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1 Fundamentals of Numerical Methods

In this chapter we will mention some features and pitfalls of the numerical methods to be used in
the following chapters, and comment on their practical implementation. The objective is definitely
not to cover the complete subject of numerical mathematics, but rather to remind the reader on
some machinery we will build on in the following chapters. In particular, we will touch the topic
of controlling the error introduced in numerical caleulations, refer to sources and some typical
examples of numerical instability, and review a few methods for solving of ordinary differential
equations on a computer.

1.1 Selected Types of Errors and Their Sources

Among the types of errors we can encounter in this course are the errors of input, truncation error
and roundoff error.

1.1.1 Errors on Input

Before we even start the caleulation, we have to assess the quality of data on input. In our field of
study, we often have to initialize the calculation by results of some measurements, which naturally
suffer from limited accuracy and precizion, and sometimes alzo by data that have been interpolated
earlier due to incomplete measurements or postprocessing (e.g., our variables are caleulated from
values of other variables).

There iz not much to do about this fact, one just has to keep the input error in mind in order
not to overestimate the accuracy of the calculated results, and try to choose methods which will
not amplify the error.

Omne alzo has to remember that input errors can not only decrease the accuracy of the outcome,
but also principally change its nature. For example, when trying to solve the quadratic equation
ar® +br+c =0 with the values b* being close to 4ac, a minuscule variation in coefficients can
change the sign of the discriminant ) = b* — 4ae and thus not only perturb the value of the roots,
but, more seriously, also change whether there are two roots () = 0), one root (D = 0), or no
solution in real domain (7 < 0).

1.1.2 Roundoff Error

The roundoff error is an inevitable consequence of storing the numbers and performing arithmetic
operations in floating point arithmetics. That is, by using approximate, finite-length numbers
instead of exact values. Fach real number is stored in binary form in a piece of memory of se-
lected length, e.z. 64 bits for double precision or 128 hits for quad precision. (Arbitrary-precision
arithmetics will not be discussed here.) Out of these, one hit is reserved for the sign. The rest is
divided between the significand (sometimes also called mantissa), determining the precision, and
exponent, determining the range of numbers that can be represented. For a given number, the
nearest member of such discrete set is then stored instead of its exact value. Obwicusly, nobody
would expect to store an exact value of irrational numbers such as 7, e or /2. However, one also
should keep in mind, that since most computers use the binary system, they are unable to store
exactly even such " nice” numbers as 0.1.

Closely related to the range and precision of chosen floating point arithmetics is the danger of
overflow and underflow. A good programming practice iz to prevent these in the actual code rather
than relying on the compiler. In contrast, division by zero is not a feature of the floating point
arithmetics, it's the programmer’s stupidity.
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Figure 1: Dependence of error on step size k.

From the brief description of how the numbers are stored in memory it is obvious which arith-
metic operations are the most dangerous, that is, which operations tend to increase the relative
error. The most notorious one is the subtraction of very similar numbers. Denoting a(-) the relative
error of the input and r(-) the absolute error, for addition and subtraction we have

a(x) + aly)

a(z +y) = alz) + a(y), rety) ==

(1.1)

Clearly, not only will the relative error dramatically increase for the subtraction of similar r and y
because of the small denominator, but also the number of significant (valid) digits in the mantissa
(significand) will be substantially reduced. Although this only amplifies the already existing errors,
it is very likely that r and y are already approximate values, so we should avoid this situation in
practical calculations, where possible. It is also recommended to avoid algorithms which produce
intermediate results with values many orders of magnitude bigger than the input and output data.

1.1.3 Truncation Error

The truncation error (also called the error of the method) is an issue principally different from the
roundoff error. It arises due to the mathematical approximation of a real, physical problem. And
since we translated an analytical mathematical task to a numerical problem, we have to expect the
results of an approximation rather than the results of an exact procedure.

For example, in numerical integration or solution of differential equations, we often use tech-
niques which can be derived and/or analyzed with the help of the Taylor expansion and where the
infinitesimally short step dr has been replaced by a small but finite step k. This inevitably leads
to imprecisions in the caleulation.

Unfortunately, the shorter step h we use to reduce the truncation error, the bigger chance
we give to the roundoff error to do damage. For example, when choosing a too short step h in
integration, we need to perform too many steps where the roundoff error can accumulate, or when
choosing a too short step in numerieal differentiation, we might run into trouble by subtracting too
similar mumbers. Therefore, we should always choose the step length in a manner smart enough to
maintain the right balance and keep the total error in control as shown schematically in Fig. 1.
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1.2 Numerical Stability

There are many definitions of stability in various contexts. For our purpose, we will describe
a method or algorithm as unstable, when the acceumulation of relatively small errors in particular
steps leads to catastrophic loss of accuracy of the numerical solution. In a stable method, the
error should increase at most linearly with the number of steps N. (Ideally, but rarely, we can
encounter methods where the error evolves proportionally to +/N.) In unstahle methods, the error
is amplified superlinearly, sometimes even grows with the geometrical progression g™ with g > 1.

There are many examples of methods unstable in this sense. In [1], an example (and its
explanation) can be found, where a recursive algorithm to caleulate high powers of the “golden
mean” & = (/5 — 1)/2 fails due to exponential growth of an initially small roundoff error. The
instability can also be caused by the accumulation of the truncation error, typically in the solution
of ordinary differential equations (ODE), where the stability often depends on the step length k.
For example, solving the ODE ' (z) = —y, y(0) =1 by a two-step method

¢ Yylz+2h) —y(x)

fa)

iz unstable, unlike even the simplest (but not very accurate) Euler's method y(z+hk) = y(z)—hy(z).
Further examples of instability can involve the approximation of periodic functions by cubic splines
with improper choice of conditions (providing the value of the function and its derivative at one
point instead of at different points). See the presentation corresponding to this text for details.

Note that in all these cases a hypothetical caleulation with exact values in exact arithmetics
would provide correct results.

1.3 Solving Ordinary Differential Equations

We will consider a scalar first-order ordinary differential equation (ODE) in one dimension, which
can be expressed in the form

WD _ fa.y(a)), u(zo) = . (12)

That is, we want to reconstruct the function y{r), knowing its value gy at certain point ry (typically
the left end of the computational domain) and at any point its derivative, prescribed by the function
flz,y).

A system of first-order ODEs can be written similarly, just with y and f being vectors.

Note that a general scalar ODE of N-th order

f(zud ™) —g(x) (1.3)
with N additional conditions can be transformed using the substitutions
a=y, ==y, .., ava=y"" (1.4)
into a system of N first-order ODEs )
¥ =2
2] = 23,
A=, (15)

ZN_3 = ZN—-1,
f [Iryralr:?:" e BN=1; ;E\’—]_:J = EI' (I] ]
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where the last one can be typically (but not necessarily) expressed w.r.t. zj,_, as

r
N-1

(&)

) (16)

(11
—
=
=
]
iy
[
[

Equations (1.5) are then solved consecutively one by one, from the last one up.
For example, for a second-order ODE

d*y() dy(z) -

dTi +T(I} dT _q[I] {l'rj

with given functions r(z) and g(z), we introduce an additional function z(x) = d%i_i] to get
a system of two first-order ODEs

y'(z) = z(2), Z'(x) = q(z) — r(z) z(x). (1.8)

Az mentioned above, the system (1.5) needs N additional conditions to be fully determined. If all
these conditions are given at the same point (e.g . the value of y, its derivatives or any combination
of these), we have an initial value problem, otherwize we have a boundary value problem. Usnally
in 11} the initial value problem has all conditions specified on the left end of the computational
domain, while the conditions for the boundary value problem are imposed on hoth ends of the
domain.

1.4 DMethods for Initial Value Problems
1.4.1 Runge-Kutta Methods

A very popular class of methods for the solution of an initial value problem (1.2) (or its vector analog

for a system) are the explicit Runge-Kutta methods. To start with, we split the computational
domain [a,b] into a set of subintervals

=T < Ty < ~rr < Ty_1 < Ty =0 (1.9)

and then proceed from point rp towards zp, trying to reconstruct the function y. Runge-Kutta
methods are one-step methods, meaning that in the i + 1-st step, to approximate y at point ry4q,
we only use directly the information from point v, (and possibly some virtual points between xy,

and rpyq), but not from earlier points. (However, that information is already embedded in the
solution from earlier steps of the calculation).

The most obvious approach is to use the Taylor expansion. Denoting the step size (subinterval
length) h = zp41 — xn, we have
r h-z r
Y(Tny1) = y(re + k) = y(zn) + hy (zx) EE" (Tp)+---=

h? df (z,y)
= yl(zn) + hf (rn, ) +—— + ... (1.10
Y(zn) + hf (Zn, y(zn)) + 5 —— e ; )

which suggests to approximate the advance of function y in this subinterval by the step
Y+l = Wn T thl:Tn-. Un)- (1.1 1]

This amounts to approximate the function on each subinterval using the value and slope at its
beginning, as shown in Fig. 2(a,b). It can be easily proven (and in fact it is immediately visible
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(c) (d) (e)

Figure 2: Selected explicit Runge-Kutta methods. (ab) Euler's method, (¢) RK2 midpoint, (d)
RK2 Heun/trapercidal, (d) REK4.

X, L+h2E 5 =X +0

from the figure), that this approach, called Euler’s method, is only first order accurate, meaning
that the error at the final point yy (i.e., after n steps) is proportional to k.

While it is not very useful to try to employ the second derivative from (1.10), since we would need
to approximate the unknown derivatives of f, we can develop more accurate Runge-Kutta methods
by improving the approximation in the subinterval, using a combination of slopes f evaluated at
different intermediate points r, < r < ry 4y and corresponding predicted values of . For example,
we can use the mid-interval value y(z, + h/2) predicted by Euler's method, evaluate the right-
hand side f there, and then use this slope to actually advance from =y to rnp1, which amounts
to replacing the forward finite difference in integration by the central difference. This is the K2
midpaint method shown in Fig. 2(¢). Or we can use Euler’s method to predict the value y(zq, + k)
at the subinterval’s endpoint, calculate the slope f there, and then use the average of the slopes at
both ends of the subinterval to advance from »y, to rysy. This is the RK2 Heun's method, shown
in Fig. 2(d). Both latter approaches are two-stage Runge-Kutta methods of second-order accuracy.

In general, one step of an explicit r-stage Runge-Kutta method can be written as

r
Yntt = Un+h Y bk (1.12)
=1
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Figure 3: Butcher tableaux for some popular Runge-Kutta methods.

with

;1']_ = I{Iﬂn yﬂ}'
ky = flzn + eah | yn +ao ky h),
k3=_,|r{Iﬂ+E'3h . yﬂ+h{ﬂ.3]k] +ﬂ-32k2]J:

—1
ke = flzn +erh yn—r'tZLlﬂerJ}-

where the constants ¢,, ary; and by, specifying the particular method, are typically found in literature
in the compact form of the Butcher tablean

2 | a31
3 | @31 43z

Cp | Gl G2 G¢3 ... dpr—1
| b b By ... By B

Fig. 3 shows Butcher tableaux for the three already discussed methods and also for the popular
fourth-order RK{ method.

In practical calenlations, adaptive step k is used to save computational time, reduce the roundoff
error but still capture important features in the solution. That is, in each step the length of the
subinterval is reduced or extended, depending on the local smoothness of the solution, evaluated
by some error estimator. The particular implementation of the step length control is beyond the
scope of this text, the interested reader is referred e.g. to [1].

1.4.2 Multistep and Implicit Methods

As powerful and elegant as the explicit Runge-Kutta methods are in many applications, the max-
imum length of step h to be used i= limited by their region of stability, which is too restrictive in
some situations. A typical example where even the adaptive step length control does not help, are
the so-called stiff problems (or problems with strong damping). Consider for example the initial
value problem

y" + 1001y + 1000y = 0, y(0) =2, y'(0) = —1001, (1.13)
which has the exact solution
y(z) = exp(—1000 r) + exp(—zx). (1.14)

Even though with increasing » the first part of the solution is very scon rendered negligible, its
short length scale still forces any explicit method to use a very short time step to stay stable. For
a detailed analysis and discussion of stiff problems, refer to [2], [3].
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Assume a general method for solving an ODE written in the form

k ke
Yntl = zﬂj Yn+l—g + hz by fny1—5- (1.15)
j=1 _J=|:|

Methods with by = 0, that is, methods with the right-hand side of (1.15) not dependent on in-
formation at point ryyq1, are called erplicit, while the methods containing f(zq, y,;) are implicit.
Methods with the only non-zero coeflicients in (1.15) being a) and b (and possibly also by), that is,
methods with the step depending only on values and derivatives at the previous point, are one-step
methods, while the advance step of multistep methods directly uses also values from the previous
points Tq_y, Tp—a, etc. Thus, the Runge-Kutta methods presented so far are one-step explicit
methods.

While in the explicit methods each step can be directly written and easily evaluated, relatively
short steps h have to be used to maintain stability. On the other hand, with implicit methods,
evaluation of the step (1.153) amounts to solving generally nonlinear equations, but they are often
stable for much longer steps h, sometimes even unconditionally stable. Even though for sufficient
accuracy the step still needs to be reasonably short, implicit methods are powerful tools to overcome
difficult situations such as when solving the stiff problem (1.13). Somewhere in between lie the semi-
implicit methods, which can be derived by linearizing the implicit methods (neglecting higher-order
terms in the Taylor expansion), so that the solution of nonlinear problems iz reduced to solving
linear systems.

A very popular combination of explicit and implicit methods is the predicior-corrector approach,
in which the value 4,41 at point x4 is first predicted by an explicit method, then used to evaluate
the right-hand side fus1 = f(Tns1,9ns1) of the ODE, and this estimated slope is then utilized on
the right-hand side of (1.15) in an implicit method. For example, we can combine the explicit
Euler's method with a simple implicit method as

o Pred:  Fns1 =t + b f2n, un) (1.16a)
o Corr: yusr =+ 5 (12 vm) + FEnsn,Tosr)) (1.16b)
or, using higher-order Adams-Bashforth and Adams-Moulton methods as components,
o Prod s = g+ 15 (28 fa— 16fas 45 fus) (1.17a)
o Com: gt =yt 56 Fort +8fa— for): (1.17h)

It can be useful to repeat the corrector step a few times to improve the result. Note that for a fxed
number of iterations, the resulting predictor-corrector method as a whole i= basically an explicit
formula, so we lose the advantage of improved stability gained by employing the implicit corrector.
(It iz easy to insert (1.16a) into (1.16b) and verify that using one predictor and one corrector,
this method is equivalent to Heun's RK2 method discussed in Section 1.4.1!") But in general,
predictor-corrector methods with properly controlled iterations of the corrector are proving to be
very powerful on difficult problems.

1.5 Methods for Boundary Value Problems

Finally, let us mention some methods for solving the boundary value problem, that iz, an ODE
with additional conditions given at different points. Without loss of generality, we will consider
a 1D problem with one condition imposed at each of the two endpoints of the domain.
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1.5.1 The Shooting Method

The shooting method is based on repeated solution of an initial value problem. Starting on one
end of the domain, we use all conditions defined there, and to set up a complete initial condition,
we fill the missing values by an estimate. Then we solve the initial value problem with this set of
conditions and compare the outcome at the other end of the domain with the desired values being
the real boundary conditions prescribed there originally. Based on this comparison we modify the
initial condition (estimates for missing values) and retry. The problem iz solved once sufficient
correspondence at the endpoint is reached.

As an example, consider the four ODEs describing shooting in air (hence the name of the

method)

j—f=tlﬁnﬁﬁ, %=—ﬁc;}sv—1—gsinﬁ', (1.18a)
dy . dé g
i sin FTR— cos i (1.18h)

(with ¢, p, 5, g being constants) and an artillerist, located at the coordinate origin, trying to hit
the target located at point (z., 0), that is, with the boundary conditions

z(0) = y(0) =0, v(0) = up, y(ze) = 0. (1.19)

Assuming the initial velocity vy is constant for a given cannon, the artillerist has to choose the
correct initial angle #{0) w.r.t. ground in order to hit the target. If the shot (solution of the initial
value problem) misses the target, the angle is adapted, shot retried, etc. This amounts to solving
one nonlinear equation y(x., fp) = 0 for the unknown #p = §(0). Inside this "wrapper” problem,
each particular shot (evaluation of ¥ for given #) consists in solving an initial value problem for
(1.18)-(1.19), e.z. by some Runge-Kutta method discussed in the previous section.

The shooting method is a very popular and powerful tocl in many fields of physics.

1.5.2 Finite Difference Method

Another approach to solve the boundary value problem consists in discretization of the differential
equation to replace the continuous problem by a set of finite difference equations.
First, let us briefly recall what finite differences are. The simplest way to approximate the first
derivative of a function on the discrete grid (1.9) is using the forward difference
Yim) =5 = %
with Ar = x4y — vy, This is actually very close to the standard definition of a derivative, except
that we are using a finite step here. Using the Taylor expansion

(1.20)

o owxi—ym ylmo+ Ax) —ylz)

Y = AT B Ar
ylm) () AT 4y (m) A + - — y(m)
N Az

— (o) + S )+

we see, that this approximation of '(x;) is of first order of accuracy. On an equidistant grid
(¥V2, ry31 — oy = Ax), the central difference

. e o il T i 2
Y (x4) == g 3 A (1.21)
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iz second-order accurate at

ylzy + Ax) — y(zy — Ax)

-
% = AT
(W oA T+ @)+ (20 A5+ ) - (Wm)—w (A T+ (@) A -y ) A+ )
N 2AT
2

i '&I er
= F(TIP—TQ () +...

(From here, one can also see, that the forward difference (1.20) iz frst-order accurate w.r.t. point

7y, but second-order accurate w.r.t. IH_é_.:I
Using recursion, we can easily find the finite difference approximating the second derivative
Bip1—H Ha—Ha
yrr(rt}ggxi': +.'3::.:E - — '.-'_"l.::' - =y!+l—33‘!+?ﬂ—1 [1.-:2:]
! Az Ax? -
with second-order accuracy
o ¥ () Ay (26) AF 4y () Sy (2 AE
y'l: .&IE
2
" 1 .&I
= y"(z) + W (z0) ..

12
This way, a finite difference approximating any derivative on a selected stencil can be derived.
Another approach is to choose the stencil (set of points whose values we want to use), apply the
Taylor expansion w.r.t. the master node, and then solve a simple linear system with the desired
derivative on the right-hand side. See the presentation corresponding to this text for details,

To demonstrate how to apply the Finite difference method, let us consider the second-order

ODE
a(x)v"(x) + b(z)v'(x) + e(z) v(x) = d(z), x e (0,1},

with a, b, ¢ and d being known functions of z. At each interior point =, i € {1,..., N — 1} of the

mesh, we approximate the ODE by using the central first and second derivatives (1.21), (1.22) to
obtain the finite difference equation

vi0)=a, vl)=4 (1.23)

Uggl — 2y + 1y
h-}

Reordering for each i to the form

(—ﬂt + b %) 1 + (3*1: L] hi) vy + (—ﬂz — by %) Ui+l = —h* dy,

&

" e .

Ly Pi qi

Uiyl — Ti—1
2h

+IE|-_| T oty = d-_i.

(1.24)

using auxiliary coefficients p;, g and r; as above and applying the houndary condition for vy and
vy, we have a system of linear equations for v,

L

(11 @ O
ra pz g2
n a *a
0
0

0

0

rN-3 PN-2
0 rvo

0
0

i
qn —2
PN-1

3

h

m
va
3

UN -3
N -2

Un—1 |

which is very easy to solve since it has a tridiagonal matrix.
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Figure 4: Variational methods. (a) combination of two basis sine functions, (b,c) linear elements
and bell splines for the Finite element method.

1.5.3 Variational Methods

In wariational methods, the boundary wvalue problem is transformed into a variational problem,
where the maximum of some functional is being minimized. Instead of looking for the solution on

a set of points, we are searching for the solution in a given class of functions. That is, the solution
should satisfy

y(x) =Y ar gr(z), (1.25)
k=1

where {pp(r)} is a complete system of functions in given Hilbert space. In practice, a finite set of

functions is used. See Fig. 4{a) for an illustration of how the basiz functions can combine.

The ODE is rewritten using differential operators A, L::#], LY to the form

Ay(z) = f(a), R
with homogeneous boundary conditions
L%]y=ﬂ__ L-L'i]y=D, m=12___k

and a scalar product (-, ) is defined on the Hilbert space.
In Galerkin methods, we are looking for coefficients ay. of the solution

.
y(x) =Y argr() (1.26)
k=1

such, that
Vie{l,... N}, (Ay—fie) =0, (1.27)

which boils down to solving a system of equations.
Another variational approach is the Finite element method, which uses special basis functions
that are nonzero only on some short subinterval, e g. linear elements

0 for =<m_4
F—Ty g f
— lor 1< r =T
erld) = { B e (1.28)
i Pii1—T f = - -l
Tri1—T, Oor Iy = I % Tyl
0 for Ty <2
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shown in Fig. 4(h), or, for ODEs with higher than second derivatives, smoother elements such as
bell splines

0 forg=10 h = x4 — 1y, Vi,
wlz) = q forp=0 , where p=h—|r— x4, (1.29)
g —4p® forp=0 g="2h—|r—mz,

see Fig. 4(c).

A closer description of methods in this exciting field of study is unfortunately bevond the scope
of this introductory text. However, some of the techniques mentioned here will be applied and
detailed in the following chapters.
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2. Solving partial differential equations (PDES)
2.1 Overview and types of PDEs

Overview
e finite difference method
e covergence, consistency, well-posedness, stabhility

e Courant-Friedrichs-Lewy condition, stability by Fourier method,
modified equation, numerical diffusion and dispersion

o finite difference schemes for
— advection equation — hyperbolic
— heat equation — parabolic

— advection diffusion equation
e conservation laws

— integral and differential form

— difference schemes for conservation laws
— conservativity

— Rankine-Hugoniot condition

— Burgers equation

— shallow water equation

PDEs

e independent variables ¢, z, y
e unknown functions u(t, ), u(z,y)
. . _ du . 82u
e derivatives u; = 57, gy = 57
e stationary equations — eliptic equations, e.g. Laplace equa-
tion .+, = 0 or Poisson equation ., + 1y, = f(z,y)
e evolutionary equations
— hyperbolic, e.g. advection equation u; + au, =0
— parabolic, e.g. heat equation u; + bz, =0

— combined, e.g. advection-diffusion equation
u + au, + by, =0

e source terms s(t, x,u) on the right hand side
e conditions

— initial u(0, ) = uo(x)

— boundary u(t,0) = fy(t), u(t, 1) = fi(t)

e well-posedness of PDEs
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Hyperbolic PDEs
e Cauchy initial problem: find u(t, z)
u + au, = 0,u(0, ) = up(x),t > 0,z € R
advection equation, one-way wave equation
e solution u(t, z) = ug(x — at)
e with source
w4+ au, = bu, u(0,x) = ug(z),t > 0,z € R
e solution
u(t,r) = ug(xr — at)e”
e usually practical PDEs have no analytical solution, except

in special cases

e numerical solution needed

Type of boundary conditions BCs
e Dirichlet BC, u(t,0) = fy(t)
e Neumann BC, u,(t,0) = f,(t)
natural BC u,(t,0) =0
e Robin BC, au(t,0) + pBu,(t,0) = al(t), B(t),y(t)

e periodic z € (0,1), u(t,0) = u(t, 1) compatibility of BC
’u-()([]:) = 1!-()(1:)

o reflecting BC
e absorbing BC

Computational mesh

e instead of continuum variables (t,z) € [0,00) x R we
introduce discrete variables, or a discrete computational
mesh

(tn,x;) = (nAt, jAz),n € Ny, j € Z,

where At and Az are time and space step of the compu-
tational mesh

e values of function u(t, ) are repllaced by approximate dis-

P TP [}
crete values u(t,, r;) ~ u]
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2.2 Finite difference method

e replacing derivatives by finite differences

o forward difference
p—
Ax

e backward difference

Uy —

Uy — Uj—1
Ax

e central difference

Uy —>

_ Ujr1 — Uj—
Uy = =5~
2Ax

Naive approach
e advection equation u; + au,; = 0

e forward difference in time, central difference in space

n+l

7 . n
] u (1 U

7 j+1 T Yi-1
. —0
INEERELY:

gives central scheme, which is unstable

U
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Convergence, consistency, well-posedness, stability

e Definition: A one-step finite difference scheme aproxi-
mating a PDE is convergent <
¥ solution u(x,t) of the PDE, Vu-j-‘ solution of the dif-
ference scheme, such that *u.? — U(z) when jAz —
x, Az — 0, then
u} — u(t, z) for (nAt, jAz) — (t,x), Az — 0,At — 0
e Definition: Difference scheme PM,AIU? = f is con-
sistent with the PDE Pu = f <
'V smooth function ®(t, z) holds P — Pa¢.ar®j — 0 for
At — 0,Az — 0

(point convergence at each mesh point)

e consistency check — Taylor expansion in Az and At, then
At — 0, Az — 0 give the PDE

e e g. the central scheme is consistent

e Definition: Difference scheme Pm.;\r-u.j-‘ = ( for a first
order PDE is stable in the stability domain S <

3J € Ny, J < VT >0,3cr € R

[ 9]

J a0
> p<ery 3 gl

Jj=—00 m=0 j=—o0

for 0 <nAt <T a (At,Az) € S

e Definition: The initial problem for a first order PDE
Pu=0is well-posed <

VT > 0,der, Vu(t, ), Pu(t,z) =0,
/ lu(t, z)|*dx < C-T/ lu(0, )| *dx

for0<t<T

¢ Lax-Richtmyer theorem: A difference scheme con-
sistent with a well-posed PDE is convergent < the scheme
is stable.
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2.3 Basic difference schemes for advection equation
e forward scheme — forward difference in both time and space

n+l _ _m R
i Uy Ui U
_ +a =0,
At Az

we know all values at time level n, we express the only

unknown -u?“

u

n n
u o — "

+ +1
u' =" — et ; J

J J Az
e during computation the time step is computed as
Az
At =C+—,
|al

where C' > 0 is the CFL (Courant-Friedrichs-Levy) number

e forward scheme is first order accurate O(Az) and stable
fora <0Oand C <1

e backward scheme - forward difference in time, backward
difference in space

n+l _
J

.u;?
At Az

is first order accurate O(Ax) and stable for a > 0 and

<1

u

e Lax-Friedrichs scheme

n+1 n o P M
wit = (Ui +ujy)/2 Ul —ul
a =0
At 2Ax

is first order accurate O(Az) and stable for C' < 1

o Lax-Wendroff scheme

n+l _

n 2T
u y

) I NI R W n
i auﬁl ui_y  aAtu —2uj + uj_y
At 2Azx 2 Ax?

is second order accurate O(Az?) and stable for C' < 1

u
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2.4 Courant-Friedrichs-Lewy condition, stability analysis by Fourier method

e Theorem: For the explicit difference scheme

ut 1

n
j A

IR ' Ao |
= auj_; + fuj +yuj,

approximating the advection equation u; + au, = 0 with
A = At/Az constant the CFL condition |a|A < 1is nec-
essary for stability.

e for hyperbolic system U; + AU, = 0 the CFL condition is
la;|A < 1, Vay,a; is eigenvalue of the matrix A

e sufficient condition can be different
e limiting the time step At < Axz/|al

e Theorem: There is no explicit, unconditionally stable,
consistent scheme for a system of hyperbolic PDE.

e Note: the implicit scheme

ur_e+l —un u_nﬂ _ ur_zi—_l
- L a2 =0
At 2Ax

is unconditionally stable

Explanation of the CFL condition

e we take the point (t,z) = (1,0) = (nAt,0) and find all
points of the mesh on which w depends; for ¢ = 1 these
are the points for which |z| < 1/\; we know n = 1/At,
so that nAx = Az/At = 1/\

—a_yn 0 a 1 ax

e characteristics with L/ A\ satisfy the CFL condition
and with |a| > 1/A do not satisty the CFL condition
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Stability analysis by Fourier method

e forward scheme for advection equation us + au, =0

’EI-?—'—] B 'U? + au}!ﬂ'l - ?.i-? =0
At Az
. At
. i n _
u ™ = (1+al)u] —aduj,y, A= s

e Fourier transformation u} — g"e AT with 4 denot-
ing the discrete Fourier transformation of u;, gives

W = [(14 aX) — aXe A" (€) = g(EAz)u ()
e amplification faktor
@t = g(B)i"(e), ©=¢éAx
for the forward scheme is
g(0) = (1+a)\) —are™®©
e from the initial condition
i = g(6)"il(¢)
e using Parseval identity
[l"llz = 1212 = [19() ()l
= [ ls@Pi©Rde < erfid(©)]

T

o for a stable scheme ||u"||2 has to be bounded, so
l9(0)* <1

¢ Von Neumann theorem: One step difference scheme,

with constant coefficients and with the amplification factor

g(©, At, Ax), which does not depend explicitely on At

and Az (it can depend on A = At/Ax), is stable &
v6, [9(6)] < 1

e amplification faktor for the forward scheme is

9(0) = (1 +a)X) —ale ©
so that

19(0)]* — 1 = —2aA(aX +1)(cos® — 1)
and

19(O))* —1<0& alar+1) <0

e the forward scheme is stable for ¢ < 0,a)A = —1, ie.
a<0aA<lora<0,C<1
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2.5 Modified equation of a difference scheme

e Lax-Friedrichs scheme for u; + au, =0

n+1 mn no M n
uy™ — (ufyy +uj)/2 S = v,

At 2Ax
e Taylor expansion in t, z

1 Ax? .
Uy + atty + 5 (Atun — Euﬂ) = O(At?, Az?)
express
ur = —au, + O(At, Az)
by derivation we get

Uy — QU + O(Af: A.’L‘)
Uy = —0Ugy + O(AE, Ax)
Uy = @’z + O(AL, Az)

e from Taylor expansion we eliminate all time derivatives
except u; to get the modified equation (ME)

Ax? At . s .
U+ aw, = —QEt (l - Aﬂ;zaz) Uy, + O(AE?, Az?)
Ax? . .
U + ary = 2—; (1 — a®\?) ugy + O(AE?, A2?)

e LF scheme is not consistent for At = cAz?
e from modified eqaution one can check

— consistency

— order of appraximation

— stability — heuristic condition
— numerical diffusion

— numerical dispersion

e ME for forward scheme is
Uy 4+ ally = —%aé.z:(a./\ + 1)ty
e scheme is consistent, first order O(Ax), stable for a(aX +
1)<0,ie a<0,C <1, diffusive
e ME for Lax-Wendroff scheme is
Uy + ally = éa&xziz.xm(a?)\z —1)

1 . .
+§a?)@.3:3-umﬂ(a2)\2 —1)
C

e scheme is consistent, second order O(A:CQ], stable for
a’X? —1<0,ie C <1, dispersive
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2.6 Implicit Scheme-Summary for hyperbolic/advection equation schemes

e advection equation u; + a, =0

e implicit scheme

n+1 g7 L S
'u-JT — U,j H-J+l uj_l

N
is consistent, first order O(Ax), always stable

e free boundary conditions u, =0

HE-H u;;z+] :(]1 ur}+lf !r}+11_[]
e rewrite as a system
Tt —uytt =0
At At
u”+faﬁ+u”+l+u;‘ﬂa2é =uj, j=2,---,J-1
7u}}+ll+ n+l 0
in matrix form
1 -1 0 0 - 0 0 uf ! 0
AL om0 0 upt! ul
0 —33% 1 35k -+ 0 0 | fut |
0 0 0 - ) ||,
0O 0 0 - 0 =11 uytt 0

MU = yU”
Un+1 — i?u'fl . L.*[}rn

Summary of schemes

e hyperbolic equations — finite speed of signal propagation

e explicit schemes with time step

where C' > 0 — CFL (Courant-Friedrichs-Levy) number

o forward scheme — O(Ax), stable for a < 0 and C < 1,
diffusive

e backward scheme — O(Axz), stable for a > 0 and C' < 1,
diffusive

e upwind method — combination of forward /backward schemes
according to the sign of a

e Lax-Friedrichs scheme — O(Ax), stable for C' < 1, diffu-
sive

e Lax-Wendroff scheme — O(A:BQ), stable for C' < 1, dis-
persive
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2.7 Parabolic equations

e heat equation u; = bu,, with initial condition u(0,z) =
ug(x); the initial problem is well posed for b > 0

e solution (using Fourier transformation in )

'u-t.:c, — (z— u,lx4bt,lu \d
(t, ) 2\/5 (y)dy

e weighted average of

e for small ¢ the weight is a narrow peak around y = x; for
greater t the weight peak is wider

o u € 75 - infinitely differentiable

e positivity of solution — up(z) > 0 A Jy, up(y) # 0 =
u(t,z) >0,t >0

e for initial condition

1 pro <0
uy(x) = {{} pro z >0

the solution at time ¢ = _—b is

u(1/(8),2) = / iy
1 2, l—erf(z)
B ﬁ/ © =T
for arbitraty big = is u(1/(4b),z) > 0

Explicit scheme for heat equation

e heat equation u; = by,
e explicit scheme

n+1

u; —-u;‘ bi ;+1 — 2u” + u
At A:c?
is consistent, stable for
Ax?
At < —
2b

and second order O(Ax?) accurate when stable

e too severe limitation for At ~ Az? — too many time steps
needed to reach the final time

Page |29

P ) & P R S
(2 université s { & .@ !‘ e
TEL of Crete } BORDEAUX MW i S W m

- Erasmus+



7T e,
3

: ”
& 5 i L0y Foot G vwvmsiy Qo.wu”w.,
a2 université . { g .@ o, (e

TEL of Crete } BORDEAUX MW il S /mk

Implicit scheme for heat equation
e heat equation u; = bu,,
e implicit scheme

ur_e—H —un un—f—l o QU?—H + _un—H

J J_ b J+1 Jj—1

At Azx?

is consistent, always stable, for At = Az it is O(Axz), for
At =~ Az? itis O(Az?)

e system with natural BCs u, =0

.u'n+l _ un+1 -0
1 o =
—'U»;?jfb,u- + -u;?ﬂ(l + 2bu) — u-?jllbp. = -u.;?? j=2,J—1
—u it =0
where 1 = £
e in matrix form
1 —1 0 0o ... 0 0 _u_j:fﬂ
—bp 1+2bp  —bu 0o ... 0 0 ug:i
y m
0 —bp 14+2bp —bp 0 0 | U _
0 0 0 cor —=bu 14+ 2bp —bp u._’}fl]
0 0 0 || —1 1 u‘T}H
0
US
.uai
uj_,
0

MU = UU"
Un+1 — ﬂ_f—l LUun

e heat equation u; = u,, with step initial condition

Page |30

- Erasmus+



&3 1 & S Ged unvisiny ) e
WD université { iy .@ !‘
TEL of Crete } BORDEAUX MWL i S W

. ‘Yga_,/’\
e e N

T Rl = asrus -+

Powurlabs
High Pawer Laser Plasma Physics.

