones forms a lever function that - together with the area ratio 
between the tympanic membrane and the footplate of stapes - makes an impedance match 
between the air in the outer ear and the liquid in the inner ear. The lever ratio is approx. 1.3 
and the area ratio is approx. 14. The total ratio is thus 18, which corresponds to approx. 
25 dB. 
 
Two small muscles, tensor tympani (6) and stapedius (7), see Figure 2.2.2, are attached to the 
bones and will be activated by the so-called middle ear reflex. The reflex is elicited when the 
ear is exposed to sounds above approx. 70 dB SPL whereby the transmission through the 
middle ear is reduced. The reduction is about 20 dB at 125 Hz, 10 dB at 1000 Hz and less 
than 5 dB at frequencies above 2000 Hz. The middle ear reflex can to some extent protect the 
inner ear from excessive exposure. Because the reflex is activated by a signal from the brain 
there will be a delay of about 25 to 150 ms before the effect is active. The reflex has 
therefore no protective effect on impulsive sounds. 
 
 

2.2.3 The inner ear 
The inner ear consists of a snail-shell shaped structure in the temporal bone called Cochlea. 
The cochlea is filled with lymph and is closely connected to the balance organ that contains 
the three semicircular canals. There are 2.75 turns in the snail shell and the total length from 
the base to the top is 32 mm. A cross section of one of the turns is shown in Figure 2.2.3. 
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This figure shows that the cochlea is divided into three channels (latin: Scala) called scala 
vestibuli (1), scala media (2), and scala tympani (3).  
 
 

 
Figure 2.2.3 Cross section of a cochlea turn. See text for details. From [1] 

 
There are two connections (windows) from cochlea to the middle ear cavity. The oval 
window is the footplate of the stirrup and is connected to Scala Vestibuli (1). The round 
window is connected to Scala Tympani (3). The round window prevents an over-pressure to 
build up when the oval window moves inwards. Scala Vestibuli and Scala Tympani are 
connected at the top of the cochlea with a hole called Helicotrema. 
 
The Basilar membrane (6 in Figure 2.2.3) divides scala tympani from scala media. The width 
of the basilar membrane (BM) changes from about 0.1 mm at the base of the cochlea to about 
0.5 mm at the top of the cochlea (at helicotrema). The change of the BM-width is thus the 
opposite of the width of the snail shell. The function of the BM is very important for the 
understanding of the function of the ear. 
 
A structure - called the organ of Corti - is positioned on top of the Basilar Membrane in Scala 
Media. The organ of Corti consists of one row of inner hair cells (7 in Figure 2.2.3) and three 
rows of outer hair cells (8 in Figure 2.2.3).  The designations ‘inner’ and ‘outer’ refer to the 
centre axis of the snail shell which is to the left in Figure 2.2.3. The hair cells are special 
nerve cells where small hairs protrude from the top of the cells. There are approx. 3000 inner 
hair cells and about 12000 outer hair cells. A soft membrane (5 in Figure 2.2.3) covers the 
top of the hair cells. The organ of Corti transforms the movements of the Basilar membrane 
to nerve impulses that are then transmitted to the hearing centre in the brain. 
 
The inner hair cells are the main sensory cells. Most of the nerve fibres are connected to the 
inner hair cells. When sound is applied to the ear, the basilar membrane and the organ of 
Corti will vibrate and the hairs on the top of the hair cells will bend back and forth. This will 
trigger the (inner) hair cells to produce nerve impulses. 
 
The outer hair cells contain muscle tissue and these cells will amplify the vibration of the 
basilar membrane when the ear is exposed to weak sounds so that the vibrations are big 
enough for the inner hair cells to react. The amplification function of the outer hair cells is 
nonlinear which means that they have an important effect at low sound levels whereas they 
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are of almost no importance at high sound levels. The amplifier function - sometimes called 
the cochlear amplifier - is destroyed if the ear is exposed to loud sounds such as gunshots or 
heavy industrial noise. This is called a noise induced hearing loss. The amplifier function 
also deteriorates with age. This is called an age related hearing loss. 
 
 

2.2.4 The frequency analyzer at the Basilar membrane 
The basilar membrane acts like a frequency analyser. When the ear is exposed to a pure tone 
the movement of the basilar membrane will show a certain pattern and the pattern is 
connected to a certain position on the basilar membrane. If the frequency is changed, the 
pattern will not change but the position of the pattern will move along the basilar membrane. 
This is illustrated in Figure 2.2.4 for the frequencies 400 Hz, 1600 Hz and 6400 Hz. The 
400 Hz component produce BM-movement close to the top of the cochlea. 6400 Hz produces 
a similar pattern but close to the base of the cochlea. Note that a single frequency produces 
movements of the basilar membrane over a broad area. This means that even for a single 
frequency many hair cells are active at the same time. Note also that the deflection of the BM 
is asymmetrical. The envelope of the deflection (shown dotted in Figure 2.2.4) has a steep 
slope towards the low frequency side and a much less steep slope towards the high frequency 
side. The same different slopes are also found in masking thresholds and it can be shown that 
masking is closely related to the basilar membrane movements. 
 
 

 
Figure 2.2.4 Movement of the basilar membrane (b) when the ear is exposed to a combination of 400 
Hz, 1600 Hz and 6400 Hz (a). O.W.: Owal window (base of cochlea). Hel: Helicotrema (top of 
cochlea). From [3] 

 
 
The non-linear behaviour of the outer hair cells and their influence on the BM movement is 
illustrated in Figure 2.2.5. This figure shows the BM-amplitude at a certain position of the 
basilar membrane as a function of the stimulus frequency. (Note that this is different from 
Figure 2.2.4 where the amplitude is shown as a function of basilar membrane position for 
different frequencies). There are at least three nonlinear phenomena illustrated in the figure. 
 

1) At low exposure levels (20 dB) the amplitude is very selective and a ‘high’ amplitude is 
achieved only in a very narrow frequency range. For high exposure levels (80 dB) the 
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‘high’ amplitude is achieved at a much wider frequency range. Thus, the filter 
bandwidth of the auditory analyser changes with the level of the incoming sound. 

 
2) The frequency where the maximum amplitude is found change with level. At high 

levels it is almost one octave below the max-amplitude frequency at low levels.   
 
3) The maximum amplitude grows non-linearly with level. At low levels (20 dB) the 

maximum BM-amplitude is about 60 dB (with some arbitrary reference). At an input 
level of 80 dB the maximum BM amplitude is about 85 dB. In other words the change 
in the outside level from 20  dB to 80 dB, i.e., 60 dB, is reduced (compressed) to a 
change in the maximum BM-amplitude of only 25 dB. 

 
 
These non-linear phenomena are caused by the function of  the outer hair cells. The increase 
of amplitude at low levels is sometimes called ‘the cochlear amplifier’. In a typical cochlear 
hearing loss,  the outer hair cells are not functioning correctly or may be destroyed. In other 
words: The cochlear amplifier does not work. This will be seen as an elevated hearing 
threshold and this is called a hearing loss. 
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Figure 2.2.5 Movement of the Basilar membrane at a fixed point for stimulus levels from 20 dB SPL 
to 80 dB SPL. Redrawn from [4]  
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2.3 Human hearing 
The human hearing can handle a wide range of frequencies and sound pressure levels. The 
weakest audible sound level is called the hearing threshold and the sound level of the loudest 
sound is called the threshold of discomfort or the threshold of pain. 
  

2.3.1 The hearing threshold 
 
The hearing threshold is frequency dependent, see Figure 2.3.1. At 1000 Hz the threshold is 
about 2 dB SPL whereas it is about 25 dB SPL at 100 Hz and about 15 dB at 10000 Hz. 
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Figure 2.3.1 The binaural hearing threshold in a free field. From [5]  

 
 
The threshold curve in Figure 2.3.1 is measured under the following conditions: 

• Free field (no reflections from walls, floor, ceiling) 
• Frontally incoming sound (called frontal incidence) 
• signals are single pure tones 
• binaural listening (i.e. listening with both ears) 
• no background noise 
• test subjects between 18 and 25 years of age 
• the threshold is determined by means of either the ascending or the bracketing method 

 
The curve is the median value (not the mean) over the subject’s data. The sound pressure 
level, which is shown in the figure, is the level in the room at the position of the test subject’s 
head but measured without the presence of the test subject. This curve is also called the 
absolute threshold (in a free field) and data for the curve may be found in ISO 389-7 [6] and 
in ISO 226 [5]. 
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In ISO 389-7 also threshold data for narrow band noise in a diffuse sound field are found. 
The threshold curve is similar to the curve in Figure 2.3.1 and deviates from the pure tone 
curve only by a few dB (-2 to +6) in the frequency range 500 Hz to 16 kHz. 
 
 

2.3.2 Audiogram 
For practical use it is not convenient to measure the hearing threshold in a free or a diffuse 
sound field in the way described in the previous section. For practical and clinical purposes, 
usually only the deviation from normal hearing is of interest. Such deviations are determined 
by means of a calibrated audiometer and the result of the measurement is called an 
audiogram. 
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Figure 2.3.2 Audiogram for a typical age related hearing loss. 

 

Figure 2.3.2 shows an audiogram for a person in the frequency range 125 Hz til 8000 Hz. 
The zero line indicates the average threshold for young persons and a normal audiogram will 
give data points within 10 to 15 dB from the zero line. An elevated hearing threshold (i.e. a 
hearing loss) is indicated downwards in an audiogram and the values are given in dB HL. 
The term ‘HL’ (hearing level) is used to emphasise that it is the deviation from the average 
normal hearing threshold. 
 
The measurements are performed with headphones for each ear separately. The results from 
the left ear are shown with '×' and the results from the right ear are shown with '○'. 
 
Sound pressure level, dB SPL, and hearing level, dB HL, is not the same. An example: From 
Figure 2.3.1 it can be seen that the hearing threshold at 125 Hz is 22 dB SPL (measured in 
the way described previously). If a person has a hearing loss of 5 dB HL at this frequency the 
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threshold would be 27 dB SPL. In an audiogram the 5 dB hearing loss will be shown as a 
point 5 dB below the zero line (e.g. right ear, Figure 2.3.2). Another example: At 4000 Hz the 
free field threshold is -6 dB (see Figure 2.3.1). A hearing loss of 50 dB HL (e.g. left ear, 
Figure 2.3.2) will give a threshold of 44 dB SPL. 
 
In order for the audiometry to give correct results, the audiometer must be calibrated 
according to the ISO 389 series of standards. These standards specify the SPL values that 
shall be measured in a specific coupler (an artificial ear) when the audiometer is set to 0 dB 
HL. The values in the standards are headphone specific, which means that the audiometer 

ust be recalibrated if the headphone is exchanged with another headphone.  m 
Table 2.3.1 shows reference values for two headphones commonly used in audiometry. 
 
 
 
F, Hz 

 
125 

 
250 

 
500 

 
1k 

 
2k 

 
3k 

 
4k 

 
6k 

 
8k 

 
10k 

 
12,5k 

 
14k 

 
16k 

 
TDH 39 
HDA 200 

 
45,0 
30,5 

 
25,5 
18,0 

 
11,5 
11,0 

 
7,0 
5,5 

 
9,0 
4,5 

 
10,0 
2,5 

 
9,5 
9,5 

 
15,5 
17,0 

 
13,0 
17,5 

 
- 
22,0 

 
- 
28,0 

 
- 
36,0 

 
- 
56,0 

 

Table 2.3.1. Calibration values in dB SPL for a Telephonics TDH 39 earphone and a Sennheiser HDA 
200 earphone. The TDH 39 earphone can not be used above 8 kHz. The TDH 39 data are from ISO 
389-1 [7]. The HDA 200 data are from ISO 389-5 [8] and ISO 389-8 [9]. 

 
 
 

2.3.3 Loudness Level 
The definition of loudness levels is as follows: For a given sound, A, the loudness level is 
defined as the sound pressure level (SPL) of a 1000-Hz tone which is perceived equally loud 
as sound A. The unit for loudness level is Phon (or Phone). In order to measure loudness 
level a 1 kHz tone is needed and this tone should then be adjusted up and down in level until 
it is perceived just as loud as the other sound. When this situation is achieved, the sound 
pressure level of the 1 kHz tone is per definition equal to the loudness level in phone. For a 
1000-Hz tone the value in dB SPL and in Phone will be the same. 
 
The loudness level for pure tones has been measured for a great number of persons with 
normal hearing under the same conditions as for the absolute threshold (Figure 2.3.1). The 
result is shown in Figure 2.3.3.  
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Figure 2.3.3 Equal loudness level contours. Redrawn from [5] 

 
Some examples, see Figure 2.3.3: A 4000-Hz tone at 26 dB SPL will be perceived with the 
same loudness as a 1000-Hz tone at 30 dB SPL and thus the loudness level of the 4000 Hz 
tone is 30 Phone. A 125-Hz tone at 90 dB SPL will have a loudness level of 80 Phone. 
 
The curves in Figure 2.3.3 are - in principle - valid only for the special measurement situation 
where the tones are presented one at a time. They should not be used directly to predict the 
perception of more complicated signals such as music and speech because the curves do not 
take masking and temporal matters into account. Reflections in a room are not taken into 
account either. 
 
Translations of Loudness Level: 

Danish:  Hørestyrkeniveau (enhed: Phon) 
German:  Lautstärkepegel (Einheit: Phon) 
French:  Niveau de Sonie.  

 
 
 
 
 

2.4 Masking 
The term ‘Masking’ is used about the phenomenon that the presence of a given sound (sound 
A) can make another sound (sound B) inaudible, in other words A masks B or B is masked 
by A. Masking is a very common phenomenon which is experienced almost every day, e.g. 
when you need to turn down the radio in order to be able to use the telephone.  
 
The situation described above is also called simultaneous masking because both the masking 
signal and the masked signal are present at the same time. This is not the case in backward 
and forward masking. Backward and forward refer to time. E.g. forward masking means 
masking after a signal has stopped (i.e. forward in time). Simultaneous masking is best 
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described in the frequency domain and is closely related to the movements of the Basilar 
membrane in the inner ear. 
 
The masking phenomenon is usually investigated by determining the hearing threshold for a 
pure tone when various masking signals are present. The threshold determined in this 
situation is called the masked threshold contrary to the absolute threshold. 
 
 

2.4.1 Complete masking 
If the ear is exposed to white noise, the hearing threshold (i.e. masked threshold) will be as 
shown in Figure 2.4.1 where also the absolute threshold is shown. The masked threshold is 
shown for different levels of the white noise. 
 

 
Figure 2.4.1 Masking from white noise. The curves show the masked threshold for different spectrum 
levels of white noise. From [3] 

 
 
The masked thresholds are almost independent of frequency up to about 500 Hz. Above 
500 Hz the threshold increases by about 10 dB per decade (= 3 dB/octave). A 10-dB change 
in the level of the noise will also change the masked threshold by 10 dB. 
 
If a narrow band signal is used instead of the white noise, the masked threshold will be as 
shown in Figure 2.4.2. Here the masked threshold is shown for a narrow band signal centred 
at 250 Hz, 1 kHz and 4 kHz respectively. Generally the masking curves have steep slopes 
(about 100 dB/octave) towards the low frequency side and less steep slopes (about 
60 dB/octave) towards the high frequency side. 
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Figure 2.4.2 Masking from narrow band noise. The curves show the masked threshold when the ear is 
exposed to narrow band noise (critical band noise) at 250 Hz, 1 kHz and 4 kHz respectively. From 
[3] 

 
 
The masking curves for narrow band noise are very level dependent. This is illustrated in 
Figure 2.4.3. The slope at the low frequency side is almost independent of level but the slope 
at the high frequency side depends strongly on the level of the narrow band noise. The dotted 
lines near the top of the curves indicate experimental difficulties due to interference between 
the noise itself and the pure tone used to determine the masked threshold. 
 

 
Figure 2.4.3 The influence of level on the masked threshold. The slope towards higher frequencies 
decreases with increasing level, i.e. masking increases non-linearly with level. From [3] 

 
The masked threshold for narrow band noise is mainly caused by the basilar membrane 
motion. The different slopes towards the low and the high frequency side are also seen here 
and also the nonlinear level dependency is seen. Compare with Figure 2.2.4. 
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2.4.2 Partial masking 
The term ‘Complete masking’ is used when the presence of a given sound (sound A) can 
make another sound (sound B) inaudible. Partial masking is a situation where sound A 
influences the perception of sound B even though sound B is still audible. The influence is 
mainly seen in the loudness of sound B. 
 
An example: When you listen to a standard car-radio while you are driving at, e.g. 100 km/h, 
you will adjust the level of the radio to a comfortable level. There will be some background 
noise from the engine, the tires, and the wind around the car (at least in ordinary cars). Then, 
when you come to a crossing or a traffic light and have to stop you will hear that the radio-
volume is much too high. This is an example of partial masking where the background noise 
masks part of the radio signal and when the background noise disappears the masking 
disappears too and the radio signal becomes louder than before. (Some modern car radios are 
equipped with a speed dependent automatic level control. The example above is therefore not 
fully convincing in this situation.) 
 
 

2.4.3 Forward masking 
It has been shown that a strong sound signal can mask another (weak) signal which is 
presented after the strong signal. This kind of masking goes forward in time and is therefore 
called forward masking. The effect lasts for about 200 ms after the end of the strong signal.  
 
Forward masking is also called post-masking. 
 

2.4.4 Backward masking 
It has been shown that a strong sound signal can mask another (weak) signal which appears 
before the strong signal. This kind of masking goes back in time and is therefore called 
backward masking. The effect is restricted to about 20 ms before the start of the strong 
signal.  
 
Backward masking is also called pre-masking. 
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2.5 Loudness 
The term ‘loudness’ denotes the subjective perception of strength or powerfulness of the 
sound signal. The unit for loudness is Son or Sone. Note that ‘loudness’ and ‘loudness level’ 
are two different concepts. Translation of terms:  
 

 Loudness Loudness Level 
Danish Hørestyrke Hørestyrkeniveau 
German Lautheit Lautstärkepegel 
French Sonie Niveau de Sonie 

 
 

2.5.1 The loudness curve 
The Sone scale was established in order to avoid the confusion between dB SPL values and 
the perception of loudness: A 1 kHz tone at 80 dB SPL is not perceived double as loud as the 
same tone at 40 dB SPL. Figure 2.5.1 shows the relation between the Sone and the Phone 
scales. (Hint: for a 1 kHz tone, phone and dB SPL is the same number). Arbitrarily it has 
been decided that one sone should correspond to 40 phones. The curve is based on a great 
number of loudness comparisons. The curve is called a loudness curve. 
 
 

 
Figure 2.5.1 The loudness curve for a normal hearing test subject (solid line) and for a person with a 
cochlear hearing loss (dashed) 
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The straight part of the solid line in Figure 2.5.1 corresponds to Stevens’ power law: 
 

10/)40(2 −= LN  
 
where N is the loudness (in sone) and L is the loudness level ( in phones). The curve shows 
that a doubling of the loudness corresponds to a 10-phone increase in loudness level (or a 10-
dB increase in SPL if we are dealing with a 1 kHz tone).  For many daily life sounds a rule of 
thumb says that a 10-dB increase is needed in order to perceive a doubling of the loudness. 
 
The loudness curve becomes steeper near the hearing threshold. This is also the case for a 
person with a cochlear hearing loss (e.g., the very common hearing impairment caused by 
age). An example of such a hearing loss is shown by the dashed curve in Figure 2.5.1 where 
the threshold (1 kHz) is a little less than 40 dB SPL. The steeper slope means that - near the 
threshold - the loudness increases rapidly for small changes in the sound level. This effect is 
called loudness recruitment. Recent research have shown that – for this kind of hearing loss – 
the loudness at threshold has a value significantly different from nil as indicated in the figure 
[10]. In other words, listeners with cochlear hearing loss have softness imperception, rather 
than loudness recruitment. Note that at higher sound levels the loudness perception is the 
same for both normal and impaired listeners. 
 

2.5.2 Temporal integration 
The perception of loudness needs some time to build up. This means that short duration 
sounds (less than one second) are perceived as less loud than the same sound with longer 
duration. The growth of loudness as a function of duration is called temporal integration. The 
growth resembles the exponential growth of a time constant. It has been shown that the time 
constant is about 100 ms. 
 
Short sounds - like a pistol shot, fireworks, handclap, etc. - are perceived as weak sounds 
although their peak sound pressure levels may be well above 150 dB SPL. This is one of the 
reasons why impulsive sounds generally are more dangerous than other sounds. 
 
 

2.5.3 Measurement of loudness 
Many years ago it was thought that a sound level meter with filters corresponding to the ears’ 
sensitivity (described by the equal loudness level contours (Figure 2.3.3)) could be used to 

easure loudness. This is not the case. m  
Figure 2.5.2 show the characteristics for the commonly used A- and C- filters, but due to 
masking and other phenomena these filters will not give a result that corresponds to loudness. 
For the determination of loudness, special calculation software is needed. For stationary 
sounds two procedures can be found in [11]. For non-stationary sound, loudness calculations 
are found in professional Sound Quality calculation software. For research purposes loudness 
models (software) can be found on the Internet (e.g. at  
http://hearing.psychol.cam.ac.uk/Demos/demos.html ) 
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Figure 2.5.2 Filter characteristics for the A, C and D filter. The data for the A and the C filter are 
from [12]. The data for the D filter is from [13]. 

 

 
 
The main effect of the A-filter is that it attenuates the low frequency part of the signal. The 
attenuation is e.g. 20 dB at 100 Hz and 30 dB at 50 Hz. Wind noise and other low frequency 
components are attenuated by the A-filter and is therefore very practical for many noise 
measurement situations.  
 
The C-filter is ‘flat’ in the major part of the audible frequency range. It may me used as an 
approximation to a measurement with linear characteristic. 
 
The D-filter is mainly used in connection with evaluation of aircraft noise. The frequency 
range around 3 kHz is known to be annoying and therefore this frequency range is given a 
higher weight.  

 70 



  Ear, Hearing and Speech 
 
 

 

 
 

2.6 The auditory filters 
The movements of the basilar membrane in the inner ear constitute a frequency analyser 
where the peak of the envelope moves along the basilar membrane as a function of 
frequency. See Figure 2.2.4. The width of the envelope peak may be seen as an indication of 
the selectivity of the analyser filter and it has been common practice to describe the 
frequency selectivity of the ear as a set of filters, a filter bank, which cover the audible 
frequency range. It should be noted though that the concept of a filter bank is a very coarse 
description and should be seen as a typical engineering approximation to the real situation. 
 