Summary of schemes for parabolic/heat equation

e explicit scheme — O(Az?), At = Az? — too many time
steps
e implicit scheme — O(Az) for At = Az

e Crank-Nicolson implicit scheme — O(Axz?) for At = Az,
but not dissipative — oscillations

2.8 Advection diffusion equation

e combination of advection and heat equation (mixed hyper-
bolic — parabolic)

u + au, = bug,,
is well posed for b = 0

e transformation of variables y = = — at; coordinate sys-
temm moving with velocity a

wit,y) = u(t,y+at)
wy = U + au, = by,
Wy = Uz; Wyy = Uy

w; = bw

yy

as u(t, z) = w(t, x — at), so the solution of the advection
diffusion equation moves with speed a and in the moving
coordinate system is the solution of the heat equation

e explicit difference scheme

n+1 o7 P O I O PO I /!
u; — U +a.uj+l U1 _ bu-J_H 2uf +uj_,
At 2Ax Ax?
stable for
Az? 2b
At < —ANAt < —
- 2 ~a?
and thus O(Az?)
e implicit scheme
n+1 2T L+l A+l 2l o9 ntl ey
;' — U +a.uj+l Uy :bqu 2uy™ 4wyl
At 2Ax Ax?

is unconditionaly stable and O(Az) for At = Az
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e splitting hyperbolic and parabolic parts of u;+au, = bu,,

u; = D"uj — u+au, =0
-u-j-‘“ = Dh-u} — uy = by,

Pd Il = asmus -+

scheme D approximates advection equation and scheme

D" approximates heat equation

e advection diffusion equation u; +, = ., with step initial
condition

2.9 Conservation Laws-Integral and differential form

e 1D tube filled with compressible ideal gas with density
p(z,t) and velocity v(z,t)

e total mass of interval (z1,z2)

/ pla,t)dz
I

e during a small time dt the mass going through the point
is p(z, t)v(z, t)dt, so the mass flux at point z is p(z, t)v(z, )

e time change of the total mass is equal to the difference
of fluxes at the end points — integral form of conservation
law

T2
= [ pla ) x = plas, (s, 0) — pl, (a1
T

e by integration over (t;,,) we get the second form of in-
tegral conservation law

Iy Ty
/ plz,to)d x — / plz,t))dx =
1 1

ta 19
[ sttt = [ plas totan, i
151 iy
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o for differentiable functions p(z,t), v(z,1)

tga

p($t2) - f()(x t) = /

3]

ap(a:,t)dt

\ G . .
P, )0(22,) — play, o(a, t) = f —(pla,)v(a, 1)) d

|
e so the second form of the integral conservation law can be
rewritten as

/22 frﬁ Opx.t) | Opl, 0, b)) 4 gy =
0 o ot ox o

this has to hold for any interval (x,22) and any interval
(t1,t3), from which the differential form of the conserva-
tion law follows

pr+ (pv)z =0
e conservative form of scalar conservation law
u + f(u), =0
¢ advection form
U + fyuy =0
advection equation
ty +au, =0

fu is the speed of waves propagation
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e system of conservation laws in 1D — conservative form
U+ (F(U): =0
e advection form of the system of conservation laws
U+ F;-U,=0
where F’f is Jacobi matrix
FL., Fl, ...

C_ 2 2
Ff.-’ - ply £2s -+

_
e conservation laws are hyperbolic, so F}; has real eigenval-
ues Vr,t

e eigenvalues

det(Fy = MNI)=0,\, € Ryi=1,---,n,U € R" F € R"
e eigenvectors (rows)

V. Fs = \V,

e a system is strictly hyperbolic < the Jacobi matrix F; has
mutually different eigenvalues and independent eigenvec-
tors

e for hyperbolic system
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is non-singular matrix and

A O -0
p'ﬁ{}: 0 Ao 0 P=A-P,
00 An
so that
p'ﬁ{}-P_]:;"\

e we multiply the system
U +F5-U,=0
by matrix P from left to get
P-U+P-F;-U, =0,

which we consider localy at point (z,t), assumption of
frozen coefficients, i.e. P does not depend on x,t

(P-U)y+P-F;- P -P.U,=0
e characteristic system
Wit AW, =0
for characteristic variables W = P - U
Wi+ AW =0

e local expansion of solution into the system of Jacobi matrix
F; eigenvectors

e eigenvalues \; are speeds of waves propagation
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2.10 Difference schemes for conservation laws

e conservation law in 1D is
e+ flu) =0,

where the flux f(u) is in general non-linear function of u

e Lax-Friedrichs (LF) scheme

-y )/2 | f) - )

At 2Az ="
is first order O(Ax), diffusive scheme; with ME
2
w + flu)e = 2;;(1 — AL ) AT Uy,
e time step
., Az
= max|f,]’

LF stable for C' <1

e two-step LF scheme for conservation law has predictor

1/2 )
ity = (W +u)/2 ) = f(u))

At/2 Az

=0,

which computes the solution on the dual (shifted) compu-
tational mesh (n+ 1/2)At, (j + 1/2)Ax
e corrector of the LF scheme is the predictor shifted by 1/2

in indices n and j

n+] o (uTH-ll.f'IQ + 1£Ti+ll.f'l2)/2 f(_uﬂ-i-llj'z) . f(_un'f']_flz)

ui j+1/2 j—1/2 172 J—1/2

=0

t o+l

_________ a______ _______A__________ 4[-n+1n
— o "
X1 X X Xir1n Xjg
e modified equation
Ax? .
ui + f(u), = E(l — ff&t?/i\;zfz)uﬂ

so two-step LF is O(Ax), diffusive scheme — less diffusive
than one-step LF, stable for C' < 1

Page |36

TA Bl Erosmus -+



v e
o NGO
e . Yo N

e université
TEI of Crete W BORDEAUX

Powurlabs
High Pawer Laser Plasma Physics.

e two-step Lax-Wendroff(LW) scheme uses the same predic-
tor as LF

+1/2 ,
L;—l;? — (uf +uf)/2 fly) = f(u])

At/2 Az
and corrector

n+1/2, n+1,2
“‘?H — uy ¥ f(“'gﬂ}"fz.:' - f{uJ—I;'Q) B

At Az

7

=0,

!

X Xan X Xan Xa

e LW for advection equation, i.e. f(u) = au, results in

n+1 il i

¥ T ui aPAtul, —2up +ul,
At 2Ax 2 Az?
which is the known LW scheme for advection equation

o LW is O(Az?), dispersive scheme, stable for C' < 1

u
=0

e composite scheme LWLFk — & — 1 time steps by dispersive
LW followed by one step of diffusive LF

Conservativity

® any conservative scheme can be written in the conservative

form
Foii - Fo .,
+1/2 —1/2
't =g e T ImE

J J Az

where F, .y, is numerical flux
e conservative quantity u on interval = € (a, b)

e by integration of the conservation law u; + f(u), = 0 over
z € (a,b) we get

a b

E i

so that time change of the integral of the conservative

quantity is equal to the difference of fluxes at the end
points of the interval

udx = f(ula,t)) — f(u(b,t)),

e similarly for a conservative scheme

7 b
E uff“ﬂ,t = E wiAxr — Fripp+ Fiyps
i=1

J=1
e W scheme is directly in conservative form

e for one-step LF scheme

Wl = [ + f)
Fyojp=—do=  pg v T
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e for two-step LF scheme

Fip= Aﬂ,‘u?ﬂ — U + Atf(u-?“} + f(u;!]
JEyZ2 = / 4
n+1/2
+ Atif{uj_lﬂ)
2

2.11 Riemann problem for Burgers equation

e the simplest conservation law is Burgers equation

u?
w+ (L) =0
(),

in advection form
Uy + Uty = 0

so that u is speed of waves propagation

e Riemann problem at point z; is given by the initial condi-
tion

wo(z) = UL pro T < Iy
O up pro x> x

e Riemann problem for Burgers equation

—auy, > up —solution is discontinuous shock wave moving
with the speed s = (ur + up)/2

. uy pro ¥ — xg < st
ulz, t) =
u(z, 1) { tp pro & — xg > St

—ur, < up - solution is continuous rarefaction wave

e continuous initial condition, u; 4+ uu, =0
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2.12 Rankine-Hugoniot condition

e shock wave with speed s, left state uy, right state up

w+ flu)y =0

M
/_ e o+ f(un) — f(ug) =0

M
] M
—f w(z,t)dz + flug) — flug) =0
ot J_m '

e we express [

M
f u(z, t)de = (M + st)ug, + (M — st)ug,

M
so that
a M
o u(z, t)dr = s(ur — ur),
M
thus

s(ur, —ug) + f(ur) — flur) =0

e Rankine-Hugoniot condition
_ f(ur) — f(up)
UL — UR

e for Burgers equation f(u) = u®/2

u% — -u% _ur + up

2(ur — ug) 2

e for systems of conservation laws: jumps in conservative
variables and in fluxes on the shock wave have to be linearly

dependent
. F(Uy) - F(Ur)
U, — U
or better
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2.13 Shallow water equations

e the simplest system of conservation laws are shallow water
equations

hi + (hu), = 0
h?
(hu); + (h.-ug + g§> = 0,
where h(t, ) is thickness of the water layer (depth), u(t, x)

is horizontal velocity of water and g is gravitation acceler-
ation

e in conservative variables p = gh,m = ghu

wr+my =0
m2 2
my + (ﬂ + i) =0,
79 2 r

e system of conservation laws

U+ (F(U)).=0
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where

{?: (\é‘) F(ﬁ): (mzﬂl “})

e advection form for system

Ui+ Fs;-U,=0

where Jacobi matrix F’C is

7 0 1
- — 2 B

e eigenvalues of Jacobi matrix

_ —A 1
det(Fz —AI) = det | 2 tom_y |7

E
. 2m m?
2 .
=N =-—A+—5-p=0
¥ ¥
4m?  4Am?
D="5-——g tl=4%
o @

)\lﬁgzgi\/ﬁ:ui v gh

e both LF and LW (as well as LWLFk) can be used for sys-

fems

Page |41



S ¥ o & Font R vavesiny Quoers Universty
S { ey oF -
TEL of Crete }i R oA ‘g S York Q

KY - Erasmus+

B povuiar:
 High Power Laser Plasma Physics.

e time step computation — done adaptively after each time
step as Uy, is changing during the computation
Az
At=C ,

'y
v maxr

where
Upnaer = INAX ‘-u-J- + wyh;‘
: :

is maximal speed of wave propagation given by eigenvalues
of the Jacobi matrix

e dam break problem

-20 -5 -0 -5 [] 5 10 15

(b=
e solution of a Riemann problem for shallow water equations
are always 2 waves, left one and right one

e left wave is either shock or rarefaction wave, right wave is
also either shock or rarefaction wave

Other numerical methods:

e Finite volume methods - 2D and 3D

¢ Finite element methods (FEM)
-Galerkin method
-Rayleigh-Ritz method
-weighted residual method
-discontinous Galerkin (DG) method
-spectral methods - Fourier series

Conclusion:

-finite difference method-hyperbolic and parabolic evolution equations conservation
laws - hyperbolic non-linear PDEs

-computer laboratory session tomorrow

-lecture and computer laboratory session “Fluid simulations of laser-produced
plasmas" by Milan Kucharik-Euler equations-system of conservation laws for compressible
fluid dynamics
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1 Fluid Simulations of Laser-Produced Plasmas

In this Section, we present basic models and methods for hydrodynamic simulations of laser pro-
duced plasmas. After a brief description of Euler equations in Eulerian and Lagrangian reference
frames, the main idea and basic steps of an indirect ALE method based on staggered discretization
iz reviewed, and essential physical models are summarized. Several selected numerical examples
demonstrate ability of the approach to treat laser-target interactions in physically-relevant manner.

1.1 Euler Equations

Fluid simulations of laser-produced plasmas represent a useful tool for theoreticians and experi-
mentalists allowing them to investigate processes during laser-plasma interaction, which are often
impossible to observe directly in the experiments. Plasma hydrodynamics allows not only inter-
pretation of experimental results, but is also often used for designing of the experimental setup or
detailed analysis of particular processes during the experiment.

The simplest model of Auid dynamics is based on the classical Euler equations,

pe+V - (pw) =0, (1.1)
(i) + V- (pw”) +Vp =0, (1.2)
E +V-(@#(E+p)) =0, (1.3)

representing conservation laws of mass, momenta, and total energy in the static (Eulerian) reference
frame. Here, p represents fluid density, f = (u, v, w) is the velocity vector, p stands for pressure,
and F = pc+ 1/2p|@|? is the total energy density, with = heing fluid specific internal energy. A
particular Equation of State (EOS) closes the system, interconnecting fluid density, pressure, and
specific internal energy,

p=Plo.e). (L4)
For ideal gas, this equation is linear in both density and internal energy,
p=(y—1)ps (1.5)

with « representing ratio of gas specific heats, depending on the particular gas, while it can very
complicated (and often tabulated) in more realistic plasma models.
The system can be transformed to the moving (Lagrangian) reference frame by introducing the

total (material) derivative,

d 4 dr a i d

TR T (16)
or T-fE = -ﬂ% + i - V in multi-dimensional case. The system of Euler equation can be then written in
the form

d
d—f+,av-ta=ﬂ, (1.7)
d )
por+Ve=0, (1.8)
d
po PV T =0, (1.9)

Chn the moving mesh, the velocity of the nodes needs to be defined, which is usually determined by

solving the following ODE, s
I -
e (1.10)

Page |44



- Erasmus+

8 o &
universite ..
BORDEAUX  JMIRY

PowuckaF
High Pawer Laser Plasma Physics.

1.2 FEulerian, Lagrangian, and ALE Methods

The classical Eulerian methods solve the system of Euler equations in the Eulerian formulation (1.1)-
(1.3). The computational mesh is static in time and the fluid moves throngh it in the form of mass
fluxes. Due to the static computational mesh, the methods are usually robust, efficient, and simpler
to analyze. The exist a large number of classical textbooks related to Eulerian methods, see for
example [1, 2, 3].

Unfortunately, in simulations related to laser-target interactions, severe material compressions
and expansion are present. The Eulerian mesh is not suitable in this situation — it does not provide
high enough resolution at strong shocks, it needs to cover large computational domain when nothing
happens for most of the simulation, ete. In this situation, Lagrangian methods solving the system of
Euler equations in its Lagrangian formulation (1.7)-(1.9) is much better suited. The computational
mesh naturally follows the fluid motion, no mass fluxes are present. This class of method was
introduced in [4].

However, due to the motion of the computational mesh, mesh disturbances can oceur when
shear flows or fluid vortexes are present. Degenerate patches can appear in the mesh, such as
non-convex, self-intersecting, or even inverted (negative-volume) cells, resulting in generation of
numerical error or even simulation failure. In the pioneering paper [5], movement of the mesh
nodes was decoupled from the Auid motion. The class of methods based on this framework is
usually called Arbitrary Lagrangian-Eulerian [ALE), and combines the best properties of both
approaches — the computational mesh moves with the fluid as in the Lagrangian framework, but
the Eulerian part of the algorithm keeps the mesh smooth.

Here, we focus on the description of a typical indirect ALE algorithm in staggered discretization,
which is one of the most popular methods used nowadays in hydrodynamic codes [6, T, 8, 9, 10, 11].

1.2.1 Indirect ALE Algorithm
There exist two basic classes of ALE methods — direct and indirect. In the direct ALE, the

Euler equations are formulated with mesh velocity independent of fluid velocity, with mesh validity
guaranteed through a certain filtering technique, removing shear or rotational modes from the
velocity field. On the other hand, the indirect ALE is more straightforward. It incorporates a
traditional Lagrangian solver, advancing the solution and the computational mesh in time. Validity
of the mesh is enforced by an explicit mesh rezoning procedure smoothing the computational mesh.
The last essential step of an indirect ALE algorithm is remap, transferring all fluid quantities
conservatively from the old (Lagrangian) computational mesh to the new (rezoned) one. Rezoning
and remapping steps are together called the Eulerian part of the ALE algorithm, as fluid effectively
moves between computational cells at this stage.

There exist several strategies for joining the mentioned steps into a single ALE algorithm,
hasically defining the amount of Eulerian ingredient in the solution. The best strategy cannot be
simply specified and usually depends on the particular problem.

The most natural approach employs the ALE algorithm in almost Lagrangian manner. The
simulation detects problematic cells and after they appear {(or few steps earlier), the mesh is rezoned
and quantities remapped. This strategy minimizes the numerical error resulting from the remapping
numerical method, and the solution is close to Lagrangian. On the other hand, the mesh quality is
usually quite low and due to this facts, various numerical artifacts (such as oscillations, for example)
can be present in the solution.

The opposite strategy is based on mesh rezoning and remapping after every single Lagrangian
step. The solution is than close to Eulerian and the mesh remains very smooth, preventing any
unwanted numerical artifacts. One can even use initial mesh instead of mesh smoothing, resulting

Page |45



- Erasmus+

8 o &
universite ..
BORDEAUX  JMIRY

PowuckaF
High Pawer Laser Plasma Physics.

in a completely Eulerian numerical method. In general, large amount of Eulerian steps introduces
a significant diffusion in the solution, resulting from the remapping numerical error.

There are many possibilities of strategies between these two extrema. As an example, let us
mention mesh smoothing and remapping after a fived number of Lagrangian steps, which is often
used in practical simulations. This strategy prevents most of the numerical problems, while keeping
the mesh close to the Lagrangian one. One can also switch strategy during a single simulation, for
example run in purely Lagrangian regime for a certain period of time, and switch to ALE after first
mesh degeneracy appears.

In the following sections, we will describe all three steps in more detail.

1.2.2 Staggered Lagrangian Solver

There exist several options for formulation of the Lagrangian numerical solvers. Most of them can
be classified either as cell-centered or staggered method.

The cell-centered methods define all fluid quantities at the same place, in the center of each mesh
cell. For an example of a modern cell-centered method, see for example [12]. The main advantage
arises when switching to ALE — all fluid guantities can be remapped in the same manner. Cn the
other hand, one need to solve a local Riemann problem at each mesh node to estimate its velocity,
and more complicated incorporation of velocity boundary conditions needs to be done.

We mostly focus here on the more classical class of staggered Lagrangian methods, which define
the fluid thermodynamic guantities (density, pressure, specific internal energy) in the mesh cells,
while the kinematic quantities (mainly the velocity vector) are defined in mesh nodes. This approach
allows simple incorporation of velocity boundary conditions, the mesh node motion is directly
defined through its nodal velocity, however, staggered discretization requires more complicated
remapping approaches. Here, we briefly describe the compatible staggered Lagrangian solver based
on mimetic discretization of the Euler equations, for full derivation of the scheme, see [13].

The whole scheme can be summarized as follows:

1. Sum nodal pressure forces Fif and viscosity forces Fif 114, 15] (eventually other forces needed [16
17]) to construct the total nodal force Fy, use it to update nodal velocity,

_ g1 n Al =
Wy =1y _EF"' (1.11)
2. Update nodal coordinates,
CE AR N2 (1.12)

41y

where the time-centered velocity wit, * is computed just as average of old and new values.

3. From the new cell geometry, update cell volumes 1’:““ and densities p‘:_] = meﬂ.{:‘““r
where the cell mass m, is constant in time due to the Lagrangian nature of the scheme.

4. Update the specific internal energy as
et Sy 1.13
'EE‘ 'E[' me o [ - ]
where heating W, due to compression/expansion of the cell is computed from the velocities
and forces acting on the particular cell.

5. Finally, update new cell pressure from the equation of state, p':',"_] = ’P[p’é"_]__ _v-;’,"_]].

Thizs scheme is typically used in a two-step predictor-corrector version, guaranteeing its second
order of accuracy.
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1.2.3 Mesh rezoning

There exist many useful methods for untangling and smoothing of computational meshes in the
context of ALE hydrodynamic codes. In practice, fast and simple algorithms are typically used,
which is especially important when 3D caleulations are performed. Let us name especially the clas-
sical and widely used Winslow method [18], performing one iteration of solution of an elliptic PDE.
More advanced methods contain for example minimization of the condition number functional [19],
representing a measure of the mesh geometric quality, or the Reference Jacobian mesh smoothing
technique [20], which is based on a similar idea, while trying to preserve the original mesh features,
For mesh untangling, let us name the approach of modified condition number minimization [21], or
fullvy geometric methods based on an explicit construction of the feasible set for each node, see for
example [22]. These methods are used in ALE algorithms to guarantee validity of the mesh, while
minimizing nodal motion to avoid excessive diffusion of the following remapping step.

1.2.4 Quantity Remapping

The main goal of the remapping step if to transfer all conservative quantities (and their densities)
from the distorted Lagrangian mesh to the rezoned one. Let us assume that we know the Lagrangian
fluid density p. in the old cell ¢, which is considered in this context to be the mean value of some
unknown underlying density p(F): p. = me/Ve, where m. = [ p(F) dV. The goal is to compute new
cell & density and mass, pz = mgz/Vz, where mz = [ p(F)dV. Most remapping methods are based
on piece wise linear limited reconstruction [23] of p(7) and its exact or approximate integration,
puaranteeing conservation, second-order of accuracy, continuity, and bound-preservation of the
remapping scheme.

The remapping methods based on exact integration typically construct intersections of the new
cell & with the original mesh. The final new mass is then obtained by summing the contribution
from all the intersections, mz = 3, [, . p(¥) dV, where the density function is approximated by its
reconstruction in the particular old cell ¢ [24]. The approximate models perform the remap typically
in a flux form, constructing the fluxes by integrating the reconstructed density function over swept
regions, defined by the motion of each cell edge to its new position during mesh rezoning [25]. The
exact methods guarantee bound-preservation of the scheme and simple to generalize into multi-
material case [26], however, construction of the intersections is computationally expensive and has
izsues with robustness, especially in 31). On the other hand, the swept-based methods are faster
and more robust, however, bound-preservation can be violated [27] and are difficult to generalize
for multi-material simulations. To solve this issue, the hybrid remapping techniques have been
developed [28, 29, 30], combining both approaches in different parts of the computational domain.
Similar approach can be performed in single-material case [31], choosing the best method according
to a local error analysis [32].

Remapping of all fluid quantities needs to be performed consistently, which is simpler in cell-
centered approaches. In the staggered methods, different location of thermodynamic and kinematic
quantities leads to more complicated approaches, see for example [33, 34] for available methods.
Remapping of nodal wvelocity needs to be done carefully and consistently with the rest of the
quantities to avoid increase of the kinetic energy discrepancy [35] or symmetry violation of velocity

field [36)].
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1.3 Physical Models

To approximate laser-generated plasma, standard Fuler equations (1.7)-(1.9) need to be enhanced
by additional terms representing heat conduetivity and laser absorption,

- =—oV-, (1.14)
d
—_— = [
T Vp, (1.15)
p%=—p?-tﬁ+v-[ﬁ?’f}—v-f, (1.16)

where T represents fluid temperature, & is heat conductivity coefficient (computed by the standard
Spitzer-Harm formula [37]), and I is the laser beam intensity vector. This modification represents
the simplest approximation of the realistic laser plasma model.

The first necessary model is a realistic equation of state. The simple ideal gas EOS is reasonably
valid in low density corona, however, in compressed material, more relevant EOS has to be used.
As examples, let us mention the often used semi-analytic Quotidian EOS (QEOS) [38] based on the
Thomas-Fermi theory electrons and Cowan model for ions, or the tabulated SESAME EOS [39].
Let us also mention the HerEOS library [40], allowing thermodynamically-consistent high-order
Hermite interpolation from any tabulated KOS data, improving significantly the computational
cost of the EOS evaluation, which is usually the dominant part of a realistic simulation.

Another necessary model iz approximation of thermal conductivity, contributing not only to
the physical relevance of the simulation results {correct speed of spreading waves), but also to the
robustness of the simulation. Thermal conductivity is described by the parabolic term in (1.16),
which can be separated from the rest of the system by operator splitting, and the following equation
can be formulated fully in temperature,

1
PET

T, = V. (kVT). (1.17)
The derivative of the specific internal energy with respect to temperature cp can be computed
numerically for general EOS, and the classical Spitzer-Harm formula [37] is used for the evaluation
of the heat conductivity coefficient k. A possible approach for solving this equation iz based on the
mimetic method using support operators [41]. Discrete operators of gradient and divergence are
constructed, mimicking the properties of the continuous operators, which are used for the parabolic
term discretization. Temporal derivative is discretized by the standard finite difference, and a fully
implicit scheme is constructed to avold excessive restriction of the time step due to a quadratic
term in the CFL condition. The final system iz solved by the conjugate gradient method (with
pre-conditioning). This method is second order accurate, works well on bad quality meshes, and
allows a discontinuous diffusion coefficient. It is also simple to supplement this approach by a heat
flux limiter, gnaranteeing more realistic plasma energy.

A erucial part of a hydrodynamic code is a suitable model for absorption of a laser beam energy,
represented by the source term in (1.16). The simplest approach is based on an explicit location
of the critical density surface and full absorption of each laser beam ray in the particular cell
intersected hy this surface. There exist two main drawhacks of this approach: first, it is necessary
to provide the absorption coefficient (which is, in general, dependent on the material properties
and laser parameters); and second, all energy of the particular ray is absorbed in a single cell,
which leads to a series of “cell explosions”. To avoid these problems, more advanced models are
typically used. Let us for example mention the advanced mode] of raytracing, explicitly tracking
each ray in the computational mesh, including its rarefactions at cell boundaries, or a wave-based
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approach [42] employing stationary solution of Maxwell equations, spreading the absorption region
to multiple cells.

To approximate the 30 reality without the need to solve fully 3D equations, cylindrical symme-
try of the laser-related problems is often utilized, and 2D r — = geometry is often implemented in
hydrodynamic codes. Each 2D cell then represents a ring (rectangular toroid) around r = 0 axis,
s0 even 1ts volume and centroid are dependent on its location in the r direction. To switch to cylin-
drical geometry, all additional rfactor need to be introduced into all integrals. It leads to r-factor
added mainly during the force construction in the staggered Lagrangian stage and in integration
of function reconstruction in remapping stage, while the mesh rezoning stage is not affected. It is
possible to formulate all integrals properly and derive corresponding analytic formulas similarly as
in Cartesian case.

There exist several more improvements contributing to more realistic modeling of laser /plasma
interactions, let us mention few of them. The first of them is a two-temperature model, splitting
a common fluid temperature to separate temperatures of electrons and ions, which is especially
important in simulations of non-ideal plasmas. Two distinct energy equations (1.16) need to be
solved, with an additional exchange term, representing heat transition from electrons to ions.
Another significant issue is a phase transition model, especially important in simulations containing
solid target melting and evaporation due to its interaction with a laser beam. It prevents solid target
from unrealistic expansion into vacuum, resulting from purely fluid description of the material. The
last model which we mention here is the non-local energy transport, representing long-distance
energy transfer due to material radiation. Such model can be important in simulations of high-#
materials, for which target preheating is much better modeled.

1.4 Numerical Examples

Most of the models described in the previous sections are implemented in the hydrodynamic Prague
ALE (PALE) code, which is being developed at the FNSPE, CTU in Prague. For an overview of
the included methods and possible types of simulations, see for example [43]. This code is primarily
used for hydrodynamic simulations related the experiments performed at the PALS laser facility.
Here, we only briefly show one fluid example and one more realistic laser/plasma example, to
demonstrate capabilities of typical hydrodynamic simulations.

1.4.1 Sedov blast wave

The first example is a standard Sedov blast wave [44], which is used here to demonstrate the
differences between Fulerian, Lagrangian, and ALE regimes of the simulation. The initial Auid is
static everywhere in the {—1.1, 1.1}* square domain covered by an equidistant 90° computational
mesh. The fluid has a constant density p = 1 and specific internal energy £ = 1075, except 4
central cells, where = = 409.7. ldeal gas EOS with v = 1.4 is used. The central high energy region
represents an explosion in the fluid, generating a circular shock wave spreading outside from the
point of explosion.

In Figure 1, we can see the density profile and the computational mesh at ¢ = 1, obtained by an
Eulerian, Lagrangian, and ALE20 method (with rezoning and remapping after every 20 Lagrangian
steps). As we can see, the Eulerian method keeps the static mesh, while it is moving with the fluid
in the Lagrangian simulation. The Lagrangian cells are huge in the center of the domain, where
density decreases, while the mesh is naturally refined by the material compression at the shock
wave, which much better resolved and the peak density is higher. For the ALE method, the mesh
iz similar to the Lagrangian one, the shock wave remains nicely resolved as in the Lagrangian case,
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Figure 1: Density profile and computational mesh of Sedov blast wave problem, computed by
Eulerian (a), Lagrangian (b), and ALE20 (c¢) methods on 902 mesh.

however, in the center, the mesh is closer to the uniform mesh, avoiding very low resolution and
large numerical error in the domain center.

1.4.2 Laser induced cavity pressure acceleration (LICPA) scheme

The second example is inspired by real experiments at the PALS laser facility, see for example [45]
for more details. Setup of such experiment is shown in Figure 2. A metal projectile covered by
a plastic ablator is situated in a channel covered by a cavity. An intensive laser beam enters the
cavity through a small hole, it iz absorbed in the ablator and accelerates the projectile to a very
high velocity (hundreds of km/s). After it moves through the whole channel, it hits a massive
target, generates a shock wave, which moves from the point of impact, melts and evaporates the
target material, and creates a crater.