Frequency selectivity is important for the perception of the different frequencies in complex 
sound signals such as speech and music. We rely e.g. on our frequency selectivity when we 
distinguish different vowels from each other. 
 
The concept of frequency discrimination is different from frequency selectivity. Frequency 
discrimination is the ability to hear the difference between two tones that are close in 
frequency (one frequency at a time). 
 
 

2.6.1 Critical bands 
The bandwidth of the filters in the filter bank can be determined by means of various 
psychoacoustic experiments. Many of these are masking experiments and led to the 
formulation of the critical band model. It is outside the scope of the present text to go into 
the background and the details of this model.  
 
The results of the investigations are shown in Figure 2.6.1. It is seen that the bandwidth 
(Critical Bands) is almost constant at 100 Hz up to a centre frequency of about 500 Hz and 
above this frequency the bandwidth increases. The increase in bandwidth above 500 Hz is 
similar to the increase in bandwidth for one-third-octave filters. 
 
 
The critical bandwidth may be calculated from the empirical formula: 
 

69,02 )4,11(7525 fCB ++=  
 
where CB is the bandwidth in Hz of the critical band and f is the frequency in kHz (not in 
Hz).  
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Figure 2.6.1 Bandwidth of critical bands and Equivalent Rectangular bandwidth, ERB. The 
bandwidth of 1/3-octave filters (straight line) is shown for comparison. The curves are computed from 
the formulas given in the text.  

 
If the audible frequency range is ‘filled up’ with consecutive critical bands from the lowest 
frequency to the highest frequency, it is seen that 24 critical bands will cover the whole 
frequency range. Each of the ‘filters’ has been given a number called Bark. Bark number one 
is the band from zero to 100 Hz; Bark number two is the band from 100 Hz to 200 Hz, etc. 
Band no. 8 has a centre frequency of 1000 Hz and goes from 920 Hz to 1080 Hz. The band 
around 4000 Hz is no. 17 and has a bandwidth of 700 Hz. 
 
The critical bands are not fixed filters similar to the filters in a physical filter bank as the 
numbers given above may indicate. The critical bands are a result of the incoming sound 
signal and as such much more ‘flexible’ than physical filters would be. 
 
 

2.6.2 Equivalent Rectangular Bands 
The auditory filters have also been determined by means of notched noise measurements 
where the threshold of a pure tone is determined in the notch of a broadband noise as a 
function of the width of the notch. This leads to the concept of equivalent rectangular 
bandwidth, i.e. the bandwidth of a rectangular filter that transmits the same amount of energy 
as the auditory filter. The bandwidth of such rectangular filters is shown in Figure 2.6.1 as a 
function of centre frequency. 
 
The rectangular bandwidth may be calculated from the empirical formula: 
 

)137,4(7,24 += fERB  
 
where ERB is the bandwidth in Hz and f is the centre frequency in kHz. 
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2.7 Speech 
A speech signal is produced in the following way. Air is pressed from the lungs up through 
the vocal tract, through the mouth cavities and/or the nose cavities and the sound is radiated 
from the mouth and the nose. The vocal folds will vibrate when voiced sounds are produced. 
 
 

2.7.1 Speech production 
A schematic illustration of the production of voiced sounds is given in Figure 2.7.1 where the 
vocal folds vibrate. The source spectrum is a line spectrum where the distance between the 
lines corresponds to the fundamental frequency. The fundamental frequency is around 
125 Hz for men, around 250 Hz for woman and around 300 for children, but there are big 
individual variations. There are thus more lines in a male spectrum compared to a female. 
The source spectrum decreases with the square of the frequency (1/f2). The source spectrum 
is transformed by the ‘tube’ consisting of trachea, throat (pharynx) and the mouth. This 
structure is simulated in Figure 2.7.1 by a cylindrical tube of length 17 cm.  
 

 
Figure 2.7.1 The principle of vowel generation. From [14] 

 
The tube has pronounced resonances (where the length of the tube corresponds to the odd 
multiples of 1/4 wavelength) indicated by the peaks at 500, 1500 and 2500 Hz. The final 
spectrum radiated from the mouth is then the product of the two spectra. The final spectrum 
is a line spectrum with characteristic peaks caused by the transfer function. The peaks are 
called formants and the formants are positioned differently for each vowel. Table 2.7.1 shows 
the formants frequencies (in round numbers) for the three most different vowels. The sounds 
are /i/: as in eve, /a/ as in father, /u/ as in moon. There are individual differences from person 
to person. 
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/i/ 

 
/a/ 

 
/u/ 

 
1. formant 
2. formant 
3. formant 

 
225 
2200 
3000 

 
700 
1200 
2500 

 
250 
700 
2200 

Table 2.7.1 Formant frequencies in Hz of the vowels /i/, /a/ and /u/. 

 
The unvoiced sounds are produced in many different ways, e.g. by pressing air out through 
the teeth /s/, out between the lips and the teeth /f/, by sudden opening of the lips /p/, sudden 
opening between tongue and teeth /t/ and between tongue and palate /k/. These sounds are 
called unvoiced because the vocal folds do not vibrate but stays open in order for the air to 
pass. 
 
 

2.7.2 Speech spectrum, speech level 
A general long-term speech spectrum is shown in Figure 2.7.2 that is based on the average of 
18 speech samples from 12 languages.  
 
The spectrum is a one-third octave spectrum which means that the curves are tilted 
3 dB/octave compared to the result of a FFT-calculation. (The result of a FFT is a density 
spectrum). 
 
It is worth to note that the speech spectrum is almost independent of the language. This is not 
surprising when the speech production mechanism is taken into account. The spectrum in 
Figure 2.7.2 is based on English (several dialects), Swedish, Danish, German, French 
(Canadian), Japanese, Cantonese, Mandarin, Russian, Welsh, Singhalese and Vietnamese. A 
total of 392 talkers participated in the investigation. 
 
The spectrum for women falls off below 200 Hz because their fundamental frequency 
typically is around 250 Hz. The maximum is found around 500 Hz for both gender and above 
500 Hz the two curves are almost identical. The slope above 500 Hz is approximately minus 
10 dB per decade (or -3 dB/octave). 
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Figure 2.7.2 The long-term speech spectrum for male and female speech shown as a 1/3-octave 
spectrum. For comparison a line with slope –3 dB per octave (= –10 dB per decade) is shown. 
Redrawn from [15] 

 

 
 
The average level of male speech is about 65 dB SPL, measured at 1 m in front of the mouth. 
For women the level is typically 3 dB lower, i.e. 63 dB. (Compare the number of lines in the 
spectrum). During normal speech the level will vary ±15 dB around the mean value. 
 
 

2.7.3 Speech intelligibility 
The speech intelligibility of a transmission system is usually measured by means of a list of 
words (or sentences) where the percentage of correctly understood words gives the 
intelligibility score. The transmission system could be almost anything, e.g. a telephone line 
or a room. The intelligibility depends on the word material (sentences, single words, 
numbers, etc.), the speaker, the listener, the scoring method and the quality of the 
transmission system. 
 
Often the intelligibility score is given as a function of the signal-to-noise ratio. An example 
of this is shown in Figure 2.7.3 for the word-material on the Dantale CD. This CD contains 
eight tracks of 25 words each. The words are common Danish single-syllable words that are 
distributed phonetically balanced over the eight lists so that the lists can be regarded as 
equivalent. The words are recorded on the left channel of the CD and on the right channel a 
noise signal is recorded with (almost) the same spectrum as the words. The noise signal is 
amplitude modulated in order to make it resemble normal speech. The Dantale CD is 
described in [16] 
 
The result in Figure 2.7.3 is obtained with the words and the noise on the Dantale CD with 
untrained Danish normal hearing listeners. It is seen that even at a signal-to-noise ratio of 
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0 dB almost all words are understood. It is also seen that an increase of just 10 dB in SNR 
can change the situation from impossible to reasonable, e.g. from  -15 dB (10%) to - 5 dB 
(70%). It is a general finding that such a relatively small improvement of the signal-to-noise 
ratio can improve the intelligibility situation dramatically. In other words, if the background 
noise in a room is a problem for the understanding of speech in the room, then just a small 
reduction of the background noise will be beneficial. 
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Figure 2.7.3 Word score for the speech material DANTALE as a function of speech-to-noise ratio 
(SNR). Redrawn from [17] 

 
It is time consuming and complicated to measure speech intelligibility with test subjects. 
Therefore measurement and calculation methods have been developed for the estimation of 
the expected speech intelligibility in a room or on a transmission line. 
 
Articulation Index, AI [18]: Determination of the signal-to-noise ratio in frequency bands 
(usually one octave or one-third octave). The SNR values are weighted according to the 
importance of the frequency band. The weighted values are added and the result normalised 
to give an index between zero and one. The index can then be translated to an expected 
intelligibility score for different speech materials. 
 
Speech Intelligibility Index, SII [19]: This method is based on the AI principle, but the 
weighting functions are changed and a number of ‘corrections’ to the AI-method are 
implemented. One of these is the correction for the change in speech spectrum according to 
the vocal effort (shouting, raised voice, low voice). 
 
Speech Transmission Index, STI [20]: In this method the modulation transfer function, MTF, 
from the source (the speaker) to the receiver (the listener) is determined. The MTF is 
determined for octave bands of noise (125 Hz to 8 kHz) and for a number of modulation 
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frequencies (0,63 Hz to 12,5 Hz). The reduction in modulation is transformed to an 
equivalent signal-to-noise ratio and as in the AI method these values are added and 
normalised in order to yield an index between zero and one. The index can then be translated 
to an expected intelligibility score for different speech materials. 
 
Rapid Speech Transmission Index, RASTI [21]: This is an abbreviated version of STI. Only 
the frequency bands 500 Hz and 2 kHz and only nine different modulation frequencies are 
used. The result is an index which is used in the same way as in STI. 
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3. An introduction to room acoustics 
Jens Holger Rindel 
 

3.1 SOUND WAVES IN ROOMS 

3.1.1 Standing waves in a rectangular room 
A rectangular room has the dimensions lx, ly, and lz. The wave equation can then be written 
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where p is the sound pressure and k = ω /c is the angular wave number, ω is the angular 
frequency and c is the speed of sound in air. The equation can be solved by separation of the 
variables and it is assumed that the solution can be written in the form: 
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Insertion in (3.1.1) and division by p gives 
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This can be separated, and for the x-direction it yields 
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Similar equations hold for the y- and z-directions. The angular wave number k has been divided 
into three  
          (3.1.2) 2222

zyx kkkk ++=
The general solution to the above one-dimensional equation is 
 )cos()( xxx xkCxX ϕ+=  
in which the constants Cx and ϕx are determined from the boundary conditions. 
 
The room surfaces are now assumed to be rigid, i.e. the normal component of the particle velocity 
is zero at the boundaries 
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 for x = 0 and x = lx  

This means that ϕx = 0 and 
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π  where  nx = 0, 1, 2, 3, …      (3.1.3) 

Two similar boundary conditions hold for the y- and z-directions. With these conditions the 
solution to (3.1.1) is 
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The time factor ejωt is understood. The amplitude of the sound pressure does not move with time, 
so the waves that are solutions to (3.1.4) are called standing waves. They are also called the 
modes of the room, and each of them is related to a certain natural frequency (or eigenfrequency) 
given by  
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The modes can be divided into three groups: 
Axial modes are one-dimensional, only one of nx, ny, nz is > 0. 
Tangential modes are two-dimensional, two of nx, ny, nz are > 0. 
Oblique modes are three-dimensional, all three of nx, ny, nz are > 0. 
 
Some examples are shown in Fig. 3.1.1. It is observed that the set of numbers (nx, ny, nz) indicate 
the number of nodes (places with p = 0) along each coordinate axis.  
 
 

 
Figure 3.1.1. Examples of room modes. (2,0,0) is one-dimensional and (2,1,0) is two-
dimensional. The lines are iso-sound pressure amplitude curves.
 
 

nx ny nz fn (Hz) 
0 1 0 25 
1 0 0 30 
0 0 1 36 
1 1 0 39 
0 1 1 43 
1 0 1 47 
0 2 0 49 
1 1 1 53 
1 2 0 58 
2 0 0 60 
0 2 1 61 
2 1 0 65 
1 2 1 68 
2 0 1 70 
0 0 2 72 

 
Table 3.1.1. Calculated natural frequencies at low frequencies using (3.1.5) in a rectangular 
room with dimensions 5.7 m, 7.0 m, 4.8 m. 
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3.1.2 Transfer function in a room 
The transfer function is the frequency response from a source position to a receiver position in a 
room. A measured transfer function is shown in Fig. 3.1.2. It fluctuates very much with frequency 
and the maxima can be identified as the natural frequencies of the room. The example in Fig. 
3.1.2 has the same room dimensions as was used for the calculations in Table 3.1.1. 
 
 

 
Figure 3.1.2. Transfer function in a rectangular room. At low frequencies it is possible to identify 
the modes by their modal numbers. 
 

3.1.3 Density of natural frequencies 
A closer inspection of equation (3.1.5) shows that the natural frequencies of a rectangular room 
may be interpreted in a geometrical way. A three-dimensional frequency space is shown in Fig. 
3.1.3. The natural frequencies of the one-dimensional modes are marked on each of the axes, 
representing the axial modes of the length, the width and the height, respectively. The interesting 
observation is now that the points in the grid represent the oblique modes, and the distance to 
each point from the origin is the natural frequency of that mode. So, the number of oblique modes 
below a certain frequency f is equal to the number of grid points inside the sphere with radius f.  
 
The volume is 1/8 of the sphere with radius f, i.e. (4 π f 3 / 3) / 8 = π f 3 / 6. Each mode occupies a 
volume c3 / (8 lx ly lz) = c3 / (8 V). So, the number of oblique modes below f is approximately: 
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The tangential modes are found in the plane between two of the axes. If these and the axial modes 
are also taken into account, the number of modes with natural frequencies below the frequency f 
is: 
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V is the volume of the room, S = 2( lx ly + lx lz + ly lz) is the total area of the surfaces, and L = 4 (lx 
+ ly + lz) is the total length of all edges. It should be noted that the modal points of the tangential 
and axial modes in Fig. 3.1.3 are located on the coordinate planes and axes, respectively. 
Therefore we count the tangential points only as halves and those on the axes only as quarters. 
 
At high frequencies the oblique modes dominate, and the first term in (3.1.6) is a good 
approximation for any room, not only for rectangular rooms.  
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Figure 3.1.3. Frequency-grid, in which each grid point represents a room mode.
 
The modal density is the average number of modes per hertz. 
 

 
c

Lf
c
Sf

c
V

f
N

82
4

d
d

2
2

3 ++=
π

π        (3.1.7) 

In Fig. 3.1.4 this is compared to the actual modal density in a room. For high frequencies it is 
sufficient to use the first term (oblique modes) for the modal density: 
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Figure 3.1.4. Modal density as a function of frequency. Actual number of modes per 10 Hz in a 
rectangular room and estimated by (3.1.7). 
 

3.2 STATISTICAL ROOM ACOUSTICS 

3.2.1 The diffuse sound field 
In this chapter the acoustical behaviour of a room is treated from a statistical point of view, based 
on energy balance considerations. It is assumed that the modal density is high enough, so the 
influence of single modes in the room can be neglected. It is also assumed that the reflection 
density is high enough, so the phase relations between individual reflections can be neglected. 
This means that the reflections in the room are assumed to be uncorrelated and their contribution 
can be added on an energy basis. 
 
The diffuse sound field is defined as a sound field in which: 
The energy density is the same everywhere 
All directions of sound propagation occur with the same probability  
 
It is obvious that the direct sound field near a sound source is not included in the diffuse sound 
field. Neither are the special interference phenomena that are known to give increased energy 
density near the room boundaries and corners. The diffuse sound field is an ideal sound field that 
does not exist in any room. However, in many cases the diffuse sound field can be a good and 
very practical approximation to the real sound field.  
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3.2.2 Incident sound power on a surface 
In a plane propagating sound wave the relation between rms sound pressure p1 and sound 
intensity I1 is 
  cIp ρ⋅= 1

2
1

In a diffuse sound field the rms sound pressure pdiff is the result of sound waves propagating in all 
directions, and all having the sound intensity I1. By integration over a sphere with the solid angle 
ψ = 4π the rms sound pressure in the diffuse sound field is 
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In the case of a plane wave with the angle of incidence θ  relative to the normal of the surface, the 
incident sound power per unit area on the surface is 
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where pdiff  is the rms sound pressure in the diffuse sound field. This is just the sound intensity in 
the plane propagating wave multiplied by the cosine, which is the projection of a unit area as seen 
from the angle of incidence, see Fig. 3.2.1. 
 
 

 pdiff p1

 
 
 
 
 
 
 

 Iinc Iθθ 

ba 

 
 
 
 
 
 
 
 
Figure 3.2.1. a: Plane wave at oblique incidence on a surface. b: Diffuse incidence on a surface. 
 
The total incident sound power per unit area is found by integration over all angles of incidence 
covering a half sphere in front of the surface, see Fig. 3.2.2. The integration covers the solid angle 
ψ = 2π. 
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It is noted that this is four times less than in the case of a plane wave of normal incidence.  
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Figure 3.2.2. Definition of angles of incidence in a diffuse sound field. 
 
 

3.2.3 Equivalent absorption area 
The absorption coefficient α is defined as the ratio of the non-reflected sound energy to the 
incident sound energy on a surface. It can take values between 0 and 1, and α = 1 means that all 
incident sound energy is absorbed in the surface. An example of a surface with absorption 
coefficient, α = 1 is an open window.  
 
The product of area and absorption coefficient of a surface material is the equivalent absorption 
area of that surface, i.e. the area of open windows giving the same amount of sound absorption as 
the actual surface. The equivalent absorption area of a room is 
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where S is the total surface area of the room and αm is the mean absorption coefficient. The unit 
of A is m2. In general, the equivalent absorption area may also include sound absorption due to 
the air and due to persons or other objects in the room. 

3.2.4 Energy balance in a room 
The total acoustic energy in a room is the sum of potential energy and kinetic energy, or twice the 
potential energy, since the time average of the two parts must be equal. The total energy E is the 
energy density multiplied by the room volume V: 
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Here and in the following, p denotes the rms sound pressure in the diffuse sound field (called pdiff 
in section 3.2.2). The energy absorbed in the room is the incident sound power per unit area 
(3.2.3) multiplied by the total surface area and the mean absorption coefficient, i.e. the equivalent 
absorption area (3.2.4), 
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If Pa is the sound power of a source in the room, the energy balance equation of the room is 

 87



t
EPP absaa d

d
, =−          (3.2.7a) 

)(
d
d

4
2

2

2

p
tc

VA
c

pPa ρρ
=−         (3.2.7b) 

With a constant sound source a steady state situation is reached after some time, and the right side 
of the equation is zero. So, the absorbed power equals the power emitted from the source, and the 
steady state sound pressure in the room is 
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This equation shows that the sound power of a source can be determined by measuring the sound 
pressure generated by the source in a room, provided that the equivalent absorption area of the 
room is known. It also shows how the absorption area in a room has a direct influence on the 
sound pressure in the room. For some cases it is more convenient to express eq. (3.2.8) in terms 
of the sound pressure level Lp and the sound power level LW , 
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where A0 = 1 m2 is a reference area. The approximation comes from neglecting the term with the 
constants and reference values 
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3.2.5 Reverberation time. Sabine´s formula 
If the sound source is turned off after the sound pressure has reached the stationary value, the first 
term in the energy balance equation (3.2.7b) is zero, and the rms sound pressure is now a function 
of time: 
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The solution to this equation can be written 
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where ps

2 is the mean square sound pressure in the steady state and t = 0 is the time when the 
source is turned off. It is seen that the mean square sound pressure, and hence the sound energy, 
follows an exponential decay function. On a logarithmic scale the decay is linear, and this is 
called the decay curve, see Fig. 3.2.3.  
 
If instead the source is turned on at the time t = 0, the sound build-up in the room follows a 
similar exponential curve, also shown in Fig. 3.2.3. 
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Figure 3.2.3. Build-up and decay of sound in a room. Here the source is turned on a t = 0 and 
turned off at t = 1 s. Top: linear scale (sound pressure squared). Bottom: logarithmic scale (dB). 
 
The reverberation time T60 is defined as the time it takes for the sound energy in the room to 
decay to one millionth of the initial value, i.e. a 60 dB decay of the sound pressure level. Hence, 
for t = T60 , 
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So, the reverberation time is 
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This is Sabine’s formula named after Wallace C. Sabine, who introduced the reverberation time 
concept around 1896. He was the first to demonstrate that T60 is inversely proportional to the 
equivalent absorption area A.  
 
Note: Sabine’s formula is often written as T60 = 0.16 V/A. However, this implies that V must be in 
m3 and A in m2.  
 

3.2.6 Stationary sound field in a room. Reverberation distance 
A reverberation room is a special room with long reverberation time and a good diffusion. In 
such a room the diffuse sound field is a good approximation, and the results for stationary 
conditions (3.2.8) and for sound decay (3.2.13) can be applied to measure the sound power of a 
sound source: 
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The reverberation time and the average sound pressure level in the reverberation room are 
measured, and the sound power level is calculated from 
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where V0 = 1 m3 and t0 = 1 s. 
 
In most ordinary rooms the diffuse sound field is not a good approximation. Each of the 
following conditions may indicate that the sound field is not diffuse 
 
An uneven distribution of sound absorption on the surfaces, e.g. only one surface is highly 
absorbing 
A lack of diffusing or sound scattering elements in the room 
The ratio of longest to shortest room dimension is higher than three 
The volume is very large, say more than 5000 m3

 

A rather simple modification to the stationary sound field is to separate the direct sound. The 
sound power radiated by an omni-directional source is the sound intensity at the distance r in a 
spherical sound field multiplied by the surface area of a sphere with radius r  
           (3.2.16) 24 rIP ra π⋅=
Thus, the sound pressure squared of direct sound in the distance r from the source is 
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The stationary sound is described by (3.2.8) 
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The reverberation distance rrev is defined as the distance where pdir
2 = ps

2 when an omni-
directional point source is placed in a room. It is a descriptor of the amount of absorption in a 
room, since the reverberation distance depends only on the equivalent absorption area 
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At a distance closer to the source than the reverberation distance, the direct sound field 
dominates, and this is called the direct field. At longer distances the reverberant sound field 
dominates, and in this so-called far field the stationary, diffuse sound field may be a usable 
approximation.  
 