Hydrodynamic simulations were used here for preparation of experimental parameters, and for
analysis and interpretation of experimental results. Various modifications have been simulated
different ablator and projectile widths and materials, or different laser energies and frequencies.
Various aspects of the experiments have been studied numerically, mostly focusing on hydroef
ficiency — increasing the portion of laser energy transformed to the shock wave energy. Various
simulation data (such as impact velocity, shock wave speed, and erater size) have been compared
to the experimental results, and reasonably good agreement was achieved.

In Figure 3, we can see the results of a particular LICPA simulation, performed in two steps

the acceleration and impact processes are simulated separately. A 2.8 pm thick Au projectile
covered by 5 pm thick CH ablator is placed in a channel with radius 150 gm. The PALS (3rd
harmonic, 438 nm) laser pulse with 200.J has a super-Gaussian spatial profile with radius 90 pm
{containing 280% of pulse energy) and Gaussian temporal profile with rew gy = 300ps. The first
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Figure 2: Setup of LICPA experiment.

part (laser absorption and projectile acceleration) i=s performed in ALE regime, allowing almost
Lagrangian mesh motion. Geometrical computational mesh (finer at the upper part of the domain,
where laser is being ahsorbed) covering the projectile and the ablator is used. In Figure 3 (a), we
can see the density profile at ¢ = 250 ps before the pulse maximum. The spatial profile of the pulse
forms the shape of the shock wave in the ablator and starts its transition into (still static) higher-
density projectile. After the projectile is accelerated by the pulse, it moves through the channel
and reaches its end (2 mm from the initial projectile location) at { = 800 ps after the maximum, as
can be seen in Figure 3 (b). The heavy part of the projectile is still relatively compact before the
impact.

The impact process is modeled by a fully Eulerian simulation to avoid mesh degeneracies at
the channel corner short after the impact. The initial data in the channel are taken from the
acceleration simulation. The formation of the shock wave in the target material at ¢ = 0.38ns
after the impact can be seen in Figure 3 (¢). We can ohserve similar shape of the shock wave
as the shape of the massive impacting projectile. The material is compressed, the temperature is
significantly increased, and a the generated shock wave starts spreading from the point of impact.
The temperature profile at ¢ = 750ns after the impact can be seen in Figure 3 (d), when the
shock wave iz already too weak to melt the target material further. The gray colormap shows
the solid Aluminum, while the colored region represents the melted and evaporated material, the
spherical interface represents the crater boundary. The crater size has been computed and com-
pared to the experimental data, showing relatively good agreement. Many other characteristics
can be computed, for example maximum pressure at the shock wave and its temporal development,
hydroefficiency, amount of kinetic and internal energy in the target material, speed of crater devel-
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Figure 3: Density {a-c) and temperature (d) profile at different times of a LICPA simulation: (a)
250ps before pulse maximum — absorption; (b) 800ps after pulse maximum — reaching end of
channel and impact; () 0.38ns after impact — shock wave formation; (d) Ti0ns after impact
developed crater.

opment, profiles along the = = 0 axis, and others, allowing deeper insight into the processes during
various parts of the experiments. See for example [46] for examples of such simulations and their
comparizon with experimental data.

1.5 Conclusions

In this short note, we tried to describe the main abilities of typical laser-target simulations via hy-
drodynamic codes. We have described one particular approach based on ALE technique employing
a staggered Lagrangian solver. Several numerical models have been briefly discussed, improving
physical relevance for laser-generated plasmas. We have tried to convinee the reader that hydrody-
namic simulations represent an important tool for studying processes during realistic experiments,
which cannot be often measured directly by diagnostic tools. Development of new numerical meth-
ods for laser plasma hydrodynamics is an attractive topic, and a vast amount of ongoing research
in this field is currently performed in the scientific community.
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4. Numerical simulations for laser-produced plasmas

4.1 Introduction to simulations

Numerical simulation is an important tool in scientific research. It is often confused with the
theory. However, it is a way of reality exploration additional to experiment and theory (see
Fig.11.1). Sometimes, it can be difficult to extract the exact reason for particular effect from
numerical simulations. And it is often difficult to find the dependence of results on experimental
parameters. So analytical theory is important, even when it has to be simplified and even if
analytical solution cannot be obtained.

There are several reasons why computer simulations are carried out. First, they can help
scientists to understand consequences of the fundamental physics laws. Thus, conditions
interesting either for basic science or for applications can be selected for a detailed
exploration.

Second, computer simulations help in interpretation of experimental results. Often,
experimental information is incomplete as measurement of some important quantities is too
difficult or virtually impossible. For instance, interaction of femtosecond laser pulses with
targets is an important field of study but not many information can be obtained with
femtosecond resolution. Fastest X ray streak cameras have time resolution of approximately
half-picosecond. However, the emitted signal is often too weak for reaching picosecond or
even nanosecond temporal resolution, and thus only time integrated X-ray spectra are
available in some experiments. Another example is the laser-induced particle acceleration.
The properties of laser-accelerated particle beams can be accurately measured, however, the
details of acceleration process are very difficult or practically impossible to detect. Thus,
computer simulations are carried out and if the resulting beam properties match well with the
experiment, the researchers believe that the simulations describe the acceleration process
with reasonable accuracy.

Third, computer simulations help to design new experiments and predict their results.
Experiments are often expensive and the space of experimental parameters is often too broad
for random scanning. Thus, preliminary choice of experimental parameters is must. Results
of numerical simulation also help in the selection of suitable diagnostics. The expected signal
may be too weak for particular diagnostics to be detected. Or the signal may be too strong
leading to the diagnostics saturation or it can even cause damage in the diagnostics
equipment.

Numerical simulation consists of writing a computer code and using a computer for
performing numerical experiment which shows evolution of some nonlinear system. Analytical
solutions exist for most of linear problems, so numerical simulations are usually not necessary.
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However, linear problems may serve for a partial validation of numerical codes. Most of
problems in laser plasma interactions are highly nonlinear, so numerical simulations are
inevitable for their solution, and for design and interpretation of experiments. Both the z-pinch
and laser produced plasmas are magnetised. The z-pinch because of the current which flows
in it and generates an azimuthal magnetic field and the laser produced plasmas due to
currents generated in the blow off plasma. Waves propagating in a magnetised plasma are
important because they determine the plasma characteristics and can also be used as
diagnostic purposes. In order to understand the propagation of an electromagnetic wave in a

magnetised plasma we start from Maxwell's equations:

Figure 4.1 Ways of reality explorations — schematics (courtesy C. Ren, presentation [1] at
2009 HEDP Summer School)

4.2 Plasma description and types of numerical simulations

Plasma dynamics is usually described via kinetic or fluid models. Kinetic description is based

on an equation for particle distribution function f(r, p,t)that is solved either directly or

indirectly. Kinetic description is usually used for weakly coupled plasma and it cannot be
applied for non-evaporated part of dense (solid or liquid) targets. The advantage of kinetic
description is a possibility to treat highly non-linear phenomena in laser-plasma interactions
where important differences from Maxwellian distribution occur. However, kinetic description
is computationally very demanding. Direct solving a kinetic equation (either collisionless
Vlasov equation or collisional Boltzmann or Fokker-Planck equation) generally means solving

partial differential equation in 7 variables, which is often above capabilities of present
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supercomputers. One reason of inefficiency of this approach is the necessity of solving the
kinetic equation in the parts of configuration space where particles occur with very low
probability (unoccupied phase space). This can be improved by sampling the configuration
space with particles or macroparticles. Then, equations of motion in self-consistent
electromagnetic fields are solved for each (macro)particle. Easy parallelization is an important
advantage of this approach, and thus even 3D problems may be solved using big
supercomputers. Sampling of the distribution function by finite particle number inevitably leads
to a certain noise that must be kept in acceptable limits. Particle simulations are the main
approach for simulations of interactions of intense ultrashort laser pulses with targets while for
longer laser pulses they are usually used in limited spatial and temporal intervals for detailed

studies of specific nonlinear effects.
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Figure 4.2 Configuration space with computational grid and occupied space [1]

Fluid approach describes plasma via first few moments of the distribution function. Usually,
zeroth, first and second moments are used describing particle density, momentum and
energy, so the fluid equations describe conservation of particle number, momentum and
energy. The fluid description is incomplete as the details of distribution function are not taken
into account. Consequently, some effects may be missing (as e.g. Landau damping) or may
be described incorrectly. Fluid equations may be formulated separately for electron and ion
fluid but this is rarely used in numerical simulations as it includes fast effects and thus it
requires time step comparable with one over plasma frequency Op. Fluid approach is usually
used for simulations of large scale low frequency plasma processes where quasi-neutrality

condition is met and thus, plasma may be described in one-fluid approximation. As the energy
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equilibration between electrons and ions (electron-ion relaxation) is slow compared to the
momentum transfer, two temperature approximation is applied. If magnetic fields are
important, magneto—hydrodynamics (MHD) is employed. However, most MHD codes used in
astrophysics cannot be applied directly as they omit magnetic field generating terms (like
Biermann battery term due to crossed density and temperature gradients) important for laser-
produced plasmas. As most of interaction experiments are carried without external magnetic
field and quasi-static magnetic field generated during the interaction reaches the maximum
value only after the laser pulse, it may be often omitted and ordinary hydrodynamics may be
used. When high atomic number (high Z) materials are involved, radiative transfer must be
solved together with hydrodynamics and such approach is called radiation hydrodynamics.
Possibility to include cold dense (solid or liquid) material into fluid description is its important
advantage and thus global simulations of nanosecond laser-target interactions are conducted
via fluid approach. Fluid codes are also used for calculations of initial density profile for kinetic
simulations of high intensity femtosecond interactions as the target is usually affected before
the arrival of the main pulse due to insufficient contrast of the intense ultrashort laser pulse.
Lower computational demands of fluid approach allow modelling of greater temporal intervals
and spatial regions than in the kinetic approach. On the other hand, treatment of many non-
linear processes can be included only phenomenologically, based on coefficients taken from
theory or from kinetic simulations. In the fluid approach, suitable choice of equation of state
(EoS) that links plasma pressure and internal energy to temperature and density is important.
The mean ion charge must be calculated either via EoS or separately. Detailed atomic model
may be included in the fluid code or it may be used as a post-processor.

Certain data for simulation of plasma dynamics may be prepared by pre-processor codes.
The results of codes calculating plasma dynamics may be post-processed in order to carry
out direct comparison with experimental diagnostics or to assess possibility to use laser-
produced plasmas as a radiation or particle source for applications.

Detailed atomic physics of plasmas are usually modelled by specialized codes. The task
may be split into 2 parts. First, excitation levels and transition rates of ions are calculated by
solving the equations of quantum mechanics (e.g. Hartee-Fock equation with configuration
interaction and relativistic corrections). This is very difficult task for ions of heavy elements
with many bound electrons and if possible it is corrected with the help of experimental data for
the spectral line energies. In the second part, collision-radiative (CR) model is solved to find
the populations of the energy states and the emission (or absorption) spectra. The model can
be stationary for particular plasma parameters or time-dependent. Plasma may be assumed
either optically thin or radiative transfer must be included in a certain approximation (e.g.

escape factors).
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4.3. Kinetic methods

Methods describing plasma through distribution function may be divided into 2 basic types —
particle methods that sample the distribution function and methods that directly solve a partial
differential equation for the distribution function. Particle methods are easier to code up and
analyse, they are more robust and economical, but they are noisier. There are implemented
also in 3D where direct solvers of kinetic equations are impractical. Direct solvers of kinetic
equation are sometimes preferred when the studied effect is caused by a small group of

particles (e.g. particles at high energy end of the distribution).
4.3.1. Particle methods

Particle simulation techniques attempt to model many-body systems by solving the equations
of motion of a set of particles. Tracking particle trajectories enables us to explore physical
effects which are inaccessible to other modelling techniques. The method employs the
fundamental equations without much approximation, allowing it to retain most of the physics.
The algorithm consists of (1) loading of the initial particle positions and velocities, (2)

calculating the force on each particle and (3) solving the equation of motion for each particle.

Figure 4.3 Electron distribution 50 fs after laser interaction with 4 [Jm wire calculated via
parallel 3D tree code PEPC.(P. Gibbon).

The simplest approach is the particle-particle method. It treats binary interaction between all
particle pairs. The basic limitation is the number of arithmetic operations required in the

calculation of forces as it scales as N2 where N is the number of particles. Thus, this approach
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is viable only for a small number of particles N < 108 [1]. Thus, only some microscopic
processes may be modelled by this approach.

One clearly needs to reduce the scaling of the operation count below N2. There are two
approaches how to decrease the operation count (1) particle-cluster method, so called tree
code and (2) particle-mesh method, so called particle-in-cell code. The second method is

faster and more popular while tree codes are slightly slower but less noisy.

Tree codes [2]

Tree codes treat near interactions in the same way as particle-particle codes. However, the
distant particles are grouped and the potential of a group of distant particles is approximated
by a low-order multipole expansion. Operation count in the force evaluation is below Nxlog(N).
Tree codes need more CPU time than particle-mesh codes, but they are favoured in systems
with large density contrast. They also do better jobs in resolving small scale features of the
solution and they are less noisy than the particle-mesh methods. However, most of existing
tree codes are electrostatic as it is more difficult to treat laser field in a tree code. Nevertheless,
3D parallel electromagnetic tree code PEPC has been developed by Paul Gibbon and it is
capable to perform realistic simulation of ultrashort pulse with mass-limited target as shown in
Fig. 11.3.

Particle in-cell codes [3]

In particle-in-cell (PIC) codes, numerical mesh is added in order to compute the forces
acting on the model particles. The basic cycle of PIC code consists of 4 steps depicted in
Fig.11.4. (1) The particle positions are interpolated to the grid points where charges and
currents are computed. (2) Maxwell’'s equations are solved on the computational grid and (3)
the fields are then interpolated to the particle positions to compute forces acting on particles.
(4) particle equations of motion are solved to get particle positions and velocities in the new
time step.

The particle push must be usually supplemented with boundary conditions for particles.
Particle collisions may be added after particle push; one option is to select colliding particles
from particles within one cell randomly via a Monte Carlo algorithm [4] and vary their
momentum according to the collision differential cross-section. Optical field ionization can be
also added as well as other atomic processes. However, the addition of collisions leads to a
very significant increase in the computational time. Thus, collisionless PIC simulations are

preferred unless the impact of collisions is very significant.
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Figure 4.4 Schematics of basic cycle of a PIC code.
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The number of floating point operations in PIC codes scales as aN+ BN, InN, +yN_,

where Ng is the number of grid points and o, 8, y are constants. If the number N of particles is
significantly larger than Ng, then most computations are needed for particle push that is easy
to parallelize efficiently. As an example, 10000 time steps in simulation with 108 particles in
64x64%64 cells can be carried out in 3 seconds on 10 Tflop/s computer [1].

PIC method is basically designated for modelling of systems, where close neighbors
contribute little to the force on a particle which is dominated by the sum of its interactions with
distant particles, i.e. collective interactions dominate over binary interactions. Such systems
are called weakly correlated or weakly collisional and ideal plasma is a typical representative
of these systems. Basic PIC model treats these systems in collisionless approximation, while
the impact of binary collisions may be taken into account via additional algorithm. PIC method
cannot be used in strongly correlated systems like for instance solids. In plasmas, binary
interactions are effective only for distances less than Debye length while at larger distances
collective interactions dominate. In the PIC method, macroparticles represent a cloud of
particles occupying a small area in the configuration space. Spatial dimension of macroparticle
is assumed equal to the grid cell. When the grid cell dimensions are taken equal to the Debye
length, binary interactions are effectively omitted in the PIC model.

PIC method may be performed in 1, 2 and 3 dimensions, where the macroparticles have
shape of slabs, rods and cubes, respectively. Additional velocity components may be taken
into account leading to currents in the directions normal to the spatial ones. Thus, 1D2V, 1D3V
and 2D3V simulations are also used. While a standard PC is sufficient for typical 1D
simulations, powerful workstations or small clusters are typically used for 2D simulations. 3D
simulations need massively parallel computing and they generate extensive data sets that are
laborious for processing, visualization and interpretation.

Equations of particle motions have to be solved by a fast, reasonably accurate and stable

method. The leap-frog method is very popular. In this method, positions and forces are
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The error caused by the substitution of the derivatives by the differences is called
truncation error. For the leap-frog method, the truncation error is proportional to At?, so the
method is of the second order of accuracy. Leap-frog is an explicit method for which the
maximum time step is limited by the requirement of stability which means that the total error
must not grow in time. The fastest mode limiting the time step is the plasma oscillation when

electrons are oscillating with frequency a, in respect to ions due to the electrostatic force

restoring neutrality. The force acting on electron is F, /m, =—a)§ X; . When restoring force is

inserted into (1) and the electron coordinate and velocity in time instant nAt are proportional

to exp(iwnAt), the eigenfrequency w of difference equations is given by the following dispersion

2
sinz(wm)= @, At .
2 2

Thus for At > 2/a,, the solution for wis not real and consequently, the amplitude of plasma

equation

oscillations in the numerical scheme grows in time. For shorter time steps At < 2/w,, the leap-
frog method is stable and the difference between @ and ), leads to a phase error that
decreases with decreasing time step At. Implicit schemes allow longer time steps, but the
computation of the quantities at the next temporal instant is more time consuming and coding
is more difficult especially for laser plasma interactions. Thus, most popular codes presently
use explicit algorithms.

The deviation of conservation laws caused by the truncation error should be minimized.
As the algorithms usually cannot be made fully conservative, unphysical growth of
temperature, known as numerical heating, must be kept at negligible values during the whole
simulation run.

After the particle push, charge and current must be assigned to a grid point. Once we
introduce the grid, we can no longer view the particles as point particles, this leads naturally
to the idea of a finite sized particle. Then, instead of charge assignment to the nearest grid
point, it is natural to treat macroparticle as a cloud of particles and split the charge to the near
grid points (cloud-in-cell). More elaborate smoother charge distributions may be used to
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suppress the noise. However, such schemes may become complicated and inefficient in more

dimensions, and especially in 3D.

Time: 0.30 ps

15 T
10 BN 7 1
T Ol & 3 1
S 0}l } 1
> -5 . 1§ :
-10 | ;
-15 k : i s

45 2B <D 15 35
X [pm]

Figure 4.5 2D3V simulation of electron acceleration (optical injection by orthogonally

crossing laser pulses) [5]. Electric field plotted in grey, main laser pulse is at X ~ 25 ym.

Maxwell’s equations are usually solved by a finite difference time domain (FTDT) method.
In electromagnetic codes, the equations for curls of electric and magnetic field are directly
solved. Though the equations for divergences are automatically fulfilled in the differential
equations, there has to be an extra care to meet this condition in their differential analogue.
Boundary conditions may be either periodic or reflecting or open. Additional perfectly matched

layer is used to eliminate the reflection of outgoing electromagnetic waves.

Figure 4.6 2D3V 3D simulation of interaction of circularly polarized laser of a,=30 and

duration 12 period Ty incident from left on solid plastic foil 0.08 A thick. lon density at 35 T, [6].
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An example of PIC simulation results in Fig.11.5 shows one advantage of particle
simulations — the possibility of particle tracking. Electrons denoted by the blue color were
injected by the crossing laser beam; electrons pre-accelerated by drive beam are red and
electrons induced by self- injection are black. The particle positions are overlaid on grey
electric field, main drive laser pulse propagating to the right is at the right side of the figure
and laser wake field propagates behind it. In Fig. 11.6, a result of 3D simulation of ion
acceleration by an intense ultrashort circularly polarized laser pulde is presented. The density
distributions of protons (cyan), carbon ions (blue), and oxygen ions (purple) are plotted after
the interaction at t = 35 To. The circles show the proton bunch and carbon ion bunch,
respectively.

4.3.2 Solving kinetic equations

Vlasov equation

Vlasov simulations solve similar problems as PIC codes. However, they are computationally
more demanding. Most often 1D simulations are carried out, though 2D simulations are also
performed at present. One advantage is the absence of noise. Vlasov simulations are
preferred when a small number of particles at the distribution tail is essential. Vlasov
simulations may distinguish small scale structures in the configuration space. The solution of
Vlasov equation evolves to the formation of very small structures that are dispersed in plasma
even by a small number of collisions. Thus, a small number of artificial or physical collisions
is usually introduced to suppress this behavior. As an example, the electron phase space of
relativistic KEEN wave obtained in Vlasov simulations of stimulated Raman scattering is
plotted in Fig. 11.7.

Lilidaguey

TN FIR TR AT AT

Livinvnnnalans

@© [
o

30 40 50 60 70 80
Twp/c

Figure 4.7 Electron phase space of relativistic KEEN wave in Vlasov simulations [7].

Page | 66



-

& Iversité & N e
e N U, o (0 W @

- Erasmus+

Collisional kinetic simulations
Kinetic equation with collisions is solved for the investigation of processes where collisions are
essential and the deviations of particle distribution from Maxwellian distribution are significant.
Typical studied effects are the electron non-local heat transport between critical and ablation
surface, collisional (inverse bremsstrahlung) laser absorption and its impact on the electron
distribution and also the impact of collisional atomic processes. Overdense plasma between
critical and ablation surface is usually highly collisional and thus, PIC simulation are not
efficient there.
Various collisional terms may be used, the most popular is the Fokker-Planck term, which is
simpler than Boltzmann and Lenard-Balescu terms that are also sometimes used. Self-
generated electric field may be calculated from the Poisson equation (Vlasov-Fokker-Planck
code) or it may be obtained from the condition of quasi-neutrality.

The distribution function may be expressed via a series of spherical harmonics that are
eigenfunctions of the collision operator, as follows

f(r,v,t)=f,(r,v,t) +

<<

) vV, 1 B 1D
fl(r,V,t)"‘( v21 _550] f (F V1) +.= Z f (X, v,t) B (1)
=

where u=vx/Vv. In the simplest case only 2 terms are retained.

4.4 Fluid simulations

Often, one does not need the detailed knowledge of the particle distribution functions. The
description is simplified in the fluid (also called hydrodynamic) models where the moments of
the distribution functions are used. Fluid description is more accurate in dense plasmas where
the collisions decrease deviations from the Maxwellian distribution. The basic moments are
the density (0" moment), the average velocity (15t moment) and the internal kinetic energy (2™

moment) that are defined, as follows

a

n,(r.t)=[ f,av W (r,t):nij f vdv eka(r*,t)z%f f, (v—w,)*dv

In the fluid description, one typically solves a system of conservation laws for the particle
number, momentum and energy. These laws are partial differential equations (PDES) in space
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and time, but not in velocity. Thus, fluid approach is less computationally demanding than the
kinetic description and it can be also used for strongly coupled systems. Consequently, it is
applied for global simulations of laser interactions with dense (solid, liquid) targets. On the
other hand, non-linear processes in laser-target interactions can be treated only in a
phenomenological way, many processes have to be included using either analytical models
or an experience from the kinetic simulations.

Fluid models are usually used for simulations of processes slow compared to plasma
frequency a,. In principle, two fluid (electron and ion) models can describe also fast processes,
however, they cannot be used for dense systems and they omit some aspects of particle-wave
interactions (e.g. Landau damping), so PIC simulations are more appropriate for these
processes. For processes slow compared to @, quasi-neutrality may be assumed and one-
fluid approximation is sufficient. When a quasi-static magnetic field is important,
magnetohydrodynamics (MHD) must be used. In MHD description of laser-target interactions,
source terms like source due to crossed gradients of density and temperature (Biermann
battery term) have to be retained though they are omitted in most typical astrophysical codes.
In most situations, the impact of quasi-static magnetic field is small during the time when laser
is interacting with the target and thus, ordinary hydrodynamics is used. As the energy
equilibration between electrons and ions is slow due to ratio of ion to electron mass, separate
equations are often used for electron and ion temperature. For high-Z targets, a significant
part of energy is contained in radiation, and thus, radiation hydrodynamics is used.

Fluid dynamics is described by a system of conservation laws represented by equations
of hyperbolic type. It is surprisingly difficult to develop suitable difference scheme for hyper-
bolic PDEs. For enlightening this problem, we shall use the simplest hyperbolic equation, the

advection equation

ou ou
+a—=

— 0 with initial condition u(0,x)=u,(x
ot ox (0.%) = ()

The solution is analytical u(t,x)=u,(x—at). The advection equation is ideal for testing of

numerical methods as it is simple (linear) with the known analytic solution. From various

combinations of finite differences, the natural scheme is the FTCS (forward time central space)

i i+aui+1_uin—1:O = u
At AX '

n+l

At
=u + am(uﬂl - uin—l)
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The basic requirement for a difference scheme is its stability, the total error should not grow
in time. Stability may depend on the Courant-Friedrichs-Levy number CFL = aAt/Ax.
Unfortunately, FTCS scheme for advection equation is unstable for any CFL humber. Instead,
it is possible to use 1%t order accurate Lax-Friedrichs scheme or 2" order accurate Lax-

Wendroff scheme that are stable for -1<CFL<1

i i+1

U.Ml—(uin_l+U-n )/2 u" un

ra—l T Lax-Friedrichs scheme
At AX
u_n+1 _u_n u_n _u_n 2 A
e SIPNLS B R t2 (uly—2u +ul,)  Lax-Wendroff scheme
At AX 2 AX

The solution of propagation with a = 1 of initial Gaussian pulse of height 1 and width 5 by the
above methods is presented in Fig. 11.8. Unstable FTCS method is unusable, while the stable
methods track the pulse motion correctly. Lax-Friedrichs scheme is diffusive, the pulse is
broadened and lowered. On the other hand, the dispersive Lax-Wendroff scheme leads to an
oscillatory pulse shape. The calculated pulse shape can be partially improved by a suitable
alternation of these two methods during successive time steps. The time step may be
increased by using implicit schemes, for example FTCS with spatial derivative taken in n+1
time instant is stable for any CFL number. However, no explicit formula exists for the next step

values and non-linear equation system has to solved in each time step.

L b)
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Figure 4.8 Advection equation (a) Initial pulse. Solution at T=160 via (b) FTCS scheme (c)
Lax-Friedrichs scheme and (d) Lax-Wendroff scheme.

In the simplest case, the fluid equations are the Euler equations for the conservation of mass,

momentum and energy
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where symbol ® denotes tensor multiplication, p is the density, W is the velocity vector, £ is

the total energy density and p is the pressure given by the equation of state p = p(p,s), where
the specific internal energy ¢ = 2/,0—|le|2 /2.

When a computational mesh fixed in space is chosen for solving fluid equations, one
speaks about the Eulerian frame. Fluid moves through the static computational frame in the
form of fluxes. Methods for solving fluid equations in the Eulerian frame are well understood
(Lax-Friedrichs and Lax-Wendroff schemes are typical Eulerian methods) and easy to
implement. The theory of their stability and properties is well advanced. However, the fixed
computational mesh is not suitable for tasks with enormous expansions (or compressions) of
the computational domain, which is typical for laser interactions with solid targets. Also,
tracking plasma-vacuum boundary is a problem in the Eulerian frame and a low-density
ambient plasma is usually used instead of vacuum.

Alternatively, the Lagrangian

frame may be used where the %%

coordinates are attached to the 903

moving fluid. The positions of the ._°%02§

£
nodes move together with the fluid, =°%°'f
so there is no mass flux between the
adjacent cells and the mass of a cell -9

is constant in time. Time derivative in 002

, . 0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.0
the Lagrangian frame is the total r [cm] r [cm]

derivative d/dt=08/at+ WV . Vis- Figure 4.9 Density and temperature profiles 0.3 ns
) _ after maximum of 0.4 ns FWHM laser pulse of A =
cosity has to be added in case of a 439 nm and energy 58 J incident from the top on 5

cell compression (typically due to an um-thick Al foil [8].

incident shock wave). The disadvan-
tage of Lagrangian approach is the possibility of deformations of computational cells, e.g. due
to shear. This leads to amplification of the numerical errors and eventually, the simulation may

fail when non-convex or negative volume cells appear. A typical result of a Lagrangian
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simulation is presented in Fig. 11.9. Laser is incident from the above normally on 5 um-thick
Al foil positioned at y=0, laser spot radius is 50 um. Laser-induced plasma corona expands up
to ~700 um, so the simulation area is increased more than 100% in y direction. The critical
density por ~ 0.02 g/cm? is more than 100 times lower than the density of solid Al and in
Lagrangian approach it is easy to choose cell dimensions that ensure a sufficient resolution in

the important area of critical surface neighbourhood.

200,
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Figure 4.10 (left panel) Computational grid and target temperature in eV 80 ns after the
impact of laser accelerated disk on bulk target. (right panel) Density colormap at the critical
area (a) initial grid (b) very distorted Lagrangian grid after 0.5 ns including non-convex cells

and (c) ALE grid still smooth after 80 ns [9].

The solution for problems of tangling of Lagrangian cells is the Arbitrary Lagrangian-
Eulerian (ALE) method that combines Lagrangian and Eulerian approach. First, several or
many Lagrangian time steps are computed. After a given number of time steps or when a
certain deformation of Lagrangian grid is detected, the Eulerian part is started. In this part,
mesh rezoning untangles and improves the computational mesh. Then, remapping
conservatively interpolates the conservative quantities from the old to the new mesh.
Remapping allows mass fluxes between the computational cells. After remapping, the code
goes back to a sequence of Lagrangian steps. The ALE method combines the advantages of
Eulerian and Lagrangian approaches. The grid moves together with the fluid, but the Eulerian
part keeps it smooth. As an example, the result of 2D cylindrical ALE simulation of the impact
of laser-accelerated thin disk on a bulk target is presented in Fig. 11.10. For purely Lagrangian
simulation, critical region is at the edge of the impacting disk. The computational grid tangles
here and the simulation fails as early as 0.5 ns after the disk impact due to the formation of
non-convex cells. As the simulation aim is to compare the volume of the crater created at the
bulk surface, the critical region is not very important for the main aim of the simulation.

However, Lagrangian simulation cannot proceed any more. On the other hand, the ALE
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simulation overcomes this problem and the computational mesh is kept smooth for the whole
time 80 ns of the simulation.

The system of the Euler equations has to be supplemented by additional terms. Laser
propagation and absorption must be calculated. A variant of ray-tracing model is most
frequently applied for the laser propagation in an underdense plasma where collisional
(inverse bremsstrahlung) absorption is taken into account. Laser absorption and reflection in
the critical surface neighbourhood may be calculated by solving Maxwell's equations,
however, this is often substituted by crude phenomenological models that use simplified
analytical formulas for resonance absorption. As energy absorbed due to resonance
absorption and due to nonlinear parametric instabilities goes basically into a relatively small
group of fast electrons that transport energy far from the absorption region, simplified model
of energy transport by fast electrons is included in some fluid codes. Electron heat conduction
from the critical to the ablation surface is mostly non-local due to large temperature gradients.
The classical heat flux proportional to minus gradient of electron temperature has been
traditionally restricted by the free streaming heat flux with arbitrary coefficient f called flux
limiter (usually set in range 0.05 — 0.1). Classical Spitzer-Harm thermal conductivity is valid
for ideal plasmas, but it severely underestimates heat conductivity at low temperatures, thus
an ad hoc interpolation between low and high temperatures is usually used [10]. Recently,
heat flux is calculated non-locally using convolution or multi-group approach [11]. Multi-group
approach [12] is also used for radiative energy transfer, where a separate difficult problem is
the calculation of radiative opacities [13]. An equation of state (EOS) is heeded to connect to
the pressure and the temperature with the density and the internal energy. ldeal gas EOS is
most simple but it is not realistic at high densities and low temperatures, thus either some

simplified analytical models [14] or tabulated equation of state [15] must be used.

4.5 Summary

This session has been devoted to an introduction to numerical simulations of laser-target
interactions. It has been focused mainly to the description of plasma dynamics. There are two
main approaches — kinetic description via particle distribution function, and fluid description
via moments of the distribution function.

Kinetic models are performed either by direct solving of kinetic equation or via sampling
of the distribution function by macroparticles in particle codes. Particle codes are often
preferred as they are faster and they may be parallelized efficiently. Particle codes have to
avoid computationally demanding particle-particle interaction. This is performed either by
particle-mesh interaction in PIC (particle-in-cell) codes or by particle cluster interaction in tree

codes. PIC codes are very popular for modelling of interactions of intense ultrashort laser

Page |72



-

& Iversité & N e
e N U, o (0 W @

- Erasmus+

pulses where they are able to model strongly non-linear effects in weakly coupled plasmas.
3D simulations of interactions are feasible on supercomputers. Macropatrticles in PIC codes
are clouds of particles with dimensions equal to one or a few grid cells. PIC approach
describes collective interaction of particles through macroscopic electromagnetic fields.
Microscopic binary interactions may be added if necessary via additional (e.g. Monte Carlo)
algorithm. PIC approach cannot be used for strongly bound systems where interactions with
nearby particles dominate. PIC simulations inevitably include certain noise not only due to
sampling by finite number of macropatrticles, but also due to finite grid cells. The noise can be
reduced by using a tree code, but these codes are rare, slower and more difficult to create.
Direct solving of the collisionless Vlasov equation is preferred for effects where a few particles
dominate. However, Vlasov simulations are more computationally demanding and cannot be
performed in 3D at present supercomputers. Direct solving of collisional kinetic equation is
preferred for situations in weakly coupled plasmas when the binary collisions play an important
role and deviations from Maxwellian particle distribution are significant. For instance, such
codes model accurately the electron heat transport in the highly collisional area between the
critical surface and the ablation surface of solid targets.

Fluid codes use simplified description of plasma via density, average velocity and
temperature. They are well suited for global modelling of laser-target interactions as they can
also include dense cold (e.g. solid) areas. They usually include processes slow compared to
the plasma frequency wp, and thus quasi-neutrality may be assumed. Consequently, one fluid
hydrodynamic or magnetohydrodynamic description is used. On the other hand, non-linear
processes can be treated only phenomenologically. Numerical algorithms for simulations in a
grid fixed in the space (Eulerian frame) are well developed and understood. However, when
enormous expansions (or compressions) occur during simulations, Lagrangian frame is
applied, where the nodes are moving together with the fluid. The problem of the Lagrangian
approach is possible deformation of computational cells that leads to simulation failure. This
is cured in Arbitrary Lagrangian-Eulerian (ALE) codes where mesh rezoning and remapping

of conservative quantities is added to the Lagrangian approach.
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5. Numerical modeling and simulations Lasers/Plasma

Irradiation of solids with pulsed laser beams is a powerful method for materials
excitation. Due to the great flexibility of the method, the large and monitored power and the
ability of remote manipulation without any contact with the material, this method is rapidly
expanding. Common applications of the method include laser surface melting, surface
reinforcement by laser shock, surface coating and functionalization, physical and chemical
measurements, assembling and dismantling (surface cleaning), nanopowder production and
use. Pulsed laser’s irradiation ability of broadband signal generation is also used in industrial
applications like surface structure detection, compositions, geometry, roughness, plainness
and elastic properties of metallic specimens’ analysis [1-10].

The dynamic reaction of matter irradiated by a nanosecond laser pulse source depends
on its thermo-physical properties, as well as on the laser pulse characteristics. To understand
the complex physical phenomenon of this interaction, various analytical and numerical
approximations have been developed. For most of the numerical approximations the Finite
Element Method (FEM) is chosen to carry out the simulation of the multiphysics thermal-
structural problem, because of its ability to predict the achievable temperature gradients and
time-dependent displacements and stresses at multiple locations. FEM is not limited by the
geometry of the solution domain nor the precision’s variance neither the lack of smoothness
of solution [11-21].

Absorption Heat conduction Plasma
Laser Melted Plasma
SAW{ Beam / metal / formation
Metal Film
(a) (b) (c) (d)

Figure 5.1 Phase change regimes: (a), (b) thermoelastic, (c) melting and (d) plasma, of pulsed
laser film-substrate interaction [22].

The main regimes for pulsed laser irradiation of matter are the thermoelastic, melting
and ablation (plasma) regime. In the thermoelastic regime, the area of the sample irradiated
by the nanosecond laser pulse is rapidly heated by the absorption of the laser energy. The
heating rate and the surface temperature are defined by absorption and reflection coefficients,
by thermal conductivity, and by the specific heat of the metal. The sole form of heat transport
is conduction within the metal (Fig. 9.1). The absorption of energy results in a rapid increase
of temperature in the irradiated volume, which in turn causes a local rapid thermal expansion.

The localized thermal expansion generates a stress field and ultrasonic surface acoustic
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waves (SAWSs) that propagate in the target's material. SAWs provide valuable elastic
information in the vicinity of surface over which the waves propagate, because the surface
wave phase velocity is directly dependent on the elastic tensor of the material [23]. Acoustic
surface waves are well suited for testing thin films, which are used extensively with applications
covering various sectors of industrial activity [24,25]. For greater laser intensities the target
surface temperature reaches its melting point (Fig. 1(c)). At this stage, the melted front
penetrates the solid phase, while the thermal and optical properties of the target material
change. For even greater laser intensities the target surface reaches its boiling point. The
process of material removal from the target is called laser ablation. For incident laser
intensities greater than the ablation threshold plasma is formed (see Fig. 1(d)) [16,26]. Laser
plasma is composed of a large amount of electrons, ions and excited neutrals that absorb the
laser light. For all regimes, the generation and propagation of SAWs depends on both the film
and substrate thermo-physical (elastic) properties, as well as on the laser pulse characteristics.
Studies by the help of FEM have been carried out on the behavior of thin films surface under
nanosecond laser pulse excitation [16-21]. Xu et al. [17,18] studied the transient temperature
and temperature gradient fields in coating-substrate systems as well as the surface normalized
vertical displacements at different source-receiver distances and to the epicenter. Their work
is focused on the thermoelastic regime. In [19] the laser ablation of titanium carbide with the
aid of a two dimensional (2D) finite element model is simulated, based on the heat conduction
equation and on the Hertz-Knudsen equation of vaporization. In [16] a 2D finite element model
capable to predict temperature distribution and ablation depth by taking into account the
absorption of laser radiation in plasma is developed. The work presented in Ref.’s [16] and
[19] is focused on the pulsed laser ablation phenomenon and the ablation depth (crater's

formation).
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5.1 What is FEM?
5.1.1 A typical problem description

FEM is a numerical method originally developed as: a branch of Solid Mechanics. Nowadays
FEM is a commonly used method for MULTIPHYSICS problems. The physical problems that
science aims to solve may be categorized to: Structure analysis problems: a cantilever, a
building, a bridge, etc.; Solid mechanics problems: a gear, an air wing, etc.; Dynamics:
vibration of a bar, of a tower, an earthquake, etc.; Thermal analysis problems: heat conduction,
radiation of a surface, etc.; Electrical analysis problems: electrical signal propagation,
piezoelectric actuators, etc.; Biomechanics: human organs, bones, tissues, etc.; Fluid
mechanics, Magnetic analysis... are some of the basic fields that numerical simulations may
work for. The Multiphysics problems may include some or ALL of these branches of problems
that may be mathematically described by the help of Differential Equations.

To explain the mathematical modeling philosophy of the FEM let's assume a solid with

known Properties: materials & geometry as presented in Fig. 2 having known:

* Boundary: (2D)-The blue line, (3D)-The blue surface that is enclosing the geometry

* Solid: Interior; Surface (2D) or Volume (3D)

* Boundary conditions: Prescribed quantities (e.g. prescribed displacements, prescribed
displacements, velocities, stresses, strains etc.)

* Loading conditions: Force, pressure, thermal, electro, magnetic loads

SOLID
undeformed

X

Figure 5.2 A solid imposed to an axial force.

The questions that has to be answered is: What will happen to a solid if a Force is applied to
it? and Which will be the values of Displacements, Stresses, Strains? ... at each material point
of the solid body [27, 28].
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Figure 5.3 Deformed solid.

5.1.2 Mathematical formulation

For the mathematical formulation of the typical problem described in 9.2.1, the Equilibrium the
Constitutive and the Strains (Kinematics) equations may be used:

Strains (kinematics):

1( & O .
1| Ou, ou ;

D = e—

To2lex;  ox,

Constitutive
o, = ZGQU + ﬂeﬂ_ 5?.}.

_I+v v -
QU. = 5 CTU —E{T;{k(}a

Equilibrium
00, 00,
+

oo,
~ L + ~ ~ - +‘f; =0
oX, oX, 0OX;

The determination of the values of the unknown variables: Displacements: us, Uz, Us; Stresses:
011, O22, O33, O12, O21, O23; Strains: €11, €2, €33, €12, €21, €23 Must be provided by the solution of
the above 15 equations of which the 9 are Partial Differential Equations (PDE’s). At this point
we may easily notice that an exact analytical solution is impossible to be found, and this
consists the main difference of simulations to pure theory. FEM is a numerical simulation
method that may be used to find the best approximate solution to the problem. Simulations
are NOT theory.
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5.1.3 Basic solid mechanics

Stress: is an internal quantity that has units of force per unit area. At a point Stress needs a
magnitude and 2 directions to specify it. The sign of a stress component is determined from
the direction of the internal force and the direction of the out-ward normal to the imaginary cut

surface and the shear stress components are symmetric (see Fig.9.4).

/AF,
AtaPoint: 6. = Im |—=

1

-] _J"L_""L - Gt\ﬁAiJ
duection of / 1
outward normal to the direction of the
imaginary cut surface mternal force.

Oy O O

Normal Stresses: T}, T,, O;

Shear Stresses: T, Oy O,y Ty O, Oy

0. =0 .. .
] N 6 11ulepemleul stress components

Figure 5.4 Stresses.

Strain: is a measure of relative movement of two points on the body (deformation). Elongations
are positive normal strains. Decrease from right angle results in positive shear strains. Small
strains (¢ < 0.01) can be calculated using just the deformation in the original direction of the
line. Small strain results in a linear theory tensor normal strains equal to engineering normal

strains and tensor shear strains equal to: (‘engineering shear strains’/ 2), (see Fig. 9.5)

_____ 7 -7
1 ! /
O /
| / /
| ,f /
J I
. | L.
Strains: l ==
L AL
AL
& =— Vo =V
; 7 :
Normal strain Shear strain

Figure 5.5. Strains.
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For linear elasticity:

(xl?xzvx?;)c:}(x?yrz)
(111,142,113)<:> (u,v, w)
1[ éu, Ou,

Strains (kinematics) : ¢ “Sla T
(JJ.'J- (I-'.\'f-

L e = ou,  au i e 1( Ou, . o,
ll:j: 11 ——‘——‘ i= ,le_' 1:— - —-‘
ox,  Ox o2lex, o
Cu, Cv 1 cu, cu
i=j=2 &3 = = == - "I=2‘Ji=3 323 =51 3 -+ - :
Toox, Oy 2\ ox,  oOx,
5 w 1 du, cu
. & =ﬂ=6_% i=1. =3 £ =— _1+ 3
I=j=3 & - =1, j=: 375 e, v
ov, oz ox;  Ox
Normal Strains Shear Strains
ou, ou cu, Ou, Ou v
== 2Ny Sk S
ox, Ox ox, oOx;, Oy OX
5 cu, ou, oOv ow
ou, ov R . 0.
g-n -— — 2823 == :/_l': ZE O + -~ = ‘\— -
< o, Oy ox; Ox, 0z Oy
) a5k ou, Ou; Ou ow
ou, ow s = WM Il
5:==,\“=_ 2815—%\:—“”4-‘3‘ OB
B o Oz ox; Ox;, 0Oz OXx

Discretization of the domain

-

CAD of thé solid domain
Generation of elements & nodes with known

Solution of the linear DOF’s and interpolation order values
equations system ‘
Formulation of a set of linear

equations with displacements at « Use of a simple function to approximate
each node as unknowns the displacements in every element

Figure 5.6. The basic modeling steps of FEM.
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The basic modeling steps of FEM are presented in Fig 9.6. The solid domain is geometrically
represented by the help of any CAD system that is further discretized. The finite elements are
generated by the help of the nodes having known Degrees Of Freedom (DOF’s) and
interpolation order values. A simple function is used to approximate the displacements in every
element and a set of linear equations with displacements at each node as unknowns is
formulated and finally the linear system of equations is solved. The flowchart depicted at Fig.
9.7 describes these steps.

Understanding and Describing
the Physical problem
Simplifying the real problem to a
FINITE ELEMENT problem

I Modeling (Pre-Processing) I

» Discretization/meshing
* Material properties

* Boundary conditions

* Loading condition

Processing -
* Approximation functions choice Results (Post-processing)

- Formulation of equations Obtain, VisuaIiZt_e the Results.
* Solution of the equations system ~ Understand/Explain the Results.

Figure 5.7 Flowchart of modeling and processing of FEM (pre- & post- processing).

To conclude, we ask FEM to provide results for the unknown values given the minimum
input data:

* Geometry: Math description, CAD input files etc.

* Material properties: Young’s modulus, Density, Poisson’s Ratio

* Boundary conditions: Supports, Prescribed displacements/stresses etc.

* The type of analysis: static, transient, modal, thermal, electromagnetic ...

The detailed modeling process includes the selection of the Elements and Mesh for which
a strategy to create a good mesh by the help of the appropriate Element types is adopted.
When transient problems are solved, a time function is used to define how the prescribed
boundary conditions change over time e.g. as ramp, step, sinusoidal etc. In numerical
modeling time is the physical time counted by a clock, such as in dynamics and transient
problems OR time simple means that one thing happens before another thing happens, such
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as in static problems. In summary, the Basic components of a FEM software include six basic
features: i. Type of analysis, ii. Geometry (defined through mesh nodes), iii. Elements, iv.

Material properties, v. Boundary conditions and vi. Time functions.

5.3 Understanding and describing the physical problem

The aim of a numerical simulation is to describe as approximately as possible the real physical
problem. Developing a physical model is a process that simplifies a real-world problem into a
FEM problem. The main considerations in building a physical model is the understanding of
the nature of real-world problem and the a-priori knowledge of the cost of conducting the
computational analysis. In many cases the cost of conducting FEM is a major barrier which
imposes a great challenge and sometimes the maximum accuracy is sacrificed for the
reduction of the computational cost for the achievement of a good solution.

The simulation cost demanded for the mathematical processing is strictly affected by the:

e Number of Nodes: N

o Degrees Of Freedom (DOF’s / Node)

¢ The numbering of the Nodes: Matrix decompositions and algebraic operations costs

e Number of interpolation and integration points in every finite element: Interpolation

order costs

¢ Nonlinear Analysis: Time integration and singularities

The type of analysis (static, dynamic, linear or nonlinear, 2D, 3D, transient, ...) must be
decided at the physical model level. The number of nodes and number of integration points
are chosen during the building of the finite element model level. A good physical model has to

reduce the number of nodes by one or two orders of magnitude [27,28].

5.4 FEM model development for the simulation of irradiated materials by

nanosecond laser pulses

As depicted in Fig. 9.1, laser energy heats the target surface. The absorption of the laser pulse
results to an increased localized temperature. The heating rate and the surface temperature
are defined by absorption and reflection coefficients, by thermal conductivity, and by the
specific heat of the solid. The target surface temperature reaches its melting point. Thermal
and optical properties change during melting. In the ablation (plasma) regime, vaporization
occurs. For incident laser intensities greater than the ablation threshold a large amount of
electrons, ions and excited neutrals is present in the vaporized material and absorb the laser

light forming plasma. For even greater laser intensities droplet or solid particle ejections occur.
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At the very first moments, energy is deposited in the area of the laser beam spot resulting to
the generation and propagation of Surface Acoustic Waves (SAWSs) & bulge formation Bulge
[Crater and Plasma formation while SAWs are generated and propagate in matter. The
ultrasonic waves are generated in the solid in all directions from the laser interaction area.

The FEM model must be capable to simulate: the behavior of matter in every spatial
direction, for any axisymmetric sample geometries, as well as target samples with no
symmetry of material distribution. It has to be able to simulate the laser matter interaction
providing a detailed view of the 3D thermo-mechanical results and giving spatiotemporal
insights to solid target’s dynamic reactions in any direction and in any regime of interest. The
bulge formation, the generation and propagation of SAWs and the development of crater must
be monitored and recorded with high resolution, especially in the cases of melting and ablation
in order to be compared with the experimental results. Furthermore, the parametric model
must be able to simulate cracks, enclosures or other defects, symmetric or not, that may exist
in the sample.

The developed computational model presented here with a range of simulation results,
covering every regime of nanosecond pulsed laser irradiation, demonstrating its capabilities.
Experimental against numerical results obtained by the same model, were originally presented

in the research work of Dimitriou at al. [22,29,30] and validated its effectiveness and accuracy.

5.4.1 FEM Mathematical modeling

The governing PDE of the problem is the Thermal conduction equation:

p(T)CA(T) OT(X;%V L)

—VIK(M)VT(X,y,z,1)] =Q(X, Y, z,t) - Li (9.1)

Where, T transient temperature function, K thermal conductivity, p density, ¢, specific heat, Q
heat source, specified as the absorbed energy per volume unit per second and L; latent heat
(if T<TmthenLi =0, if T2Tn thenLi =L, if T2Tp then L =L, ).

The wave propagation PDE is used to describe the structural part of the problem:

o’ (gtzy z,t) _ VU (X, Y, 2, 1)+ (A+ 2)VIVU (X, Y,z,)]-aBA+2)VT(X, Y, z,1)
L nsy 9.2)

Where, U displacement vector of thermal induced elastic waves, A, g are the Lamé constants,

a thermoelastic expansion coefficient.

The model is loaded by the ns Laser heat source spatiotemporally described by:
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Q(X,Y,z,t) = I_(t)(1—R) exp(—4In 2( %) ) exp(_(X2 + y%)aexp(—az)

(9.3)

assumed to be of Gaussian type. Is incident laser power density (laser pulse energy per unit
area per second), R optical reflectivity of the sample, a optical absorption coefficient (1 /a is
the optical penetration depth), tois the FWHM laser pulse duration, ro is the FWHM beam
radius on the sample surface. Attention has to be given to the attenuation of irradiation due to
the absorption in plasma (consequence of laser irradiation). Thus, increase in the absorption
as a consequence of plasma heating is characterized by a single parameter, the density of the
absorbed radiation energy Ea [31]. The temporal laser irradiance may be given by:

| (t)=1e*®, A(t)=bh(t)+d Ea(t) o
Where, |y incident laser pulse energy per unit area per second, A(t) optical thickness of the
ablation plume, h the ablation depth, b and d time independent coefficients to be identified
(free parameters).

The classical thermal conduction equation for finite elements with the heat capacity matrix
[C] and the conductivity matrix [K] can be expressed in terms of vectors based on the finite
element method:

oT

[KIT+[CHZ3={Q)

ot (9.5)

where {Q} is the heat source vector, {T} is the temperature vector and {oT/dt} is the temperature
rate vector. When temperature exceeds the melting point, the latent heat of melting Ly is
subtracted from {Q}, which becomes
or
[KET)+[CH—}={Q} - L
ot (9.6)
while Ly is replaced in by L, when temperature exceeds the boiling point. For wave
propagation, ignoring damping, the governing finite element equation is:
o°U
MK=}+[SHU}={F
[MHS3+[sHUY=1{F} o

where [M] is the mass matrix, [S] the stiffness matrix, {U} the displacement vector, {32U/ot?}

the acceleration vector and {F} the force vector. In general, the external force vector for an

element is given by:

{F}=[[B] [D]{ec}aV 9.8)
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where {&} is the thermal strain vector, [B]" is the transpose of the derivative of the shape
functions and [D] is the material matrix.

In this approximation of the 3D transient multiphysics thermal-structural mechanical
problem, coupled-field analysis may be performed. To avoid individual solutions of the thermal
and subsequently the structural problem in every timestep, analysis is applied by the
interaction of thermal with the structural field [32]. Both of the engineering disciplines share
the same 3D geometry, meshing, appropriate element type, boundary and loading conditions.
All these Pre-process required input data are loaded for the entire simulation once in the
beginning. Thus, the computational time is decreased and the possibility of loss of data during
load transferring is eliminated.

By the help of the thermal-structural coupling direct method, a single pass solution is
achieved, involving one analysis that uses the coupled-field 3D solid element type that uses
eight nodes with up to six degrees of freedom per node. The weak field coupling, used in the
proposed approximation, is accomplished by the calculation of the appropriate element
matrices and load vectors resulting by the summation of the element matrices and load
vectors. The necessary coupling terms may be included to the governing equation results to a
form where the coupled effects are accounted for load terms F-coupled (Fc) and Q-coupled
(Qc). This coupling requires at least two iterations in sequence to achieve a coupled response,

one for each physical model applied [22]:

% Lier s mlmf e walli) -] o9

5.4.2 FEM modeling and simulation results

To simplify the physical model and reduce the computational cost, the real problem is
analyzed. A 3D quarter symmetric finite element model is chosen to simulate the laser matter
interaction with the solid thin film-substrate sample, presented in Fig. 9.6. The model simulates
a homogeneous, elastic, isotropic metal film-substrate system and its transient thermal-
structural response when a single laser pulse interacts with the metallic film. The 3D FEM
model is capable to fully describe the dynamic phenomena occurring from the laser energy
concentration in the metallic film. Golden (Au) metal thin film of 0.6 um thickness deposited on
glass BK7 substrate of 200 um thickness is assumed for the simulations performed. This model
may ideally simulate the laboratory experiments performed and is validated by the resulting
experimental data in every regime and under various loading conditions, as originally

published in Ref. [29], where typical experimental against numerical results were compared.
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Figure 5.8. 3D quarter symmetric FEM model [22]

The thickness of the film used is of the order of a fraction of a um and the heat-affected
zone is much smaller than the domain of the material, therefore a fine mesh is necessary in
order to resolve temperature distribution in the film and the irradiated region. As depicted in
the zoomed detail of the irradiated surface in Fig. 9.8 (top), special treatment is given to the
mesh of the cyclic area of radius R2 of the laser beam spot. At the limits of this area the
temperature gradients change rapidly, thus requiring a locally smooth adaptive fine
discretization [33]. The dynamic thermal effects occurring from the heat conduction are
responsible for the structural response of matter around this area of high importance. That is
the reason why a second cyclic area with radius R1 encloses R2 and creates the appropriate
continuum smooth space, needed for the generation and propagation of SAWSs. Since laser-
generated SAWSs have high frequencies and transient analysis is performed, a small element
size is required to deal with these waves. The centre of symmetry is the laser's epicentre,
where the maxima gradients of thermal effects occur and the melting and vaporization of
matter are taking place. To deal with these extreme conditions a 5 ym x 5 ym rectangular
square area with 12 element divisions in each side is built and mapped normal for 0.6 microns
(film thickness) with 12 element divisions. This orthogonal fine meshed volume is generated
to allow precision handling of the dynamic phase changes of matter in the center of the
irradiated sample. These assumptions result to a sophisticated built locally adaptive fine mesh
of 20160 elements (22737 nodes) in the quarter cyclic domain of radius R1=85 um and a total
of 27360 elements (30732 nodes) in the whole volume of the Au thin film. Likewise, the volume
of glass is mapped for 3 um with 12 elements in the normal direction to precisely transfer the
substrate’s dynamic reactions to the film. The whole sample is discretized to a total number of

88920 elements (94560 nodes).
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The FEM model is set in the Global Coordinate System so that the positive Z-axis, follows
the direction of the laser beam while its Origin (O) is placed to the center of the quarter
symmetry, as presented in Fig. 9.8. Considering the loading conditions, a heat generation
function, is applied on the film body. The initial temperature of the body is assumed to be the
ambient temperature, set equal to 27 °C. Symmetric displacement loads are applied to the YZ
(ABCO) and XZ (OCDE) planes, while heat flux is set to zero, regarding the quarter symmetry
of the 3D model. At these planes of symmetry the discretization follows a smooth coarsening
with increasing the distance from the top surface plane XY (AOEF).

A total time of 60 ns after excitation and 60 load-steps, resulting to a duration of 1 ns for
each load-step for the solution, is considered. This time dependent problem is solved
sequentially, with an incremental timestep of 1 ns. Regarding the laser parameters used in the
performed simulations, the laser energy ranges from 0.8 to 20 pJ, the FWHM laser pulse
duration, to, is 6 ns, while the FWHM beam radius on the sample surface, ro, is 11.5 ym.

As indicated to the simulation flowchart in Fig. 9.7, all of the described Pre-Processing
input data are stored and loaded once at the beginning of the simulation process. During the
simulation the output of the preceding timestep is saved and becomes an input to the
succeeding timestep. When simulation begins the first transient timestep is submitted for
analysis. The criterions (flags) used are strictly related to the approximated temperature
results, as shown in the decision rhombus boxes of the flow chart. At the end of a particular
step, if the temperature of an element is higher than the melting temperature (Tn), phase
change occurs, which is taken into account by considering the latent heat of melting (Lm) in
the model. The ablation is assumed to occur when the temperature of the corresponding
elements is higher than the boiling temperature. Likewise, in this condition the model takes
into account the phase change effect by considering the latent heat of vaporization. If the
resulting temperature of an element overpasses the boiling point, a group of elements (GT,)
to be vaporized, is created. These elements belong to the material removal subdomain that
is realized by the “killing” of the GT,. These elements are deactivated by multiplying their
stiffness by a severe reduction factor (~1x10%). When laser fluence is higher than the ablation
threshold, the optical thickness of the ablation plume, A(t), should be considered and Eq. 6 is
activated and taken into account by the model [16, 19]. Comparison with experimental results,
strictly demanded for this case, allows for the evaluation of the values of the plasma
coefficients, a and b, which for our test cases were found to be 1x106 and 1x10%, respectively
[29]. For the estimation of a and b values, for any other sample with different material
properties, this comparison of simulation vs. experimental results, has to be performed. The
computational time required for each successive time step of 1 ns, is approximately ~30

minutes and is increased to ~1h when killing of the elements is performed. The simulation is
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accomplished when the total time of the transient analysis is reached. Representative results
of the simulation are depicted in Figures 9.9 and 9.10 in accordance to the correspondent

experimental results and explanation details for the dynamic behavior of the model.

Laser fluence: 0.4 J/cm?
Sample: 0.6 um Au/BK7

(a)-(c) Temporal evolution of the bulge deformation and the
corresponding temperature field (upper left sub-figures)

| » Maximum bulge deformation for At=28 ns: 13.8 nm,

» Maximum temperature value: 953 °C, below the melting
point (T, = 1060 °C), securing the elastic deformation of
the sample.

(d) Expanded symmetry Model: Generation and propagation
of SAWs for At=28 ns

Displacement value of the first SAW is computed to be 0.1 nm
in a distance of 47 um from the epicenter.

-0138 -
=012266

.l‘llln.ﬂ L X |
~009199 =006131 ~ 003063 A4E-03

07665 004597 ~00153

Experimental and theoretical results of the bulge deformation and SAWs generation: At=28ns

-023007 -.020381 -017754 .01 5|z7-.0125 -.009874 "007147-.00461 -.00[994.0‘" 008

Laser fluence: 0.54 J/cm? E> Bulge dEft:r;Sation
Sample: 0.6 um Au/BK7 xperiment: ~30nm

Simulation: ~23nm
When model reaches locally to temperatures higher than
the melting point of Gold, Q-L,, is activated for the
volume of the metal film that outreached the melting
temperature.

Figure 5.9 FEM results (a) and comparison to experimental results (b) [34,35].

> SAWs
Experiment: 15t SAW at 55um from epicenter - normal displacement ~1.5nm
Simulation: 1% SAW at 47um from epicenter - normal displacement ~1nm
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Bulge deformation: ~20 nm for both experimental and simulation data
Laser fluence: 3 J/cm? Crater walls diameter: ~45 um for the simulation and ~50 um for the experiment
Sample: 0.6 um Au/BK7 Experiment: ~58 um from epicenter & normal displacement 2 nm

First SAW Simulation: ~53 um from epicenter & normal displacement 3 nm

Laser fluence: 35 J/cm?
Sample: 0.6 um Au/BK7
At = 28ns

Bulge deformation: ~60 nm for both experimental and simulation data
Crater walls diameter: ~35 um for the simulation and ~40 um for the experiment
Experiment: ~50 um from epicenter & normal displacement ~3 nm
Simulation: ~45 um from epicenter & normal displacement ~3 nm

Figure 5.10 Comparison of experimental (left) to FEM results (right) [34,35].

5.5 FEM multiphysics simulations for MHD analysis

To extend our modeling and simulation study to the generation of plasma its features &
properties, numerical simulations provide computational tools able to describe the dynamic
behavior of the fourth state of matter. The study of the initiation of the plasma state of matter
includes the investigation of every phase change step until the initial formation of plasma. To
secure the final results of a plasma study a validation of parallel effects in every regime by the
help of comparison of computational predictions versus experimental results is needed. This
approach requires the development of a method, combining theory, simulations and
experiments, able to investigate any regime until plasma formation. The deep investigation of
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the parallel effects to validate the developed theory and models may guide the experiments
and vice versa. This modeling approach [36-40] of the problem by the help of experimental
results secures the investigation of plasma dynamics in order to achieve:
o Clear view of solid matter’s, liquid and gas dynamic response
e Validated simulation results for every regime
¢ Validated initial conditions for the liquid and gas phase
To understand the initial stages of explosion of dense plasmas as the phase changes from
solid to plasma take place experiments using a Z-pinch pulsed powered device are performed.
The experiment is implemented in a mode of producing a peak current of 35 kA with a rise
time (10%-90%) of 60 ns. The results for the expansion dynamics of the exploded plasma
obtained from laser probing diagnostics
¢ modified Fraunhofer diffraction probe method
e shadowgraphic techniques
e interferometric techniques
e time-integrated optical imaging to monitor matter dynamics.
A FEM transient multiphysics electro-magnetic-thermal-structural 3D model is developed
for the numerical study of the problem due to its unique characteristics:
» versatile and flexible
» substantial insights into key physical quantities
» temperature-dependent material properties
» strength material model (Johnson-Cook) along with an equation of state (Gruneisen)
The proposed method provides quantitative parameter values: temperature, pressure,
current density and expansion rate of the exploded material. Offers detailed information of
temperature gradients, transformations, velocities, etc. for any time step (via FEM model) and
the expansion rates of the mater and the phase change characteristics of the exploded matter.
The numerical study of the initial stages of electrical exploding wire that play an important role
in plasma formation in pulsed-power Z-Pinch experiments. Early time dynamics in the
explosion of the wire have been proven to be important for the development of Magneto-
Hydrodynamic (MHD) instabilities of the Z-pinch plasma [38,39]. It has been shown that the
stages of the phase changes from thermoelastic to melting and plasma regimes are crucial
and that thick metallic copper wires (300 uym) for which electrical charges flow through skin

depth important role for the exploding dynamics [41,42].
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5.5.1 3D multiphysics FEM analysis

A 3D coupled FEM multiphysics simulation based on the method is developed. Maxwell
equations (eddy-current approximation) are solved using a finite element method (FEM) for
the wire coupled with a Boundary Element Method (BEM) for the surrounding vacuum.
Moreover, the skin depth effect for the wire is also taken into account. When the
electromagnetic fields have been computed, the Lorentz force F=jxB, where j is the current
density and B the magnetic field, is evaluated at the nodes and added to the mechanical
solver, which computes the deformation of the wire. Furthermore, the joule heating power term
j?lo, o the electrical conductivity, is added to the thermal solver to update temperature [43].

In order to properly simulate the magneto-hydrodynamic response of the metal: the
hydrodynamic behavior is taken into account by using analytical Gruneisen equation of state
[44], the deviatoric behavior is taken into account using Johnson-Cook [45] strength material
model and the electrical conductivity versus temperature and density is computed using
Burgess equation of state [46]. For the mechanical response, the Johnson-Cook model is
coupled with the Gruneisen equation of state. The Johnson-Cook material model considers
the effect of plastic strain, strain rate and temperature rise. Temperature dependent properties
of thermal expansion, thermal conductivity and specific heat, as well as the latent heat of
melting are also considered. Regarding the boundary conditions, the ends of the wire are fixed
at environmental temperature (27 °C). An important aspect of the developed simulation is that
the Lagrangian mesh is appropriately refined to accurately simulate the dynamic phase
changes of matter in the region of the skin depth. The loading source term is the alternating
current from the experiments.