An expression for the combined direct and diffuse sound field can derived by simple addition of 
the squared sound pressures of the two sound fields. However, since the direct sound is treated 
separately, it should be extracted from the energy balance equation, which was used to describe 
the diffuse sound field. To do this, the sound power of the source should be reduced by a factor of 
(1 - αm), which is the fraction of the sound power emitted to the room after the first reflection. So, 
the squared sound pressure in the total sound field is 
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Normal sound sources like a speaking person, a loudspeaker or a musical instrument radiate 
sound with different intensity in different directions. The directivity factor Q is the ratio of the 
intensity in a certain direction to the average intensity,  
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So, the squared sound pressure of the direct sound is 
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This leads to a general formula for the sound pressure level as a function of the distance from a 
sound source in room. 
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where A0 = 1 m2. In a reverberant room with little sound absorption (say, αm < 0.1) the sound 
pressure level in the far field will be approximately as predicted by the diffuse field theory, i.e. 
the last term will be close to zero. In the case of a highly directive sound source like a trumpet (Q  
>> 1) the direct field can be extended to distances much longer than the reverberation distance. In 
the latter situation the last term in (3.2.23) raises the sound pressure level above the diffuse field 
value. 

 
 
Figure 3.2.4. Relative sound pressure level as a function of distance in a room with 
approximately diffuse sound field. The source has a directivity factor of one. The parameter on 
the curves is A / (1 - αm) in m2. 
 
In large rooms with medium or high sound absorption (say, αm > 0.2) the sound pressure level 
will continue to decrease as a function of the distance, because the diffuse field theory is not valid 
in such a room. Instead, the slope of the spatial decay curve may be taken as a measure of the 
degree of acoustic attenuation in a room. So, in large industrial halls the attenuation in dB per 
doubling of the distance may be a better descriptor than the reverberation time. 
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3.3 GEOMETRICAL ROOM ACOUSTICS 

3.3.1 Sound rays and a general reverberation formula 
In geometrical acoustics rays are used to describe the sound propagation. The concept of rays 
implies that the wavelength and the phase of the sound are neglected, and only the direction of 
sound energy propagation is treated in geometrical acoustics.  
 
The sound decay shall now be studied by following a plane wave travelling as a ray from wall to 
wall, see Fig. 3.3.1. The energy of the wave is gradually decreased due to absorption at the 
surfaces, all of which are assumed to have the mean absorption coefficient αm. 
 
The ray representing a plane wave may start in any direction and it is assumed that the decay of 
energy in the ray is representative for the decay of energy in the room. The room may have any 
shape. 

 
Figure 3.3.1. A plane wave travelling as a ray from wall to wall in a room. 
 
By each reflection the energy is reduced by a factor (1 - αm). The initial sound pressure is p0 and 
after n reflections the squared sound pressure is 
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The distance of the ray from one reflection to the next is li and the total distance traveled by the 
ray up to the time t is 
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where lm is the mean free path. So, the squared sound pressure is 
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When the squared sound pressure has dropped to 10- 6 of the initial value, the time t is by 
definition the reverberation time T60: 
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This leads to an interesting pair of general reverberation formulas: 
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The last approximation is valid if αm < 0.3, i.e. only in rather reverberant rooms. The 
approximation comes from: 
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With the assumption that all directions of sound propagation appear with the same probability, it 
can be show (Kosten, 1960) that the mean free path in a three-dimensional room is 

 
S
Vlm

4
=  (3-dimensional)       (3.3.5) 

where V is the volume and S is the total surface area.  
 
Similarly, the mean free path in a two-dimensional room can be derived. This could be the 
narrow air space in a double wall, or structure-borne sound in a plate. The height or thickness 
must be small compared to the wavelength. In this case the mean free path is 
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where Sx is the area and U is the perimeter. The one-dimensional case is just the sound travelling 
back and forth between two parallel surfaces with the distance l = lm.  
 
Insertion of (3.3.5) in the last part of (3.3.4) gives the Sabine formula (3.2.13), whereas insertion 
in the first part of (3.3.4) leads to the so-called Eyring’s formula for reverberation time in a room: 
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In a reverberant room (αm < 0.3) it gives the same result as Sabine’s formula, but in highly 
absorbing rooms Eyring’s formula is theoretically more correct. In practice the absorption 
coefficients are not the same for all surfaces and the mean absorption coefficient is calculated as 
in (3.2.4): 
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In the extreme case of an anechoic room (αm = 1) Eyring’s formula gives correctly a 
reverberation time of zero, whereas Sabine’s formula is obviously wrong, giving the value T60 = 
55.3 V/c S. However, in normal rooms with a mixture of different absorption coefficients it is 
recommended to use Sabine’s formula. 

3.3.2 Sound absorption in the air 
A sound wave travelling through the air is attenuated by a factor m, which depends on the 
temperature and the relative humidity of the air, see Fig. 3.3.2. The unit of the air attenuation 
factor is  m - 1. If this attenuation is included in (3.3.3) the squared sound pressure in the decay is 
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 The general reverberation formula then becomes 
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In the three-dimensional case with (3.3.5) we then have 
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These two expressions are the Eyring and the Sabine formula, respectively, with the air 
absorption included. By comparison with (3.2.13) it is seen that the equivalent absorption area 
including air absorption is 
          (3.3.12) mVSA

i
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Some typical values of m are found later in Table 3.4.3.  
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Figure 3.3.2. The air attenuation factor m as a function of the relative humidity. The air 
temperature is 20 °C. (Ref.: Harris1966). 

3.3.3 Sound reflections and image sources 
The direction of a sound reflection from a large plane surface follows the same geometrical law, 
as known from optics, i.e. the angle of reflection is equal to the angle of incidence. This means 
that the reflected sound can be interpreted as sound coming from an image source behind the 
reflecting surface, see Fig. 3.3.3. This principle can be extended to higher order reflections. 
 

 
Figure 3.3.3. Reflection in one surface (a) and in two surfaces (b). A is the source and R is the 
receiver. First order image sources are indicated by A’ and second order image sources by A’’. 
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Echo is a well-known acoustic phenomenon. It is defined as a single sound reflection that is 
clearly audible as separate from the direct sound. The human ear is able to hear a reflection as an 
echo if the time delay is approximately 50 ms. The so-called echo-ellipse is shown in Fig. 3.3.4. 
Any point E on the ellipse represents a potential reflection with a delay of 50 ms, i.e. the distance 
LE + EP = 17 m. Reflections from room surfaces outside the ellipse (as R2 on the figure) are 
delayed more than 50 ms and may cause an echo at the receiver point.  
 

 
Figure 3.3.4. The echo-ellipse in the longitudinal section of an auditorium. L is the source and P 
the receiver. (Ref.: Petersen 1984). 
 

3.3.4 Reflection density in a room 
The image source principle can easily be applied to higher order reflections in a rectangular 
room. An infinite number of image rooms make a grid, and each cell in the grid is an image room 
containing an image source. The principle is shown for the two-dimensional case in Fig. 3.3.5.  
 

Figure 3.3.5. Rectangular room with a sound source and image sources, here shown in two 
dimensions. Image sources located inside the circle with radius ct will contribute reflections up 
to time t. 

 95



 
If an impulse sound is emitted the number of reflections that will arrive within the time t can be 
calculated as the volume of a sphere with radius ct divided by the room volume V: 
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The reflection density is then the number of reflections within a small time interval dt, and by 
differentiation: 

 2
3

4
d

d t
V
c

t
N π=          (3.3.14) 

The reflection density increases with the time squared, so the higher order reflections are 
normally so dense in arrival time that it is impossible to distinguish separate reflections. If 
(3.3.14) is compared to (3.1.8), it is striking to observe the analogy between reflection density in 
the time domain and modal density in the frequency domain.  
 

3.4 ROOM ACOUSTICAL DESIGN  

3.4.1 Choice of room dimensions 
The room dimensions determine the natural frequencies of a room. A good acoustical design of a 
room implies that the transfer function should be as smooth as possible. With reference to Fig. 
3.1.2 is clear that the room dimensions of a rectangular room should not be identical, because in a 
cubic room many modes will have the same natural frequency, and thus there will be bigger gaps 
in the transfer function. This would be very unfortunate, especially at low frequencies in small 
rooms for speech, music or acoustic measurements. The dimensions of such rooms should be 
designed after calculations of the normal modes below 100 Hz, see also Table 3.1.1. 

3.4.2 Reflection control 
In room with an audience it is very important to design the room surfaces with respect to the early 
reflections. First of all in order to avoid problems with echo and focusing, but also to ensure a 
good distribution of reflections to the audience area, see Fig. 3.4.1. In rooms for speech the 
ceiling reflections are most important, whereas rooms for music should not give too much 
reflection directly from the ceiling. In such room the ceiling should rather give diffuse reflections, 
but the side walls are important because lateral reflections contribute to the acoustic of a concert 
hall, see Fig. 3.4.2. 

 
 
Figure 3.4.1. Ceiling reflections in auditoriums. a) concave ceiling causing focusing and uneven 
sound distribution. b) plane reflectors causing an even sound distribution. (Ref.: Petersen 1984). 
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Figure 3.4.2. Wall reflections in auditoriums. a) rectangular room, b) fan shape room, c) inverse 
fan shape room. 

3.4.3 Calculation of reverberation time 
Sabine’s formula (3.2.13) is the most well known and simple method for calculation of 
reverberation time in a room 

 
A

V
Ac
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with volume V in m3 and A in m2. The equivalent absorption area is calculated as in (3.3.12), but 
in addition to absorption from surfaces and air, the absorption from persons or other items in the 
room should be included, if relevant 
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Here nj is the number of items, each contributing with an absorption area Aj. Examples of 
absorption coefficients of common materials and absorption areas for persons are given in Table 
3.4.1 and 3.4.2, respectively. The air attenuation can be taken from Table 3.4.3. 
 

Frequency (Hz)  
Material 125 250 500 1000 2000 4000 
Brick, bare concrete 
Parquet floor on studs 
Needle-punch carpet 
Window glass 
Curtain draped to half 
its area, 100 mm air 
space 

0.01 
0.16 
0.03 
0.35 
0.10 

0.02 
0.14 
0.04 
0.25 
0.25 

0.02 
0.11 
0.06 
0.18 
0.55 

0.02 
0.08 
0.10 
0.12 
0.65 

0.03 
0.08 
0.20 
0.07 
0.70 

0.04 
0.07 
0.35 
0.04 
0.70 

 
Table 3.4.1. Typical values of the absorption coefficient α  for some common materials. 
 
 

Frequency (Hz)  
Persons 125 250 500 1000 2000 4000 
Standing, normal 
clothing  
Standing, with 
overcoat 
Sitting musician with 
instrument 

0.12 
 

0.17 
 

0.60 

0.24 
 

0.41 
 

0.95 

0.59 
 

0.91 
 

1.06 

0.98 
 

1.30 
 

1.08 

1.13 
 

1.43 
 

1.08 

1.12 
 

1.47 
 

1.08 

 
Table 3.4.2. Typical values of absorption area A in m2 for persons. 
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Frequency Relative 
humidity (%) 1 kHz 2 kHz 4 kHz 8 kHz 

40 
50 
60 
70 
80 

0.0011 
0.0010 
0.0009 
0.0009 
0.0008 

0.0026 
0.0024 
0.0023 
0.0021 
0.0020 

0.0072 
0.0061 
0.0056 
0.0053 
0.0051 

0.0237 
0.0192 
0.0162 
0.0143 
0.0133 

 
Table 3.4.3. Examples of air attenuation factor m (m-1) at a temperature of 20°C. 
 

3.4.4 Reverberation time in non-diffuse rooms 
In a room with the sound absorption unequally distributed on the surfaces the assumption of a 
diffuse sound field is not fulfilled, and thus Sabine’s formula will not be reliable. The measured 
reverberation time may be either shorter or longer than predicted by Sabine’s formula.  
 
A shorter reverberation time will appear in a room in which the first reflections are directed 
towards the most absorbing surface. In an auditorium this is typically the floor with the audience, 
see Fig. 3.4.1 b. 
 
In a rectangular room without sound scattering surfaces or elements, there is a possibility of 
prolonged decay in certain directions. In order to give an idea of the problem it is possible to 
calculate the different reverberation times associated to one-dimensional decays in each of the 
three main directions using the general reverberation formula (3.3.4). 

 
m

m

m

m l
c

lT
αα

⋅≈
⋅

⋅
≈ 04.08.13

60   (lm  in  m)     (3.4.3) 

Figure 3.4.3. A rectangular room with indicated absorption coefficients. 
 
As an example the room in Fig. 3.4.3 is considered. The ceiling has a high absorption coefficient 
(α = 0.8), but all other surfaces are acoustically hard (α = 0.1).  

Volume V = 5 ⋅ 10 ⋅ 20 = 1000 m3

Surface area S = 700 m2

Equivalent absorption area A = 200 ⋅ 0.8 + 500 ⋅ 0.1 = 210 m2

Mean absorption coefficient αm = A / S = 210 / 700 = 0.30 
Mean absorption coefficient (height) αm = (0.8 + 0.1) / 2 = 0.45 

 Mean free path (3-dim.) lm = 4 V / S = 4 ⋅ 1000 / 700 = 5.7 m 
 Mean free path (2-dim.) lm = π Sx / U = π ⋅ 200 / 60 = 10.5 m 
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The results are shown in Table 3.4.4. A two-dimensional reverberation in the horizontal plane 
between the walls has also been calculated (4.2 s). The one-dimensional decays are the extreme 
cases with the longest reverberation time being 20 times the shortest one, 8.0 s and 0.4 s, 
respectively!  
 

 
Direction lm (m) αm T60 (s) 

3-dim. (Sabine) 
3-dim. (Eyring) 
2-dim. (horizontal) 
1-dim. (length) 
1-dim. (width) 
1-dim. (height) 

5.7 
5.7 
10.5 
20 
10 
5 

0.30 
0.30 
0.10 
0.10 
0.10 
0.45 

0.8 
0.6 
4.2 
8.0 
4.0 
0.4 

 
Table 3.4.4. Calculation of the one-dimensional reverberation times of the rectangular room in 
Fig. 3.4.3. 
 
The real decay that is measured in the room will be a mixture of these different decays, and the 
reverberation time will be considerably longer than predicted from Sabine’s formula. Eyring’s 
formula is even worse. The measured decay curve will be bent, and thus the measuring result 
depends on which part of the decay curve is considered for the evaluation of reverberation time. 
 
In a room with long reverberation time due to non-diffuse conditions and at least one sound-
absorbing surface, introducing some sound scattering elements in the room can have a significant 
effect. It could be furniture or machines on the floor or some diffusers on the walls. This will 
make the sound field more diffuse, and the reverberation time will be reduced, i.e. it will come 
closer to the Sabine value. In other words: The sound absorption available in the room becomes 
more efficient when scattering elements are introduced to the room. 
 
Note. In the one-dimensional case it is strictly not correct to use the arithmetic average of the 
absorption coefficients, if one of them is high. By inspection of (3.3.1) it is seen that the mean 
absorption coefficient should be calculated from 
 ( )( )21 11)1( ααα −−=− m         (3.4.4) 
So, if one of the surfaces is reflective and the other is totally absorbing, αm  = 1 and hence the 
reverberation time is zero. 

3.4.5 Optimum reverberation time and acoustic regulation of rooms 
The optimum reverberation time depends of the activities in the room. It is important to choose 
the room volume and the surface materials with such sound absorbing properties that the 
reverberation time can get the right value for the purpose. In workshops with noise sources it is 
important to have a reverberation time as short as possible. In schools the classrooms should have 
a reverberation time between 0.6 and 0.9 s and independent of the frequency between 100 and 
4000 Hz in order to obtain good acoustical conditions for speech. In concert halls the 
reverberation time should be around 1.5 to 2.2 s at mid frequencies (500 – 1000 Hz) with the 
longer values in the bigger halls. For music the reverberation time may be up to 50% longer at 
low frequencies (125 Hz) and somewhat shorter at high frequencies. The latter is unavoidable in a 
big hall due to the air attenuation. 
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Use of room Optimum reverberation time, s 
(500 – 1000 Hz) 

Cinema 
Rock concert 
Lecture  
Theatre 
Opera 
Symphony concert 
Choir concert 
Organ music 

0,4 – 1,0 
0,8 – 1,1 
0,8 – 1,2 
1,0 – 1,2 
1,3 – 1,7 
1,5 – 2,2 
1,7 – 2,5 
2,0 – 3,0 

 
Table 3.4.5. Optimum reverberation time at mid frequencies for various purposes in rooms with 
an audience. 
 

3.4.6 Measurement of reverberation time 
The reverberation time in a room can be measured with a noise signal or with an impulse. The 
traditional method uses white noise emitted by a loudspeaker and a microphone to measure the 
sound pressure level as a function of time after the source is switched off. This gives a decay 
curve and a typical example is shown in Fig. 3.4.4.  
 

 
Figure 3.4.4. Typical decay curve measured with noise interrupted at the time t = 0. 
 
From the microphone the signal is led to a frequency filter, which is either an octave filter of a 
one-third octave filter. If the sound in the room is sufficiently diffuse and a sufficient large 
number of modes are excited the decay curve is close to a straight line between the excitation 
level and the background level. The dynamic range is seldom more than around 50 dB and the 
whole range of the measured decay curve is not used. The lower part of the decay curve is 
influenced by the background noise and the upper part may be influenced by the direct sound, 
which gives a steeper start of the curve. So, the part of the decay curve used for evaluation begins 
5 dB below the average stationary level and ends normally 35 dB below the same level. The 
evaluation range is thus 30 dB and the slope is determined by fitting a straight line or 
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automatically by calculating the slope of a linear regression line. From the slope of the decay 
curve in dB per second is calculated the reverberation time, which is the time for a 60 dB drop 
following the straight line. The result is sometimes denoted T30 in order to make it clear that the 
actually used evaluation range is 30 dB.  
 
If the background noise is too high and a sufficient dynamic range is not available the 
reverberation time can instead be measured as T20. In this case the slope of the decay curve is 
evaluated between –5 dB and –25 dB below the excitation level. 
 
The reverberation time is measured in a number of source- and receiver positions, and in each 
position the decay is determined as an average of a number of excitations. White noise is a 
random noise signal and thus the measured decay curves are always a little different. 
 
Sometimes the decay curves are not nice and straight and it is difficult to measure a certain 
reverberation time. One reason can be that it is a measurement at low frequencies in a small room 
and maybe only two or three modes are excited within the frequency band of the measurement. In 
this case there may be interference between the modes causing very irregular decay curves.  
 
Another difficult situation is coupled rooms, i.e. a room divided into sections with different 
reverberation times. A typical example is a theatre with a reverberant stage house and a rather 
dead auditorium. In this case the decay curve will be bent, i.e. the upper part shows a short 
reverberation time and the lower part shows a longer reverberation time. It might be possible to 
determine both of these reverberation times, however, the shorter one representing the initial 
decay is the most important one, because the subjective evaluation of the reverberation is related 
to the initial decay. 
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4 Sound absorbers and their application in room design 
 

Anders Chr. Gade 
4.1 Introduction 
 
The reverberation time T60 as defined in Section 3.2.5 is the most important descriptor of the 
acoustics of a room. Therefore, calculating predictions of T60 (e.g. according to Equation 3.4.1) is a 
very basic part of room acoustical design which in turn calls for the availability of reliable data on 
the frequency dependant sound absorption characteristics of materials used for room surface 
cladding and for furnishing of rooms (such as furniture, people and machinery). 
 
In Table 3.4.1 absorption coefficients per octave band were listed for some materials generally 
found in rooms. The values indicate that some of these, e.g. windows and wooden floors on studs, 
primarily absorb low frequency sounds. On the other hand, curtains and persons (see Table 3.4.2) 
mainly absorb middle and high frequencies. In order to obtain a well balanced T60 versus frequency 
for a given type of room it is therefore important to mix properly different types of materials when 
designing the room. 
 
In this chapter we will give a basic introduction to the physical mechanisms involved in sound 
absorption and present some types of sound absorption materials well suited for - or specifically 
designed for - sound absorption and reverberation control. The absorption properties will be 
described in terms of the sound absorption coefficient as defined in Section 1.5.2. 
 
For certain types of rooms, such as schools and work rooms, general demands on reverberation 
control exist. Therefore the last section in this chapter is devoted to examples on how sound 
absorbing materials can be applied in the design of such rooms. 
 
4.2 The room method for measurement of sound absorption. 
In Section 1.5.2, a method for measuring the absorption coefficient, the tube method, was presented 
which reveals the absorption coefficient for a single angle of incidence (usually normal incidence as 
illustrated to the left in Figure 4.2.1). However, the absorption will normally depend on the 
direction of sound incidence1. Materials applied in rooms with a (more or less) diffuse sound field 
will be exposed to sound arriving from many different directions as illustrated in Fig. 4.2.1(c). 
Therefore we will start this chapter by presenting a method for measurement of sound absorption, 
which provides the relevant diffuse field absorption coefficient: the reverberation room method. 

Figure 4.2.1 Different conditions for sound incidence on a surface. From [1] 
 
                                                 
1 The absorption for oblique incidence as illustrated in case (b) in Figure 4.2.1 – or as a function of angle of incidence - 
can be measured using various techniques using separation in time or subtraction of incident and reflected sound pulses. 
However, these techniques are not always very reliable. 
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The measurement takes place in a reverberation room, with highly irregular or non parallel surfaces 
and/or suspended, sound diffusing elements. Hereby it can be assumed that the sound field will 
fulfil the requirements for application of the Sabine reverberation equation. Assume the room has a 
volume V, total surface area S and that αempty is the absorption coefficient of the room surfaces 
(which ideally should all be made from the same, acoustically hard material). In this case equations 
3.4.1 and 3.4.2 (disregarding air absorption) yields: 

 60,
0.16

empty
Room empty

VT
S α

=  (4.1) 

If now we place a test sample of a material with area Ssample (usually 10 m2) in the room, the 
equation changes into: 
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in which we have considered that an area, Ssample, of the room surface has now been covered by the 
sample. Combining equations 4.1 and 4.2 by eliminating S yields for the unknown absorption 
coefficient, αsample, of the test sample: 
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The measurement is normally carried out in 1/1 or 1/3 octave bands from 100 to 5000 Hz. 
 
If absorption measurements using the room method is carried out on small sized samples, these 
sometimes appear to have a absorption coefficient larger than 1.0, as seen in Figure 4.2.2. Of course 

this is not logical, if the absorption power should be related 
solely to the physical area of the sample. The phenomenon 
is probably due to diffraction of sound around the edges of 
the sample, which dominates the behaviour in cases where 
the linear dimension of the sample approaches the wave 
length of the sound, i.e. the effect is more pronounced at low 
frequencies. 
 
Although a complication in documentation of absorption 
properties, this phenomenon can be applied successfully in 

Fig. 4.2.2  Absorption coefficients         practice by providing increased absorption effect, if the 
of different materials versus area          available absorption material can be provided in smaller 
(measured in square feet). From [1].    pieces and spread out over the room surfaces. 
 
 
4.3 Different types of sound absorbers 

 
In this section the three most common types of sound 
absorbing constructions will be described, each with its 
own characteristic frequency dependency of the 
absorption coefficient as sketched in Fig. 4.3.1. 
 
Fig. 4.3.1  Typical behaviour of absorption versus 
frequency for Porous, resonating and membrane 
absorbers respectively. 
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4.3.1 Porous absorbers 
Porous absorbers are present in rooms in the form of textiles like curtains, carpets and furniture 
upholstery, porous mortar in (unpainted !) brick walls and not least as a wide variety of dedicated 
sound absorbing products for suspended ceilings. 

 
 
Figure 4.3.2  Left: Standing wave pattern formed by an incident and a reflected sound wave in front 
of a porous material of a certain thickness flush mounted on a heavy and hard surface. Right: 
Absorption versus frequency of a thin, porous sheet placed in front of a hard surface. From [1].  
 
Porous materials are characterized by having an open structure of e.g. of fibres glued or woven 
together which is accessible by the air. Thus, air can be pressed through the material more or less 
easily depending on the flow resistance (determined e.g. by how densely a fabric is woven – try for 
yourself by blowing through clothing or curtains !). The absorption properties are caused by viscous 
friction between the moving air molecules in the sound waves and the often huge internal surface 
area of the structure whereby the (kinetic) sound energy is converted into heat. 

 

Fig. 4.3.3  Absorption coefficients for mineral 
wool (glasswool) with thickness as parameter 
(a) and with wall distance as parameter (b).  
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If a porous sheet of a certain thickness is placed
flush on a rigid surface and hit by an normal 
incidence sound wave a standing wave pattern
will be created with pressure amplitude as 
indicated to the left in Fig. 4.3.2. As seen from
Figure 1.2.10 (c), with a rigid termination, the 
particle velocity and so the kinetic energy o
sound field will be high where the pressure 
amplitude (the potential energy) is low. In othe
words, for the absorber to be efficient (with 
normal incidence of the sound wave), the 
thickness of the porous layer need to be at least 
λ/4, so that friction takes place where the 
energy is primarily kinetic. In other words
given thickness of the material, there is a lower 
limiting frequency below which the absorp
drops off because the material can no longer 
“reach” the region of high kinetic energy. On 
the other hand, as the absorber is not absorbing 
the potential energy anyway, one can save 
material and just place a thin sheet (but still 

105 



with a suitable flow resistance) at a certain dista  from the rigid wall (like a curtain in front of 
window). In the case of normal incidence, a

nce a 
pplying a thin sheet will cause the absorption to drop 

 

 mineral wool mats of 
ifferent thickness (upper graph) and different distances to the rigid wall (lower graph). It is seen 

m melted 
lass (Glasswool) or stone (Rockwool) much like “Candy Floss”. Mineral wool is used as porous 

, 
ete 

 
l 

rane absorbers 
 membrane absorber is characterized by consisting of a non porous sheet or panel placed at a 

 backing whereby an air filled cavity is formed. This system can 
on 

again at a higher frequency where the distance between sheet and hard wall equals λ/2; but with 
diffuse field incidence this dip will not be very pronounced. Diffuse field incidence also causes the
absorbers to be effective (α > 0,8) if just the thickness/distance is > λ/8. 
 
Fig. 4.3.3 shows how the absorption coefficient varies with frequency for
d
that more low frequencies are absorbed as the thickness or the wall distance increases. 
 
Mineral wool consists of thin fibres pressed and glued together. The fibres are made fro
g
sound absorbers, very often in the form of tiles which can be mounted in a suspended ceiling 
system. Such ceilings will often be placed below ventilation ducts and other technical installations
whereby a large distance (typically between 20 cm and one metre) is ensured to the hard concr
deck behind. Hereby the ceiling can absorb efficiently over a wide frequency range – as well as hide
the installations. Mineral wool ceiling tiles are normally given a carefully controlled layer of specia
paint from the factory to make them look like normal (white) plaster ceilings as much as possible. 
However, if one tried to repaint them, the porous properties and so the absorption normally 
disappears. 
 
4.3.2 Memb
A
certain distance from a hard
resonate at frequency determined by the mass per unit area of the plate, m, and the spring functi
of the enclosed air, which is determined by the depth, L, of the cavity: 

 
2

0
1

2
cf

m L
ρ

π
=  (4.4) 

owever, Equation 4.4 only apply if the plate is complete
frequency is also determined by the plate stiffness and mode of plate vibration, of which a few are 

ional 

H ly limp. Normally, the resonance 

illustrated in Fig. 4.3.4, with p and q being integers determining the shape of the two dimens
oscillation pattern of the plate. 

 
Fig.  4.3.4  Different modes of vibration in a stiff plate. 
 

 follows: In this case the resonance frequency can be described as

( )

22 22 41
r

c p qf ρ π 3

22 12 1
Eh

m L m a bπ ν

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + ⎢ ⎥
−⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (4.5) 

 which a and b are the dimensions of the plate (or the distance between 
plate), h is the thickness while E and ν are the Young’s modulus and the Poisson ratio respectively. 

⎜ ⎟ ⎜ ⎟

in studs supporting the 
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From this formula it is seen that a resonance frequency is determined completely by the stiffnes
the depth of the cavity is infinitely deep – as is the case e.g. with a single pane window. 
 
 

s if 

 
Fig. 4.3.5 absorption versus frequency of 
membrane absorber for two different plate 

ood placed 

ency 

ms in the for  
he effect is a controlled low frequency T60 value as opposed to rooms 

thicknesses and with and without mineral 
wool in the cavity. From [1] 
 
Membrane absorbers are often found in roo
oard or wood panel walls. T

Fig. 4.3.5 show  absorption versus frequency 
for two different thickness of plyw
45 mm from a hard backing – with and 
without mineral wool in the cavity. As 
expected it is seen that the thicker and heavier 
plate result in the lowest resonance frequ
as expected from equations 4.4 and 4.5. 
Besides, it is observed that the mineral wool 
inlay, which increases the internal damping of 
the construction causes a significant 
improvement in the absorption around the 
resonance frequency and also causes the 
resonance frequency to become lower.

m of wooden floors on joists or as gypsum
b
made entirely from heavy concrete or masonry which  causes the sound to be “dark” and blurred at 
low frequencies.  
 

 
 
Fig. 4.3.6  Example of membrane absorbers attached to the concrete side wall in the multi purpose 
all (Kolding Teater). Besides controlling low frequency reverberation, the panels also provide 
ome diffusion of the sound.   

h
s
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4.3.3 Resonator absorbers 
In stead of having a plate forming the mass of the resonating system, the mass can be oscillating air 

 an opening between a closed cavity and the open atmosphere. Also in this case, the enclosed air  

and resonating panel (right). From [1
 
in the cavity provides the spring function. An example of such a single resonator, called a Helmholz 

n be experienced by 
lowing across the opening of a bottle) is given by: 

in

Fig. 4.3.7   Single resonator (left) ]. 

resonator, is illustrated in Figure 4.3.7. The resonance frequency (which ca
b

 
( )0 2

c Sf
V lπ δ

=
+

 (

S V

4.6) 

with  being the area of the opening,  being the enclosed volume, l the length of the neck and δ a 
orrection to the neck length which is due to the fact that th

with very high velocity - is not confined to the physical length of the neck; but some of the air 

owever, if a perforated panel is placed in front of a cavity as seen to the right in Fig. 4.3.7, then 

c e oscillating air mass - often moving 

outside both ends of the neck will be moving as well.  
 
Resonators like the build in “bottle” in the left side of Fig. 4.3.7 are not very practical, as the 
frequency range of the absorption is normally very limited around the sharp resonance frequency. 
H
this construction can be regarded as a large number of single resonators put together, and the 
physical proportions in this case often causes a much more useful frequency range of absorption. 
For the resonance frequency of the panel we have: 

 
( )0 2

c Pf
L lπ δ

=
+

 (4.

which is almost identical with Equation 4.6 except for the opening area being rep

7) 

laced by the 
egree of perforation, P, of the panel and the volume V bein

If the holes are circular with diameter d, we have for the end correction: δ ≈ 0.8 d. Resonating 
y 

 
ised by placing a thin layer of mineral wool or glass felt 

alled vlies) in the cavity. Like in the case of the membrane absorber, it is important to adjust the 

d g changed into the depth of the cavity L. 

panels will often have a higher resonance frequency and absorb efficiently in a wider frequenc
range than the membrane absorbers. 
 
Regarding damping, the viscous damping can be significant if the hole/slit dimensions are small;
but often the absorption can be optim
(c
damping to achieve optimal absorption.  
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Perforated panels are found in the form of perforated gypsum board or steel plates (used e.g. for 
suspended ceilings)2, or as panels made of wooden boards with slits between the individual boards 
s illustrated to the left in Figure 4.3.8. Other possibilities are walls made from perforated tiles, 

e 

n
ontrolled gaps in front of a former window niche filled with mineral wool. The panel controls low 
equency reverberation in a former power plant building made from heavy masonry converted into 

 multi 

 room acoustic design 

he main purpose of introducing absorption for reverberation control in rooms is to reduce noise 
Danish Building Law 

ygningsreglementet af 1995, BR95) [2] contains demands on maximum T60 values in school class 

re 
                                                

a
which make use of the cavity already present in a double masonry wall as shown to the right in th
same Figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.3.8  Resonating panel constructions i  practice. Left: Wooden boards separated by 
c
fr
a concert hall (Værket, Randers). Right: Perforated bricks on the rear wall in a sports and
purpose hall. By making this wall absorbing, echoes back to the stage placed more than 50 m away 
are avoided (Frihedshallen, Sønderborg). 
 
 
4.4 Application of sound absorbers in
 
T
levels (see Fig. 3.2.4) and in some cases to increase intelligibility. The 
(B
rooms, day care institutions and apartment buildings, whereas the Danish Working Environment 
Agency have issued rules for industrial buildings and offices [3]. These current Danish rules a

 
2 It should be added that in many cases with perforated gypsum or steel plates used as suspended ceilings, the 
combinations of perforation and cavity depth causes the absorber to act more like a porous absorber but with reduced 
performance at high frequencies due to the panel shielding off the porous layer to some degree. 
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briefly listed in Figure 4.4.1. Recommendable values for other types of rooms – including auditoria 
and concert halls were listed in Table 3.4.5. Special standards exist for design of cinemas and stud
control rooms and listening rooms. In Denmark, no rules exist for other public spaces like traffic 
terminals, sports arenas and restaurants - although the acoustic conditions in these places are often 
horrible. However, acoustic concerns a generally included in modern design of these spaces as well. 

io 

ximum values of reverberation time in buildings. 
corridors in office buildings just reflect common 

s 
ecified in terms of a required minimum absorption area. The reason for this is that 

ften calculation as well as measurement of T60 is often questionable in these rooms. 

ause here the 
ften delicate absorption materials are not subject to mechanical damage. 

eiling of mineral wool tiles with integrated light fixtures. Right: Vertical Mineral wool baffles.   

 
Fig. 4.4.1 Listing of Danish rules regarding ma
(The values listed for single person offices and 
design practice.) 
 
As indicated in Figure 4.4.1 the rules for large industrial halls as well as open plan areas in office
and schools are sp
o
 
In most cases the ceiling is the most obvious surface to treat with absorption, as it constitutes a large 
area which is normally available apart from a few light or ventilation fixtures and bec
o
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.4.2  Examples of acoustic treatment mounted in ceiling in industrial halls. Left: suspended 
c
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In Figure 4.4.2 are shown two examples of acoustic treatment of ceilings. To the left a normal 
suspended ceiling of mineral wool tiles with integrating lighting and ventilation. This type of 
ceiling is often found in offices, schools, shops etc.. The vertical mineral wool baffles shown to the 

ot 
lways sufficient to place the absorption in the ceiling surface alone; but also available wall areas 

right can be a solution when the ceiling is already heavily occupied by technical installations. 
 
In rooms where practically all the absorption is placed in the ceiling, the reverberation time 
basically becomes a function of the room height as shown in Figure 4.4.3. In high rooms, it is n
a
must be used as illustrated by the mineral wool tiles to the right in Figure 4.4.3. 
 

 
 
 
 

ig. 4.4.3   Simplified calculation of T60 in room with all ab
urface(left) shows the need for additional absorption on walls in tall rooms (right). 

coustic 
nsure proper 

telligibility of speech (often emitted through loudspeakers). In Figure 4.4.4 is illustrated how a 

Fig. 4.4.4   Schematic illustration of the influence of reverberation on the intelligibility of speech.

 
F sorption placed on the ceiling 
s
 
In many public places like traffic terminals, department stores, sports halls etc., the room a
absorption treatment is not only done with the purpose of reducing noise but also to e
in
long room decay can cover (mask) the weak phonems illustrated schematically as vertical bars. In 
speech the consonant sounds are often the weaker elements; but they contain most of the 
information. Therefore, a long reverberation can seriously deteriorate intelligibility. 
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In room  acoustic design not 
only consists of reverberation con  surfaces. In these rooms 
also the design of the room  the 

 surfaces. And 
in order to support intelligi s) after the direct 
sound. 
 
Even in norma pplied by 
leaving a central part of the ce rface areas can be found to 
provide the required reverberation 
ODEON programm e part of the 

terms of the  

 
Fig. 4.4.5 Illustrations from the room acoustic simulation programme ODEON  of a class room 
design with a partly absorbing (dark) and reflective (lighter grey) ceiling.   
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s dedicated for speech like auditoria, class rooms and theatres, the room
trol by absorption treating of the room

 geometry is important to ensure proper propagation of sound from
source to the listeners through reflection of the sound waves off non absorbing room

bility, these reflections must arrive not long (up to 40 m

l sized class rooms this concern about supporting reflections may be a
iling reflective (given that enough other su

control). Thus, Fig. 4.4.5 illustrates such a case in which the 
e was used to balance the application of absorbing and reflectiv

ceiling for a school project and to predict reverberation time and the intelligibility in 
Speech Transmission Index mentioned in Section 2.7. 
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5. An introduction to sound insulation 
Jens Holger Rindel 
 

5.1 THE SOUND TRANSMISSION LOSS 

5.1.1 Definition 
A sound wave incident on a wall or any other surface separating two adjacent rooms partly 
reflects back to the source room, partly dissipates as heat within the material of the wall, partly 
propagates to other connecting structures, and partly transmits into the receiving room.  
 
The power incident on the wall is P1 and the power transmitted into the receiving room is P2. 
The sound transmission coefficient τ is defined as the ratio of transmitted to incident sound 
power 

1

2

P
P

=τ          (5.1.1) 

However, the sound transmission coefficients are typically very small numbers, and it is more 
convenient to use the sound transmission loss R  with the unit deciBel (dB). It is defined as 

 (dB)     log101log10log10
2

1 τ
τ

−===
P
P

R    (5.1.2) 

Another name for the same term is the sound reduction index. 

5.1.2 Sound insulation between two rooms 
 

 
Figure 5.1.1. Airborne sound transmission from source room (1) to receiving room (2) 
 
The most common case is the sound insulation between two rooms. With the assumption of 
diffuse sound fields in both rooms it is possible to derive a simple relation between the 
transmission loss and the sound pressure levels in the two rooms. The rooms are called the 
source room and the receiving room, respectively. In the first room is a sound source that 
generates the average sound pressure p1. The sound power incident on the wall is, see eq. 
(3.2.6) 
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The area of the wall is S. In the receiving room the average sound pressure p2 is generated from 
the sound power P2 radiated into the room, see eq. (3.2.8) 

 c
A
Pp ρ
2

22
2

4
=         (5.1.4) 

Here A2 denotes the absorption area in the receiving room. Insertion in the definition (5.1.2) 
gives 

 (dB)     log10log10
2

21
2

2
2

2
1

A
SLL

Ap
SpR +−==    (5.1.5) 

Here L1 and L2 are the sound pressure levels in the source and receiving room, respectively. 
This important result is the basis for transmission loss measurements.  

5.1.3 Measurement of sound insulation 
Sound insulation is measured in one-third octave bands covering the frequency range from 100 
Hz to 3150 Hz. In recent years the international standards for measurement of sound insulation 
have been revised and it is recommended to extend the frequency range down to 50 Hz and up 
to 5000 Hz. One reason for this is that the low frequencies 50 – 100 Hz are very important for 
the subjective evaluation of the sound insulation properties of lightweight constructions. In 
recent years lightweight constructions have been more commonly used in new building 
technology, whereas heavy constructions have traditionally been used for sound insulation. 
 
The sound pressure levels are measured as the average of a number of microphone positions or 
as the average from microphones slowly moving on a circular path. The results are averaged 
over two different source positions. More details are given in ISO 140 Part 3 and 4. 
 
In addition to the two sound pressure levels it is also necessary to measure the reverberation 
time in the receiving room in order to calculate the absorption area. Sabine’s equation is used 
for this, see eq. (3.2.13) 

2

2
2

3.55
Tc

VA =         (5.1.6) 

Only under special laboratory conditions it is possible to measure the transmission loss of a 
wall without influence from other transmission paths. In a normal building the sound will not 
only be transmitted through the separating construction, but the flanking constructions will also 
influence the result, see later in section 5.5.4.  
 
For measurements of sound insulation in buildings the apparent sound transmission loss is 

 (dB)     log10
2

21 A
SLLR +−=′       (5.1.7) 

The apostrophe after the symbol indicates that flanking transmission can be assumed to 
influence the result. 

5.1.4 Multi-element partitions and apertures 
A partition is often divided into elements with different sound insulation properties, e.g. a wall 
with a door. Each element is described by the area Si and the transmission coefficient τi . If the 
sound intensity incident on the surfaces of the source room is denoted Iinc the total incident 
sound power on the partition is 
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The total area is called S. The total sound power transmitted through the partition is 
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Thus, the transmission coefficient of the partition is 
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The same result can also be written in terms of the transmission losses Ri of each element 
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In the simple case on only two elements the graph in Fig. 5.1.2 may be used.  
 

 
Figure 5.1.2. Graph for estimating the transmission loss of a multi-element partition  
 
An aperture in a wall is a special example of an element with different transmission properties. 
As an approximation it can be assumed that the transmission coefficient of the aperture is 1. If 
also the area of the aperture Sap is very small compared to the total area, this leads to the 
following result for the resulting transmission loss of the wall with aperture: 
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R
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11 1,01,0
1 10log10101log10  (5.1.10) 

Fig. 5.1.3 can illustrate the result. It is seen that the relative area of the aperture defines an 
upper limit of the sound insulation that can be achieved. 
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Figure 5.1.3. Graph for estimating the transmission loss of a construction with an aperture  
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5.2 SINGLE LEAF CONSTRUCTIONS 

5.2.1 Sound transmission through a solid material 
The solid material is supposed to have the shape of a large plate with thickness h. The material 
is characterised by the density ρm and the speed of longitudinal waves cL . The surface of the 
material defines two transition planes where the sound waves change from one medium to 
another. It is assumed that the medium on either side is air with the density ρ and the speed of 
sound c (also longitudinal waves). The symbols and notation are explained in Fig. 5.2.1. 
 
 
  h 
 

   pi             p1                      p2           pt

 pr             p4                      p3   

 
Figure 5.2.1. Thick wall with incident, reflected and transmitted sound waves  
 
The sound pressure is equal on either side of the two transition planes: 

         (5.2.1) 
32

41

ppp
pppp

t

ri

+=
+=+

Also the particle velocity is equal on either side of the two transition planes: 
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        (5.2.2) 

The characteristic impedance in the surrounding medium (air) is denoted Z0 and that in solid 
material is denoted Zm. Thus the ratio of sound pressure to particle velocity in each of the plane 
propagating waves is: 
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    (5.2.3) 

Using (5.2.3) in (5.2.2) leads to: 
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       (5.2.4) 

Assuming propagation from one side of the material to the other without losses means that there 
is only a phase difference between the pressure at the two intersections: 

 117



         (5.2.5) 
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Here km = ω /cL  is the angular wave number for longitudinal sound propagation in the solid 
material. 
 
From the above equations (5.2.1), (5.2.4) and (5.2.5) can be derived the ratio between the sound 
pressures pi and pt and thus the transmission loss can be expressed by:  
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R0, dB 

 
Fig. 5.2.2. Transmission loss at normal incidence of sound on a 600 mm thick concrete wall. 
 
At high frequencies some dips can be observed in the transmission loss curve. They occur at 
frequencies where the thickness is equal to half a wavelength in the solid material, or a multiple 
of half wavelengths. However, the dips are very narrow and they are mainly of theoretical 
interest. 
 
Two special cases can be studied. First the case of a thin wall: Zm >> Z0   and   kmh << 1 
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The other special case is a very thick wall: Zm >> Z0   and   kmh >> 1 

 ⎟⎟
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The cross-over frequency from (5.2.7) to (5.2.8) is the frequency fh at which kmh = 1:    

 
h

c
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h π2
=         (5.2.9) 

This is the frequency at which the thickness is approximately one sixth of the longitudinal 
wavelength λL in the material: 
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π 22
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The result for the thin wall is the so-called mass law, which will de derived in a different way in 
the next section. The result for a very thick wall (5.2.8) means that there is an upper limit on the 
sound insulation that can be achieved by a single-leaf construction, and this limit depends on 
the density of the material. For wood it is 68 dB, for concrete 80 dB and for steel 94 dB. (These 
numbers should be reduced by 5 dB in the case of random incidence instead of normal 
incidence, see section 5.2.3). 