The mathematical modeling of the problem is provided by the Maxwell, the Mass
conservation, the Momentum and the Energy equations:

oB

Maxwell equations: V<E = = Momentum equation: px=Vo+ pf + jxB
- i

VxB =pj _ i }-2
V.B=0 Energy equation: E=Vs€, —(p+qV +

o o cond
’=O-come+-]s %,=Uy+(!9+q}5y
V.j=0 .

n EPI T_Tr m
Jonkson-Cook flow stress: @, =(A+Be})1+Cln-)(l-——=)
PV =py o B
Mass conservation equation: ax Equation of state for pressure:p = p{p,£)
= a)(j Equation of state for electrical conductivity: o, =a_ .(T.p)

Page |92



AR - asmus -+

Model sinc(x)

250 i Equation (A*(sin(C*x+D)/(C*x+D))"2)+E
Reduced 120,356
Chi-Sqr
— Adj. R-Square  0.9721
:i 200 - Value Standard Error
(U A 5183,3383 24,52674
~ c 0,0091. 1,3E-5]
> 150 B D 2,66215 0,00322
= E 3,15085 0,39857
g ; width 308,11908 0,44034,
o 100 il
—
c

50 1

0 200 400 600 800 1000 1200 1400
Distance (pixels)

Figure 9.11 The FEM model (up), Laser probe diffraction pattern and the lineout intensity plot
along the axis of the fringes at 140 ns from the current start (bottom left). Displacement of the
x-axis (mm) of the wire the same temporal moment (bottom right) [47].

At earlier times, the wire, due to the Joule heating, experiences thermal expansion as well
as melting and vaporization. The model and representative results are depicted in Figures
9.11 and 9.12. The measurement of the diameter takes place 140 ns from the current start
and is compared with the initial measurement, presenting an expansion of 7.4 um and the

simulation gives an expansion of 7 um, as shown in Figure 9.11 at the same time.

Page |93



®. i 8 o Foah
et & vniversite S (R
@ T TEL of Crete BORDEAUX  MMIIH Yo

Powurlabs
High Pawer Laser Plasma Physics.

5.0606.03_
4.396e-03
373203 _

3068603 _
2.4046.03 _
1.740e-03 _

Numerical results for
temperature and density of a
cross-section of the wire for the
same (220 ns after the current
start) temporal moment.

Interferometric and schlieren laser probe
image at 220 ns after the current start.

The maximum temperature of the outer part of the wire is 5200 °C, (well above copper’s boiling point, which is 2562 °C)
with density of 1.7 g/cm? (while copper’s solid density is 8.96 g/cm?). The value of 1.7 g/cm? is in the range of experimental
measured values for strongly coupled dense copper plasma density in the literature.

Simulation indicates that corona plasma has probably been formed.

Figure 5.12. Finite element numerical results for temperature (left, °C) and density (right,
g/cm?3) from a cross section of the wire at 220 ns from current start (up). Interferometric and
schlieren laser probe images at 220 ns after current start (down left) and numerical results of
temperature and density distributions computed by FEM (down right) [42,47].

The computational results demonstrate that the combination of the multiphysics FEM
model and the experimental method are capable to describe the wire expansion dynamics for
temperatures below the boiling point. Satisfactory agreement of experimental versus the FEM
results is also observed concerning the initial times of corona plasma formation.

Multiphysics numerical simulations of the dynamic response of the target during its
heating and conversion into plasma have been developed based on the coupling of FEM and
MHD methods. To study the wire’s response to the heating source (Joule heating), a strength
material model along with evaluated EOS data are used. The EOS data are necessary to
describe the hydrodynamic response of the material, while the strength material model
describes the deviatoric stress behavior or distortion of the material. The density distribution

and the wire radius at the last time step of the solution provided by the FEM simulation are
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coupled to a resistive MHD finite difference/volume code (PLUTO). A fluid and a plasma
region, surrounded by a vacuum region, are considered for the MHD transient analysis. This
choice is based on experimental results suggesting that the plasma of the Z-pinch target
consists of a dense fluid that surrounds the solid, which persists for a long time during the
current discharge, surrounded by a low density hot coronal plasma. The proposed simulation
method is identical for the study of plasma instabilities, a research topic with fundamental
importance since for the majority of plasma applications they are unwanted and there is always
the need for their suppression. The implementation of the FEM-MHD coupled method offered
a perspective to the understanding of the seeding physical mechanisms in the generation of
plasma instabilities [41]. Representative MHD results compared to Experimental are

presented in Figure 9.13.
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Figure 5.13 Comparison of MHD simulation with experimental picosecond laser optical
probing shadowgraphy [41].
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6 Particle-in-Cell simulations of Laser-Plasma In-
teractions

There are three basic approaches for numerical calculations of plasma evol-
ution [1}: particle approach, kinetic theory, and hydrodynamics.

e Particle description is based on the equations of motion of individual
particles in electromagnetic fields. The plasma is deseribed by electrons
and tons moving under the influence of the electric and magnetic fields
due to their own charge and of the laser fields. Tor practical reasons,
computer simulation of plasma using particle codes is limited to N =
10'? particles in the most demanding calculations, whereas the number
of particles in typical laboratory laser-plasma system is much higher
(~ 10 particles). Therefore, each particle has to represent a large
number of real electrons or ions in this type of simulation. However, the
decreasing number of particles means increasing noise, which indicates
that this approach has limitations and some specific phenomena have
to be studied by kinetic approach.

e Kinetic description is based on a set of equations for (macroscopic)
distribution function fq(Z, ) of each plasma particle species 8 together
with Maxwell equations. The distribution function is a statistical de-
seription of a very large number of interacting particles. Each particle
has its own position in the phase space (2, p), where I are the coordin-
ates for all the degrees of freedom and P are the corresponding mo-
mentum components. In this approach, fo(T, )A2Fd37 is equal to the
number of particles of species ¢ in the domain [(Z, ¥+ d¥), (F, F+ dp)).

Vlasov equation describing the evolution of the distribution function
fao(Z, P, t) for each species of particles is given as follows:

afs . B 0fs (P of.
ot "y ox 1% (E”’(mn) Xg) o7 )

where m, is the rest mass of particle species 8, g its charge, E and B
electric and magnetic fields in the position ¥ and time £, The statist-
ical content of the Vlasov equation is expressed by assuming that fo
is a smooth function (i.e., differentiable) describing an average quant-
ity over a phase space volume d*Zd®p containing a large number of
particles. The electromagnetic fields, E and B are also smooth aver-
aged guantities. The force acting on any plasma particle, describing
the effect of all the other particles, is assumed to be a continuous and
slowly varving function of space. This is a good approximation only if
the collective effect is larger than direct collisions with nearby particles;
therefore, the Viasov equation is considered to be collisionless. If the
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short=-range collisions are important, the collision term 18 added on the
right hand side of Eq. (1).

s [Ivdrodynamie description uses conscrvation laws of mass, mo-
merntun, and energy which are coupled to AMasowell equations. In ad-
dition, for a fluid model, aloeal thermodynamic equilibrinm (LTE) is
assumed and the konowledge of the equations of state (relations between
Pressure, emperature, energy, entropy, ete.) 18 mandatory for solving
the problem. The fluid theory 15 8 good approximation for many phe-
nomena in the mteraction of plasma with relatively low laser intensitics
(7= 10" W/em?) and relatively long laser pulses (ns). However, the
modlel is not always adequate, because there is an assumption of LTI,
All the variables in the fluid equations are functions of time and posi-
tion, and each species in an LT plasma has a Maxcowellian distribation
of the velocities everywhere., Physical quantities such as temperature
and pressure can be defined only in LTI Systems that are not in LTI
(such as plasma interacting with relativistically intense femtosecond
laser pulse) cannot be described by fluid equations.  Hydrodynamie
maodlel can deseribe a target globally including nonionized solid part of
the target.

For the study of ultrashors laser pulse interaction with ionized targets,
particle approach 15 mostly used, namely particle-in-cell (PIC) sunulation
method, This method can study the interaction of wonized matter with very
high intensity pulses in the so-called relativistic regime when the kinetic
energy of eloctrons oscillating in the laser ficld exceeds its rest energy (at in-
tensities T = 10 W/em?). In this case, the electrons with high relativistic
velocities do not heat the plasma by collisional effects since the collisional
frequency of those electrons with background plasma is indirectly propor-
tional to the velocity of electrons cubed [2, 3], Thus, the plasma is out of
LT and only kinetic or particle description of plasma can be applied in the
saleulations of the interaction and subsequent plasma evolution.

The potential advantage of kinetic Vlasov codes 18 a possibility of pro-
ducing smooth results as the Viasov codes handle the distribution function
which 15 a smoothly changing real number already giving a probability of
finding the plasma particles at the corresponding point of the phase space.
Therefore, this approach ® useful in the studies of some specific phenome-
ena, for example stimulated Raman (back-)scattering [4, 3] On the other
hand, Viasov codes are very expensive from the computational point of view.
The kinetic Vlasov equation (1) on the single-particle distribution function
has to be generally solved in the six-dimensional phase space and even one-
dimensional problem may demand the use of parallel supercomputers [G).
[Even though PIC codes are also relatively demanding on computational re-
sonrees, Ttulerian grid in the configuration space has half of the dimensions

Page | 100



- Erasmus+

universite
W BORDEAUX

Powurlabs
High Pawer Laser Plasma Physics.

(i.e., spatial coordinates) compared with Viasov codes (Le., spatial plus cor-
responding momentum coordinaces ). Therefore PIC codes are usually the
best option for the caleulations.

6.1 Basics of the PIC simulation technigue

The core algorithm of PIC code consists of two couplad solvers: one that
moves chiargod pacticles freely o space under the influence of electromagnetic
ficlds and caleulates the currents due to the particle motions (the particle
pusher) amd another that solves Aacwell equations on & fixved spacial grid
subiject to the currents caleulated from the particle motions (che field solver)
[7]-

In fact, the PIC method replaces the distribution function fi used in (1)
with macroparticles [G]. Eadh macroparticle represents a large number of real
particles, with the mumber of real particles representod by each sinulation
particle (Le, by each macroparticle) called the weight, When simulations
contain changes in densicy there s the option to eitheor represent this by
changing the weight of each macroparticle to reproduce the density structure
or by keeping the weight of the macroparticles constant aud changing the
nuwmber density of macroparticles to match the real density,

The relationship between the distribution function and che macroparcicles
man be describod wsing the following relation:

N

Fo(Z,7,t) = Y NiSx(F — 73)Sp(F — pi))- (2)

k=1

Each macroparticle represents Ny, real particles (which is numerical weight
of macroparticle) and has its own position . and momentoam @ The fune-
tions S amd Sp represent how o macroparticle "looks" in the position and
momentum phase space, respectively, and are wsually reforred to as shape
functions. Chotce of the shape functions has an inportant impact on the
nurericial propertics of the algorchm [7].

Field solver

The finite-difference time-domain method (TDTD) is inplemented nomost
PIC codles as astandard technigue for solving AMaxwell equations numerically.
Tlectric E and magnetic B field are caleulated on a Yee stagoered prid. An
excample of this staggered grid is shown in Fig. 1. Here, the electrie fields arve
caleulated in the middle of the faces of a cubical coll while magnetic fields are
saleulated o the middle of the edges of the cube, This special distribution of
gridpoints allows to use central differences whichs in turn leads to the second
ovder accuracy. AMoreover, in most PIC codes, modified or standand leapfrog
method is used which means that E and B are fully or partially updated at
both the full time step and the half time step.

Page | 101



A oo+

) §
L universite

TEL of Crete “BORDEAUX

Powurlabs
High Pawer Laser Plasma Physics.

N
| i Bx
Bz —
A [
iy y
{i.1.k)

Figure 1: Yee stagpered grid in 3D PIC code EPOCT [7]. Electric field
components |( Ee, By, E:) are calculated in the middle of the faces of a
cubical cell while magnetic field components ( By, By, B:) are calculated in
the middle of che edges of the cube.

Parlicle pusher

The particle pusher solves the relativistic equation of motion under the
Lorentz force for eadh macroparticle in the simulation. Various mumerical
schemes for the calculation of the motion of particles are used. The stand-
ard leapfrog method 15 often used where particle momentumn components
are caleulated one halfestep after the calculation of particle positions. Most
PIC codes use the Boris rotation algorithm [8] which splits the equation of
motion into separate parts responsible for the acceleration of the particle in
the E field and the rotation of the particle in the B ficld.

Based on the motion of particles (updated velocities and positions of
macroparticles ) the currents needod for the Masowell solver can be caleculated
using several methods [9, 10, 11]. These duarge conserving methods ensure
that divergence equation V - E = pleg (where pis the charge density) is
always satisfied without solving it

Shape functions representing macroparticles

To caleulate the foree acting on a macroparticle, the B and B ficlds must be
known at the particle position rather than on the fixed spacial grid. Similarly
the current has to he deposited at the grid locations to update the E field.
sSmee each macroparticle containg many real particles it 18 necessary to choose
a distribution of macroparticle weighting throughout the volume in phase
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space occupled by a macroparticle (see Sy and Sp in Eq. (2)).

In practice, the only momentum shape function Sp used is the Dirac delta
function. Using any other function would result in dhange of the spatial
shape funceion Sp in tine, which is undesirable. Due to the face that the
momentum shape function is always the same, the term shape funceion will
further indicate only the spatial shape function S = 5.

(Spatial) shape functions have to be non-negative symunetric functions
with compact support satisfying [ S(F)dF = 1. The shape function should
also allow for computationally inexpensive interpolation of fields and cur-
rents.  These requirements are all satisfiod by a class of functions called
besplines which have the support comparable to the cell size of the Fulerian
grid and are piecewise low order polynomials [12].

The zero-th order be-spline (sometimes called top-hiat function) is defined
s
[l o

0, otherwise

Solx) = (3]
The definition of besplines of higher (n-th) order is recursive using convolu-
ELOLS:

Sﬂ = i—1 = Sﬂ. {-l:l

Since the shape funceions defined above refer to the physical shape of mac-
roparticles, interpolation from these shapes o find prid quantities, and the
inverse of finding field quantities at macroparticle centers, requires weight
functions which are the convolution of the shape function with top-hat func-
tion [13].

6.2 Numerical stability and accuracy, boundary conditions

IKnowledpge of stability conditions is crucial for all numerical methods. In
PIC coddes, numerical instability mostly manifests itself as a dramatic in-
crease in the energy of the sinulated system. However, munerical stability
itself does not puarancee physically sound results. Dven if the simulation is
stable its results may be affected by various mmmerieal artifaces. In order to
reach numerical stability and satisfying aceuracy of physical phenomena nu-
merically investigatoed, simulation parameters have to be setup properly and
appropriate boundary conditions, shape functions and possible smoothing
algorithms have to be applied.

Setting of munerical parameters

PIC alporithm has a fow general parameters tnporeant for accuracy, stability
arul computational demands of any sinndacion. Two moest inportant numer-
ical parameters are the time step Af and the spatial step Ar also refereosd to
as coll widith or as coll siee. In multidimensional simulations, spatial steps in
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other directions Ay and Az should be also taken into account. In most cases
the spatial steps are all equal, but they can sometimes differ especially in
highly computationally demanding PIC simulations where cell sizes are usu-
ally larger in transverse direction owing to laser beam propagation direction
(e [L4]).

Time step is lhmited by Courant-Friedrichs-Lewy (CFL) condition re-
cuured for stable propagation of electromagnetic waves. This condition also
prolubits macroparticles from moving further than one cell per time step,
otherwise the caleulation of currents would be inaccurate. In the case of 3D
PIC code, this condition sets the time step as follows:

K Ar- Ay Az

At =—. where 0 <= K < 1. 5
e AT Ay? + Az (=)

Usually constant K is set close to 1.

The second condition for At (G) stews from the requirement to ensure
the propagation of electron plasma waves which have o be able o undergo
oscillations with the electron plasma frequency wy,.

Wpcﬂt <2 {G:l

Even if this comdition is met, the simulated waves have slightly deformed
froquency which s undesirable. It = thorefore recommended to have oven
smaller time stop than the condition regquires.

The spatial step Ar (Ay, Az) has to be adjusted in order 0 resolve
plysical phenomena investigated and /or to reduce numerical heating |8, 13].
In order to resolve physical phenomena at plasma-vacuum boundary, the
gpatial step in the direction of large density gradient should be less then the
plasma skin depeh:

Ar < eftpe. (7]

Numerical heating can emerge in PIC simulations due to the effects of ali-
asing of plasma waves [8]. The aliasing oceurs when the waves of higher fre-
quencies cannot be represented on a diserete grid, thus chey are merged with
the waves of lower frequencies. If the condition (8) & not satisfied, modes that
are aflected by Landau damping are aliased with those that aren’t, which
lesuds to nonphysical instability {called mumerical heating) since the energy
of plasma wave loses B not the same as the energy which macroparticles
recelve.

AT < TADe (&)

Here, Ape = the plasma Debwe lengeh, However, higher order shape functions
[7] and current smoothing [12] wsed in modern PIC codes strongly reduce
the effect of aliasing and the condition (8) is therefore not so relevant for
the stability of PIC codes with higher order shape functions than top-hat
function (3).
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Tinally, PTIC simulation should mitialize the number of nuwmerical macro-
particles per cells Npg, oceupied by plagma. This parameter can be hardly
defined explicicly and depends on many factors such as the phenomenon in
plasma studied, range of plasma densities included in simulation or order of
the shape functions used [16]. The setting of this parameter & mostly hased
on the user’s experience with the PIC code.

Choice of appropriate boundary conditions

Boundary conditions have strong impact on the stability and numerical ac-
curacy of the simulations. In fact, boundary conditions are artificial condi-
tions which enables to keep a finite siee of simldation domain. There are
various boundary conditions for field and particles. Their choice mostly de-
pords on the phenomenon studied together with user’s experience. Periodie
boundaries simply mean that field and;/or particles reaching one edge of
the domain are wrapped round o the opposite boundary, Open boundaries
mean that electromagnetic (EA) waves outflowing characteristics propag-
ate throupgh the boundary, whereas particles are simply removed from the
simdacion when they reach the boundary, A waves inpinging on the
boundary should be transmitted with as lictle reflection as possible. In or-
der to further reduce the amount of reflected EM waves from the bound-
ary, the so-called perfectly matched laver boundary conditions can be used,
alternatively called absorbing boundaries (eg, [17]). In PIC sinulations
with plasma layer reaching the boundary of simulation domain, reflecting or
thermnal boundary conditions can be applicd. The Llatter means the using of
"thermal bath" of particles at the boundary, When a (macro)particle leaves
the simulation domain 16 18 replaced with an incoming particle sampled from
a Masowellinn velocity distribution given by a temperature corresponding to
that of the nitial conditions.

6.3 Adwvanced algorithms in PIC codes

The core algorithm of PIC code assumes ideal collisionless plasma without
any onization, radiacion losses or even gquantum phenomena. In order to
deseribes such plysies, additional modules using semi-classical approach (in
the case of radiation losses of electrons) or Monte Carlo algorithms (in other
cases) are mostly included in modern PIC codes,

All these sophisticated approachies are woll sunmumarized in the following
papers or through web pages:

- T. D. Arber et al.: Condemporary particle-in-cell approach to laser-
plasma modeling, Plasma Physics and Controlled Fusion 57, 113001
(2015)

= . Derouillat ot al.: SWILEL A collaborative, open-souwrce, multi-purpose
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particle-tn-cell code for plasma sonuelation, Computer Plosies Comonn-
nications 222 351-373 (2018)

= http:/ /wwwoanasondelasimulation. fr) amile

PIC codes uwsually enable to model propagation of laser pulse through
underdense plasma due to moving simulation frame. Tn this ease, simulation
domain operates as a moving window at constant speed which means that
particles are remosved from the left hand edge of the domain and new particles
are introduced at the right hand edge (assuming that laser pulse propagates
from the left to che right).

Even 1D geometry can enable to model obliguely incident laser pulse on
target due to Lorentz boosted frame parallel to the target surface [18]). The
specdup of PIC sinmlation can be reached in some cases by using Lorents
boosted frame in the direction of laser pulse propagation [19].

6.4 DI’IC simulations on large computer clusters

Large PIC simulations involve caleulations with 10% — 1019 particles and
similar number of cells. This huge amount of particles and cells has high
demands on computational time and computer and storage memory. For ex-
ample, each of our last 3D simulations [20] used more than 1 T of computer
memory and spent more than 10° CPU core hours per run. Bach simula-
tion run also produced several terabytes of data which should be archived.
Since these sinulations can run only on large computer clusters, modern
PIC codes have to treat with simulation domain decomposition, distributed
memory and parallel input/output.

Large computer chisters are usually composed of plenty of nodes, each
of them has typically several tens of CPU cores. PIC code has to divide
the simulation domain into pieces (subdomains) distributed to each node.
LEfficient algorithm of PIC code should ensure uwmformly distributed worke-
load between all nodes as much as possible. Also the amount of required
computer memory per node should be balanced during the whole simulation
mn. Otherwise the sinulation can crash in the overloaded node.

The decomposition of the whole simulation domain should be based on
the equal number of macroparticles and cells per cluster node. However,
this 15 mostly inpossible, especially in the case of small very dense plasma
regions surrounded by large vacuum region (e ionized thin solid foils).
Thercfore, massively parallel PIC codes define internal rules for domain de-
composition taking into account the munber of macroparticles and cells wich
certain weights, Larger weight is usually attributed to the number of mac-
roparticles per node since the calculation of particle motion 15 usually the
nost demanding on computational time.

When large data files are produced in PIC simulation run, they can
be processed into smaller files with selected data or analyazed directly on a
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cluster node. Since the amount of stored data is usually lmited on computer
clustors, they can be transmuteed (o and ardiived in data storage conters,

some of them are freely accessible for academic purposes.

Reflerences

1

2]

3]

4]

B

[6]

|71

[9]

[ 10]

[11]

5. Eliczer, The wmieruction of high-power lasers with plasmas. Institute
of Physics Publishing, 2002,

It Gibbon, Short pelse laser antevactions with malier: an introduction.
Tmperial College Press, 2005,

Y AL Bellan, Fendamentals of plasma physes. Canbridge Tniversity
Press, 20006,

T. W. Johnston, P. Bertrand, A, Ghizeo, M. Shoucri, T Tyalkow,
and AL R Feix, "Stinulated Raman-scattering - Action evolution and
particle trapping via Eule=Viesov fluid simoulacion,” PHYSICS OF
FPLUTDS B-PLASMA PHYSICS, volo 4, no. 8, pp. 2523-2537, 1992,

AL Masek and I Rohlena, “Intensity dependence of non-linear kinetic
behiaviour of stimulated Raman seattering in fusion relevant plasmas™

EURQPEAN PHYSICAL JOURNAL L), ~vol. 69, no. 4, po 109, 2015,

AL Pukhow, "Strong field intoraction of laser radiation,” REPOQRTS ON
PROGRESS IN PIYSICS, vol. GG, no. 1, pp. 47101, 2003,

T. D. Arber, I Benness, 0 5. Brady, A, Lavwrence-Douglas, AL G
Hamsay, N T Sircombe, U Gillies, B Gl Evans, T Schoniee, AL R
Bell, and C. P. Rudgers, “Contemporary  particle-in-cell approach to
leser-plasma modelling” PLASMA PHYSICS AND CONTROLLED
FUSTON, voll 57, noo 11, po LL3001, 20145,

Co WL Birdsall and AL B Langdon, Plasma plhysees via computer st
lation. Tavlor & Drancis, 2005,

T. Isirkepov, “Ixact charge conservation scheme for Particle-in-Clell
sinmmlation with an arbitrary form-factor,” COMPUTER PITYSICS
COMMUNTCATIONS, vol, 135, noo 2, ppe L1535, 2001,

Jo Villasenor and O, Buneman, “Rigorous charge conservation for local
clectromagnetic-ficld solvers,” COMPUTER PHYSICS COMMUNTCA-
TIONS, volo G0, oo 23, pp. 300-316, 10092,

T. Umeda, Y. Omura, T. Tominags, and H Matsumoto, * A new charpe
conservation method o electromapnetic pacticle-in-cell siunulations,.”
COMPUTER PHYSICS COMMUNTCATIONS, vol. 156, no. 1, pp. 73—
83, 2003.

Page | 107



FA R - smus -+

&Ry 8 om & S
2 université R
Th1of Crete BORDEAUX WML %L

[12] . Cormuer-Michel, B. A, Shadwick, C. G. R Geddes, E. Esarey, C. I3
Sciroeder, and W, I Leemans, “Unplysical kinetie effects in particle-
in=cell modeling of laser wakefield aceclerators,” PHYSICAL REVIEW
E, vol. T8, no. 1, 2, p.o 016404, 2008,

|13} 5. Bennett, C. Drady, 1L Schuitzs, and C. Ridgers, Developers Manual
for the EPOCH PIC codes. University of Warwick, 20173,

[14] AL Sharma, “High Energy electron and proton acceleration by eircularly
polarized laser pulse from near critical density hvdrogen gas target,”

SCIENTIFIC REPORTS, vol. 8, p. 2191, 2018,

[15] IL Ueda, Y. Omura, IL Matsumoto, and T. Okuzaes, A study of the
numerical heating in electrostatic particle simulations,” COMPUTER
PHYSICS COMMUNTCATIONS, vol. 79, no. 2, pp. 240-259, 1994

|16] V. Kocur, “The effect of macroparticle number on particle-in-cell sim-
ulation results and computacional demands in Laser plasma phyvsics,”
Master's thests, Ceoch Technical University in Prague, Faculty of Nue-
lear Sctences and Phyvaieal Engineering, 2017,

[17] T. Umeda, Y. Omura, and L Matsumoto, “An improved mask-
ing method for absorbing boundaries in electromagnetic particle sime-
ulations” COMPUTER PHOYSICS COMMUNICATIONS, vol. 137,
ppe 280209, JUN 15 2001,

[18] . Gibbon, A, Audreey, E. Lefelvre, G. Bonnaud, 1L Rubll, J. Deletires,
and AL Bell, "Calibration of one-dimensional boosted kinetic codes for
modeling high-intensity laser-solid interactions,” PHYVSICS OF PLAS-
MAS, vol. G, pp. 947-0953, AMAR 1000,

[19] S. I Marting, R. AL Fonsecn, L. O. Silva, W. Lu, and W. .
Mort, "Numerical smmulations of laser wakefield accelerators in op-
timal Lorentz frames,” COMPUTER PHYSICS COMMUNICATIONS,
vol, 181, pp. 860-875, ALAY 20140,

[20] JJ. Paikal and M. Matys, “Dominance of hole-boring radiation pres-
sure acceleration regime with thin ribbon of onized solid hyvdrogen,”
PLASMA POHYSICS AND CONTROLLELD FUSION, vol. G0, no. 4,
P DM, 2015,

Page | 108



- Erasmus+

o -
e N vpmie, . (8 F ek @

PowerLaPs

Innovative Education & Training in High Power Laser Plasmas

Computational Modeling & Simulations in Laser Matter Interactions

Chapter 7: Monte Carlo simulations in laser
plasma interaction

O. Klimo

Page | 109



- Erasmus+

%
universite ..
e BORDEAUX  JMIRY

PowuckaF
High Pawer Laser Plasma Physics.

7.1

Brief history and introduction to the Monte Carlo method

Monte Carlo (MC) method is a numerical method to search solutions of a mathemartical problem
using statistical sampling with random numbers. This method is often used for numerical integration,
but the convergence is very slow compared to other methods @(N'/2), where N is the number of
samples. As the method is so inefficient, it should be used only when other techniques are inefficient
too (e.g. integration with complicated boundaries in multidimensional geometry). As the “stochastic”
convergence of the method is slow, the meaningful development and application of the method was
conditioned by the availability of high computational performance. The first application of this method
thus became feasible only after the first powerful computer ENIAC became available [1] and the method
was applied to the particle transport problems for predicting the neutron fluxes in fission devices by N.
Metropolis, S. Ulam and others in Los Alamos Laboratory in the late 1940’s [2]. These calculations
were used to simulated neutron multiplication, scattering, propagation, absorption or eventual escape
from the medium. The number of applications of the MC method started to grow very quickly and in
1949 there was already the first symposium on the Monte Carlo method [3].

As the MC method is based on the random sampling, the development of the method has also
been influenced by the ability of quickly generate random numbers. The RAND Corporation created
a machine to generate random numbers using a random pulse generator. It was used to generate a
million of random digits with sufficiently good statistical properties. This sequence of random numbers
was available as a set of 20000 punched cards in 1950 and was published in a book entitled “A Million
Random Digits with 100,000 Normal Deviates” in 1955. In some sense, this was a breakthrough project
as it provided a set of high-quality random numbers for the first time to everyone who needed it.
Nowadays, the computers provide a fast way of generating a sequence of pseudo-random numbers,
which are calculated in a deterministic way from the seed value (the same sequence is obtained for the
same seed value). Most commonly, the pseudo-random number generators generate random numbers
equally distributed between 0 and 1 and one has to use other methods to get the distribution with
desired properties.

7.2
Applications in laser plasma interaction

Intense laser beams while interacting with plasma are capable of producing very energetic particles
with energies reaching up to few GeV for electrons [4] and tens or even hundreds of MeV for ions [5].
The electrons may in turn produce energetic photons and the ions or the photons may induce nuclear
reactions resulting in fast neutron production. The transport of all these energetic particle fluxes may
be simulated by the MC method if the simplifying assumptions of the method given in following sections
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are fulfilled. We will concentrate here on the particles with energies ranging from few keV to GeV as
the energies outside this range are not interesting or accessible with current laser technology.

Concerning the transport of energetic electrons, the MC method can be applied for example to study
their penetration into matter, their backscattering, the ionization of the target atoms accompanied by
the emission of characteristic photons [6] or Auger electrons and bremsstrahlung radiation. Another
application is to study the penetration of fast electron beam and energy deposition in the compressed
fuel target in the fast ignition scheme of the inertial confinement fusion like in [7]. In this case however,
the transport is not treated using the pure MC method, but a hybrid model including the generation of
self-consistent electric and magnetic fields.

The transport of energetic ions can be simulated using the MC approach for example in the context
of warm dense matter studies, where the dense matter is rapidly isochorically heated by an intense
energetic ion beam [§]. The simulations of energy deposition of proton beams in a human body can be
performed in the context of the hadron cancer therapy treatment using laser accelerated protons [9].
Last but not least, energetic ions may induce nuclear reactions and this process including the resulting
products can also be simulated with MC codes.

MC simulations of transport of energetic photons are also very important and widely used. For
example, one may be interested in designing filters or shielding for laser-plasma experiments and thus
to study attenuation of the photon beam. Other important examples are secondary electron production
(e.g. for detector design [10]), nuclear activation (e.g. for photon diagnostics) and positron production
in matter due to Bethe-Heitler process.

Besides the fast particle transport, MC approach can be used also to incorporate other processes
in Particle-in-Cell simulations of laser-plasma interaction. Nowadays, many Particle-in-Cell codes
include MC modules for simulating Coulomb collisions, ionization, radiation emission due to non-linear
Compton scattering or bremsstrahlung and pair creation via Breit-Wheeler process.

7.3
The simplest MC transport problem - drunk random walk

Before starting with the fast particle transport processes, let us first give an example of a very simple
problem, where we can demonstrate the basic MC algorithm. In this problem, the walker starts at
the origin of the coordinate system and makes a series of consecutive steps in random directions.
This process is often called drunk random walk and in spite of its simplicity, it has a wide range of
applications [II] including a simplified model of physical Brownian motion. For simplicity, we will
further assume that the length of each step is constant and equal to I. The question we may ask may
be for example: “How far on average will the walker be from the origin after N steps?”