5.2.2 The mass law 
 
 

   pi         

 pr                                  pt 

vn      
 
vt  =  vn  / cos θ  

θ 

 
 
Figure 5.2.3. Thin wall with sound pressures and particle velocities 
 
A thin wall with the mass per unit area m is considered, see Fig. 5.2.3. The application of 
Newton’s second law (force = mass ⋅ acceleration) gives: 
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vmpppp ωj
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==−+=Δ     (5.2.10) 

where vn is the velocity of the wall vibrations (in the direction normal to the wall). The 
separation impedance Zw is introduced: 

 m
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pZ
n

w ωj=
Δ

=        (5.2.11) 

The separation impedance will be more complicated if the bending stiffness of the wall is also 
taken into account, see below. 
 
The particle velocities in the sound waves are called u with the same indices as the 
corresponding sound pressures. Due to the continuity requirement the normal component of the 
velocity on both sides of the wall is: 
 θθ cos)(cos ritn uuuv −==       (5.2.12) 
which leads to 
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The sound transmission loss Rθ at a certain angle of incidence θ  is: 
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In the special case of normal sound incidence (θ = 0) the insertion of (5.2.11) gives the 
important mass law of sound insulation: 
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Since m = ρmh this result is the same as derived above in (5.2.7). 

5.2.3 Sound insulation at random incidence 
The transmission coefficient at the angle of incidence θ  is from (5.2.14) 
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Random incidence means that the sound field on the source side of the partition is 
approximately a diffuse sound field. In a diffuse sound field the incident sound power P1 on a 
surface is found by integration over the solid angle ψ = 2 π assuming the same sound intensity 
I1 in all directions. The principle is the same as used in section 3.2.2. Since, in each direction 
the transmitted sound power is equal to the incident sound power multiplied by the transmission 
coefficient, the ratio between transmitted and incident power is: 
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 ( ) (dB)     23,0log10log10 00 RRR −=−= τ     (5.2.17) 
This is the theoretical result for random incidence, and for typical values (R0 between 30 and 60 
dB) it means that R is 8 to 11 dB lower than R0. However, in real life this is not true and it can 
be shown that the result is related to partitions of infinite size. Taking the finite size into 
account the result is approximately: 
         (5.2.18) dB 50 −≅ RR
This is in good agreement with measuring results on real walls. 
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5.2.4 The critical frequency 
The bending stiffness per unit length of a plate with thickness h is: 

 
)1(12 2
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hEB         (5.2.19) 

where E is Young’s modulus of  the material and ν is Poisson’s ratio. (ν  ≅ 0.3 for most rigid 
materials). 
 
The speed of propagation of bending waves in a plate with bending stiffness per unit width  B 
and mass per unit area m is (see section 6.3.3): 

c
b f
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Bc == 4ω       (5.2.20) 

Here fc is introduced as the critical frequency. It is defined as the frequency at which the speed 
of bending waves equals the speed of sound in air, cb  =  c. 
 
The critical frequency is: 

 
B
mcfc π2

2

=         (5.2.21) 

A sound wave with the angle of incidence θ  propagates across the wall with the phase speed  
c / sin θ , i.e. the phase speed is in general higher than c, see Fig. 5.2.4. If the bending wave 
speed happens to be equal to the phase speed of the incident sound wave, this is called 
coincidence: 

θsin/ccb =  
 

 
 
Figure 5.2.4. Thin wall with bending wave and indication of speed of propagation along the 
wall 
 
The coincidence leads to a significant dip in the sound transmission loss. The coincidence dip 
will be at a frequency higher than or equal to the critical frequency: 
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 θ2sincco ff =         (5.2.22) 
The separation impedance (5.2.11) is replaced by: 
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Insertion in the general equation (5.2.14) leads to the sound transmission loss at a certain angle 
of incidence: 
 ( ) (dB)     sin1log20coslog20 42

0 θθθ cffRR −++=   (5.2.24) 

 

5.2.5 A general model of sound insulation of single constructions 
The general model of sound insulation is based on mass law as given in (5.2.15). However, the 
following results are valid for sound insulation between rooms with approximately diffuse 
sound fields. In the frequency range below the critical frequency, f < fc: 
 ( ) dB 51log20 2
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In the frequency range above the critical frequency, f  ≥ fc: 
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where η is the loss factor (see section 6.2.2.3). 
 
The upper limit for sound insulation of a single-leaf construction is, according to (5.2.8): 
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A sketch of the transmission loss as a function of frequency is shown in Fig. 5.2.5 
 
 
 
 

 

R, dB  
 
 
 
 
 
 
 
 
 
 
 
                                                  fc                      

      Frequency (log)  
 
Figure 5.2.5. Sound insulation of a single-leaf construction, fc is the critical frequency and the 
upper limit is the dotted line. 
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5.3 DOUBLE LEAF CONSTRUCTIONS 
 

5.3.1 Sound transmission through a double construction 
 
 

       m1             d              m2 

   pi                   p1           p2                  pt

pr                  p4           p3   

 

     v1                              v2

 
Fig. 5.3.1. A double construction with indication of sound pressures and particle velocities 
 
A double construction with two plates in the distance d is considered, see Fig. 5.3.1. The 
separation impedance of the two plates is denoted Z1 and Z2, respectively. As for the single 
construction in (5.2.10) the movement of each wall is: 
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The velocity of each wall equals the particle velocity on either side: 
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Assuming propagation from one side of the cavity to the other without losses means that there 
is only a phase difference between the pressure at the two intersections: 

         (5.3.3) 
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From the above equations (5.3.1), (5.3.2) and (5.3.3) can be derived the ratio between the sound 
pressures pi and pt and thus the transmission loss can be expressed by:  
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If only the mass of each wall is taken into account the separation impedances are: 
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 Neglecting the smaller parts and inserting Z0 = ρ c together with (5.3.5) yields: 
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This result will be discussed and simplified below. 
 

5.3.2 The mass-air-mass resonance frequency 
The transmission loss is minimum when the last term is zero, i.e. 
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For a cavity that is narrow compared to the wave length (kd << 1) we get: 
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The solution is the mass-air-mass resonance frequency f0  =  ω 0 / 2 π  
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If the depth d of the cavity is comparable to the wavelength there are many solutions to (5.3.7) 
and they are approximately kd = n π. The dips in the sound insulation occur at frequencies at 
which the cavity depth equals one or more half wavelenghts: d = n λ /2. 
 
However, more important than these dips is the shift from low- to high-frequency behaviour of 
the air cavity. The cross-over frequency has no particular physical meaning, but it is the 
frequency fd at which kd = 1:    
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This is quite similar to the result (5.2.9) found for the sound transmission through a solid 
material. Only, in this case the transmission is through air. The spring-like behaviour of the air 
cavity changes from that of a simple spring below the cross-over frequency to that of a 
transmission channel at higher frequencies. 

5.3.3 A general model of sound insulation of double constructions 
The result (5.3.6) can be simplified in different way depending on the frequency range. In the 
frequency range below the resonance frequency, f  <  f0: 
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This means that the construction behaves as a single construction with the mass per unit area 
(m1 + m2). In the frequency range above the resonance frequency,  f0 < f < fd: 
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In this a much better sound insulation can be obtained, and it depends on the product of the 
three parameters m1, m2 and d. At frequencies above fd where the cavity is wide compared to the 
wavelength, sin (kd) is replaced by its maximum value 1, and for f  ≥ fd: 
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In this high-frequency range, d is no longer an important parameter. 
A sketch of the transmission loss as a function of frequency is shown in Fig. 5.3.2. 
 
 
 

                                       f0                fd                              
      Frequency (log) 

R, dB  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3.2. Sound insulation of a double-leaf construction, f0 is the resonance frequency and 
fd is the cross-over frequency of the cavity. 
 
 
 
 R, dB 
 
 
 
 
 
 
 
                     f0                       fd         fc1   fc2                           

      Frequency (log)  
 
Figure 5.3.3. Sound insulation of an asymmetric double-leaf construction with two thin plates 
having different critical frequencies, fc1 and fc2, respectively. 
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5.4 FLANKING TRANSMISSION 
 
 

 
 
Fig. 5.4.1. Direct transmission and three flanking transmission paths via the floor.  
 
The transmission of sound from a source room to a receiver room can be via flanking 
constructions like the floor, the ceiling or the façade. When all relevant transmission paths are 
considered the sound insulation is described by the apparent sound transmission loss: 
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where P2 is the sound power transmitted through the partition wall to the receiver room and P3 
is the sound power radiated to the receiver room from the flanking surfaces and other flanking 
paths: 
         (5.4.2) ∑=

i
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Each single flanking transmission path i can be characterised by the flanking transmission loss, 
RF,i : 
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It is convenient to keep the incident sound power P1 on the partition wall as a reference for all 
the flanking transmission losses. In this way it is very simple to add all the contributions 
together, and the apparent transmission loss is calculated from: 
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In the typical case of horizontal transmission through a wall the will be 12 flanking paths, 
namely three possible paths for each of the four surrounding flanking constructions, see Fig. 
5.4.1. 
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5.5 ENCLOSURES 
A noise source is supposed to radiate the sound power Pa. The noise source is totally covered 
by an enclosure with surface area S, absorption coefficient α on the inside, and the enclosure is 
made from a plate with transmission loss R or transmission coefficient τ. The average sound 
pressure in the enclosure pencl can be estimated, if a diffuse sound field is assumed: 

 c
S
Pp a

encl ρ
α
42 =         (5.5.1) 

The sound power incident on the inner surface of the enclosure is (still with the assumption of a 
diffuse sound field): 
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The sound power transmitted through the enclosure is then: 
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α
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The insertion loss of the enclosure is the difference in radiated sound power level without and 
with the enclosure: 
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This result cannot be considered to be very accurate. Especially the assumption of a diffuse 
sound field inside the enclosure is doubtful. However, the result is not bad as a rough estimate 
for the design of an enclosure. It is clearly seen from (5.5.4) that both transmission loss and 
absorption coefficient are important for an efficient reduction of noise by an enclosure. 
 

5.6 IMPACT SOUND INSULATION 
The noise generated from footsteps on floors is characterised by the impact noise level. It is 
measured according to ISO 140 Part 6 and 7 by a standardised tapping machine. The main data 
for the tapping machine are: 
 
• The noise is generated by steel hammers with a fall height of 40 mm 
• Each steel hammer has a mass of 500 g 
• The number of taps per second is 10. 

 
In the source room the tapping machine is placed on the floor in a number of positions. In the 
room below - or any other room in the building – the calibrated sound pressure level L2 is 
measured. The reverberation time in the receiving room must also be measured in order to 
calculate the absorption area A2. The impact sound pressure level is the sound pressure level in 
dB re 20 μPa that would be measured if the absorption area is A0 = 10 m2: 
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ALLn     (5.6.1) 

The frequency range is the same as for airborne sound insulation, i.e. the 16 one-third octave 
bands from 100 Hz to 3150 Hz. However, it is recommended to extend the frequency range 
down to 50 Hz, especially in the case of lightweight floor constructions. 
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Fig. 5.6.1. Principle of measuring the impact sound pressure level from a floor to a receiving 
room (2)   
 
 

5.7 SINGLE-NUMBER RATING OF SOUND INSULATION 

5.7.1 The weighted sound reduction index 
The single-number rating of sound insulation is practical for several purposes:  
 
• to characterise the measuring result of a building construction,  
• for quick comparison of the sound insulation obtained with different constructions, and  
• to specify requirements for sound insulation.  
 
The weighted sound reduction index Rw is based on a standardised reference curve that is 
defined in one-third octaves in the frequency range 100 Hz – 3150 Hz. The reference curve is 
made from three straight lines with a slope of 9 dB per octave from 100 to 400 Hz, 3 dB per 
octave from 400 to 1250 Hz, and 0 dB per octave from 1250 to 3150 Hz.  
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The measured transmission loss is compared to the reference curve, and the sum of 
unfavourable deviations is calculated. An unfavourable deviation is the deviation between the 
reference curve and the measured curve if the measured sound insulation is lower than the value 
of the reference curve.  
 
The reference curve is shifted up or down in steps of 1 dB, and the correct position of the 
reference curve is found when the sum of unfavourable deviations is as large as possible, but do 
not exceed 32 dB. The value of the reference curve at 500 Hz is taken as the single-number 
value of the measuring result. The method is also shown in Fig. 5.7.1. 
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Fig. 5.7.1. Determination of the weighted sound reduction index. M is the measured curve, V1 is 
the reference curve in position 52 dB, and V2 is the shifted reference curve. The result is Rw = 
60 dB. 
 
 

5.7.2 The weighted impact sound pressure level 
The weighted impact sound pressure level Ln,w is very similar to the weighted sound reduction 
index. It is based on a standardised reference curve that is defined in one-third octaves in the 
frequency range 100 Hz – 3150 Hz. The reference curve is made from three straight lines with a 
slope of 0 dB per octave from 100 to 315 Hz, -3 dB per octave from 315 to 1000 Hz, and -9 dB 
per octave from 1000 to 3150 Hz.  
 
The measured impact sound pressure level is compared to the reference curve, and the sum of 
unfavourable deviations is calculated. An unfavourable deviation is the deviation between the 

 129



reference curve and the measured curve if the measured impact sound pressure level is higher 
than the value of the reference curve.  
 
The reference curve is shifted up or down in steps of 1 dB, and the correct position of the 
reference curve is found when the sum of unfavourable deviations is as large as possible, but do 
not exceed 32 dB. The value of the reference curve at 500 Hz is taken as the single-number 
value of the measuring result. The method is also shown in Fig. 5.7.2. 
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Fig. 5.7.2. Determination of the weighted impact sound pressure level. M is the measured 
curve, V1 is the reference curve in position 60 dB, and V2 is the shifted reference curve. The 
result is Ln,w = 47 dB.   
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5.8 REQUIREMENTS FOR SOUND INSULATION 
 
The Danish requirements for new buildings are laid down in “Bygningsreglement 1995” (BR-
95) and in “Bygningsreglement for småhuse 1998” (BR-S 98).  
 
For dwellings in multi-storey houses and for hotels the main requirements are: 
 
• The airborne sound insulation shall be R´w ≥ 52 dB in horizontal directions and R´w ≥ 53 dB 

in vertical directions. 
• The impact sound pressure level shall be L´n,w ≤ 58 dB. 
• Between rooms for common service or commercial use and dwellings the airborne sound 

insulation shall be R´w ≥ 60 dB and the impact sound pressure level shall be L´n,w ≤ 48 dB. 
 
For row-houses or semi-detached houses the main requirements are: 
 
• The airborne sound insulation shall be R´w ≥ 55 dB. 
• The impact sound pressure level shall be L´n,w ≤ 53 dB. 
 
In schools the main requirements are: 
 
• Between classrooms the airborne sound insulation shall be R´w ≥ 48 dB in horizontal 

directions and R´w ≥ 51 dB in vertical directions. 
• The impact sound pressure level in classrooms shall be L´n,w ≤ 63 dB. 
• From rooms for music or workshops to classrooms the airborne sound insulation shall be 

R´w ≥ 60 dB and the impact sound pressure level shall be L´n,w ≤ 53 dB. 
 
The sound insulation of facades is not specified directly, but in buildings where then outdoor 
traffic noise exceeds LAeq, 24 ≥ 55 dB, the indoor noise in living rooms shall not exceed LAeq, 24 ≤ 
30 dB. 
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6  MECHANICAL VIBRATION AND STRUCTUREBORNE SOUND  
Mogens Ohlrich 

 
6.1 INTRODUCTION 
 
Audio frequency vibration of mechanical systems and waves in solid structures form an 
integral part of engineering acoustics in describing the dynamic phenomena in solids and 
fluids, and their interaction. This subject, referred to as phenomena of structureborne sound 
or vibro-acoustics, is important because sound or noise is very often generated directly by 
mechanical vibration of solid bodies or by waves transmitted in solid structures, and 
eventually radiated into the fluid as audible sound. Examples are musical sound from a string 
instrument or noise from a pump in a central heating system. 
 Vibration of simple resonant systems (resonators) is characterised by mass and stiffness 
properties and by some form of damping mechanism, which dissipate vibrational energy. The 
simplest description of dynamic behaviour applies to resonators that can be modelled as a 
(minimal) combination of discrete or ‘lumped’ elements. If the response of the resonator 
primarily occurs in only one direction, ie in a single motion coordinate, then the system is said 
to have a single degree of freedom (sdof). Figure 6.1.1 shows examples of sdof-resonators. 
The mathematical description of the vibration of such systems is governed by an ordinary 
second-order differential equation. This is usually derived from a force balance of the mass 
element. Solution of the equation shows that such systems have a single preferred ‘natural’ 
frequency of vibration, which can exist in the absence of external excitation. 
 
 
 

 

 

 
Figure 6.1.1 Examples of single degree of freedom resonators. After ref. [1]. 
 
 Vibration of more complex systems requires more than one motion coordinate for a 
complete description. For example, in the case of a loudspeaker three degrees of freedom are 
required for describing the designed translational motion of the ‘piston cone’ and its 
unintentional rocking motions, which can occur in two planes. In general such motions will be 
governed by three coupled, second-order differential equations. However, by using a special 
set of coordinates these equations can be uncoupled and solved independently, as is the case 
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for the sdof-resonator. 
 Vibration of different phase, ie, structural wave motion, can occur when the wavelength 
of vibration in a solid structure is less than one of its typical dimensions. If this is the case it is 
natural to threat the system as a continuous one. The response of such a system is governed by 
a partial differential equation, because the response depends upon both time and a spatial 
position coordinate that specifies the location at which the response is to be determined.          
 
6.1.1 SOURCES OF VIBRATION   
There are many types of excitation mechanisms that generate vibration and waves in solid 
structures. Such sources are associated with nature or they involve the employment of 
machines in the broadest sense, that is, devices that do work, ranging from a miniature loud-
speaker in a hearing aid to a combustion engine of a truck, say. The sources can be classified 
by their temporal variations for which there are two types, transient and continuous that 
includes time variation of either deterministic (periodic) or random nature.   
 Examples of sources of vibration are shown in Figure 6.1.2. Transient sources 
representing local impact are very common both as a single impact and in repetition, in which 
case the excitation time-history becomes periodic. The hammer impact symbolizes a variety 
of excitation mechanisms such as musical percussion (drums, xylophones), impulsive sources 
of vibration and noise in buildings (foot-falls, door slamming), impacts in production 
machinery (punch presses, forge hammers) and periodic impacts in combustion engines 
(valves, piston slab). Figure 6.1.2b illustrates force excitation caused by an unbalanced 
rotating mass; such excitation is often of a harmonic (pure tone) nature. Other sources of 
vibration and noise are random variation of surface roughness, eg in wheel/surface contacts, 
or distributed excitation of a structure, eg caused by a sound field.  
 
 
 

 

 

 
Figure 6.1.2 Examples of sources that generate vibration and structure-borne sound. 
 
6.1.2 MEASUREMENT QUANTITIES 
Investigations of vibration in solid structures are usually carried out by measuring a local 
quantity at a specific position on the structure. Distribution of vibration over a larger area can 
be determined by measurements in a number of discrete positions. The local measurement 
quantity is either a motion (displacement, velocity or acceleration) or a force. Both types of 
variables are vectors, and thus assigned to a certain orientation or direction. 
 Vibratory motion is usually measured uni-directional with a small transducer of the 
accelerometer-type that is fastened to the structure’s surface. The accelerometer is based upon 
the piezo-electric principle with an output signal proportional to the acceleration a = a(t)  of 
the vibrating surface. Accelerometers are available with different sensitivities. The velocity  v 
or displacement ξ of the vibratory motion is obtained by integration of the acceleration signal. 
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 A localised (point) force F = F(t) is mostly measured with a piezo-electric force 
transducer, which produces an output proportional to the force. The measurement is carried 
out by inserting the transducer between a source (eg a vibration exciter) and the measurement 
object. This arrangement is mostly used for measuring the dynamic properties of structures, 
for example, the impedances or the mobilities. 
  
6.1.3 LINEAR MECHANICAL SYSTEMS 
The dynamic properties of a physical system depend upon its mass and stiffness distribution 
and damping losses. These properties are attempted described by mathematical models in the 
form of one or more differential equations of motion. The system is said to be linear if the 
dependent response variables are of first order. When this is the case, one can use the very 
important superposition principle. This means that the response contributions from 
independent excitations can be superimposed or summed as vectors.  
 Herein we assume that systems considered are linear, which is often the case when 
vibration or waves have small amplitudes. System dynamics can therefore be described by 
linear differential equations. These can be based either on a discrete model or on a continuous 
model. In the discrete model the properties of system components are described by discrete 
(‘lumped’) quantities, represented by ideal masses, massless springs and dampers, see Figure 
6.1.3. The physical properties of the continuous model are functions of the spatial coordinates. 
Dynamic properties of the system are therefore described by partial differential equations. 
 
               

 

 

Figure 6.1.3 Lumped model of a physical system, where the physical properties are represented by 
ideal discrete elements of point masses, massless springs and dampers. 
 
  The choice between the two models depends upon a number of factors such as frequency 
range of interest, structural shape and forms of excitation. However, the actual decision of the 
type of model is usually not strictly scientific, but is often based on intuition and practical 
experience. In this note we shall focus mainly on the analysis of discrete models, whereas 
only a brief summary will be given of wave motion in continuous structures (structure-borne 
sound). 
 Figure 6.1.4a shows the basic lumped elements; the quantity  s  represents the spring 
constant (stiffness),  m  is the mass and  r is the damping constant of a viscous damper; for 
translatory motion these quantities have units of [N/m], [kg] and [kg/s], respectively. The 
viscous damper represents a velocity proportional resistance that results in energy losses. 
Symbolically, the viscous damping is thought caused by motion of a piston in a fluid-filled 
cylinder.   
 The properties of the elements are independent of time t, and there is a linear relation 
between forces Fi = Fi(t) and changes in, respectively, displacement ξ = ξ(t) , velocity v = v(t) 
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and acceleration a = a(t)  over the terminals of the elements. Thus, for the ideal spring there is 
proportionality between force and deformation according to Hooke’s law. The viscous 
damping force is proportional to the velocity of the ‘deformation’ in the massless damper. 
 
 
 

 

 
Figure 6.1.4 (a) Force-response-relations for ideal lumped elements.(b) Excitation (action) and 
reaction by compression of spring. 
 
 Note that both motion and force variables are vector quantities, as shown by the example 
in Figure 6.1.4b . Both quantities are defined as positive in the direction of the vector; the 
motion variables are thus defined as positive in the x-direction. In Figure 6.1.4a, the positive 
force F required for accelerating the mass  m  is therefore  F = ma , which is Newton’s second 
law of motion in its simplest form. 

 
6.2 SIMPLE MECHANICAL RESONATORS 
 
Figure 6.2.1a shows a model of a single degree of freedom system that is connected to a rigid 
foundation. The system consists of a mass  m , a spring of spring constant  s , and a velocity 
proportional viscous damper of damping constant  r. 
 
 

 

 

 
Figure 6.2.1 (a) Viscously damped simple resonator driven by an external force F ; (b) diagram which 
shows the forces acting on the mass  m .   
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6.2.1 EQUATION OF MOTION FOR SIMPLE RESONATOR 
The system is assumed excited by a time-varying external force  F = F(t)  and it is understood 
that the system can vibrate only translatory, to and fro, in the direction of the force, that is, in 
the horizontal plane in this example. The motion of the mass from its equilibrium position is 
denoted by the displacement ξ = ξ(t) , and this is taken positive towards the right-hand side.  
 The vibration response caused by the external force is uniquely defined by the 
instantaneous value ξ . This displacement of the mass results in a compression of the spring 
that produces a restoring, elastic spring force    
 
 .     ξsFs −=  (6.2.1) 
Thus, the reaction on the mass that is caused by the spring force, acts in the opposite direction 
of the displacement imposed by the external force. If viscous damping is assumed as 
illustrated by the parallel-coupled dashpot in Figure 6.2.1 then this element will exert a 
corresponding restoring damping force 
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that is, a force which is also directed opposite to that of the motion of the mass and in 
proportion to its vibration velocity  v = dξ /dt .  
 The vector sum of forces that act on the mass, that is, F + Fs + Fr  = F − sξ − rv , thus 
serves to accelerate the mass. So, according to Newton’s second law of motion, this sum must 
be equal to the product of mass  m and acceleration  a = d2ξ/dt2 , ie 
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The equation of motion for the system therefore becomes 
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This equation is often written in a reduced form as 
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where  ω0  is the natural angular frequency in [rad/s] of the corresponding undamped system 
(r = 0), defined as 
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In the literature the fraction  r/m  in eq. (6.2.4b) is often replaced either by  2δ  or by  2ζω0  
where  δ  is the damping coefficient and  ζ  is the non-dimensional viscous damping ratio. 
Their definitions are respectively 
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  Moreover, from Figure 6.2.1b it is seen that the total force  Ff  acting on the rigid 
foundation is equal to the sum of the spring force and the damping force, that is,  
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6.2.2 FORCED HARMONIC RESPONSE OF SIMPLE RESONATOR 
Let us assume that the excitation force F in eq. (6.2.4) varies harmonically with time as             
F = |F1|cosωt with angular frequency ω. After a certain built-up of vibration the mass will 
then also execute stationary, harmonic vibration with the same angular frequency ω. Herein 
we shall only deal with the stationary vibration of the system, since it is assumed that the 
initial built-up of vibration caused by ‘starting’ the force has completely decayed because of 
damping effects, see Figure 6.2.2. 
 

 

 

Figure 6.2.2 Time history of vibration built-up in the case of harmonic force excitation of a simple, 
damped resonator when ω < ω0 . The vibration built-up response is succeeded by a stationary 
vibration at the angular frequency ω of the excitation. 
 
6.2.2.1 Undamped system 
Initially, we shall disregard the damping of the considered system by setting r = 0 . Thus for 
harmonic excitation the equation of motion (6.2.4) reduces to  
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The complete solution for ξ = ξ(t) of such a differential equation has the well-known form 
 
 equation   the tosolutions    cos    1 shomogeneout += ωξξ  (6.2.9) 
where the first term represents the stationary harmonic vibration and the second term 
represents the above-mentioned phenomenon of vibration built-up or decay.  
 The displacement amplitude  ξ1  of the stationary vibration is obtained directly from eq. 
(6.2.8) by substituting the assumed solution ξ = ξ1 cosωt : 
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where eq. (6.2.10b) follows from eq. (6.2.5). Furthermore, the quantity  ξstat  represents the so-
called static displacement, which is the compression or extension of the spring caused by the 
force  F = |F1|cosωt  when  ω = 0: 
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The stationary part of the solution (6.2.9), which describes the forced harmonic motion of the 
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resonator, is thus given by  
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The fraction  1/(1 − ω2/ω0
2)  represents the variation of the vibration amplitude with respect to 

the excitation frequency ω and it is sometimes referred to as the response amplification factor; 
this quantity also reveals the phase relation between the displacement response and excitation 
force. Figure 6.2.3 shows the variation of this quantity ξ1/ξstat with angular frequency; in 
Figure 6.2.3b the same quantity is shown as absolute value (modulus) and phase. 
 From the figure it can be seen that the vibration amplitude grows towards infinity when 
the excitation frequency ω approaches the undamped natural frequency ω0 of the system; this 
excitation condition is called resonant excitation, and the frequency at which  ω = ω0  is the 
resonance frequency. At  ω = ω0 , the response  ξ1 is also seen to undergo a change in sign, 
which corresponds to a phase change of π radians. Physically, this simply means that the 
quantities ξ1 and |F1| are in-phase at low frequencies, that is, for  ω < ω0  where the system 
behaves spring-like, whereas they are in anti-phase for ω > ω0  where the response is lagging  
the harmonic force excitation by 180 degrees because of the system mass (inertia). 
 
 

 

 

Figure 6.2.3 (a) Relative displacement response  ξ1/ξstat  for an undamped simple resonator; (b) the 
same response function plotted as modulus and phase. 
 
 For this undamped case the force  Ff  that is transmitted to the foundation is caused by 
the spring force and is given by Ff  = sξ , which follows from eq. (6.2.7) for r= 0. The disturb-
ance force on the foundation thus follows directly by substituting the solution eq. (6.2.12) 
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This force ratio  Ff /|F1| has the same frequency variation as the motion ratio  ξ1/ξstat  shown in 
Figure 6.2.3. For excitation frequencies below the natural frequency of the system, that is for   
ω < ω0 , the mass has a negligible influence. This means that the excitation force is in 
equilibrium with the spring force, which is transmitted unchanged to the foundation. Thus, if 
the force on the foundation is to be reduced by vibration isolation it is required that natural 
frequency of the system is designed in such a way that  ω0 << ω/√2  is fulfilled. For a set 
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excitation frequency and system mass this is accomplished by selecting a ‘soft’ spring 
element with an appropriately small spring constant  s . 
 
6.2.2.2 Viscously damped system 
The influence of damping is now being considered. When damping losses are assumed to be 
of the viscous type as in Figure 6.2.1 then eq. (6.2.4) applies. 
 By using complex notation the harmonic excitation force F(t) = |F1|cosωt can be 
expressed as F(t) = Re{F1eiωt}, where  F1 is the complex amplitude of the force. The solution 
of the equation of motion is assumed to be of the same form  ξ(t) = Re{ξ1eiωt}, where            
ξ1 = |ξ1|eiφ is the complex amplitude of the harmonic displacement with  φ  being the phase 
angle between the displacement response and the driving force. Physical quantities are of 
course always real, and it is therefore necessary to take the real part of the mathematical 
solution when we want the time variation of the physical motion. This yields  
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 By performing in eq. (6.2.4a) substitutions of   F(t) ≡ F1eiωt and  ξ(t) ≡ ξ1eiωt result in the 
solution for the stationary, harmonic vibration1 : 
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Hereby, the problem is basically solved. (If the time variation of the response is sought then 
this is obtained by substitution in eq. (6.2.14).) Furthermore, since the squared modulus is 
given by  ξ1ξ1

* = |ξ1|2 , we get 
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Thus, |ξ1| is obtained by simply taking the square-root of the expression (6.2.16c). 
 The force transmitted to the foundation follows similarly from eq. (6.2.7) 
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which by substituting eq. (6.2.16b) gives 
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 1) Here the symbol Re{··} is left out. This does not result in any trouble as long as one is strictly dealing 
with field quantities (displacement, velocity, force etc). However, when dealing with energy or power quantities, 
one must only include the real part of the field quantity. The time variation eiωt is also often left out in the 
analyses, but it is of course to be recalled and taken into account when necessary. 
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Solution in sum form. The solution (6.2.16) for the complex displacement can also be written 
in terms of its real and imaginary parts 
 . i        1 imre ξξξ +=  (6.2.19a) 
In the following we shall assume that the arbitrary phase of F1 is set equal to zero by a 
suitable choice of time-reference (t = 0); this means that the force amplitude is assumed to be 
real, ie F1 = |F1|. Thus, by transforming the denominator in eq. (6.2.16b) to a real quantity this 
yields 
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The frequency variations of this solution are sketched in Figure 6.2.4a. Shown is the real and 
imaginary parts of the displacement response of the viscously damped resonator when this is 
driven by a harmonic force of constant amplitude F1 . The damping is seen to limit the 
displacement response in the frequency range around  ω~ω0  where the response  ξ1  is 
controlled largely by its imaginary part  ξim . 
 
 
 

 

 

 
Figure 6.2.4 Frequency variation of displacement ξ1  for a viscously damped simple resonator driven 
by a harmonic force of constant amplitude. (a) Real and imaginary parts; (b) Modulus and phase. 
 
Solution in product form.  The solution for the complex displacement response eq. (6.2.16) or 
(6.2.19) is often written in the alternative ‘product form’ 
 ϕξξ i

11      e=  (6.2.20a) 
where the modulus |ξ1| and phase angle φ as usual are determined from eq. (6.2.19): 
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The squared modulus of the displacement is already given by eq. (6.2.16c), whereas the phase 
angle is found directly from eq. (6.2.19b), ie 
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Note that the phase angle becomes φ = −π/2  at resonant excitation. As previously, the actual 
physical time variation of the vibration response follows from eq. (6.2.14) 
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Figure 6.2.4b shows how the modulus and phase of the displacement varies with frequency 
for harmonic force excitation. This type of graph is the most commonly used form of 
presentation for frequency response functions. 
 The vibration velocity v(t) of the resonator is often of interest and this follows simply by 
taking the time derivative of the displacement response, eq. (6.2.16) or (6.2.20): 
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So, with respect to the complex amplitudes a differentiation is simply archived by a 
multiplication with  iω ; evidently integration is performed by a division by iω. Moreover, the 
acceleration  a(t) of the motion is obtained similarly by the time derivative of  velocity or by 
the second derivative of displacement. 
     
Non-dimensional form. It is often convenient to introduce non-dimensional parameters that 
enable solutions for a class of systems to be presented in a general form. For simple 
resonators the frequency ratio  Ω  is readily used as frequency parameter 
 . /    0ωω=Ω  (6.2.22) 
By substituting this as well as the dimensionless viscous damping ratio ζ into eqs. (6.2.16c) 
and (6.2.20b) we obtain the general expressions for the displacement ratio |ξ1|/ξstat  and for the 
phase angle  φ : 
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here, it is recalled that the static displacement is  ξstat = |F1|/s . Amplitude and phase 
characteristics for the displacement ratio (6.2.23), are shown logarithmically in Figure 6.2.5a 
for different values of damping ratio  ζ . It is clearly seen that the damping has a dominant 
influence on the response in the frequency range Ω ~ 1, which is close to the natural 
frequency of the system. 
 Similar expressions for the force ratio  Ff  / |F1| are obtained by substituting the non-
dimensional parameters in eq. (6.2.18). Amplitude and phase characteristics for this ratio 
between transmitted force and driving force are shown in Figure 6.2.5b.  
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 In forced harmonic vibration the displacement response of the system reaches its 
maximum value |ξmax| at, say,  Ωr = ωr /ω0 where ωr is the resonance frequency. The actual 
value of  Ωr  is determined by differentiating eq. (6.2.23a) with respect to  Ω  and by setting 
the obtained expression equal to zero. This gives the value 
  
 221      ζ−=≡ rΩΩ  (6.2.24a) 

 ⇔   ; 1  2n              whe,     1    22 <<−≅ ζζrΩ  (6.2.24b) 
in the last approximate expression use have been made of the truncated series:                  
(1−x)½ ≅ 1 − x/2  provided that  x << 1. The maximum displacement thus occurs at an angular 
frequency, which is slightly lower than the angular natural frequency of the undamped 
system. By substituting eq. (6.2.24a) in (6.2.23a) we get 
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Figure 6.2.5 Amplitude and phase characteristics for: (a) Displacement ratio  ξ1/ξstat  , and (b) Force 
ratio  Ff /|F1| . From ref. [2]. 
 
 However, when the damping is small (ζ  << 0.05) the resonance frequency will nearly 
coincide with the natural frequency  ω0 of the undamped system, that is, ωr  ≅  ω0 ; the 
maximum displacement thus becomes 
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The displacement at resonance is thus equal to  ξstat divided by  2ζ . 
 Similarly, the vibration velocity of the system can be shown to take its maximum value 
|vmax| at  ω = ω0 , that is, at  Ω =1 . Since  |v| = ω |ξ|  this yields 
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Relations for maximum acceleration can be derived in the same manner. 
 Finally, the modulus and phase of the frequency response functions for displacement and 
velocity, respectively, are sketched in log-log format in Figure 6.2.6. 
 

 

 

 
Figure 6.2.6 Logarithmic plots of the frequency response functions of a simple resonator represented 
as displacement and velocity. A unit force excitation is assumed.   
 
Characteristic properties. As apparent from previous discussions the dynamic properties of 
the resonator are predominantly spring-like at low frequencies (Ω  << 1) and predominantly 
mass-like at high frequencies (Ω  >> 1) ; the asymptotes shown in Figure 6.2.6 actually 
represent the dynamic properties of the individual elements  s, m and  r under the action of the 
force  F1. The dynamic properties of the resonator (ie, the combined system) are therefore 
characterised as being:  
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These asymptotic values for the displacement response |ξ1| follow directly from eq. (6.2.16c). 
Similar relations can be determined for velocity and acceleration. 
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6.2.2.3 Structurally damped systems 
So far we have only considered damping of the viscous type. A second type is structural 
damping, which is proportional to changes in elastic deformation, like the displacement of a 
spring. Such structural damping is therefore appropriately modelled by assigning the inherent 
losses to the spring element. For harmonic motion this can be represented by a complex 
stiffness  s = s(1 + iη)  where  η  is the damping loss factor and  s  is the real part of the 
complex spring constant. The loss factor thus defines the phase lag (hysteresis) between 
harmonic driving force and spring displacement. By using the loss factor the equation of 
motion for a single mass-spring resonator becomes 
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which, similar to eq. (6.2.15), has the solution  ξ(t) = Re{ξ1eiωt}, where  ξ1 = |ξ1|eiφ  is the 
complex amplitude: 
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 This ‘complex stiffness’ approach is very convenient, because the equation of motion 
can be formulated initially without regard to damping and finally the spring constant is 
replaced by its complex value  s = s(1 + iη) . 
 Now, comparing eq. (6.2.30) with (6.2.15) shows that  sη  corresponds to  ωr . The 
equivalent damping ‘constant’ req for a structurally damped spring thus becomes frequency 
dependent, and so does the equivalent damping ratio  ζeq , ie  
 
 . )2/(    )(       and   /    )(    0 ωηωωζζωηω ==== eqeqeqeq srr  (6.2.31a,b)  
 
Alternatively, the loss factor of a parallel combination of an ideal spring and a viscous damper 
of constant  r may be expressed as  η = rω/s . Note also that the equivalent damping ratio eq. 
(6.2.31b) becomes  ζeq =  η/2  at resonance. This relation may be used as an approximation 
for other frequencies that are close to resonance. 
 
6.2.3 FREQUENCY RESPONSE FUNCTIONS 
The frequency response of a system is defined as the ratio of complex amplitudes of two 
quantities representing the response to a certain excitation. This broad characterisation by the 
term ‘frequency response’ is often imprecise because the response quantity can be either 
displacement or one of its time derivatives: velocity and acceleration. It is therefore 
customary to assign specific names and symbols to the various types of frequency response 
functions.  
 
6.2.3.1 Receptance 
So far we have been dealing with ratios of response over force. When the system response is 
characterised by its displacement the complex frequency response is called the receptance  
H(ω) . So, this is defined as 
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where the notation with angular frequency dependence, H(ω), implies that the quantity is a 
continuous function of ω ; its amplitude spectrum  |H(ω)| and phase spectrum  φ(ω)  can be 
determined from 
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The definition eq. (6.2.32) states that ξ1eiωt = H(ω)F1eiωt , which means that the time variation 
of the displacement for harmonic excitation is 
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where the force amplitude is assumed to be real.  
 Receptances of the discrete elements: spring s, damper r and mass m , follow 
respectively from the fundamental relations between harmonic force and the associated 
motion for such elements 
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Since the ideal spring and damper are massless it is assumed in the definition of their 
receptances that one of their terminals is blocked and that a harmonic force drives the other, 
free end.  
 It is sometimes useful to use the reciprocal of the receptance function; this is called 
dynamic stiffness [3]. 
 
6.2.3.2 Mobility and Impedance 
The velocity response is often of interest in vibro-acoustics, for instance, because the radiated 
sound power from a vibrating structure is proportional to its surface velocity. The complex 
ratio between response velocity and driving force is called the mobility  Y(ω)  (or sometimes 
admittance) and is defined as 

 ,      )(    )( i
1

i
1)(i

t

t

eF
eveYY ω

ω
ωθωω ==   (6.2.36) 

There is, of course, a very simple relation between mobility and receptance since the complex 
velocity amplitude is  v1 = iωξ1 , ie 
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The mobilities of the ideal components are therefore easily determined either from the 
fundamental relations or directly from eq. (6.2.35). Thus 
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The reciprocal of a mobility function is named the impedance  Z(ω) 

 . 
)(

1    )(
ω

ω
Y

Z =  (6.2.39) 

  



 

 147

 

 These different frequency response functions are summarized in Table 6.2.1 together 
with corresponding functions that involve acceleration response. The latter is called 
accelerance and its reciprocal, the apparent mass. The accelerance is sometimes used because 
acceleration is the response quantity that is usually measured directly. 
 
Table 6.2.1 Definition of frequency response functions  R/F  and  F/R , where  F  is the force and  R  is 
the response that represents either displacement, velocity or acceleration. 
 --------------------------------------------------------------------------------------------------------- 
 Response                    Name of frequency response function 
 quantity 
       R    R/F    F/R 
 --------------------------------------------------------------------------------------------------------- 
 Displacement  ξ  Receptance H(ω)  Dynamic stiffness S(ω) 
 --------------------------------------------------------------------------------------------------------- 
 Velocity  v  Mobility Y(ω)   Impedance Z(ω) 
 --------------------------------------------------------------------------------------------------------- 
 Acceleration  a  Acceleration A(ω)  Apparent mass M(ω) 
 --------------------------------------------------------------------------------------------------------- 
 
 
6.2.4 FORCED VIBRATION CAUSED BY MOTION EXCITATION 
Vibratory disturbances like motion excitation is very common and occurs, for example, in 
transportation of any kind, in machinery and in certain cases also in buildings. In all these 
examples and in vibration isolation of delicate equipment from disturbing environments, the 
‘foundation’ has a given motion  ξf  = ξf (t)  as shown in Figure 6.2.7. Thus we want to find the 
imposed/generated motion  ξ = ξ(t)  of the mass. 
 
 

 

 

Figure 6.2.7 Motion excitation of a damped simple resonator. 
  
 There are two motion coordinates, but despite of this the system has only one degree of 
freedom, because the motion of the system is uniquely described by a so-called generalized 
coordinate q = q(t) ; in this case by the motion differences 
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The quantities q and 
.  

q describe, respectively, the compression (or elongation) of the spring 
and the velocity difference over the damper. Since the total force on the mass in Figure 6.2.7 
readily can be written down, is it not necessary to use q explicitly. From eq. (6.2.3) follows 
directly 
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This gives the equation of motion 
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It is seen that there is a clear analogy between this expression and eq. (6.2.4a), if the right-
hand-side of eq. (6.2.42) simply is interpreted as a special ‘forcing function’. 
 In the case of steady-state harmonic motion excitation  ξf eiωt , the solution to eq. (6.2.42) 
can be assumed to be ξ ≡ ξ1eiωt ; by substituting these quantities we obtain the solution for the 
complex amplitude of the displacement  ξ = Re {ξ1eiωt } 
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This expression has the same form as eq. (6.2.18a). In motion excitation the ratio between 
displacements is thus identical to the ratio between forces in the case of force excitation 
(Figure 6.2.1). The frequency variation of  ξ1 /ξf is therefore exactly identical to that of   Ff /F1  
shown in Figure 6.2.5b. 
 This finishes the analysis of simple sdof mechanical resonators. A treatment of free 
vibration of such systems and an analysis of more complicated multi-degree of freedom 
systems is outside the scope of this introductory note on discrete systems. We will therefore 
proceed with a brief introduction of continuous structures. 
  
 
6.3 VIBRATION AND WAVES IN CONTINUOUS SYSTEMS  
 
Distributed solid structures become ‘dynamically elastic’ and exhibit wave-type vibratory 
behaviour as the frequency is increased to an extent, where the wavelength become 
comparable to, or less than, the physical dimensions of the structure. Although discrete 
models can be used for analysing wave motion at the lower frequencies, it becomes expedient 
to use wave-type analysis in problems where the wavelength is short. Thus, a brief 
introduction will be given to vibration and wave motion in continuous systems. Only systems 
of one and two dimensions will be considered here, because most engineering structures have 
at least one dimension, which is small in comparison with the relevant structural wavelength 
of vibration. In the audible frequency range this is the case for basic engineering components, 
such as strings, rods, beams, membranes, plates, shells, pipes etc. 
 Equations of motion that describe different wave types and vibro-acoustic phenomena 
have been formulated for many types of continuous structures [4,5,6]. Usually each wave type 
is treated separately, although wave conversion between different types generally occurs at 
most structural discontinuities, such as edges, corners and cross sectional changes.  
 The most important wave types in structures are considered to be (a) longitudinal waves, 
(b) shear or torsional waves and (c) bending waves, which are also called flexural waves, see 
Figure 6.3.1. In the following an introduction of these waves in plane structures will be given.  
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Figure 6.3.1 Different wave types: (a) Longitudinal wave (the lateral deformations are exaggerated), 
(b) Torsional wave and (c) Bending wave. After ref. [7]. 
 