The end of each step is the beginning of the next one so we may repeat the same algorithm in a
loop. At the beginning of each step, the walker has to choose the direction of his next step randomly.
The direction is given by two angles - the polar angle § € (0, 7) with respect to the direction of the
last step of the walker and the azimuthal angle ¢ € (0,27) of the orthogonal projection on a reference
plane that passes through the current position and is orthogonal to the direction of the last step. In
the case of a drunk walk, these angles are random numbers with uniform distribution. However, as the
angles are usually given with respect to the current walker’s direction, they have to be transformed
into the fixed laboratory frame. Assuming that the previous direction of the walker was given by the
angles (6,, @), the new direction dy,, in the laboratory frame can be obtained as

dy cosfl,cosp, —sing, sinf,cosy, sin f cos @
dp=|dy | = | cosflosing, cosyp, sinf,sing, sinfsin
d- —siné, 0 cos f, cos

The endpoint of the next step is thus given as
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X, =Xo+1-d,

Figure 1 shows an example of the trajectory of ten random walkers each doing 100 steps with [ = 1.
Of course, the drunk random walk problem is oversimplified and one has to improve the model to
be able to describe the transport of fast particles in a realistic way. First of all, the step length is not
constant in the particle transport, but it is changing randomly with a given probability distribution
depending on the energy of the particle and the properties of the medium where it propagates. Second,

3D Random Walk

TN

Figure 1: Each color shows a trajectory of a random walker starting at the origin of the coordinate
system and doing 100 steps in arbitrary direction with [ = 1.

the energy of the fast particle is decreasing along its trajectory. Particles may also cross the boundaries
between objects with different properties. Third, the polar scattering angle does not have a uniform
probability distribution, but this distribution reflects the nature of the physical process taking place
at the end point of each trajectory segment. There might be a number of different processes taking
place at this end point (e.g. elastic/inelastic scattering, including excitation and ionization, particle
absorption, etc.). Last but not least, the simulation is performed to obtaining an estimate of some
measurable quantity which is calculated together with the trajectories of the particles.
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7.4
Mathematical background - transport equation and its Monte
Carlo solution

The particle transport problems can be divided into two categories. The first category includes the
so-called ccmtinuous path processes. Diffusion is an example of such process which can be described by
the Fokker-Planck equation. This description is also appropriate for transport of charged particles in
plasmas when the transport is dominated by many small angle Coulomb collisions.

The second category includes the so-called discrete path or jump process. This process can be
usually described as Markov chain process in which the current state depends only on the previous
state and not on the past history and simulated using MC method. Such description is appropriate
e.g. for neutron transport where the neutron velocity is constant, and the neutron propagates along a
straight path between individual discrete collisions with the nuclei of the target material. The same
applies to photon transport and fast electron and ion transport in neutral target too.

The transport equation which is solved using the MC approach is called the Fredholm integral
equation of the second kind. This is a Boltzman type transport equation. Let us make some simplifying
assumptions before showing this equation and the way how it is derived and solved at least for the
transport of energetic neutrons. First of all, we assume that neutrons are point particles. As they are
neutral, they move on a straight-line trajectory between two consecutive interaction events (collisions).
Second, the neutron-neutron interactions are neglected and the collisions with other particles are
instantaneous. Third, the material properties are isotropic, known and time independent. The problem
to be solved is to find some expected or mean value of the neutron density/flux distribution.
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The transport is described by two quantities, the neutron angular flux n(r, £, Q,t) (expected number
of neutrons at position r with direction §2 and energy E at time ¢ per unit volume per unit solid angle
per unit energy) and the neutron angular flux &(r, E, €2,¢) which is the product of n and the neutron
velocity v. The transport equation can then be written as [12]

on  10¢

o R G Y T

ot v ot
where (Q is the production rate, L is the leakage rate and R is the removal rate. In the case neutrons,
the production rate consists of three terms - an independent external source S, a fission source, which
will not be taken into account here and a scattering source. The scattering source (). is obtained as

Q,,=/ dE’/dﬂ’ o,(r, E') C(r, E' — E,¥ — Q) - o(r, E', ¥, 1) ,
0

where o, is the macroscopic scattering cross section and (' is the probability of scattering from (E’, Q')
to (E,2).

The leakage rate is just due to the flow of particles and is given as a difference between the number
of neutrons exiting the volume dV' and the number of neutrons entering the volume dV' per unit time.
It can be written as

L=Q-V¢

The removal rate consists of two terms. The first describes absorption of neutrons in the volume
element dV per unit time and it is proportional to the macroscopic absorption cross section ,.
The second one is due to scattering of neutrons out from (F,2) and it is again proportional to the
macroscopic scattering cross section o.. The total removal rate can be expressed as

R =04 ¢(r.E,Q,t) ,

where 0; = 0, + 0,.

Further simplifying assumption will help us to obtain the Fredholm integral equation of the second
kind and solve it using the MC method. First of all, we are seeking for a stationary solution so we
can neglect the time derivative of neutron angular flux. Furthermore, we neglect the absorption at
this moment so that g; = 0,. The term ;¢ will be denoted v’ and called particle collision density
(average number of collisions). After integrating the resulting transport equation along characteristics,
we obtain the Fredholm integral equation of the second kind in the form

U(r,E,Q) = /dr' [S +/ dE'/dQ' C(r',E' - E,Q - 0) --z;’:(r',E',ﬂ')] T(r' ->r,E Q)
0
Let us rewrite the equation in the form [I3]

6p) = [ar' ST S EQ) + [ap K@ - p) v |

where p= (r, E,Q) and K(p' = p)=T(r' =1, E,Q) C(r',E' — E, Q' — Q). The term C is called
the collision kernel and the term T the transport kernel. Before solving the equation with the MC
approach let us summarize the main assumptions here. The medium in which the neutrons propagate
is static and homogeneous, the transport is time independent and described as a Markov process. The
transport of individual neutron is independent of the other neutrons and the neutrons propagate along
straight-line trajectories with constant velocity between collisions. These assumptions allow us to apply
the suberposition princinle and expand ¥ into a series
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¥(p)=>_u(p) .
k=0

where . is the particle collision density after k collisions. The first term in this series is

Yo(p) = /dr' S(r"T(r' = r,E,Q)

As we are talking about the Markov process, we can write

vi(p) = / dp’ K(p' = p) - Yu-1(p)

Here 5.1 (p') is the particle collision density after (k — 1) collisions at p’ and the K(p’ — p) is the
conditional probability of the k-th collision at p provided that the (k — 1) collision was at p’.
This equation can be solved with the MC approach as follows [14]:

1. Randomly sample p’ frox% Ur—1(p’)
2. Randomly sample p from K(p’ — p)
3. If p € (pi — dp. pi + dp) then ¥ (p;i)=vr(pi)+1

The previous steps 1 —3 have to be repeated N times and the final result is ¢%(p;) = ¥&(pi)/N. Finally,
one has to repeat the same approach for £ =0.1,2, ...

However, instead of calculation separately ¢ for every k, we can use a better approach and write
Uy as

Ur(p) = /---/dpo-~~dpk_1 K(pk-1— p)..K(po — P1) - Yo(Po)

This equation can be solved using the “histories” - sequences of states going from the source up to the
“absorption” state. The histories are generated as follows. The source is randomly sampled using the
distribution 99(pe) and the history is given by random sampling the k transitions with the distribution
given by K(p’ — p). When the absorption state is reached the following transition probabilities are
equal to 0 and we can terminate the history. Having M histories, we can measure quantities (for
instance a quantity denoted A) as follows

l A" oo
A / dp A(p)¥(p) = 37 D (Z A(pk.m))
3 m=1 k=1

An example of such measurable quantity often used in dosimetry is the linear energy transfer (LET)
which is equal to the amount of energy ionizing particle transfers to the material per unit distance and
thus it represents the effect of ionizing radiation on matter where it propagates.
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7.5
Simple algorithm for fast electron transport

In this section, we will describe a simplified model of fast electron transport based on [I5]. The validity
of this model is limited by the cross sections and the stopping power formula used. Nevertheless, it is
simple and instructive and that’s why it is presented here.

The model is based on the so-called single scattering approach in which all elastic scattering events
are explicitly included. Elastic scattering events are those in which the initial and the final quantum
state of the target atom is the same. The scattering angle in these collisions can be quite large and
we can assume that there is no significant energy loss of the incident fast electron. These scattering
events can be described in the keV energy range by the screened Rutherford cross section (a better
cross section for a wider range of energies can be found e.g. in [16]). The formula for the total cross
section taken from [15] is

[

4 Z* ( E+511 * ['barn
olE.Z)1+a(E,Z)) E2 \ E +1024 atom
where E is the electron kinetic energy in kéV, Z is atomic number of the target atom and a(E,Z) is

the screening parameter. This is the total elastic scattering cross section integrated over all scattering
angles and it can be used to calculate the mean free path.

or = 5210

10

0 02 04 06 08 1
U

Figure 2: The dependence of the polar scattering angle sampled from the distribution based on the
elastic scattering screened Rutherford cross section on the random number U uniformly distributed in
the interval (0, 1) for a 100 keV electron and Z = 1.
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The inelastic scattering events in which the target atom is excited or ionized are neglected in this
simple approach. The energy loss in these events would be taken into account separately using the
continuous slowing down approximation and the scattering angle in these collisions is quite small, i.e.
the events with large scattering angle are rare [I5].

The average distance traveled by the electron between two consecutive elastic scattering events s is
expressed using the mean free path, A, r, = cpN;, where N, is the number of target atoms per unit
volume. The probability P(x) of not having an elastic collision after a distance x is described by the
Poisson process and thus P(x) = exp(—x/Amrp). The distance traveled is sampled from the probability
distribution P(x) using the cumulative distribution function and the inversion method. The cumulative
distribution function is

B f:dz P(z) s
T )

The distance traveled can thus be sampled using the random number uniformly distributed in the
interval (0,1), U, which is a random sample of F(x), and thus s = —ApnspIn(1 —U) = — Ay pp In(U).
The scattering angles in the elastic scattering event are calculated from the screened Rutherford cross
section differential in the polar scattering angle. This is done again using the cumulative distribution
function and the inversion method and the sample of the polar scattering angle is obtained as

B 2%(E, Z)U
o S (B ZF— T
The azimuthal scattering angle is random with uniform distribution due to the rotational symmetry of
the collision frame and thus ¢ = 27U. An example of the polar scattering angle dependence on the
random number U is shown in Figure 2 for an electron with the kinetic energy 100 keV and Z = 1.
The energy loss of electrons is due to inelastic collisions (dominates for lower E and lower Z targets)
and bremsstrahlung emission (photon emission during the elastic collision due to electron acceleration).
Simulation of all energy loss events would be very complicated and time consuming. Moreover, the
energy loss in individual collisions is usually quite low (the so-called soft events). Therefore, a continuous
slowing down approximation is often used where the energy loss is averaged per unit distance traveled
using the so-called stopping power. Bethe formula for the stopping power is often used for electron
transport in solid neutral targets. Let us give an example of a simple formula valid for the keV energy

range [15]

BB, e B 1.166E p
E———?SQOO'E'IH(T) ,S—S‘p ’

where s is the distance traveled in cm, p is the target density in g/cm®, A is the atomic weight and
both E and the mean ionization potential J are in the units of keV. This formula is applicable only for
E > J. The tables of stopping power of fast electrons can be found in the NIST database ESTAR [17]
for a wide range of energies and target materials.

The MC simulation algorithm for a single electron can be summarized as follows:

1. Calculate A, s based on op

Randomly sample s using the exponential distribution with An rp

Update the coordinates of the electron

L

Decrease E based on the dF /dS and the distance traveled s
5. Randomly sample # and ¢

6. Transform these angles into the laboratory frame

The steps 1 — 6 have to be repeated until the electron leaves the target or its energy decreases below
some threshold value.
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7.6
Advanced techniques - condensed history, variance reduction

The basic single scattering algorithm described in the previous section has a limited applicability and
it is not very efficient. With the continuous slowing down approximation used, we know from the
beginning what would be the distance traveled by the electron before it is “absorbed”. Instead of
simulating all the single scattering events with many small angle deflections, one may divide the electron
trajectory into a fixed set of segments and take into account the average effect of electron scattering in
these individual trajectory segments (i.e. group many collisions into one where the deflection angle
corresponds to the cumulative effect of scattering in all those collisions). This approach is called
condensed history technique (sometimes also referred to as multiple or plural scattering). The step size
is no longer related to the mean free path, but it is often related to the constant energy loss per step,
e.g. AE/E = 4% is often used. Depending on the application, the condensed history simulation may
outperform the single scattering approach by a factor 10° — 10°.

The condensed history class Il scheme is implemented in many MC codes nowadays. This scheme
simulates all sub-threshold soft events using multiple scattering with the continuous slowing down
approximation while the hard events where the energy of the bremsstrahlung photon is higher than the
threshold value E. or the kinetic energy of the knock-on electron coming from ionization is higher than
Ej are simulated explicitly by creation and transport of these newborn high-energy particles.

The classical so-called analog MC method works well if the probability of the event in which we are
interested is not very low. Otherwise the method is too time consuming and provides bad statistics,
i.e. high variance of the results. However, there exist variance reduction techniques, which help to
reduce this variance significantly and thus they increase the efficiency of the MC method too. These
techniques can be divided into two main groups: 1) probability distribution function (PDF) biasing
or 2) particle splitting. In the PDF biasing technique, the probability of unlikely events of interest is
artificially increased. However, each particle is assigned with a different statistical weight w to obtain
unbiased results and the weights are related as

S = it dPDFunb'iascd
ased — Wunbiased—p e
PDFbiascd

If the value of PDFy;qse4 is artificially increased, wpiqscd is decreased proportionally so the averaged
outcome of the unbiased probability distribution function is preserved. Let us give an example based
on a simple technique called implicit capture (survival). In this technique, the particle may be forced
to continue to propagate instead of being “absorbed” but with a reduced weight wp;igeeq. If the value of
Whigsed 1S already too low, the particle may play a Russian roulette with two possible outcomes and
their corresponding probabilities. The first outcome is the absorption of the particle, the second one is
increase of its weight.

The particle splitting technique can on the other hand be used to increase the survivability of
important particles and eliminate less important ones. For example, we may be interested in the
response of a detector, which is surrounded by shielding walls. The particles which reach the detector
are the most important for us, while the ones backscattered from the shielding walls are much less
important. In this case, we may apply the technique of geometric splitting with Russian roulette,
where each volume is assigned a different importance. The particles crossing the boundary from the
less important to the more important region will be split and their weight will be correspondingly
decreased. The particle propagating into a less important region will play a Russian roulette and it will
be eliminated with a certain probability, while the weight of the surviving particles will be increased.
There are many other variance reduction techniques. Their brief overview is given e.g. in [I8].
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7.7
Main particle interactions and the most important MC codes

In the table below, we provide a short summary of the main interaction processes of the particles in the
energy range of interest in the context of laser-plasma interaction.

particle interaction comment
quantum state of the target atom unchanged
elastic scattering responsible for angular deflections
target recoil neglected
electronic excitations and ionizations
TR inelastic scattering dominant energy loss mechanism for lower energies
A relaxation by emission of X-rays and Auger electrons
due to acceleration in the electrostatic field of atom
bremsstrahlung emission angular deflection accounted for in elastic collision
photon energy in the range 0 to F
positron annihilation accompanied by emission of two photons
. C by bound electrons without excitation - elastic scattering
Rayleigh scattering £ :
related to Thomson scatt. by free e~ and atomic form factor
absorption by target atom, transition to excited state
photoelectric effect photoionization - photon E = ionization F
photon relaxation by emission of X-rays and Auger electrons
: photon absorbed by atomic electron and re-emitted
Compton scattering ; 2 : 2
active target electron ejected with finite F
= . Bethe-Heitler, absorption in the vicinity of nucleus
pair production 3 A
threshold process E > 2m_.c*
either electromagnetic - point-like nucleus and proton
elastic scattering or residual - strong interaction due to nucleus size effect
recoil important
electronic excitations and ionizations
inelastic scattering dominant energy loss mechanism
proton . .
relaxation by emission of X-rays and Auger electrons
; less frequent but have more profound effect
nuclear reactions 5
proton enters the nucleus, emission of proton or neutron ...
= small effect, low radiated power
bremsstrahlung emission 4 i = .
often neglected in dosimetry simulations
elastic scattering most likely interaction, nuclear recoil
neutron inelastic scattering excitation of the nucleus, higher Z and high E neutron
capture unstable nucleus created - deexcitation

Table 1: Review of the most important interactions of electrons, positrons, photons, protons and
neutrons in the energy range of interest keV-GeV.
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The most widely used MC particle transport codes which are available:
e EGSnre
— https://nre-cnrc.github. io/EGSnrc/

— photons, electrons and positrons with kinetic energies between 1 keV and 10 GeV

e GEANT4
— http://geant4.web.cern.ch
— electron, ion, muon, gamma ray, electromagnetic (EM), hadronic, and optical photons (many
kinds of particles) and very wide energy range
e MCNP
— https://mcnp.lanl. gov|
— neutrons up to 20 MéV for all isotopes and up to 150 MeV for some, photons from 1 keV to
100 GeV and electrons from 1 keV to 1 GeV
¢ PENELOPE

— https://www.oecd-nea.org/tools/abstract/detail/nea- 1525
— electron /positron-photon transport in energy range between 50 ¢V and 1 GeV

e FLUKA
— http://www.fluka. org|

— in particular charged hadrons, neutrons, electrons, photons, heavy ions but also other
particles, very wide energy range
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8.1 Introduction

When high-intensity laser pulses interact with matter, they can generate strong shock waves.
This article is particularly concerned with the case in which a high-intensity laser pulse
interacts with plasma that is over-dense to the laser. That is to say that the electron gas density
is sufficiently high, in the media, that the bulk of the material lies beyond the relativistic critical
surface. The relativistic critical surface is the surface at which the relativistically corrected
electron plasma frequency is equal to the frequency of the laser radiation. The electron number
density at which this occurs is given by the equation

(¥ )M &0 _(in, Equation 1

Where (y)= (1 + ao’/2)¥? is the relativistic gamma factor introduced by the oscillation of the
electrons in the electromagnetic field of the laser beam and ap=eAo/m.c? and w, are the

relativistically normalized laser amplitude and the laser frequency respectively.

At such high densities, the laser beam cannot propagate. Hydrodynamics is driven directly by
the light pressure, but also at depth within the plasma by the relativistic electron beam that is
accelerated by the action of the laser near the critical surface. This electron beam can accelerate
the plasma by non-uniform Ohmic heating and consequent introduction of pressure gradients,

as well as by the j x B force induced.

In this paper we will firstly put our work on short-pulse laser generated shock waves into
context by summarizing the Fast Ignition approach to Inertial Confinement Fusion and the role
of fast heating effects. Secondly we will describe our theoretical investigation of the
hydrodynamic processes caused by the rapid heating of a plasma by a fast electron beam.
Finally, we will report on a recent experiment in which detailed measurements of a shock wave

generated by a short-pulse laser were made.
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8.2Fast ignition

In the fast ignition approach [1] to inertial confinement fusion (ICF) [2] a laser with a focused
intensity on the order of 102°W/m?, and pulse length on the order of 10ps, interacts with a dense
plasma target containing fusion fuel. The dense target is formed by the implosion of a spherical
shell containing cryogenically frozen deuterium-tritium (DT). The implosion is driven by a
pulse of radiation lasting approximately 10ns. This radiation may be in the form of either soft
x-rays or focused laser beams. The incident intensity at the surface of the capsule is roughly
10W/m?. At the end of the implosion process, when the fuel “stagnates” up against itself at
the centre, the DT is compressed to thousands of times its normal solid density of 220kg/m?.

A range of variants upon the fast ignition principle have been thought of [3,4,5], however the
basic principle is similar in all cases. The secondary laser acts, by some means, to heat a small

portion of the imploded DT fuel to the conditions required for thermonuclear ignition.

Ignition in the context of ICF takes place in a hotspot. The hotspot is a region of fuel in which,
as the name suggests, the temperature is significantly higher than in the bulk of the DT fuel.
This hotspot may be formed by compression, as in the case of conventional ICF, or by means
of a secondary driver, as in the case of fast ignition. Ignition occurs when the hotspot is able to
self-heat from the conditions in which it is left by the driver (Tion = 10-12keV) to a much higher
temperature of around 70keV. Once the hotspot is burning vigorously, the power radiated into
the surrounding “cold” fuel, in the form of thermonuclear alpha particles, is sufficient that the
burn readily spreads. It is important that the bulk of the fuel is heated to ignition temperatures
by the spreading thermonuclear burn wave rather than by the driver. If this were not the case
then the driver would have to be excessively large and the available energy gain insufficient

for the purposes of electrical power production.

In the case of fast ignition, the hotspot is formed in a region near the surface of the compressed
fuel mass. The hotspot is surrounded by lower density material of similar temperature on one
side, and by material of similar density and much lower temperature on all others. This means
that, during its formation, the hotspot is far from being in pressure equilibrium with the
surrounding plasma and will tend to expand rapidly. Where the hotspot faces the cold dense

fuel, this expansion is led by strong shock waves.
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In order that we can properly formulate the ignition problem, it is critical to quantify both the
hotspot expansion and shock wave generation and propagation processes. The driver must
deposit its energy in a hotspot that is continuously evolving in size and density, and the
thermonuclear burn rates at any point in time are a strong function of the density profile of the
DT fuel. The situation is complicated by the fact that in fast ignition the intense laser pulse acts
to drive enormous currents as well as ultra-strong magnetic and electric fields. In order to tackle
the evolving hydrodynamics therefore we must take into account the possibility of

magnetohydrodynamic effects such as the JxB force on the fluid.

In addition to the evolution of the hotspot, there is also the issue of hydrodynamic motion in
other regions of the target. The fast electrons will heat any material present between the point
of laser absorption and electron deposition in the hotspot. The heating duration (10-20ps) is
sufficient for some regions to experience significant hydrodynamic motion during this time,
which in turn can affect the transport of fast electrons to the hotspot. This effect has not been

thoroughly studied.

To summarize, the pursuit of fusion energy via Fast Ignition ICF requires one to consider a
situation where shock wave generation by rapid heating of a plasma with a high energy
relativistic electron beam is important and impinges on many facets of the whole problem. This

largely motivates our current efforts to study this form of shock wave generation.

8.3 Modelling of shock waves generated by intense laser-plasma interaction

When a laser of focused intensity 10%2-10®W/m? interacts with dense fuel, it accelerates
electrons from the plasma background to approximately MeV energies. These electrons
propagate forward into the dense fluid beyond the critical surface. These high energy electrons
have relatively long mean free paths and, to a fair approximation, propagate ballistically.
However, in order to conserve charge, a so-called “return current” is drawn from the plasma
background. This return current is collisional, and is therefore subject to the resistivity of the

medium. We can therefore write,
jfast + Jreturn = 0 Equation 2
and thence,

E = Njreturn = — NJfast Equation 3
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where 7 is the resistivity of the background plasma. For plasma at temperatures in excess of
100eV (11.8 Million Kelvin), at solid densities, the resistivity is given approximately by the

Spitzer formulation as:

ZInA .
4 T;}z Qm Equation 4

ev

n=10"

Where Z is the atomic number and In A is the dimensionless plasma parameter. The
background plasma is heated such that,

or _ mj?

2t ks Equation 5

Since the current is not uniformly distributed throughout the plasma, this Ohmic heating leads
to pressure gradients that drive expansion and shock wave formation. Furthermore, by
combining Faraday’s Law and Ohm’s Law, it can be seen that the growth of the magnetic

field in the plasma (assuming current flowing along the y-axis) is given by:

3Bz ., 9Bz _ _ 3y
at X 9x dx

Equation 6

This results in a JxB force on the background plasma in addition to the influence of the kinetic

pressure.

8.4 Magnetohydrodynamics simulations of laser-generated electron beam

driven strong shock waves

A magnetohydrodynamics simulation code has been written [6], based upon the methods
described by Ziegler in reference 7. As can be seen from figure 1, the generation of strong

shock waves is anticipated on timescales of only a few picoseconds.
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Figure 1. Showing the formation of strong shock waves driven by a cylindrically
symmetric continuous current profile with amplitude of 6x10YAm™2, Gaussian
distributed about the cylinder-axis with a FWHM of 7um. Background is hydrogen at
400kg/m?3. The heated region is centred on r=0. The outward propagating density features
clearly show the rapid formation and propagation of strong shock waves from the
periphery of the heated region.

A wide ranging parameter scan was performed in order to determine the timescales for shock
wave formation with a range of background plasma densities and drive currents. It is important
to consider a wide ranging parameter space, since, even in the case of fast ignition, electrons
must traverse a wide range of plasma densities between the point where they are generated by
the laser and their being absorbed in the dense fuel. The results of this study are shown in figure
2. Here it is assumed that shocks are formed whenever material is accelerated to above the

sound speed in the background plasma.
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Figure 2. Timescales for shock wave formation in a variety of different current and

plasma density regimes.

In fast ignition, it is necessary to raise a region of fuel with a pr of approximately 5kg/m? to a
temperature of around 12keV. Assuming a cylindrical hotspot with initial density of
approximately 3x10° kg/m? and given that the heat capacity of DT is around 100GJ/kg/keV,
then this correlates to raising 8.73ug of DT to 12keV. This requires approximately 10.5kJ of
energy to be deposited. Presuming a time scale for depositing the energy of around 20ps, this
necessitates a heating power of around 0.5PW must be supplied to the cylinder. Assuming the
energy enters the cylinder from one end, then the power density must be around 6x102W/m?,
In order that the heating be localized to the hotspot, electrons with energy of around 1MeV
must be employed. This gives a total minimum beam current of around 6x10*’A/m?. The data
shown in figure 2 suggests that shock waves would form around 6ps into such a 20ps ignition
pulse. Therefore, at the moment of ignition the hotspot would be rarefied and bounded by
strong shock waves where it interfaced with the cold dense fuel mass. It is clear, therefore, that
in modelling fast ignition it is important to properly take into account the effects of such shock

waves upon the ignition process, and also in the deposition of energy by the driver.
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These calculations also suggest the utility of short pulse lasers for generating extremely strong
shock waves for laboratory investigation. For instance, the shock wave in figure 1 is
propagating at approximately 900km/s. Furthermore, the results of the simulations, taken
together with other analyses presented in reference 6 clearly demonstrate that MHD effects
play no significant role in the parameter range explored here, and that the driving of shock

waves is due entirely to the steep kinetic pressure gradients accelerating the fluid.
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The size of many problems in contemporary physics which have fo be solved numerically, by far
surpasses the computational power of a typical desktop computer. Moreover, as nowadays even
your everyday phone is likely running a multi-core processor, in most cases of smaller calculations,
efficient parallelization is the way to harness the full power of your machine. In the course of
rewriting the serial algorithms into their efficient parallel counterparts, some of your design choices
would nicely follow from the theory of parallel computation, while other would, sometimes counter-
intuitively, come from the considerations given by the hardware design. The theory and the
machines evolved together, and they continue to influence one another after more than 70 years
after the commissioning of the grandfather of all modem computers, the “Electronic Numenical
Integrator and Calculator”, known as the ENIAC [1]

1 Parallel computer architectures

Within the framework of physics, we are concerned with the topic of massively parallel scientific
computing, i.e. processing data on a large number of processors all (or most) of which perform
computations at the same time. First of the two main massively parallel compliting paradigms is
grid computing, where individual computers called “nodes” are distributed, possibly all around the
globe. These can be heterogeneous, i.e. each node can run a different processor architecture,
have a different amount of memory, and run a different operating system, and are often connected
with general-purpose networks such as the Internet. The other is cluster computing, where the
nodes usually reside in the same data centre, forming a single super-computer. They are mostly
homogeneous, i.e. each node has the same processor, the same amount of memory, and run the
same version of the operating system, and connected with specialized fast networks (10 Gbit/s
Ethernet, Infiniband, etc.). Nowadays clusters are composed of roughly 10 - 10,000s of nodes (the
K-Computer has 80,000 nodes) which provide a total of 1,000s — 1,000,000s of cores (the Tianhe-2
computer has 3,120,000 cores) [2]. To use this combined computing power, we need efficient
algorithms which scale well with the rising number of cores.

In the most basic sense, an algorithm is a sequence of operations. In the case of computer
simulations in physics, these are manipulating numbers in computer's memory. A sequential, also
called “senal”, algorithm is one where operations are performed one after another, while a parallel
is one where some operations are being performed at the same time. These numbers represent
data from the physical world — scalars, vectors, matrices, scalar fields, vector fields, tensor fields,
etc. stored as numbers in the computer's memory — a single place, a place together with the
number of succeeding elements, or several disjoint areas, and translated into data types defined
by the programming language — integers, floating point numbers, pointers (these don't have a true
analogue in the physical world), arrays, vectors, lists, etc.

The way we write the algorithms nowadays is surprisingly strongly influenced by the earliest
computer designs — the Von-Neumann architecture realized in the “Electronic Discrete Variable
Automatic Computer” (EDVAC) in 1951, which is still the base of all contemporary computers [1]. It
consists of an input and output device, the central processing unit (CPU), and the memory unit.
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The memory contains the data and the instructions. These are passed through a “bus” between the
memory and the CPU which executes the instructions to operate on the data. The instructions are
executed in discrete cycles, and the timing of these cycles is driven by an intemal clock. As you
increase the speed of the clock, the calculations get faster.

In 1971, Intel created the first microprocessor — an integrated circuit made of transistors on a single
chip that contained the CPU, and controllers for the memory access, the inputs, and the outputs
[1]- Since then, the computing power of microprocessors has been exponentially rising together
with the number of constituent transistors [3] which, according to the empirical Moore's law,
doubles every 18 months [4]. The frequency of the intemal clock followed a similar trend until the
mid-2000s when it hit a limit known as the “power wall". The problem is that the power consumed
by the processor scales with the frequency cubed [5]. At some point, the power requirement for
running the chip and cooling it to keep it within operational limits becomes utterly impractical. The
processors cannot get faster any more, and in order to get more work done in a given time, they
have to do it in parallel. Thus, all contemporary high-performance systems deal with many
concurrent calculations.

With respect to the number of instructions performed in parallel and the amount of data
manipulated at the same time, computer architectures can be classified by Flynn's taxonomy [6]:

« SISD - Single Instruction Single Data, sequential processing, no parallelism
« SIMD - Single Instruction Multiple Data, vector instructions, GPUs

MISD — Multiple Instruction Single Data, redundant systems

MIMD — Multiple Instruction Multiple Data, distributed systems

For large-scale numerical simulations, the two relevant are SIMD, where a data stream is
manipulated by the same instruction, and MIMD where different processing units concurrently
manipulate different data streams.

While the performance of an algorithm depends largely on higher-level considerations of its
computational complexity and memory consumption, its design must be informed by specifics of
the hardware architecture in order for it to run efficiently. On modem machines, efficiency is
influenced by the 7 dimensions of performance!:

» Computing nodes — interconnect speed, communication by message passing
« CPU sockets — memory layout, channels, memory pinning

» Cores — number of cores, package topology

» Hardware Threads — topology, OS numbering, shared resources

» Ports — superscalar parallelism, in-order/out-of-order, done in HW

» Pipelining — instruction-level parallelism, done in HW

« Vectors — vector instructions usage and efficiency

Efficient parallel programs need to tackle into there resources in such a way that the possible
speed improvements promised by the hardware manufacturers would not go to waste. Apart from
choosing the correct algorithm, we can gain performance by taking the data flow into account, i.e.
optimizing the way data travels between individual processing units, and between the processing
unit and the memory. In the first case, the slowest path is the one between individual computing
nodes which are connected via a network (Ethemet, Infiniband, etc.). Within one node, there can
be multiple CPUs, each in its own socket. The communication between the sockets is realized
through a shared memory accessed via a bus. Each CPU might include multiple cores, which can
access shared “caches” — areas of fast memory embedded in the chip. In the second case, the
time it takes the processing unit to access the memory, called latency, depends on the type of
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memory unit about to be accessed. There are several levels of storage, apart from the familiar
RAM and hard drives. In general, faster memory units have a higher cost per byte. Thus the
hardware manufacturer has to balance the cost (and speed) and the available storage size. Since
the bus access to the RAM can take several hundreds of cycles, data which is accessed
repeatedly would benefit from being stored in a cache right on the processor die. These caches are
very fast, but also quite expensive. Therefore, they are much smaller than RAM. A modern super-
computer might consist of following types of memory units (the sizes and latencies are
approximate and depend on the particular hardware)

memory type size latency [cycles]
Registers in the CPU core 16x64 B 1
L1 cache per core 64 kB 4
L2 cache per core 256 kB 12
L3 cache per CPU 8 MB 40
RAM accessed via bus GBs - TBs 200 - 500
Persistent memory (HDD, SSD) TBs 10 - 10°
GPU memory (offloading via PCle bus) GBs 10°
Other nodes (via network) TBs 10 - 107

Since the latencies vary within several orders of magnitude, it is crucial to try to minimize the
costlier communication paths by keeping the data as close to the processor as possible. The more
the same data is reused, the more it will benefit from staying in the faster memory units. The
algorithm should therefore take into account the memory access patterns since choosing a wrong
one could outweigh the benefits of a fast algonthm by adding too much communication overhead.

2 Parallel programming

2.1 Scaling

When converting a senal algonthm into a parallel one, we are mostly interested in how much
speed gain are we about to get from such conversion [6]. Formally, we want to know the “parallel
speed-up” S of solving a problem of size n on p processors

SU|n|
Tin, p)
where SU is the upper bound on time complexity, i.e. the worst-case time complexity of the fastest
know sequential algorithm, and T is the parallel time, i.e. the time elapsed from the beginning of a
p-processor parallel algorithm until the last processor finishes execution. The parallel time
comprises of computational steps and communication steps (overhead). The best speed-up we
can hope for is p. In practice, linear speed-up kp with 0 < k < 1 is quite satisfactory.

For any non-trivial algorithm, there will be some parts which cannot be parallelized and have to
remain sequential; thus, the actual speed-up will vary with the number of processors. The measure
of how well the algorithm performs when adding more processors is called scaling. There are two
basic measures of scaling, called “strong™ and “weak”.

Sin, p| =
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Strong scaling, also called Amdahl's law assumes a problem of fixed size n being solved by an
algorithm which has a sequential part of computation f, and parallel part of computation 1-f. Then
the maximum speed-up on p processors is

1
1-f

f - )
This can be intuitively understood from the fact that the sequential part always takes the same time
to execute no matter the number of processors, therefore the algorithm can never run faster than
the whole sequential part. It is a considerably strict limit — suppose your algorithm is 95% parallel
and 5% sequential. Then the maximum theoretical speed-up on an infinite number of processors is
only 20.

Often, problem size can increase while sequential parts remain constant. In this case, we talk
about weak scaling, also called Gustafson’s law. It assumes a fixed number of processors p, and
increasing the problem size n. The sequential part f has constant complexity, and the parallel part
can scale linearly with p. Then the maximum speed-up is

Sin, p) =

Sin, pl = f + pl1-f|
In reality, at large scale, the sequential part might would not have a strictly constant complexity,
there would be some additional communication overhead coming from using a lot of processors,
but well-designed algorithms which closely fit the stated assumptions often come close to this
theoretical ideal.

2.2 Processing

Conceming the flow of instructions, the algonthms can be roughly distinguished by the concepts of
data or task parallelism. In data-parallel algonithms, the same task is performed simultaneously by
many processing units each operating on a subset of the dataset. There is a single control flow,
and the concept fits the SIMD model. In task-parallel algorithms, different tasks are performed
simultaneously by independent processing units on the same or different datasets. There are
multiple control flows, and the concept fits the MIMD model.

The flow of data is mostly realized by message passing, threading, or vector processing. In
message passing, every parallel process is working in its own memory space in isolation from the
others. There is an explicit point-to-point communication, where outgoing messages are stored on
the sender’s queue until their recipient retrieves them. It is by far the most common model of inter-
node communication. Threading, on the other hand, relies on the presence of shared memory
through which every parallel thread has access to all of the data. It is useful in intra-node (CPU-
CPU, core-core) communication, and is generally faster than message passing on the same
machine. Though it is arguably easier to implement, it may create problems such as
synchronization and memory protection. Computationally, threading is equivalent to message
passing — emulating message passing by threading can be achieved by a designated memory area
that serves as message storage, and emulating threading by message passing could be achieved
by sending messages that ask for specific areas of the memory in the other node, though such
emulations are rarely useful. Finally, data flow in strictly data-parallel sub-problems can be
achieved via vector processing. Here, vector is an instruction operand containing a set of data
elements packed into a one-dimensional array. The operand is then passed to SIMD instructions in
the CPU (on x86 architecture: SSE, AVX) which performs a single operation on the whole vector at
once, e.g. in case two vectors containing 4 floating point numbers each can be added in a single
instruction pass instead of calling 4 addition instructions. In GPUs, vectorization is the main mode
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of operation with “stream processors” (CUDA cores) which allow writing whole pipelines of
operations.

2.3 Fundamental parallel algorithms

Numerical algorithms can be though to be composed of a control flow, i.e. passing through the
numbers to be computed or selecting whether what to do based on some condition, and
computation, i.e. performing the algebraic operations. The algebra itself works the same way in
both sequential and parallel cases. We are thus concerned with the parallelization of the control
flow. First of the fundamental sequential control patterns is the “sequence”, an ordered list of tasks/
commands to be carmied out in that order. Since the order is specified, necessarily only one task is
executed at a time (think procedural execution in code), thus this pattern cannot be parallelized.
The second is “selection” between two commands to be possibly executed, depending on a
condition (think “if statement”). In some cases, selection can be replaced by parallel masking or
task dispatching. The last one is “iteration”, where a certain function is repeatedly executed as long
as a condition is true (think “while” or “for” statements). This is a prime candidate for parallelization.

Out of the many existing parallel patterns, we will focus on two types of the most fundamental
ones. The iteration patterns which are the analogues to serial iteration: Parfition, Map, Reduce,
and Scan. And the decomposition patterns which are not applicable for strictly serial code, and
include: Pipeline, Superscalar Sequences, and Domain Decomposition. *

Sometimes, it is useful to treat multiple items together, e.g. split a large array into vectors that fit in
the SIMD registers. Partition allows for a custom split of the collection into non-overlapping sub-
collections (in case of overlapping sub-collections, see domain decomposition later)

Map applies the same function on multiple elements, e.g. to multiply an array of values by a
constant. It is a direct parallel analogy to a for cycle. Speed-up scales linearly with the number of
elements which can be processed in parallel.

EEEEEEE® EEREEEES
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Care must be taken not to introduce “loop dependencies”. Data dependencies between reads and
writes might prevent direct parallelization of a cycle to a map. In such case, a parallel unit
operating on some position would read/write a value which would then get overwritten by the
second one which had no idea that the value has changed since the time it fetched it. They come
in three types:

read-after-write write-after-wnte write-after-read
for(i=1; i<N; ++) { for(i=0; i<N-2; ++i) { for(i=1; i<N; ++i) {
afi] = afi-1] + bjiJ; afif =bfi]+cfi; afi-1] = afi] + cfi];
}
afi+2]=2"*i;
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writing to a vanable, then  writing to the same vanable in possible data race if i-th iteration is
reading its value more than one iteration performed before (i-1)-th

RAW WAW WAR

Reduce combines the elements into a single result using a combining function, e.g. summing all
elements, or finding the maximum element in a collection. It can run in log n steps on n processors.

BEEEDEE® EERIEREES
[‘?l’;.;:[ 4_; [%]*‘ —!L'l _’j [;]
= 'fzj 1 Ii il
[ ’L!.] ‘j. ti
—{8] (5

-5
Map-Reduce is a common pattern where a function is applied to every single element (Map), and
the result is passed to a combiner function (Reduce).

Example: How many times does a word appear in a text?

» Partition: Split the text into equal chunks and distribute them among PUs
» Map: Count the word appearance in each chunk
» Reduce: Add the counts

Another Example: Find the norm on an N-dimensional vector

» Partition: Distribute the numbers to P workers, each gets N/P numbers
» Map: Each worker squares and adds assigned numbers

» Reduce: Add the sub-results

» Serial operation: Parent worker finds the square root

Finally, scan solves the problem of parallelizing a loop in which the ith result depends on the (~-1)-
th. It can run in fog n steps on n processors. A canonical example is the “prefix sum”, with the input
sequence b, and the output sequence a, a, = a., + b, In sequential code:

af0] = bjo];
for (int iI=1; i<N; ++i) {
afij = afi-1] + b[i];

}
EEEEENE S EEEEEEES
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Out of parallel patterns with no sequential counterpart, Superscalar Sequences refer to the concep!
of splitting work into many tasks, and defining data dependencies between the tasks. A task
scheduler then simplifies the resulting data dependency graph and decides which of the tasks to
run in parallel

The Domain Decomposition pattern divides the dataset into subsets which are computed
independently. If dependencies exist, think of the algorithm as several independent steps
separated by communication steps which resolve the dependencies. It can be performed at node-
level with communication by message-passing, or thread-level with communication by reading and
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writing to a shared memory. In the latter case, the decomposition can be static — each thread is
pre-assigned its data subset, or dynamic — subsets boundanes might change between iterations or
even during one iteration (often difficult or practically impossible at node-level).

In laser-plasma physics simulations, we often encounter large multi-dimensional arrays of data.
These are the number one candidates for domain decomposition, which maps naturally to the
problem. In some cases, the mapping leads to “embarrassingly parallel” algorithms, i.e. those with
little (or no) need for communication. Examples include nomalizing an array of vectors — no
communication needed, or finite-difference integration using a stencil (see later) — communication
on border cells only.

Domain decomposition and the Map-Reduce pattems are examples of the more general “divide
and conquer” concept which comprises of three steps

» Divide: divide the given problem into smaller independent sub-problems of the same type
as the given problem and solve them concurrently.

= Conquer: If the problem is small enough, then solve it.

» Merge: Combine the solutions to the sub-problems to get the solution to the given problem.

A common task in laser-plasma physics simulations is to solve differential equations over a large
possibly multi-dimensional array. There is a vast class of algonithms implementing the “ finite-
difference integration™ method, where the integrated value in a specific cell of one variable
depends on the values of neighbouring cells of some second vanable. This data dependence can
be descnibed in the form of a stencil, where memory addresses for inputs are expressed as offsets
relative to the location of outputs. The stencil then accesses a regular neighbourhood of the input
for each output. Since it is possible to read from outside of valid index range, you need to treat
boundary conditions.

Some finite-difference (and other) methods can achieve faster convergence by using multiple gnds
with different resolutions. In a general “multigrid methods” [9], first, a coarse grid of points used.
With these points, the iteration process will start to converge quickly. At some stage, the number of
points is increased to include points of the coarse grid and extra points between the points of the
coarse grid, where the initial values of the extra points are found by interpolation. Computation
continues with this finer gnd. The grid can be made finer and finer as the computation proceeds, or
computation can alternate between fine and coarse grids. Coarser grids take into account distant
effects more quickly and provide a good starting point for the next finer gnd.

Last of the commonly used parallel patterns is load balancing [10], a set of methods used to
distribute the workload among the individual processing units in order to optimize resource use by
avoiding overloaded and idling workers. Two simplest examples would be either to partition the
problem into many more parts than the number of available threads, and let the thread scheduler
do the rest, or to send parts of a decomposed domain from busy nodes to the idling ones.

3 Implementation of parallel algorithms

As we have already seen, the parallelization touches many levels. At the high level of parallel
algorithm implementation stands the realization of parallel patterns. This is done either by
dispatching threads (e.g. OpenMP), or by sending messages (e.g. MPI). At the low level, we have
vectorization and memory access patterns with concerns of data types and cache utilization.
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3.1 Vectorization

Vectonzation is performing one operation on multiple operands simultaneously with SIMD
instructions — CPU instructions which perform the operation, and SIMD registers — stores in the
CPU which hold the operands. The most prevalent Intel x86 architecture has first introduced SIMD
instruction in 1997 with the “"MMX" instruction set with 80 bit integer-only registers. SSE (1999)
introduced 128 bit floating point registers, which can hold 4 single precision floats. SSE2 (2001)
added support for double precision FP, while still being 128 bit (4 single precision float, or 2 double
precision). Up to SSE4.x (2006) new instructions were added working with 128 bit registers. Then
AVX/AVX2 (2008) increased the length to 256 bit, which can hold 4 double precision FP numbers,
and the state-of-the-art AVX-512 (2016) upcoming processors, introduced 512 bit registers — that's
8 double precision, or 16 single precision FP numbers being manipulated by a single instruction,
thus offering up to 8x or 16x algorithm speed-up, if implemented properly.
In the C-anguage family, SIMD vectors are represented using “packed types” , suchas _ m128, a
128-bit pack which holds 4 single-precision floats. SIMD instructions are represented using
“intrinsic functions” (also called “intnnsics”) which are translated directly to vector instructions by
the compiler:

__m128_mm_add ps (_m128a, __m128b) SSE2 — adds 4 floats

__m256 _mm256_add pd (__m256 a, __m256 b) AVX — adds 4 doubles

Modem compilers understand constructs like a+b on vector types and will emit the correct vector
instruction. They will also auto-vectonze inner loops if not prevented by loop dependencies, or by
an unsuitable collection data type.

When mapping multiple “mathematical vectors” to the “hardware vectors”, one might be tempted to
go by the road of “vertical vectorization”, as in the following example performing a vector addition:

__m1i28a,b, c;

c=_mm_add ps(a, b);

While this approach is simple to implement, and would certainly work adding the whole vectors in
just one run, it is not scalable. Suppose we are working with 3D vectors; __ mm128 can hold 4
floats, but only 3 are utilized if mapped to a 3D vector, and even more wasting on ‘longer’
architectures.

The solution to this problem is called “*horizontal vectorization”, and it works by operating on a
single component of multiple vectors at once. In the 3D case:

instead of we do blocks of
) ) 4 55 B Ao -
¢k ¢y ¢ [c; e ¢ ¢ register
3 ' . » 2t tion
&, @ & o o 42 o) i
+ -
by by bl (be b By bYP
for each vector for each component

(and all vectors jumping by 1 += register size)

This way, we avoid wasting of registers, and the code will better scale to “longer” architectures, but
we might have to reorder our loops significantly.
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3.2 Cache optimization
We have already discussed the hierarchy of memory. From fastest to slowest, it goes as [11]:

register -> L1 cache -> L2/L3 cache -> main memory.

Data from main memory is always loaded to a cache in a “line”, where one “cache line” is 64 bytes
on all x86 architectures. Subsequent access to the same cache line is fast, but if the requested
data is not found in the cache, the whole line gets evicted, and a whole new line has to be loaded.
Thus, we want to “stream” the data to the processor as fast as possible — ideally without “cache
misses”. In order to achieve this, we have to think about how is our data laid out in memory.

Considening the example of many 3D vectors, two most common data layouts are the “Amray of
Structures” (AoS) data model, where all members of one vector are next to each other, and the
“Structure of Arrays™ (SoA) model, where same members of different vectors are next to each
other. There are algorithms which work better in an AoS layout, e.g. those which perform a lot of
sorting operations on the whole vectors, but the SoA model is better suited for horizontal
vectorization because it can continuously stream needed data. The choice of the data layout is at
the base of the architecture of your program, and changing to a different one can be a daunting
task in large codebases. The appropriate course of action should always be based on rigorous
performance measurement and profiling.

If you already have existing code that would be too difficult to change, or you have seen that your
algorithm performs faster in AoS, you can achieve honizontal vectorization by a runtime Aos-to-SoA
transformation by shuffling the data from several vectors into the appropriate registers, preforming
the calculation with a full register width, and shuffling the data back. Apart from the need for the
two shuffling operations, this approach also suffers from bad cache utilization. Yet, it might be
better than wasting registers on “long” architectures. Unless necessary, it is best to be avoided.
Midway between AoS and SoA lies a seldom used AoSoA layout — an array containing structures
containing smaller arrays where each component is the same length as the register. It is well suited
for vectonzation, especially if you often access multiple members of the same vector, but arguably
most difficult to implement.

Another consideration is that of alignment, i.e. the position of the beginning of the data structure.
The main memory is addressed in blocks of the size of a cache line, and the reading always starts
at the beginning of a cache line boundary. There are different instructions for loading aligned vs.
unaligned data into the registers, with the unaligned version being slower, and unaligned access
fraught with the possibility of crossing a cache line boundary, in which case the processor has to
do two reads to fill the register. In auto-vectonized loops over compact data structures, modern
compilers will emit code which does aligned access if it's possible (e.g. iterating over an array with
step = 1). In an AoS setting, alignment might also require padding, e.g. a struct of three 32 bit
floats with 128 bit alignment needs to be padded by additional 32 “useless” bits. This will increase
memory consumption, and for long arrays also traversal time.

Vectonzation is impossible for read-after-write and write-after-write loop dependencies. The write-
after-read dependency is vectorizable. Since the vectorization traverses the loop by blocks in
strictly increasing order, we know that the i-th element will not be written to before being read. [12]
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3.3 Threading

Parallelization by dispatching threads relies on the presence of a shared memory. It is used in
multi-core CPUs and multi-socket nodes. There are many libraries which implement threading, e.g.
the Intel Thread Building Blocks, Posix threads, and language-specific libranies. An ubiquitous
cross-platform threading approach is the OpenMP standard included in most modern compilers.
OpenMP [13] is an API for multi-threaded programming. It uses a declarative approach to
threading — you specify regions to be parallelized by using #pragma directives. It is well suited for
use in data-parallel scenarios. The number of spawned threads can be controlled either at runtime,
or by the environment variable OMP_NUM_THREADS. It usually defaults to the number of cores in
your machine, so most of the time you don't have to set anything.

An example structure of a basic OpenMP-enabled program might look like:

// declanng a parallel section of code
#pragma omp parallel
{

// this code will be executed by all threads
#pragma omp for
for(int i=0; i<N; ++i) {

// work will be divided between the threads
}

}
// a shorthand for loop parallelization
#pragma omp parallel for
for(int i=0; 1<N; ++i){ ... }
// has syntax to perform reductions
#pragma omp parallel for private(val) reduction(+:sum)
for(int i=0; I<N; ++1) {
val = calculate_local_sub_result();
sum += val;

}

This is already enough to parallelize simple loops without data dependencies. A basic rule of thumb
to easily implement threading is to write vectonzation-fnendly code. A code which is well vectorized
is usually easily parallelized. Cache optimization matters in a similar way as in vectorization. Unlike
auto-vectonzation though, where a potentially problematic loop wouldn't be vectorized, when
writing thread-parallel programs you have to watch for these problems yourself. Loop
dependencies between reads and wntes might lead to data races and silent failures (wrong
results), making threading more difficult than with vectonzation, because we don't know which
thread will execute first. RAR cannot be done in thread-parallel scenarios, while the WAW and
WAR possibly could, but not automatically — care must be taken to avoid possible data races.

3.4 Message passing

From the architectural point of view, message passing is the most difficult of the three
parallelization techniques. It is also the only general method of communication between different
nodes. Instead of a declarative approach, the programmer has to decide what will be the contents
of the messages, explicitly set the point of sending and receiving, and tak care of proper
synchronization. By far the most prevalent implementation of message passing in the context of
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numerical simulations are the MPI libraries [14]. The canonical “Ping pong™ example from the MPI
tutorial website goes as:

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
const int PING_PONG_LIMIT = 10;

/ Initialize the MPI environment

MPI_Init(NULL, NULL);

// Find out rank, size

int world_rank;
MP!_Comm_rank(MPl_COMM_WORLD, &world_rank);
int world_size;

MPI_Comm _size(MP|_COMM_WORLD, &world_size);

int ping_pong_count = 0;
int partner_rank = (world_rank + 1) % 2;
while (ping_pong_count < PING_PONG_LIMIT) {
if (worid_rank == ping_pong_count % 2) {
// Increment the ping pong count before you send it
ping_pong_countt+;
MPI_Send(&ping_pong_count, 1, MPI_INT, partner_rank, 0, MPI_COMM_WORLD);
printf("%d sent and incremented ping_pong_count %d to %d\n”,
world_rank, ping_pong_count, partner_rank);
Jelse{
MPI_Recv(&ping_pong_count, 1, MPI_INT, partner_rank, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
printf(*%d received ping_pong_count %d from %d\n",
world_rank, ping_pong_count, partner_rank);
}

}
MPI_Finalize();

}

The same program is run on two computers. After initializing the MPI routines, the processors get
their “rank” - an identifier unique among the running processes. Inside a while loop, the the
processes alternate between sending and receiving. First, process 0 sends the message, and
process 1 waits to receive it. After this interaction, the roles are reversed, and the exchange goes
on until the number of exchanges reaches PING_PONG_LIMIT.

There are more advanced modes of communication with specialized MPI routines for broadcasts,
reductions, scans, and many others, as well as various options of setting virtual topologies suited
for the particular problem at hand.
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4 Conclusions

Modem computers achieve high performance by running many tasks in parallel. This is likely to be
even more true for many years to come. Serial algorithms are not going to run much faster than
now; therefore they must be parallelized by means of replacing the traditional senal patterns with
their parallel counterparts and implementing new pattems seen only in parallel computing
environments while keeping an eye on the scaling properties of the parallelized versions. At the
same time, the low-level architecture of even the biggest super-computers still carnies the legacy of
the early pioneers. Therefore, care must be taken to implement comrect communication and
memory access patterns in order to utilize the maximum possible performance of the theoretical
promise of given hardware.

The main implementation tools are vectorization, multi-threading (e.g. OpenMP), and message-
passing (e.g. MPI). The hardware, standards and tools are continually evolving; thus the best
source of up-to-date information is the Internet. Wikipedia articles on the topics discussed here are
usually of high quality and can be used as a good starting point.

Many of the tools have integrated features which will help you to realize the parallel patterns which
represent your particular algonthm. Nevertheless, in order to use these tools efficiently, it always
helps to understand the underlying ideas and the problems they were proposed to solve.

Last but not least, whenever you are going to optimize an algorithm, reason on the basis of
performance testing, measurement, and profiling. Otherwise, it is too easy to fall into the trap of
endless micro-optimizations in those parts of the code where partial performance gains make up a
minuscule portion of the real performance bottlenecks.

Most of all, | wish you a pleasant journey on the exciting path to the future of computing.
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10.1 From laboratory plasmas to astrophysical plasmas

10.1.1 Macrophysics-Microphysics

Broadly speaking high-energy density laboratory astrophysics studies can be divided
into those addressing the

e microphysics: equation of state, opacities, . . . Where plasma conditions in the
laboratory are the same as those found in space

e macrophysics: shocks, jets, particle acceleration, magnetic reconnection, . . .
Where the plasma conditions in the laboratory are a “scaled” version of those
found in space.

10.1.2 High-energy density laboratory astrophysics

Typical plasmas on z-pinch and laser facilities have pressures of ~Mbar,
corresponding to energy densities ~10'? erg cm3, at a fraction of solid density. An
overview of the plasma conditions attainable on experimental installations, together
with some of those found in space are shown in the figure. To obtain such conditions,
z-pinch facilities rely on stored electrical energy (hundreds of kJ) to deliver large
currents (~ of a few Mega Amperes) over a short time (~ 100-1000 ns) to a “load”
usually consisting of a gas or thin metallic wires and produce typical volumes of plasma
~1 cm3. Laser facilities instead rely on focusing onto a solid or gaseous target a high-
power laser beam, or beams. These concentrate several kJ of energy, over timescales
~pico- to nano-second, into plasma volumes of ~1 mm3. The Laser Megajoule (LMJ)
facility in France and the National Ignition Facility (NIF) in the USA, can produce fusion
plasmas under conditions similar to stellar interiors. Producing plasma conditions
similar to those found in space is not always necessary for the laboratory study of
astrophysical phenomena. For the present discussion it is more interesting to look at
the dynamical conditions that can be obtained in the laboratory. For example, the
typical energies available on z-pinches and lasers, when partially converted into kinetic
energy, can generate hypersonic (Mach numbers M > 5), radiatively cooled flows with
characteristic velocities of the order of 100 - 1000 km s*. These can include
dynamically important magnetic fields, ~several 10® Gauss, and a large range of
plasma-B (the ratio of thermal to magnetic pressure), 1 >> 3 >> 1. Then, our inability
to obtain the adequate plasma conditions may be overcome by producing scaled
“conditions” of the phenomena of interest.
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Ciardi, Lecture Notes in Physics, 2010

10.2 Mass ejection in young stars

Jets are ubiquitous in space. In general, jets are thought to be powered by the
combination of rotation and magnetic fields, which extract the rotational energy from
an accreting system and create magnetic stresses which accelerate and collimate the
flow. Depending on the details of the models, the winding of an initially poloidal
magnetic field results in a flow pattern dominated by a toroidal field. A similar situation
is also attained when the foot-points of a field line, connecting the disc to a central
compact object or connecting different parts of a disc, rotate with different angular
velocities.
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10.2.1 Basics of jet numerical modelling

Collapsing prestellar dense-cores

3D modelling is limited to the early stages (tens of thousand of years) of jet evolution
Essentially limited to the slow outflow components (protostar either not there or just
formed)

The jet and disk are treated “self-consistent”

Disk included (and star)

Start with an initial star-disk/ambient structure and large-scale poloidal field
Essentially limited to 2D and relatively short time-scales

Jets can have a feedback on the disk and star

Disk (or Poynting flux injection) as a boundary condition

The magnetic field distribution, rotation and mass injection at the base of the jet are
imposed as boundary conditions or initial conditions.

There is no jet/wind feedback on the disk

Simulation in 2D and 3D over long time and spatial scales are possible

Gravity is often neglected

Collapsing prestellar dense-cores Machida et al 2006; Banerjee & Pudritz 2006; Mellon & Li 2008; Hennebelle &
Fromang 2008; Hennebelle & Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al 2012; ...

e Early stages (few thousand years) of jet evolution
e Essentially limited to slow outflow components (protostar either not there or just formed)
e 2D and 3D “self-consistent” jet/disk system

ap

==V . (pv
ot (p)

%
/)(.——i—(pv)'Vv = —Vp+j x B—pVd+ non-ideal terms
t

2800 AU

Je 5
ol + V- (ev) = — pV - v + non-ideal terms
ot

% =V X (v x B) 4 non-ideal terms
10.2.2 Modelling jets as ideal-magnetofluids

Scaling the laboratory to astrophysical dynamics relies on MHD being applicable. That
requires the advection of momentum, magnetic field and thermal energy to dominate
over their diffusion. This can be quantified by three dimensionless number.
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From non-ideal to ideal MHD

0p e Reynolds number
P V() :
ot vL
. - Re = > 1
A% X Vi
p(r— +(pv)-Vv=-Vp+ J——I/Tzv -
ot g e Magnetic Reynolds number
vL
de v Rem=—>1
E +V. (EV) =-—pV-v q — Nrad+Aowm + Avisc " m g
e Peclet number

0B

, V X (vx B=nmV x B)
ot

10.2.3 Compressible, radiative magneto-hydrodynamics: Why is it important?

It is only recently that compressible, radiative MHD flows can be produced in the
laboratory, and in general astrophysics codes are not validate on real data. For
example even different numerical schemes, within the same code, can give largely
different answers. Laboratory data can help better understand and constraint the
numerical models. Other examples of the importance of laboratory data is the need to
test microphysics models for both astrophysical and laboratory codes.

Astrophysical codes for compressible MHD are generally not

o
=
o
T
~—~
2 4

validated on data. VW

Accretion rate

o
=3
o
P=4

— M5 |
—— MUSCL | ]

Microphysics is usually included through approximate models
i

— need data to test them for both astrophysical and laboratory i R R
codes Time (rotation)

Experiments can produce plasma In regimes (Re, Rey, Ma,
radiation.) well beyond the reach of numerical simulations, but

e diagnostics are limited and need support of simulations

e code development is crucial to keep up

Time (rotation)

Images credit: Matsumoto et al 2016

10.2.4 Experiments and 3D simulations show kink-unstable jets

The basic astrophysical mechanism studied in the z-pinch experiments is the
interaction of a toroidal magnetic field with a plasma ambient medium, leading to the
formation of jets and magnetic “bubbles”. The plasma ablated from the wires is
accelerated vertically filling the space (few cm) above the array. Below the wires there
is only a toroidal magnetic field. The initial formation of the magnetic cavity, and jet
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occurs at the time when the magnetic pressure is large enough to break through the
wires. This occurs only over a small region close to the central electrode, where the
vacuum toroidal field is strongest. The results show the system evolving into a
structure consisting of an approximately cylindrical magnetic cavity with an embedded
jet on its axis confined by the magnetic “pinching” force. A shell of swept-up plasma
surrounds and partially confines the magnetic bubble. The subsequent evolution is
dominated by current-driven instabilities and the development of the asymmetric “kink”
mode (m = 1) which leads to a distortion of the jet and a re-arrangement of the
magnetic field. The end result of the instabilities however is not to destroy the jet, but
to produce an inhomogeneous or “knotty" jets. Simulations show that the resulting jet
has typical super-fast-magnetosonic Mach numbers in excess of 5, it is kinetically
dominated and its opening angle < 20°.

MAGPIE experimental images of XUV self-emission

268 ns

288 ns 298 ns
time

v

Synthetic XUV images from 3D GORGON simulations

.0 @

Image credit: [Ciardi et al., 2007]

10.2.5 Poloidal collimation in the astrophysical context

It is worth pointing out that while two-dimensional, axisymmetric MHD simulations,
reproduce very well the experimental results up to the development of the non
asymmetric current-driven instabilities, there are fundamental differences in the long
term evolution of the system, which can only be captured by fully three-dimensional
simulations.
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10.3 Mass accretion in stars

Mass ejection in young stars is thought to be multi-component: stellar wind,
magnetospheric ejections and disk wind. These components, and their magnetic field,
interact with each other in complex ways and a complete picture of their dynamics
does not yet exist.

e Outflows are multi-component

e Stellar wind

o Magnetospheric ejections Stellar Wind
e Disk wind

e Kwan and Tademaru 1988 suggested that

a poloidal field was collimating stellar
winds into jets 8

¢ Simulations (Stone et al 1992) showed the
formation of elongated outflow from an Wind
isotropic wind. ?

e Spruit et al 1997 suggested the need of
poloidal collimation for kink unstable jets

— tested by artificially suppressing By in 0 5 10 15 20
. : . ' 5 Zanni & Ferreira, A&A 2012
the collimation region of MHD outflows

(Fendt 2006)

e Potential role of poloidal collimation
coupled to MHD jet launching (Matt et al
2003)
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10.3.1 Magnetospheric accretion: mass transfer from disk to stars

The accretion of mass from a disk is mediated by the magnetic field of the star.
Magnetized accretion funnels channel the mass onto the stellar surface where an
“accretion” shock is formed. Emission in the x-ray band from the shock is reprocessed
by the environment and observed as an “excess luminosity” with respect to the stellar
photosphere emission.

S Low-velocity %
Diskwind/jet it \yind? How much mass is accreted?

Mass accretion rate can be derived from
excess luminosity and the knowledge of
stellar mass and radius.

Accretion shock

Inner hot

dust wall 12 Y
visible
Hot continuum T
emission (T = 8,000 K); Broad emission lines
i ‘ ~10 - -130
some narrow lines; (r=10°K) o
X-rays? =
£
S
RIS E X
A s ), R
& Heated "=~ ==~~~ - " "™
3 / photosphere ]  TT T ~o__
s % ~
L) . Stel =
—— P photosph
" Preshock
145 Lol 1 .
2,000 3,000 4,000 5,000 6,000
simplified model of accretion shock A(A)

image credit: Hartmann+ ARAA 2016

10.3.2 Magnetized accretion columns in the laboratory

The jet and target material were made of different materials. Using x-ray spectrometry
the “mixing” of the two materials was quantified.

Laser
ELFIE 100 TW laser (LULI, Ecole Polytechnique)
(407, 0.6 ns, 1057 nm, ® ~ 700 um, I ~ 1.6 x 10**W cm’?)

FSSR! Interferometry i
‘I_SOF' Helmholtz coil

e

Magnetic field
Pulsed-power (20 kA, 16 kV) + Helmholtz coil (design and
manufacture LNCMI Toulouse)

B up to 40 T over > 1 microsecond
(Albertazzi+ RSI 2013)

Diagnostics
- Electron density (Mach-Zehnder interferometer,
., 100 mJ in 350 fs @ 528.5 nm)

Time and space resolved visible self-emission
measurements (Streaked Optical Pyrometer)

Temporally-integrated, spatially resolved X- rayl

Targets made of different materials:
- PolyVinyl Chloride (PVC, (CH,CI) )
- Teflon (CF),

emission (H- and He-like fluorine ions), FSSR.

11.3.3 Magnetized laboratory accretion columns

Impact of the accretion ow ablates the target material and it is ejected to distances of
~2 mm from the initial target surface. The shell of material surrounding the accretion
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shock is mostly made of target material. Astrophysical simulations show a similar
effect, with the chromosphere making up most of the dense shell.

Laboratory simulations show that the shell interface with the external medium (the
corona) is unstable to the magnetized Rayleigh-Taylor instability. The instability can
generate more material mixing. The take away message is that 2D simulations are
unable to capture instabilities and chromospheric ablation can be important.