6.3.1 LONGITUDINAL WAVES 
Longitudinal waves in one-dimensional structures like rods and beams are compression-type 
waves that are similar to plane sound waves in a fluid. The local structural deformation in 
connection with longitudinal wave motion is primarily in the direction of wave propagation, 
although there is also a small lateral deformation normal to the structural surface. However, 
this deformation is generally so small that it can be neglected as a radiator of sound to the 
surrounding fluid. It should also be mentioned that the impedance of longitudinal waves in 
solids generally is very high. 
 The equation of motion for longitudinal waves in an undamped beam can be written in a 
compact form; the longitudinal displacement in the wave motion will be denoted by               
u = u(x, t), where  x  represents its spatial dependence. If we assume purely harmonic 
excitation and harmonic wave motion  u = u(x)eiωt  this reads 
  
 { } , )(    )()( 2 xFxumxuL ′=′− ω  (6.3.1) 
 
where  L{····} is a differential operator that describes the force gradient in the beam,  m' is its 
mass per unit length and  F '(x)  is an external force excitation per unit length. For 
longitudinal waves the operator is given by  −ES d2/dx2 , where  E  in [N/m2]  is Young’s 
modulus of elasticity of the beam material and  S  is the cross sectional area of the beam.  
 Two field variables are required for describing the longitudinal wave motion; these are 
the already mentioned displacement u = u(x)eiωt – or its time-derivative, the velocity               
v = iωu(x)eiωt = v(x)eiωt  – and the internal force  F = F(x)eiωt  associated with the wave 
motion. This is given by 

 .     
x
uESF
∂
∂

−=  (6.3.2) 

Moreover, the wave speed  cl2  of a freely propagation longitudinal wave in the beam is  
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ρ
Ecl     2 =  , (6.3.3) 

where  ρ  is the material mass density; index 2 on  cl2  indicates that the structure has two 
surfaces that are small compared with the wavelength of the motion. The corresponding wave 
speed in a flat, homogenous plate is slightly higher (by about 5%): 

 , 
)1(

    21 νρ −
=

Ecl  (6.3.4) 

where  ν  is Poisson’s ratio, which is a material constant that expresses the ratio between 
deformations in the lateral and length-wise directions of the structure. For common solid 
material ν ≈ 0.3 , and for rubber-like materials ν ≈ 0.5 .  
 A listing of material properties and wave speeds are given in Table 6.3.1. Note that the 
wave speed in metals is about 3000 to 5000 m/s, that is, a magnitude higher than for sound in 
air. Furthermore, the mass density for metals is seen to be up to 7000 times higher than for 
air. This means that the characteristic impedance  (ρcl) for compression waves in solid 
structures is much higher than for air; for example, the characteristic impedance for steel is 
105 times higher than in air, but only 27 times higher than the impedance in water. 
 
Table 6.3.1 Material properties and wave speeds (phase speeds) for solid structures. After ref. [8]. 
 
 

 

 

 
6.3.2 SHEAR WAVES 
In this wave type only shear deformations occur, but no volume changes. Moreover, the 
direction of the ‘particle’ motion is perpendicular to the direction of propagation. Shear waves 
are of importance in plates that are built-up of several layers of material with different 
properties, eg sandwich honeycomb panels. 
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 The equation of motion for shear waves is governed by a second order partial differential 
equation [5] of a general form similar to that of longitudinal waves; the details shall not be 
given here, though. The wave speed  cs  for shear waves in a plate is given by 

 , 
)1(2 

        
νρρ +

==
EGcs  (6.3.5) 

where G is the shear modulus of the material. From the right-hand-side of this equation it is 
clear that there is a unique relation between Young’s modulus  E and the shear modulus  G, ie 

 . 
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ν+

=
EG  (6.3.6) 

 Shear waves in rods are called torsional waves. This type of wave motion that involves 
twisting of the cross section of the rod was shown in Figure 6.3.1b. If the rod has a circular 
cross section then the wave speed is as given by eq. (6.3.5); otherwise the wave speed will be 
lower. 
 The two wave types discussed so far have high characteristic impedances. These waves 
may therefore be important for the wave transmission over large distances (eg in buildings 
and ships) and in wave conversion to bending waves, which is the dominant wave type when 
it comes to sound radiation to the surrounding fluid media, being air or water. 
 
6.3.3 BENDING WAVES 
Bending waves in beams and plates are characterised by the motion being perpendicular to 
both the direction of propagation, and the surface of the structure, see Figure 6.3.1c. Bending 
waves do therefore play a dominant role in sound radiation from structures. The reasons for 
this are that the wave motion has a good ‘match’ to the adjacent air, and that bending waves 
are easily generated, because of their low characteristic impedance. 
 The equation of motion for bending waves in an undamped beam can be written in the 
previous compact form, but with the transverse displacement of the bending wave motion 
being denoted by w=w(x, t). If we again assume purely harmonic excitation and harmonic 
wave motion  w=w(x)eiωt , we get 
 
 { } , )(    )(  )( 2 xFxwmxwL ′=′− ω  (6.3.7) 
 
where the differential operator L{···} that describes the shear force gradient in the beam now 
takes the form  B d4/dx4 . Here,  B  is the bending stiffness of the beam,  m' is its mass per unit 
length and F'(x) is an external force excitation per unit length. The operator is of fourth order, 
and four field variables are thus required for describing the bending wave motion. There are 
two motion variables, the transverse displacement w = w(x)eiωt and the angular displacement 
β = β(x)eiωt , which is the first spatial derivative of  w , ie dw /dx . Two force variables are 
associated with the wave motion, the internal shear force Fy = Fy(x)eiωt and the internal 
bending moment  Mz = Mz(x)eiωt ; these are given by 
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Moreover, the wave speed  cb  of a freely propagation bending wave in the beam is 
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which is seen to depend upon frequency; this special phenomenon is called dispersion. Such 
dependence results in complicated sound radiation properties for plates and built-up 
structures. The wave speed or phase speed is furthermore noticed to depend upon the bending 
stiffness and the mass per unit length.  
 The phase speed of bending waves in a thin homogeneous beam with a rectangular 
cross-section and of thickness  h in the direction of the motion, is given by  
 ,    8.1    2 fhcc lb ≅  (6.3.10) 
where  f  is the frequency (in Hz) and  cl2  is given by eq. (6.3.3). 
 Moreover, the phase speed in a thin homogeneous plate of thickness  h  is given by 
 ,    8.1    1 fhcc lb ≅  (6.3.11) 
where  cl1  is given by eq. (6.3.4). 
 
6.3.4 INPUT MOBILITY OF INFINITE SYSTEMS 
Finally, in this brief introduction it is appropriate to list some input mobilities for point force 
excitation. Or more specifically, input mobilities relating translational velocity  v eiωt  to 
translational force  F eiωt , both at the same point and in the same coordinate (direction). The 
corresponding point impedances are the reciprocal of the given point mobilities. 
 
6.3.4.1 Beam or rod 
Longitudinal vibration. In the case of a semi-infinite (s∞) beam driven axially at the end, the 
input mobility is  

 . 
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=∞  (6.3.12) 

where  m' is mass per unit length and  cl2  is given by eq. (6.3.3). 
 
Bending vibration. The input mobility of a semi-infinite beam driven at the end is 

 . 
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′
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=∞  (6.3.13) 

where  m' is mass per unit length and  cb  is given by eq. (6.3.9), or by eq. (6.3.10), provided 
that the beam is of rectangular cross-section and is vibrating in the direction in which the 
beam thickness  h  is measured.  
 The input mobility of an infinite beam driven in the ‘middle’ is given by  

 . 
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=∞  (6.3.14) 

Note that this is four times lower than the input mobility of the semi-infinite beam, eq. 
(6.3.13). 
 
6.3.4.2 Plate 
Bending vibration. The input mobility of a semi-infinite plate driven normal to its surface and 
at the end (edge) is 
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where  m'' is the mass per unit area, and for a homogeneous plate of thickness  h the bending 
stiffness  B'  is  
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It is noted that this input mobility, eq. (6.3.15), is purely real, provided that the plate is 
undamped as is assumed here. 
 The input mobility of an infinite plate driven in the ‘middle’ is also real and is given by: 
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=∞  (6.3.17) 

 Other point mobilities relating angular velocity to moment excitation, as well as cross 
mobilities, are given in ref. [5]. 
 
 
6.4 VIBRATION ISOLATION AND POWER TRANSMISSION 
 
Vibration isolation is one of the most effective ways of reducing the transmission of audio 
frequency vibration from a disturbing source (machine, apparatus, etc) to a connected 
receiver structure. This is generally accomplished by ‘disconnecting’ the transmission paths 
between the two systems. In practice vibration isolation is done by inserting resilient 
mechanical connections or rubber elements that are much more compliant (ie, dynamically 
soft), than both the source structure and the receiving structure. Such vibration isolators have 
spring-like properties and are often made of vulcanised rubber elements, metal springs or 
combinations thereof. The isolation principle is depicted in Figure 4.1a, and Figure 4.1b 
shows an example of measured mobilities of a rubber isolator, engine source and elastic 
receiver. 
 
 

 
Figure 6.4.1 (a) Vibration isolated diesel engine on elastic ship foundation; (b) Mobilities of isolator, 
engine and ship foundation. From ref. [9]. 
  
 The principle of vibration isolation has already been described in Chapter 6.2. Thus, in 
the case of a harmonically driven simple source of mass  m  resting on a spring  s  attached to 
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an idealised rigid foundation, it was found that vibration isolation is achieved when the 
angular natural frequency ω0 of the system is somewhat lower than the frequency component  
ω  of the excitation force.  
 
6.4.1 ESTIMATION OF SPRING STIFFNESS AND NATURAL FREQUENCY 
It is often easy2 to determine the important quantities (m, s and ms /    0 =ω ) for uncritical 
arrangements of simple machinery sources that are mounted on vibration isolators (springs). 
Usually the mass  m  of the machine is known. For a vertically loaded spring the static force  
F0 = mg from the mass results in a static deflection (compression) of the spring of magnitude  
ξ0 = F0/s . These two relations enable the determination of the static stiffness of the spring, ie 

 ,      
0ξ
gms =  (6.4.1) 

where  g (= 9.81m/s2) is the gravitational acceleration. The designed natural frequency of the 
system can therefore be determined by a very simple formula: 

 . [Hz]     5.0    
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 If the spring element is slender and rod-like with a cross sectional area  S , length 
(height) d  and made from a material of Young’s modulus  E , then the static spring constant  
s  can be calculated from 
 
 s = ES/d . (6.4.3) 
 
Note that the dynamic stiffness of rubber-like material generally differs from this value of 
static spring constant or stiffness  s. This will be treated in more details in Section 6.4.4. 
 
 

 

 

 
Figure 6.4.2 Static deflection of spring, which in the unloaded condition has the length d . 
 
 It was mentioned previously that the vibration isolation can be improved by reducing ω0, 
that is to say, by increasing the static deflection ξ0 . This can be accomplished by reducing  s, 
but this results in a more laterally unstable arrangement. As a compromise for a number of 
practical source cases it is therefore often ‘common’ to choose values in the approximate 
range of 0.004 m < ξ0 < 0.01 m, which corresponds to  8 > f0 > 5 Hz. 

                                                 

 2) It should be recalled, however, that the simple oscillator model is a coarse simplification of the 
reality, where an extended rigid body on springs will have six degrees of freedom and thus six natural 
frequencies, eg see ref. [2]. 
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6.4.2 TRANSMISSION OF POWER IN RIGIDLY COUPLED SYSTEMS  
In contrast to the idealised model of a simple source on a rigid foundation we shall now 
examine the more realistic case of source and foundation or receiving structure of finite 
mobilities or impedances. It is reasonable to expect that the dynamic properties of the source 
and receiver will effect the vibration isolation that is achievable in practice.  
 For reference we shall initially address the situation where the vibration source is rigidly 
connected to the receiving structure, and it is assumed that source and receiver are connected 
via a single motion coordinate (or terminal). First consider the source in a free uncoupled state 
in which the vibration activity of the source can be characterised by its free terminal velocity  
vfree  and its ability to transmit power by its terminal mobility  YS  , see Figure 6.4.3a . These 
source quantities are suitably combined into a single descriptor [10] called the terminal source 
strength |Jterm| : 

 ,     
2

S

free
term Y

v
J =  (6.4.4) 

where 2
freev  is the time-average mean-square value of the free velocity vfree= vfree(t). This 

source strength |Jterm|, with units of power [W], is useful when comparing different vibratory 
sources. 
 

 

 

 
Figure 6.4.3 Systems with a single coupling coordinate: (a) Free vibration source, (b) Source coupled 
rigidly to receiving structure, (c) Reaction forces on systems. 
 
 In the analysis that follows we assume harmonic vibration vfree ≡ vfree eiωt . The source is 
now being connected to a receiving structure, which is characterised by the input mobility YR . 
This loading of the source causes the free velocity to change to vR , because of the force 
reaction  (−F)  on the source, ie 
 .     FYvv SfreeR −=  (6.4.5) 
Since per definition vR = YRF, we find directly for the rigid coupled system: 
 ( ) ( ) .                 and                11

freeRSRRfreeRS vYYYvvYYF −− +=+=  (6.4.6a,b) 
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The force and velocity at the coupling point have hereby been determined for this case of 
rigid coupling. 
 The power that is transmitted to the receiving structure is given by the well-known 
relations: 
 { } { } { }.  Re     Re      Re    2

2
12

2
1

2
1

RRRR ZvYFFvP === ∗  (6.4.7) 
By substituting the expressions from eq. (6.4.6) herein yields 
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 For further evaluation of the transmitted power this can be written in a convenient 
alternative form. Introducing the terminal source strength |Jterm | , eq. (6.4.4), and a power 
coupling factor CP  yields 
 
 ,     Pterm CJP =  (6.4.9) 
where  
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and  φR  is the phase angle of the receiver mobility and  θ = φR − φS  is the phase difference 
between receiver and source mobilities. This takes values in the interval: 0 ≤ |θ| ≤ π . The 
power coupling factor is noted to be symmetric with respect to the logarithm of the mobility 
ratio |YR |/|YS | . For further details see ref. [10, 11]. 
 
6.4.3 VIBRATION ISOLATED SOURCE 
The effect of a vibration isolator is now considered. The source is connected to the receiver 
via a vibration isolator as schematically shown in Figure 6.4.4a. For simplicity it is assumed 
that the isolator can be modelled as an ideal spring with a spring constant  s . Thus, because 
the spring is assumed massless, this implies that the force on the left-hand-side of the spring 
 
 
 

 

 

 
Figure 6.4.4 (a) Block diagram of vibration isolation of a source with a single coupling coordinate. 
(b) Diagram that shows the forces on the system elements. 
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is identical to the force on the receiver, F1 = FR . The velocities are different, of course, and 
similar to before given by 
 .              and               111 FYvFYvv RRSfree =′−=  (6.4.11a,b) 
The force and the velocities are related according to Hooke’s law as 
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which, together with eq. (6.4.11) give 
 
 ( ) ( ) .         i          and              i    11

1 freeRSRRfreeRS vYYsYvvYYsF −− ++=′++= ωω  (6.4.13a,b) 
By substituting F1 into the general relation, eq. (6.4.7b), gives the transmitted power to the 
receiver 
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So, this gives 
 ,     Pterm CJP ′=′  (6.4.15) 
where 

 . cos 
        i

 
    2 R

RS

RS
P

YYs

YY
C ϕ

ω ++
=′  (6.4.16) 

 
 These results for the vibration-isolated source have to be compared with those for the 
rigid coupled case in order to realistically evaluate the influence of the vibration isolator. This 
influence is most suitably described by the effectiveness Eiso = Eiso(ω) of the vibration 
isolator, also called its insertion loss. This is defined as the ratio between the squared 
magnitudes of the receiver velocities before and after the installation of the vibration isolator - 
or for that matter - as the ratio of the corresponding injected powers. Eqs. (6.4.6b) and 
(6.4.13b) thus give 
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 From this equation it is evident that a high effectiveness (ie, large number) requires that 
the isolator mobility iω/s ≡ YI  is much higher (ie, much more mobile or compliant) than the 
sum of the source and receiver mobilities, that is,  
 
 YI  =  iω/s  >>  YS  + YR  .  (6.4.18) 
 
Such a large value of inequality is not easily accomplished over the broad audible frequency 
range, because lightly damped resonance in elastic source and receiving structures will occur 
and limit the effectiveness of the isolator. Furthermore, at high frequencies the mass of the 
isolator can no longer be ignored and resonance occur in the isolator itself, which also limit 
the effectiveness. In the case of a symmetric vibration isolator, such modal behaviour can be 
accounted for in a prediction by replacing  iω/s  in eq. (6.4.17) with the actual mobility of the 
isolator  YI , see also ref. [12]. 
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 At first, the definition of the isolator effectiveness in eq. (6.4.17) does not seem to apply 
to the ideal case of a rigid (immoveable) foundation that was assumed in Chapter 6.2. 
However, this is not so, because Eiso might as well be defined as the ratios of forces acting on 
the receiver, whether this is moving or not. This follows from the fact that velocities and 
forces are related via the receiver mobility. So, for the general elastic receiver the 
effectiveness also reads  Eiso =  |FR|2 / |FR' |2 , where the dash refers to the case with the source 
resiliently connected to the receiver. Hence, by substituting the derived expressions for the 
corresponding forces, eq. (6.4.6a) and (6.4.13a), respectively, we obtain exactly eq. (6.4.17). 
 
Example 6.4.1 The isolation effectiveness  Eiso  is to be determined for a harmonically driven mass-spring 
resonator, which is connected to a rigid foundation, similar to the systems in Figure 6.2.1 or 6.4.2. The 
undamped natural frequency of the resonator is ms /0 =ω , where m is its mass and s is the spring stiffness. It 
is here assumed that the system is structurally damped and that this is accounted for by taken the spring stiffness 
to be complex  s = s(1+iη). 
 The source, being the mass  m , has the mobility  YS = (iωm)–1  and the mobility of the receiver in the form 
of a rigid foundation is  YR = 0 . Substituting these into eq. (6.4.15) gives 
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in the last approximation it is assumed that  η << 1, so that  1 + η2  ≈ 1. By comparison it is seen that eq.(6.4.19) 
is equal to the reciprocal of the results for |Ff|2 / |F1|2 in Figure 6.2.5b. This can also be deduced from eq. 
(6.2.18), if the damping constant  r  is replaced by the equivalent constant  req for a structurally damped spring  
req =  sη/ω . 
 
 Figure 6.4.5 shows an example of measured and predicted values of the isolation 
effectiveness for a complicated vibration source (the diesel engine in Figure 6.4.1a), which is 
resiliently mounted on an elastic foundation. The source is mounted on ten multi-directional 
isolators; note that these isolators have a much higher mobility than the isolator example 
shown in Figure 6.4.1b.  The effectiveness is seen to be rather good, about 25 dB on average. 
Also shown are two course estimations based upon, respectively, a simple mass-spring-mass 
model (LF-prediction of resemblance to eq. (6.4.19)), and a simple mono-coupled model, 
where measured isolator mobility and average point mobilities of source and receiver have  
 
 

 

 

 
Figure 6.4.5 Effectiveness of vibration isolation  10 log Eiso  of a multi-coupled machinery source on 
an elastic receiving structure. 
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been used in eq. (6.4.17). Despite of the coarse simplifications in these models, a reasonable 
agreement with measurement is found in the frequency range up to 800 Hz.   
 Another example of predicted isolation effectiveness is shown in Figure 6.4.6. Here, a 
105 m tall building structure is mounted on large, flat rubber pads that allow thermal 
expansion or contraction of the huge building. Calculations were carried out in order to 
estimate their isolation effectiveness against structureborne sound transmission from 
disturbing underground rail traffic. It is apparent from Figure 6.4.6 that these thermal 
expansion devises are not very useful as vibration isolators; their static deformation is simply 
too small – in other words – the stiffness of the isolators is too high. At the fundamental 
natural frequency of the system vibration amplification is observed and in the frequency range 
above 90 Hz the effectiveness is seen to become very small at certain frequencies. These 
correspond to the natural frequencies of the foundation columns (≈ ‘source’), on which the 
rubber pads and building structure rest. 
 

 

 

 
Figure 6.4.6 Isolation effectiveness of rubber expansion devises that support a tall building.  
 
6.4.4 DESIGN CONSIDERATIONS FOR RESILIENT ELEMENTS 
It was mentioned in Section 6.4.1 that the dynamic stiffness of rubber-like material generally 
differs from the static spring stiffness s determined by static measurement. When such 
isolators are used it is therefore necessary to insert the dynamic stiffness value  sdyn  instead of  
s  in the equation for the natural frequency, eg eq. (6.4.2a). 
 
6.4.4.1 Rubber-like materials 
The dynamic stiffness of rubber isolators depends upon a number parameters. An important 
parameter is the rubber hardness, which is usually characterised in °Shore A of hardness. The 
typical hardness-range of commercial rubber isolators is from about 40°Shore A (for soft 
isolators) to 80°Shore A , which is rather hard. Table 6.4.1 presents a coarse guide that shows 
approximate, empirical values for the relation between rubber hardness, static Young’s 
modulus  E  and dynamic Young’ modulus  Edyn  , or more specifically their ratio  Edyn /E . 
 Thus, for a slender rubber isolator (of static stiffness given by eq. (6.4.3)), the 
appropriate dynamic stiffness  sdyn  becomes 
 
 sdyn = Edyn S/d . (6.4.20) 
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However, this is generally not the final estimate, because the stiffness of rubber isolators also 
depends upon another important parameter, which is basically the compactness of the isolator. 
Generally, the stiffness of a short rubber block is found to be much higher than the stiffness of 
a long slender sample. (Note, that this effect of course is accounted for when estimations are 
based on a static load-deflection test, ie on eq. (6.4.1).) 
 
Table 6.4.1 Approximate values for the relation between rubber hardness, static Young’s modulus  E  
and dynamic Young’s modulus  Edyn. The results apply to natural rubber. 
 
 --------------------------------------------------------------------------------------------------------- 
 Rubber hardness  Static Young’s modulus E               Ratio:  Edyn /E 
       °Shore A          106 N/m2        -- 
 --------------------------------------------------------------------------------------------------------- 
              40        1.5       1.2 
 --------------------------------------------------------------------------------------------------------- 
              50        2.5       1.4 
 --------------------------------------------------------------------------------------------------------- 
              60        4.0       1.8 
 --------------------------------------------------------------------------------------------------------- 
                      70        6.0       2.2 
 --------------------------------------------------------------------------------------------------------- 
 
 The stiffness expressed by eq. (6.4.18) therefore has to be corrected for the ‘bulkiness’ of 
the rubber isolator. This can be characterised by an area ratio (or shape factor) RS =Sconst /Sfree , 
in which the area  Sconstr  represents the total constrained or loaded area of the isolator, and  
Sfree  is the total free surface area of the isolator. Figure 6.4.7 shows the stiffness correction 
factor Cs to be used for a given area ratio RS . Thus,  sdyn is to be multiplied with  Cs  to give 
the actual, corrected dynamic stiffness. 
 
 

 

 

 
Figure 6.4.7 Stiffness correction  Cs  to be used as a function of the area ratio RS  of the vibration 
isolator. After ref. [13]. 
 
6.4.4.2  Metal and other elastic solids 
As oppose to the rubber-like materials, the static and dynamic elastic properties for most 
engineering materials are found to be practical identical. For a given elastic material this 
means that its Young’s modulus  E ≅ Edyn and its shear modulus  G ≅  Gdyn . Furthermore, 
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since ν ≈ 0.3 for most solid materials, we have E ≈ 3G . 
 Resilient elements of metal may take many different forms. Usually they are extended, 
continuous components with distributed mass and stiffness, and basically they are designed to 
achieve a specified small stiffness at low frequencies. However, at mid and high frequencies 
such a resilient element can support different wave types, and resonances will occur in the 
resilient element because it is of finite size. This will diminish the isolator effectiveness, 
unless damping and/or rubber elements are incorporated into the final design of the resilient 
element.  
 The most common resilient element of metal is probably the helical spring, which is 
often made of harden steel. The static and low frequency stiffness in the axial direction of the 
spring is  

 , 
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dGs =  (6.4.21) 

where  G  is the shear modulus of the material,  D  is the average diameter of the spring,  d  is 
the diameter of the coil and  n  is the number of coils or windings.   
 Other types of resilient elements are leaf springs, which may be thin metal beams or 
plates. One example is a so-called cantilever beam, which is rigidly built-in at the receiver-
end and is completely free at the other end, where it supports the source to be isolated. For a 
beam with constant thickness h and constant rectangular cross-section  S  the spring stiffness 
is 
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in which  E  is Young’s modulus and  L  is the length of the beam. However, usually the 
source will be bolted to the beam and this will hinder angular motion at its ‘free’ end. Thereby 
the spring stiffness of the resilient element will increase by a factor of four, to become            
s = E S h2/L3 . This clearly illustrates the importance of the boundary conditions at mounting 
positions. 
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LIST OF SYMBOLS 
  
a radius of sphere [m]; acceleration [m/s2] 
A equivalent absorption area [m2]; accelerance [m/Ns2] 
A0 reference area [m2] 
B bending stiffness per unit length [Nm]; bending stiffness [Nm2] 
B´ bending stiffness per unit width [Nm] 
c speed of sound [m/s] 
cb speed of bending waves [m/s] 
cL speed of longitudinal waves [m/s] 
CP power coupling factor [dimensionless] 
d length [m]  
D directivity [dimensionless]  
DI directivity index [dB]  
E total acoustic energy [J]; Young’s modulus of elasticity [N/ m2] 
Eiso vibration isolation effectiveness; insertion loss [dimensionless] 
f frequency [Hz] 
f0 resonance frequency [Hz] 
fc critical frequency [Hz] 
F force [N] 
G shear modulus [N/m2]  
h distance [m]; plate thickness [m] 
H receptance [m/N] 
H1 Struve function  
I sound intensity [W/m2]  
Iref reference sound intensity [W/m2]  
Ix component of sound intensity [W/m2]  
Jm Bessel fuction 
|Jterm| terminal source strength [W] 
k wavenumber [m-1]  
K stiffness constant [N/m]  
Ks adiabatic bulk modulus [N/m2]  
l length [m] 
lm mean free path [m] 
L loudness level [phone]; total length of edges [m]; length [m] 
LA A-weighted sound pressure level [dB re pref]  
LAeq equivalent A-weighted sound pressure level [dB re pref]  
LAE sound exposure level [dB re pref]  
LC C-weighted sound pressure level [dB re pref]  
Leq equivalent sound pressure level [dB re pref]  
LI sound intensity level [dB re Iref]  
Ln impact sound pressure level [dB re pref]  
Lp sound pressure level [dB re pref]  
LW sound power level [dB re Pref] 
LZ sound pressure level measured without frequency weighting [dB re pref] 
m air attenuation factor [m-1]; mass [kg]; mass per unit area [kg/m2]  
m´ mass per unit length [kg/m] 
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m´´ mass per unit area [kg/m2] 
M mass [kg] 
n natural number [dimensionless] 
N loudness [sone]; number of modes [dimensionless]  
p sound pressure [Pa] 
pA(t) instantaneous A-weighted sound pressure [Pa]  
pref reference sound pressure [Pa]  
prms rms value of sound pressure [Pa]  
p0 static pressure [Pa] 
P power [W] 
Pa sound power [W]  
Pref reference sound power [W]  
q volume velocity associated with a fictive surface [m3/s]; generalised coordinate [m]  
Q volume velocity of source [m3/s]; directivity factor [dimensionless]  
r radial distance in spherical coordinate system [m]; damping constant of viscous 

damper [kg/s] 
rrev reverberation distance in a room [m] 
R gas constant [m2s-2K-1]; reflection factor [dimensionless]; transmission loss [dB] 
R0 transmission loss at normal incidence [dB] 
s standing wave ratio [dimensionless]; spring constant [N/m]  
S surface area [m2]; cross sectional area [m2] 
t time [s] 
T absolute temperature [K]; averaging time [s] 
T60 reverberation time [s] 
u longitudinal displacement [m] 
u particle velocity [m/s]  
ux component of the particle velocity [m/s] 
U  velocity [m/s] 
v velocity [m/s] 
V volume [m3] 
w transverse displacement [m]  
wkin kinetic energy density [J/m3] 
wpot potential energy density [J/m3]  
x, y, z Cartesian coordinates [m] 
Za acoustic impedance [kg m-4s-1]  
Za, r acoustic radiation impedance [kg m-4s-1]  
Zm mechanical impedance [kg/s]  
Zm, r mechanical radiation impedance [kg/s]  
Zw separation impedance [kg m-2s-1] 
Y mobility (mechanical admittance) [s/kg] 
 
α absorption coefficient  [dimensionless] 
αm mean absorption coefficient  [dimensionless] 
β angular displacement [radian] 
γ ratio of specific heats [dimensionless] 
δ damping coefficient [s-1]; end correction [m] 
ΔL insertion loss [dB] 
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ΔV volume displacement [m3] 
ζ viscous damping ratio [dimensionless] 
η loss factor [dimensionless] 
θ polar angle in spherical coordinate system [dimensionless] 
λ wavelength [m] 
ν Poisson’s ratio [dimensionless]  
ξ displacement [m]  
ρ density [kgm-3]  
τ time constant [s]; transmission coefficient [dimensionless] 
φ phase angle [radian]; azimuth angle in spherical coordinate system [radian]  
ω angular frequency [radian/s] 
Ω frequency ratio [dimensionless]  
 
^  indicates complex representation of a harmonic variable 
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INDEX 
 
 
Absorption area, 87, 97, 110 
Absorption coefficient, 29, 36, 87, 103 
Absorption, 29, 35 
Accelerance, 147 
Acceleration, 28, 53, 134, 137, 142, 147 
Accelerometer, 134 
Acoustic filters, 29 
Acoustic impedance, 29 
Acoustic properties of materials, 29, 35 
Acoustic two-port, 29 
Adiabatic bulk modulus, 3 
Adiabatic process, 2, 3 
Admittance, 27 
A-filter 
 see A-weighting 
AI principle, 76 
Air attenuation factor, 93, 98 
Amplitude, 5, 6, 15, 52 
Analogous electrical circuit, 29 
Angular displacement, 151 
Angular frequency, 5 
Antinode 
 see Node 
Antiphase, 9, 41 
 see also Quadrature 
Aperture, 115 
Apparent mass, 147 
Apparent sound transmission loss, 114, 127 
Audible frequency range, 6 
Audiogram, 62 
Averaging time 
 see Integration time 
A-weighting, 23, 69, 70 
Axial modes, 82 
 
Background noise, correction for, 18, 20 
Backward masking, 67 
Baffle, effect of, 39, 42 
Bandpass filters, 16 
Bark, 72 
Basilar membrane, 58, 59, 66, 71 
Beam, 148 
Bel, 18 
Bending moment, 151 

Bending stiffness, 121 
of beam, 151 

Bending waves on structures, 1, 2 
 see also Wave types 
Bessel function, 43 
Boundary conditions, 4 
 
Cancellation of sound, 9 
Cartesian coordinate system, 3 
Cavity, sound field in, 3, 30, 106 
C-filter 
 see C-weighting 
Characteristic impedance 
 see Impedance 
Cochlea, 57 
Coincidence, 121 
Combinations of monopoles, 40, 41 
Complex amplitude, 6, 52 
Complex exponential representation, 52 
Complex stiffness, 145 
Compliance 
 see Stiffness 
Condenser microphone, 21 
Conservation of mass, 2 
Conservation of sound energy, 33 
Consonant (intelligibility) 111 
Constant percentage filters, 15 
Constructive interference, 9, 20 
Continuous structure, 148 
Converging waves, 14 
Crest factor, 26 
Critical band, 66, 71, 72 
Critical frequency, 121 
Cross-over frequency, 119, 124 
C-weighting, 23, 69, 70 
 
Damping coefficient, 137 
Damping constant, 135 
Damping loss factor, 145 
Damping force, 137 
Danish Building Law, 109 
Danish Working Environment Agency, 109 
Dantale, 75 
dB HL, 62, 63 
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Decade, 16 
Decay curve, 100 
Decibels, 18 
Density of the medium, 2, 3 
Destructive interference, 9, 20 
Detection of a pure tone in noise, 17 
Deterministic signal, 17 
D-filter 
 see D-weighting 
Diatonic scale, 16 
Differentiation with respect to time,  

6, 53, 142, 149 
Diffraction, 2 
Diffuse sound field, 85, 98, 103 
Dipole, 41 
Dipole strength, 41 
Direct field, 90 
Directivity, 43 
Directivity factor, 48, 91 
Directivity index, 48 
Dispersion, 2, 152 
Displacement, 53, 134, 138, 147 
Displacement ratio, 142 
Displacement response, 139, 141, 143 
Diverging waves, 14 
Double construction, 123 
D-weighting, 23, 70 
Dwellings (reverberation control) 110 
Dynamic stiffness, 146, 159 
 
Echo, 95 
Echo-ellipse, 95 
Electret microphone, 21 
Enclosure 
 see Cavity, sound field in 
Energy balance equation, 87 
Energy density in sound field 
 kinetic, 32 
 potential, 32 
Energy of a signal, 22 
Engine exhaust system, 38 
Equally tempered scale, 16 
Equation of motion for  
 simple resonator, 137, 138 
 continuous structures, 148 
Equilibrium position, 137 
Equivalent integration time, 24 

Equivalent rectangular bandwidth, 72 
Equivalent sound pressure level, 24 
Equivalent viscous damping ratio, 145 
ERB, 72 
Euler’s equation of motion, 4, 6 
Excursion of a loudspeaker membrane, 47 
Exponential averaging 
 see Time averaging 
Eyring’s formula, 93, 99 
 
Far field, 90 
Far field approximation, 15, 35, 43 
FFT analysers, 15, 17 
Field variables, 149 
Filter, 15 
Filter bank analysers, 15 
Flanking transmission, 114, 127 
Flanking transmission loss, 127 
Flexural waves 
 see Wave types 
Fluctuating noise, 25 
 see also Intermittent noise 
Focusing, 96 
Force, 27, 135, 138, 140 
Force transducer, 135 
Formant, 74 
Forward masking, 64, 67 
Free field, 61, 63 
Free-field correction, 22 
Free-field method 
 see Sound power determination 
Free-field microphones, 23 
Free terminal velocity, 155 
Frequency, 5 
Frequency analysis, 15 
Frequency discrimination, 71 
Frequency response of microphone, 22 
Frequency selectivity, 71 
Frequency weighting filters, 23 
Fundamental frequency, 10 
 
Gas constant, 3 
Gauss’s theorem, 33 
Generalised coordinate, 147 
Ground effect, 38 
 
Harmonic sound field, 5, 52 
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Harmonics, 10 
Hearing level, 62 
Hearing threshold, 55, 60, 61, 62, 65, 69 
Helicotrema, 58, 59 
Helmholtz equation, 7 
Helmholtz resonator, 31 
Hooke’s law, 28, 136 
 
Image sources, 38, 42, 94 
Impact sound pressure level, 128 
Impedance 
 acoustic, 28 
 characteristic, 7, 31 
 mechanical, 27, 146 
 radiation, 29, 35, 37, 46 
 specific acoustic, 29 
Incident sound intensity, 36 
Incident sound power, 86 
Incoherent signals 
 see Uncorrelated signals 
Industry (reverberation control) 110 
Independent sources, 17, 20 
Inhomogeneous medium, 2 
Inner ear, 55, 56, 57, 65, 71 
Input impedance, 29 
Input point mobility 
 see Mobility 
Insertion loss, 128, 157 
Instantaneous energy density, 32 
Instantaneous sound intensity, 32 
Integration time, 25 
 see also Time averaging 
Intelligibility, 76, 109 
Intensity 
 see Sound intensity 
Interface between two fluids, 11 
Interference effects, 2, 9, 20, 38 
Intermittent noise, 26 
Inverse distance law, 14, 20 
Isolation effectiveness, 157, 161 
 
Junctions between coupled pipes, 29 
 
Kinetic energy 
 see Energy density 
 
Levels, 18 

Linear averaging 
 see Time averaging 
Linear frequency weighting, 23 
Linearised wave equation, 2 
Linearity, 4 
Liquids, sound in, 4 
Locally plane waves, 4, 34 
Logarithmic frequency scale, 16 
Longitudinal waves, 1 
 see also Wave types 
Loss factor, 122 
Loudness, 55, 63, 64, 67, 68, 69 
Loudness level, 63, 64, 69 
Loudspeakers, 47 
Lumped elements, 135, 136 
Lumped parameter models, 29 
 
Masking, 55, 59, 64, 65, 66, 67, 69 
Mass, 135 
Mass density, 150 
Mass law, 120 
Material properties, 150 

see also Acoustic properties of 
materials 

Mean absorption coefficient, 87, 99 
Mean free path, 92 
Mean square value, 15, 17 
Mechanical admittance, 28 
 see also Mobility 
Mechanical oscillator, 28 
Mechanical resonators, 136 
 see also Mechanical oscillator 
Mechanical systems, 135 
Membrane absorber, 106 
Middle ear, 55, 56, 57, 58 
Mobility, 146, 152, 155 
 see also Mechanical admittance 
Mobility, input for semi-infinite or infinite 
 beam or rod, 152 
 plate, 152 
Modal density, 84, 96 
Modes, 81 
Monopole, 37 
Motion excitation, 147 
MTF, 76 
Musical tones, 10, 16 
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Natural angular frequency, 137 
Natural frequency, 81 
 see also Resonance frequency 
Nearfield characteristics, 15 
Newton’s second law of motion, 4, 28, 136,  

137 
Node, 9, 82 
Noise 
 see Random noise 
Noise event, 27 
Nominal centre frequencies, 16 
Normal ambient conditions, 3 
Number of modes, 83 
 
Oblique modes, 82 
Octave bands, 16, 103 
ODEON programme, 112 
Office spaces (reverberation control) 110 
Omnidirectionality, 23, 43 
 see also Directivity, Monopole 
One-dimensional wave equation, 5 
One-third octave bands, 16 
Orders of magnitude of perturbations, 2 
Oscillating sphere 
 see Dipole 
Outdoor sound propagation 
 see Ground effect 
Overtones 
 see Harmonics 
 
Parseval’s formula, 17 
Partial masking, 67 
Partials 
 see Harmonics 
Particle displacement, 2 
Particle velocity, 2, 71 
Partitioning into frequency bands, 17 
Pascal, 3 
Peak level, 26 
Phase, 5, 6, 52 
Phase speed 
 see Wave speed 
Phon, 63, 64 
Phone scale, 68 
Phonems, 111 
Pink noise, 17 
 see also White noise 

Piston in a baffle, radiation from, 42 
Pitch, 10, 16 
Plane waves, 4 
Plate, 148 
Point dipole, 41 
Point source 
 see Monopole 
Poisson’s ratio, 106, 150, 161 
Porous absorber, 105 
Potential energy 
 see Energy density 
Power coupling factor, 156 
Power transmission, 155 
Pressure microphone, 23 
Pressure node 
 see Node 
Psychoacoustics, 55, 71 
Pulsating sphere, 37 
Pure-tone source 
 see Sinusoidal source 
 
Quadrature, 15 
 see also Antiphase 
 
Radiation impedance 
 see Impedance 
Radiation of sound, 37 
Random errors 
 see Statistical uncertainty 
Random incidence microphone, 23 
Random noise, 17 
Rapid Speech Transmission Index, 77 
RASTI 

see Rapid Speech Transmission 
Index 

Ratio of specific heats, 3 
Rayleigh’s integral, 42 
Reactive sound field, 15 
Receiving structure, 153, 156 
Receptance, 145, 146 
Reciprocity principle, 38 
Reduction index, 113 
Reference sound intensity, 21 
Reference sound power, 21 
Reference sound pressure, 18 
Reference velocity, 20 
Reflection, 2, 8, 94 
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Reflection density, 96 
Reflection factor, 10, 36 
Refraction, 2 
Resilient element, 159, 161 
Resonance, 9, 28, 30 
Resonance frequency, 9, 28, 30, 106, 124, 
139 
 see also Natural frequency 
Resonant excitation, 138 
Resonator absorber, 108 
Reverberation distance, 90 
Reverberation room, 89, 103 
Reverberation time, 89, 97, 98, 103, 109 
Rigid surface, reflection from, 8, 38 
Rms value 
 see Root mean square value 
Rms sound pressure, 15 
Rod, 148 
Root mean square value, 15 
Rubber hardness, 159, 160 
Rubber isolator, 159 
 
Sabine’s formula, 89, 97, 98, 99 
Scattering, 2, 99 
Schools (reverberation control) 110 
SEL 
 see Sound exposure level 
Semitone, 16 
Sensitivity of auditory system, 23 
Separation impedance, 119, 122 
Shadow 
 see Diffraction 
Shear modulus, 151 
Shear force, 151 
Shear waves 
 see Wave types 
Sign convention, 6, 27 
SII, 76 
Silencers, 29 
Simple source 
 see Monopole 
Simultaneous masking, 64 
Single degree of freedom system, 136, 147 
Sinusoidal source, 5, 6 
Solution in 
 product form, 141 
 sum form, 141 

 non-dimensional form, 142 
Son, 68 
Sone scale, 68 
Sound absorption, 103 
Sound exposure level, 26 
Sound intensity, 32 
Sound intensity in a plane wave, 34 
Sound intensity level, 20 
Sound level meter, 21 
Sound power determination, 34 
Sound power level, 21 
Sound pressure level, 18 
Sound pressure, 1 
Sound reflection 
 see Reflection 
Source spectrum, 73 
Source strength, 38, 41, 155 
Source structure, 153 
Sources of vibration, 134, 153 
Specific acoustic impedance 
 see Impedance 
Spectral density, 17 
Speech intelligibility, 55, 75, 76 
Speech intelligibility index, 76, 79, 112 
Speech level, 74, 75 
Speech spectrum, 74, 75, 76 
Speech Transmission Index, 76, 112 
Speed of sound, 3, 4 
Spherical coordinate system, 13 
Spherical sound waves, 13 
 see also Monopole 
Spherical symmetry, 12 
 see also Monopole 
SPL 
 see Sound pressure level 
Spring constant, 135, 136, 154 
 see also Stiffness 
Standing wave pattern, 9 
Standing wave ratio, 10 
 see also Standing wave tube 
Standing wave tube, 36 
Standing waves, 81 
Stapes, 56 
Static pressure, 1, 2, 3 
Static stiffness, 154 
Stationary signals, 17 
Statistical models of sound fields, 31 
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Statistical uncertainty in measurements, 25 
STI 

see Speech Transmission Index  
Stiffness, 28 
 see also Spring constant 
Stiffness correction, 160 
Stochastic signals 
 see Random noise 
Structureborne sound, 133 
Structural damping, 145 
Struve function, 46 
Subwoofer 
 see Loudspeakers 
Sum of harmonic signals, 20, 52 
Suspended ceiling, 109 
 
Tangential modes, 82 
Tapping machine, 128 
Temperature fluctuations in sound field, 2 
Temperature, influence on the speed of 

sound, 3 
Temporal integration, 69 
Thick wall, 118 
Time average of a product, 54 
Time averaging 
 exponential, 24 
 linear, 25 
Time constant, 24 
Time derivative 

see Differentiation with respect to 
time 

Time integration, 53 
 see also Time averaging 
Time weighting 
 see Time averaging 
Time-averaged energy density, 33 
Time-averaged sound intensity, 33 
Transfer function, 83 
Transmission between fluids, 11 
Transmission coefficient, 113 
Transmission loss, 113, 114 
Transmitted force, 142 
Transversal waves, 1 
Transverse displacement in beams, 151 
Two-port, 29 
Typical values of sound power levels, 32 
Typical values of sound pressure levels, 19 

 
Uncorrelated signals, 17, 18 
Undamped simple resonator, 139 
Undamped system, 137, 138, 143 
Unvoiced, 74 
 
Velocity, 27, 53, 134, 142, 144, 147 
Vibrating sphere 
 see Pulsating sphere, Dipole 
Vibration isolation, 139, 153, 156 
Vibration isolator, 153 
Vibro-acoustics, 133, 148 
Viscous damper, 135, 136 
Viscous damping ratio, 137, 142 
Viscous friction, 105 
Viscously damped system, 140 
Voiced, 73 
Volume acceleration, 47 
Volume displacement, 3 
Volume velocity, 28, 37 
 
Water, 4, 11, 19 
Wavelength, 5 
Wavenumber, 5 
Wave speed for 
 longitudinal waves, 149 
 shear waves, 150 
 bending waves, 152 
Wave types, structural 
 longitudinal waves, 148 
 shear or torsional waves, 148, 150 
 bending or flexural waves, 148, 151 
Weighted impact sound pressure level, 130 
Weighted sound reduction index, 129 
White noise, 17, 21, 100 
 
Young’s modulus of elasticity, 106,149,160 
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