- "Chromosphere/photosphere" is ablated by
the "accretion flow"

- Experiments indicate that obstacle material

1
|
is ejected "large" distances ~ 2 mm 1

B

;“2

- Obstacle is ejected alongside with the
post-shock accretion plasma leading to
mixing

8 ‘ "‘
-ﬂ -
0535 0.0 25 25 0.0 25

X [mm] X [mm]

3

PIay dnaubew

- Shell is mostly made of obstacle material

- Astrophysical simulations show the same
effect — absorption by the shell of emission
from accretion shock

Unstable shell (which is mostly
chromosphere/photosphere) interface is
MRTI

- 2D simulations are insufficient and that
"correct" of chromosphere/photosphere is
important

Khiar+ to be submitted
10.4 Magnetic reconnection and particle acceleration
10.4.1 Introduction

Magnetic reconnection changes the topology of the magnetic field and releases
magnetic energy in the form of bulk plasma kinetic energy, thermal energy and
energetic charged patrticle. Astrophysical systems usually have very large Lundquist
number (S>>10%°) (i.e. large ratio of Ohmic diffusion time to the crossing time of Alfven
waves).
e the reconnection rate in collisionless plasma is faster than in the standard
Sweet-Parker reconnection rate
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In magnetic reconnection, the energy of the magnetic field is
converted in heating, bulk fluid motion and accelerated particles
Outside the current sheet:

rm
+
<i
X
oeli
I
[an]

in the current sheet: current sheet
E4+vxB=nj#0

from force balance, steady-state and conservation of mass, the

(dimensionless) reconnection rate is

Vin é 1

M = =
vAlfv L S

where the Lunquist number is

T Ohmic Lo VAL image credit: [Vaivads et al., 2006]

TAlfv n

S =

However multi-fluid effects, kinetic effects, instabilities, etc. are
generally very important in determining the reconnection rate

10.4.2 Particle acceleration in magnetic reconnection

Several particle acceleration mechanism are possible in the reconnection layer. For
typical parameters for the Omega Laser Facility, electrons are expected to gain
energies ~ 25-75 keV, which should be compared to their thermal energy ~1 keV.

a) b
10' - 5 10% !
— — ;
10" > 04 107 1
3 10 03 _ 107 {
= S| |
2 108 ¥ 2 e |
. . . . b 1 o2 R~ b [— total |
Acceleration mechanisms in the reconnection layer i i el = e
. . f B , nonthermal
— reconnection electric field ~ v T w
— Fermi-type due to the motion of plasmoids d ¢/kpT.
40— _— 40— - — glo
— Fermi-type » s ]
30 ] 5
— betatron s a
= ,
Y10 108 E
5 Q
-
%366 -50 50 10C %00 =5 50 100

"s(e/i)

image credit: [Totorica et al., 2017]

2/(cl)

10.4.3 Magnetic reconnection in z-pinch experiments: anomalous ion Heating

Experiments on magnetic reconnection in high-energy density plasmas are also
carried out on other facilities besides lasers. On z-pinch machines, wire ablation is
used to generate converging, magnetized plasma flows that meet to generate a
reconnection layer. Because of the longer time- and spatial scales, these experiments
provide in general easier diagnostic access than laser experiments. The magnetic field
measurements by Faraday rotation show a Harris-type current sheet, indicative of
magnetic reconnection. Temperature measurements with Thomson scattering show
anomalous ion heating Ti > Te.
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Reconnection experiments [Hare et al., 2017] on the
MAGPIE generator (1.4 MA, 500 ns current pulse).
Carbon wires (¢ = 400 pm).

— size of reconnection layer: 1 x 20 mm

Magnetic field measurements by Faraday rotation

clearly show a Harris-type current sheet, indicative of
magnetic reconnection

Temperature measurements with Thomson scattering
show anomalous ion heating T; > T,

— micro-instabilities?

— plasmoids?
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Chapter 11: Atomic Physics Simulations for
Plasmas

J. Limpouch

High Power Laser Plasma Physics
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11. Atomic Physics Simulations for Plasmas

Detailed knowledge of atomic physics of laser-produced plasmas (LPP) is important both for
plasma diagnostics and for applications of LPP as a short-wavelength radiation source.
Emission and absorption spectra are very important tools of plasma diagnostics containing
information about electron and ion temperatures, plasma density and ion charge distribution.
Laser-produced plasmas from targets of medium and heavy elements are efficient pulsed
point-like sources of extreme ultraviolet (EUV) and X-ray radiation that are suitable for
applications such as EUV lithography and imaging of biological objects in the water-window
spectral range. For these applications, suitable laser and target parameters have to be found
and optimized.

Detailed simulations of atomic physics include two basic tasks. First, atomic structure
modelling is performed to calculate energy levels, wave functions and transition probabilities.
Second,populations of ionization and excitation states are calculated for given density,
temperature and plasma size or for known history of the above parameters. External source
of radiation can be also taken into account. Then, plasma emission or absorption spectra may
be synthetized. The second task can also be solved as a post-processor to a plasma dynamics
code.

Various simplified approaches that are used for calculations of mean ion charge and
for the radiative transport of energy in the fluid approach to simulations of plasma dynamics

are not discussed in this section.

11.1 Introduction to simulations

Atomic structure codes can be divided into 2 groups - codes solving non-relativistic
Schrodinger equation with relativistic corrections and fully relativistic codes solving Dirac
equation. Nonrelativistic codes include the configuration interaction codes CIV3 [1] and
SUPERSTRUCTURE [2], the multi-configuration Hartree-Fock code MCHF [3] and the very
popular Cowan code [4]. Fully relativistic codes include the HULLAC package [5], the SZ code
[6] and the popular modern FAC (Flexible Atomic Code) code [7].

The fully relativistic approach based on the fully consistent physics description is more
computationally demanding but it can be performed on modern personal workstations.
However, students at advanced bachelor and master levels are well familiar with the
Schrodinger equation that is the base for the classical approach and the interpretation of code
results is significantly simpler. Thus, this subsection is based on the classical approach with
relativistic corrections. Here, we shall briefly explain the atomic structure and the process of
its calculation essentially according to the Cowan’s book [4].
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11.1.1 Basic notations
lonization degrees are often marked by Roman numerals where | denotes neutral

atom, Il is singly ionized ion, Il doubly ionized ion and so on. Generally, Roman numeral is
equal to the ionization degree+1. For example, the triply ionized boron is denoted B IV. On
the other hand, there is certain similarity of spectral features of ions with the same number of
bound electrons. The emission spectra of ions with only one bound electron have a certain
similarity with the spectrum of neutral hydrogen, so these ions are classified as H-like
(hydrogen-like). Similarly ions with two bound electrons are called He-like (helium-like). Thus,
ion B 1V is called helium-like boron, as it has two remaining bound electrons. Atomic states of
a particular ion include ground state (the state with minimum energy for an ion with given
degree of ionization), excited states (also called resonance states) with one electron from the
outmost shell excited to an upper shell or subshell and autoionization states with energy higher
than the ionization potential. Autoionization states have either one electron excited from an
inner shell or more excited electrons. Spontaneous ionization is possible from an
autoionization state.

We shall use here cgs units. Radii will be normalized to the Bohr radius ap = n?/me €2 =
5.29177 107° cm and energies will be expressed in Rydbergs 1 Ry =1 R. = e?/2 ap = 13.6058
eV =109737.3 cm™.
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11.1.2 One-electron atom (ion)

The electron of mass m, is moving in one-electron ion in the central electrostatic potential V(r) of
the nucleus. The electron energy E' is an eigenvalue of the Hamiltonian operator H. The electron
wave function ¢ is found by solving the time-independent Schriodinger equation

Hy=FEp (1.1)
2 2 2 2 2 . . 2
P p L R* [10 1 a . 0 1 0
H= Vir =L Vim=——_ |22 1~ (Zgpol)a_—— 2 |ivir
2m, V() 2m, * 2m, () 2m, ['r ar? T r2sinf \ 90 s oo N 12 sin? § 92 Vi)
where the electrostatic potential of a nucleus with the charge number Z is V(1) = —Ze?/r. When

the distances and energies are measured in units of the Bohr radius ap and units of Rydberg Ry,
the time-independent Schrodinger equation is written, as follows

19> L 27
st e =B )

In any central field problem angular momentum L is a constant of motion. Quantum mechanically,
we may expect that ¢ should be an eigenfunction of L? and L,. Indeed, this is true as L? is the
only term in the Schrodinger equation dependent on # and ¢.

The solution may be written in the form

1 .

@(F) = enimym, (T) = - nl(1) * Yim, (0,0) - o, (s2) (1.3)
where n = 1,2,... is the principal quantum number, [ = 0,1,...,n — 1 characterizes the orbital
angular momentum, m; = —I, -l + 1,,1 — 1,1 is the orientation of the orbital angular momentum
and mg = —1/2,1/2 is the orientation of the spin angular momentum.

All operators of angular momentum have following properties (here written for arbitrary angular
momentum J). Operator J2 = J.J = J2 4] g + J? has eigenvalues j(j + 1) k%, where j =
0,1/2,1,3/2,2,... and J, has eigenvalues mh (m = —j,—j+1,—j+2,...,j—1,7). Eigenfunctions

of orbital angular momentum operators L2, L, are

20+ 1)(1 — |m|)!] /2

4 (l + |m|)! R‘rlm|(cos£»') exp(ime) .  (1.4)

Yim(0, ) = On(0)®p (6) = (—1)mHmD/2 [
Spherical harmoniecs are orthonormal and sum over m

I
. 204+1
> Win®,0)F = ——
4
m=—I
is spherically symmetric. Thus, the electron density in any fully occupied subshell is spherically
symmetric. States with angular momentum [ = 0 are denoted by s, p denotes [ =1, d (Il = 2),

F=3),90=4),h(1=5),i1=6).k({l=T).,1(1=8),m(=9).
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Electron has an intrinsie angular momentum - spin j = 1/2 (2 component m, = —1/2,1/2),
eigenfunection is o, (8.) = d,,... States with differences in quantum numbers are orthonormal

<Hm;'5rm; |H’mj grﬂ-}) = dppr 'sfﬂlmE '5*“11'“‘1 ‘

Radial part of wavefunction

The wavefunetion vanishes at the position of mueleus FPyp(0) = 0. For free states (Eg = 0),
open boundary condition at r — oo leads to continuous energy spectrum. For the bound states
(Ep = ), only discrete energy levels are allowed as the wavefunetion must vanish for r — oc. The
equation for the radial part of wavefunction is expressed, as follows

a2 ii+1) 27
[_F + % - T] Py(r) = EPu(r) . (1.5)

Here, the effective potential is Vopp(r) = V(r)+1{I+1)/r* = —2Z /r+1{1+1)/r*. After substitution
p=2Zr/n and E = —Z?/n?, the wave equation is transformed to the following form

@ 1 TR

The analytic solution is known and can be expressed, as follows

[d'?- 1 n E{E_I}]Pn;{r}=ﬂ. 16)

Z(n—1-1)!

Fuilr) =- [W

] p e PP () (L.7)
where the associated Laguerre polynomial is

n—I{-1 ke
- y (—p)
L (p) = —(n+ DY .RZ:D Kl —I—1-k)I2A+1+k)!

The phase of general solution is arbitrary, here we use the convention Fy;(r) = 0 for r — 0. Number
of nodes is i — [ — 1, number of antinodes is n — 1.

The Bohr-Sommerfeld orbits have elliptical form. The orbit with I = n» — 1 is spherical while
with inereasing n for given [ the orbit is inereasingly elongated in the direction of main axis with
increasing maximum distanee from nuecleus but also with decreasing distance of the orbit point
nearest to the nuecleus. The close approach of electron in state & with high prineipal quantum
number n to the mielens causes an inerease in the binding energy and leads to the anomaly for
neutral atoms of transition elements, lanthanides and actinides when & state of higher principal
number is oecupied prior to d and [ states of lower quantum number. This anomaly exists also in
some singly and doubly ionized high-Z ions, but it never oceurs for higher ionization degrees.

For atoms (ions) with more than 1 bound electron, the effective potential has no simply express-
ible form and analytie solution for the wavefunction eannot be found. During numerical solving,
the value of energy is iterated and the number of nodes should correspond to the particular state.

Relativistic corrections

Relativistie corrections to the Hamiltonian must be added to reach qualitative and quantitative
agreement with the observed line splitting and transition energies. The Hamiltonian then reads

2

o a? fdVy 8 o fdVy g
H=- -V V-—(E-V)}-—([— )| —+—[—](1-7), 1.8
v 4( ) 4(dr)ﬁr+2r(d-r)( ) (1.8)
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where the fine structure constant o = e?/(he) = h/(meag) = 1/137.036 and V = —2Z/r for

hydrogen-like ions. The 3™ term of the Hamiltonian is the mass-velocity term caused by the
relativistic dependence of the electron mass on its velocity. The 4*" term is the Darwin term
expressing the relativistic correction caused by the uncertainty in the electron position. The 5t
term is the spin-orbital term caused by the magnetic interaction of the spin and orbital magnetic
moments. While the mass-velocity and Darwin terms lead just to shifts in energies of the levels,
spin-orbit coupling leads to splitting of the energy levels with [ # 0. Operator 1-8 = {j2 —1F - 52J /2
has eigenvalues X = [j(j + 1) — (I + 1) — #(2 + 1) that are simplified to X =1 for j =1+ 1/2,
and X = —[ —1for j =1 —1/2. The radial part of the wave funetions depends on quantum
numbers n, [ and newly additionally on j and it ean be found in principle directly from radial part
of Schridinger equation. However, we shall find energy corrections via perturbative approach using
classical P,;(r) and calculating the energy perturbations due to the relativistic correction terms H,
of Hamiltonian

= 4]
SE, = f PYH,Pydr .
0

The energy correction §E,,;, due to the mass-velocity term and 4Fp due to the Darwin term are
expressed, as follows

a*Z4 ] 4n ) a’Zt
dEy, = T [m - 3] SEp = din — - (1.9}
The shift of energies due to the spin-orbit coupling is expressed, as follows
5 B o’z .
8Ee = 0 ZX (r~3) = (1 — dig) PETESVCTES)) G +1)—1(l+1)—s(s+1) . (1.10)

The energy of the state nij is thus E,; = —Z?%/n* 4 6E,, + 6Ep + 6E,,. All relativistic corrections
are proportional to £ and they grow faster with Z than the basic term proportional to Z°2.

11.1.3 Multielectron atom (ion)

As the mass-velocity and the Darwin terms lead to shifts in energies of atomic states only, we shall
omit them first when solving Schridinger equation and the energy shifts will be then caleulated for
the previously obtained wavefunetions via perturbative approach. Thus, we shall use the following
Hamiltonian

H=Hk{n+l'Ie—nuc+He—e—Hau=—Zv?—2i‘—? +ZZ%+EE¢[T;:]I (T{'E{) L (111
i i ' o i

i 3<i

The spin-orhit interaction has a profound effect on the energy level structure, so it has to be retained
in the Hamiltonian. The proportionality factor £ has been left in unspecified form. If a suitable
energy-potential V'(r) is used, the factor & = o? /2r = (dV/dr) .

Wavefunetions UF(7) of complex atoms are solutions of the Schridinger equation and they are
expressed as linear combination of basis functions vy,

HVH () = E*UX(7) LGRS (1.12)
b

Basis functions are orthonormal and they form a complete set of funetions. In general, the set
consists of infinite nnmber of funetions so the equation represents a sum of an infinite series. In
practice, it is necessary to truncate the series, and thus it is essential to choose a suitable type of
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bhasis funetions. When scalar produects of the above equation with each basis function are carried
out, & homogeneous system of linear equations for the coefficients y';; is obtained and energies E¥
are the eigenvalues of the matrix.

The basis functions are constructed from one-electron wavetunctions (also called " spin-orbitals")
wi(7:). Pauli exclusion prineiple requires basis funetions antisymmetric upon exchange of any 2
electrons. Such functions can be formed by using determinantal functions of the form

— (N1 —-fﬂg (75 )2 () - - 0N (Tiy) (1.13)

where p = 0 for even permmtations and p = 1 for odd permutations. In the above formmla 7
includes also spin & The antisymmetrized functions eliminates the possibility of any two orhitals
being identical as this would lead to vy = 0. Moreover, electrons with the same spin cannot lie in
the same position, thus vy must be very small when electrons with same spin are close together.
Thus, the antisymmetric basis wavefunetions include correlations of electrons with the same spin
via Pauli exclusion principle. However, electrons with opposite spins are not correlated as the basis
functions do not contain any correlation due to Coulomb repulsion. The basis functions iy are
mutnally orthonormal. Each of the basis funetions is an eigenfunction of the operator J. since
each term involves the same set of one-electron quantum numbers. As the resulting wavefunetions
U* have to be eigenfunctions of the operator J2, it is favourable to use basis functions vy that are
already eigenfunctions of the above operator. However, functions construceted by multiplication of
one electron funetions must be coupled to become eigenfunctions of J2, the eoupling procedure will
be deseribed later.

The electrons with the same n, [ form a subshell and they are called equivalent electrons. The
list of N pairs n;l; defines eonfiguration. If the occupation number of electrons in a subshell k is
denoted by wy then the configuration is specified by means of the following notation

k
(nyl ) (nala)™2 ... (nplp)™" ,  where ka =N.
k=1
A fully oceupied subshell k (g2, pf d', f4....) is called closed and its angular momenta L —

S5 = Jip = 0. Closed subshells are usually skipped in brief notations, thus configpuration Ne 1
12725%2p"3s is written as Ne I 2p°3s.

Configuration-average energies and radial wavefunctions

The configuration-average energy Fy,, is the mean value of energy of a set of all basis functions
belonging to the particular confipuration, ie. all allowed combinations of orbital and spin angular
momenta of all electrons. It is expressed, as follows

aw = (BB, = ¥ (BB} /M = E*/M
b

b

where M is the mumber of basis functions. E,, is also the energy of the spherically averaged atom.
Spin-orbital contributions to E,, caneel due to the presence of the functions with spins +£1/2 in
the set.

The contribution of interaction between electrons i, j consists of direet and exchange terms,
thus the configuration-average energy is expressed, as follows

Eaw =Y (il — V2li),, — z <1 = 1> +3°3 Ku —|13> N <'£_;r' %|ji>m] . (114)

i i v i j<i
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i i v i j<i
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one assumes some ag setting P ~ agrit! for r — 0 and solves inhomogeneous and homogeneous
(setting all £;; = 0, B; = 0) HF equations. Then P;(r) = P'(r) + 3P (r), where P!, P¥ are
the solutions of the inhomogeneous and homogeneous HF equations, respectively, and 3 is chosen
so that Pi(r) — 0 for r — oo. Then the trial function P+ for the next iteration is set by the
relaxation relation

(m+1) fm) (m) ¢
P (input) = eP™ (output) + (1 — ¢)P™ (input) | (1.18)

where ¢ = {0.05,1.1}, and usually ¢ ~ 0.5. The parameter £; was originally introduced as the
Lagrangian multiplier associated with the normalization condition on Fi(r). It must be chosen by
means of a secondary iterative procedure so that ||F;]| = 1. The additional requirements that ag
must be positive and that Fj(r) has n — I — 1 nodes lead to a unique solution for Fi(r).

There are several complications when solving SCF equations. For high orbits of nentral and
lowly ionized atoms SCF need not converge, but the convergence has to be achieved via relaxation
of the inhomogeneous part of the HF equations. Other ways are preferred for caleulating integrals
with I in the denominator, as the nodes of F; lead to singularities in the integrand.

There are several approximate local-potential methods for ealeulating radial wavefunctions and
binding energies. Homogeneous equation is solved with an assumed potential V() in all these meth-
ods. They are free of complexities encountered in the inhomogeneous equation and their solutions
are suitable for caleulation of the relativistic corrections, spin orbit parameters ete. Thomas-Fermi
(TF) and Thomas-Fermi-Dirac (TFD), which is TF with added exchange potential, methods use
semi-free-electron atom. They are simple, but the applied potential is poor. Hartree method uses
Vir) = —2Z/r + Viy(r), but misses the exchange effects. In Hartree-Fock-Slater (HFS) method,
the exchange effects are added in the same way as in TFD method. The most accurate replace-
ment of HF term is the Hartree-plus-Statistical-Exchange (HX) method. The potential is set to
Vilr) = —22/r + Vg (r) + Vz(r), where Vi(r} is a statistically based approximation for non-self-
exchange terms. The HX approximation is often nsed as it is the most accurate known approxima-
tion.

Detailed energy level structure

FEnergy level splitting inside one confisuration is caused by the coupling of angular momenta.
The ecoupled function of two angular momenta is expressed via the Clebsch-Gordon coefficients C,
as follows

Ji
jijajm) = Y Cljjami,m — my;jm) [jijamy,m —my) = (—1)7F27 |jajijm) . (1.19)

mi=—Jj1

It is eigenfunction of 4 operators Ji, J3, J* = (J; + J3)? and J. = Jy. + Jo.. The coupling of two
angular momenta is not commutative, The coupling of 3 momenta is even more complicated and
it is not associative.

The basic splitting of the energy levels is influenced by the relative importance of various
terms in the Hamiltonian. We deseribe here the basic schemes - LS coupling and jj coupling.
Some configuration behave according to other schemes (LK coupling, jK coupling) and some
configurations have an intermediate coupling, meaning that they cannot be assigned to any general
coupling scheme.

The LS coupling is characteristic for low Z atoms where Coulomb repulsions dominate spin-
orbit interaction. The basic splitting is according to the total orbital angular momentum L = 3, I
and the total spin § =3 &;,. Then L and 8 are coupled together to give eigenfunctions of J S
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Figure 1: Energy level splitting of a pd confipuration under LS coupling (left panel) and jj coupling
(right panel) (reprinted from [4]).

The usual notation of the levels is 23+, where 2S+1 is the multiplicity due to the total spin,
total angular momentum L is represented by letters S, P, D,. .. for L =0, 1, 2,. .. and odd parity is
denoted by upper index o, e.g. 38, *PJ 19

On the other hand high-Z elements where spin-orbit interactions dominate Coulomb repulsions
behave according to jj coupling. Here, the orbital and spin anpular momenta couple for each
electron 1; + & = j; first, and then the electron total angular momenta are coupled together. The
level notation for 2 electrons is [(Iy, &) j;, (la, #2) ja] JM.

Schematics of energy level splitting of a pd configuration under LS and jj couplings are demon-
strated in Fig. 1. Both couplings start from configuration average energy E,,. LS coupling is
adding successively large Coulomb interaction (direct and exchange), spin-orbit interaction and
finally external magnetic field. Under jj coupling, 2 strong spin-orbit interactions result in 4 en-
ergies; small Coulomb interaction then leads to a small splitting according to the total angular
momentum J.

Coupled antisymmetric basis functions have to be created. For non-equivalent electrons one can
start from antisymmetrized wave functions and then couple the angular momenta by means of the
Clebsch-Gordon (CG) formula. For equivalent electrons such procedure will fail due to involvement
of the combinations forbidden by the Pauli exclusion principle. Mechanism was developed by Racah
to form the set of coupled antisymmetric basis funetions using coefficients of fractional parentage
and senjority mumber. It is feasible both in LS and jj coupling (the result can be transferred to
other coupling schemes). Recently, a new method of performing angular integration was proposed
8] that is based on the second quantization form of the operators and extends the use of Racah
algebra to the quasi-spin space. In this method, instead of recoupling basis states, one recouples
the creation and annihilation operators with the help of Racah algebra. The new method simplifies
the procedures for complex confisurations considerably.

Using the coupled antisymmetric basis functions, the matrix elements {i|H |i) = Eq + AH;; and
(i|H|j) = H;; for i # j are then calculated. The kinetic energy and electron-nuclear terms make
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Figure 2: Energy levels for ps confipuration during transitions from LS to jj coupling (reprinted
from [4]).

no contribution to H;; and AH;;. Also closed subshells do not contribute to H;; and AH;. When
evaluating matrix elements of symmetric operators, complications due to antisymmetrization can
be removed.

In simple configurations, evaluations are much simplified. If only 1 electron is outside closed
subshells, no Coulomb interactions are involved in calculation of level structure, there is only [ — =
interaction. The ecaleulations differ from the caleulations for the H atom only by a more complicated
potential V*(r). For 2 non-equivalent electrons outside closed subshells, spin-orbit interactions
are easily caleulated in jj coupling. However, it is still better to use LS coupling if the Coulomhb
interactions are strong. If there are 2 equivalent electrons (I configuration) outside closed subshells,
LS-coupled functions are antisvmmetric without permutation, exchange energy is zero and only
even L+45 basis functions are allowed. In the intermediate coupling, the Hamiltonian matrix is
far from diagonal in any coupling scheme and numerical diagonalization or secular equation have
to be used. An example of the transition from LS to jj coupling with increasing strength of the
spin-orbit interaction is demonstrated in Fig. 2.

Up to now we have limited ourselves to a single configuration but the accuracy of the model
can be improved by including more configurations. Only configurations with the same parity can
influence given configuration. As the Hamiltonian includes only 1- and 2-electron operators, one
needs to include only confipurations differing at most in 2 orbitals. As the basis set must be kept
manageable, a suitable choice of interacting confizurations has to be made.

Radiative transitions

Atom (ion) in the execited state j can make a spontaneous radiative transition to the lower
energy state i and photon of frequency vj; = (E; — E;) /h is emitted. There are 2J; + 1 degenerate
states i and Einstein coefficient Aj;; = 3y aj. Under isotropic excitation, the emitted intensity
in the spectral line is Ii{t) = heg;igiA ;:0N;(t), where oj; = 1/A;; is the inverse wavelength and the
quantity g;Aj; is called the weighted spontaneous-emission transition probability.

The most intense transitions are electrie dipole (E1) transitions. Spontaneous emission proba-
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where Ty, is the time-independent part of the wavefunetion ¥; = Uy exp{—iE;t/ k). The weighted
transition probability g;A;; is then expressed

R (1.20)

G4mielati’®
9545 = 3R,
where 5j; is the line strength. The line strength is caleulated via integration of the transition matrix

term over r and angular coordinates. The line strength 5;; is related to the oscillator strength f;;
for absorption

5_']]- 3

Smim.ady E; — E;

CBR(2LE+ 1) T 3L +1)

that refers to the total probability of absorption from a specific state of the lower level i to all
(2J; + 1) states of the upper level j. Oseillator strength f;; for emission is usually taken negative
and it is given by the relation f;; = —fi; (2J; + 1) /(2J; +1).

Integration over the angular coordinates leads to selection rules excluding E1 transition between
certain states. As the electrie dipole operator has odd parity, E1 transition can oceur only between
states of opposite parities. From the properties of angular momentum operator the transitions may
oceur only if

fij

AT=J—-J =0, +#1 with not allowed J=J"=0.

Moreover, the rules allow only transitions with AM = M — M’ = 0 leading photon linear polar-
ization along z-axis (when observed from zy plane) and AM = +1 leading to clock- and counter-
clockwise circular polarization in ry plane. In LS (spin-orbit) coupling, AS = 5 — 5" = 0 as the
dipole operator does not include spin. Then the selection rule has the form AL = L — L' =0, £1
and L = L' = 0 is excluded. However, the selection rules for LS coupling are often violated.
Intercombination lines with AS # 0 are observed for Z = 5 due to non-ideal LS coupling where
the spin-orbit interaction leads to the mixing of states with different spins and the same L and J.
Violations of AL rule and 2 electron jumps oceur due to configuration interactions. Mixing of basis
states due to Stark effect can lead to parity change violations.

Magnetic dipole (M1) and electric quadrupole (E2) transitions are usually weaker than E1
transitions. The transition probabilities may be caleulated in a similar way as for E1 transitions.
Higher multipole transitions are observed rarely.

Photoionization and radiative recombination

Contimmm states have to be included in caleulation of probabilities of photoionization and
radiative recombination. Rydberg series of the bound configurations ... (nd; )*"'nl with n = 6,78
v ooy 00 Of the center-of-gravity energies EE{., Eﬁi, Eﬁﬁ cany E;';" are naturally extended to the state
coo(mgli )™=l where £ is the kinetic energy of the free electron with the angular momentum Kl and
the average energy of the confipuration is E;‘f + £. Similarly, for each possible Rydberg series of
states, = is added to the limiting energy of the series.

While the angular part of wavefunetion is identical with the bound states, the radial part of

the contimmm states has to be determined from the following equation

@ 10+
dr? r2

+VE(r)| Pa(r) = ePa(r) . (1.21)
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The limit of the approximate local-potential caleulated by HX method is used for VE'(r). The
asymptote for r — oo is Py ~ cos(gr + &), where ¢ = /. The radial part of wavefunetion
is normalized according to relation [ Po(r)P(r) = d(z — £'). Large mesh has to be used for
numerical calenlation of Pe.

Instead of the line strength 5;; for transition between bound states, the derivative dS;/ds is
calewlated for the free-bound transitions. The photolonization cross-section is then

Qi = Am7ads; /ds . (1.22)
11.2 Population of states and spectra synthesis

Enowledge of the populations of the ionization and execitation states is needed for the synthesis
of emission and for absorption spectra. Populations and spectra are usually ealeulated as a post-
procesgor to fiuid simulations for the estimation of the plasma parameters in experiment via the
comparison with the measured spectra. .

Various selections of included states are used. K-shell spectroscopy (emission or backlighter)
is used for relatively hard spectra of highly ionized atoms. It ineludes a detailed deseription of the
states of H-, He- and Li-like ions while the other ionization stages are treated in a simplified way.
EUYV spectroscopy uses detailed model for all ionization stages but the atomic database will be
enormons for high-Z atoms and the ecaleulations may be computationally very demanding due to
high number of populations solved. The mumber of the states in the equations for the populations
can be decreased by grouping of states with near energies into one summary population. Populations
of fine-split lower levels are often caleulated separately, while higher states are usually grouped
together as deviations from their mutual equilibrium are small due to fast collisional transitions
between these states with very near energies. The number of bound states decreases with plasma
Hensity, as it is limited due to the continuum lowering caused by electron interactions with
neighbouring ions. In a simplified image, if the electron orbit of a bound state of an isolated ion
reaches far behind the neighboring ion, such bound state cannot exist. The populations of the
states with energy above the lowered continuum may be set to zero or the statistieal probability of
their existence may be strongly reduced. The codes may also include selected autolonization states
that lead to emission of satellite lines that are often used for the spectroscopic diagnostics.

When spectra are caleulated, one way how to decrease the number of transitions is the statistical
approach [9] using unresolved transition arrays (UTAs) where large number of near transitions is
coupled together. UTAs form quasi-continuum features in the emission spectra and their parameters
are the mean wavelength and the spectral bandwidth. Intense broad UTAs are often an efficient
source of EUV radiation that may be suitable for applications.

11.2.1 Models of population kinetics

In dense plasmas, the collisional processes may be much faster than the radiative ones, and then
the populations may be near to the local thermodynamic equilibrium (LTE). In LTE, the
thermodynamie equilibrium is assumed for massive partieles, but not for radiation. Electrons have
the Maxwellian distribution with the temperature T,. Boltzmann relation nj/ng = (g;/gx) exp|(sx—
£;)/kpT.] holds for the populations n of any two energy states j, k of the same ion charge, g denotes
the degeneracy of the particular energy state. lonization equilibrinm is governed by the Saha
equation which determines the ratio of the population of any level k of p-times ionized atom to the
ground state 1 of p + 1-times ionized atom depending on the electron density n, and temperature
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Spectrum of radiation in laboratory plasmas usually differs strongly from the blackbody radiation
due to their small optical thicknesses. While the blackbody spectrum is a smooth continuous
function, emission in laboratory plasmas is usnally dominated by narrow spectral features - spectral
lines and recombination edges.

On the other hand, in very dilute plasmas, the populations may be caleulated according so
ealled coronal equilibrium. Here the collisional de-exeitation is negligible compared to the spon-
taneons emission, the three-body and dielectronic recombination is negligible compared to the
radiative recombination and the omission of the above negligible processes simplifies ealeulation of
the populations significantly.

When neither of the above approximations is valid, one has to use collisional-radiative model
and the populations are usnally called non-LTE (NLTE) populations. The svstem of the rate
equations is written, as follows

dﬂi T - . - dii
= = z Rjin; — z Rij | ny in matrix form T Rii (1.24)
=13 j=1{j#1)

where 7 is the vector of populations and R is the rate matrix which is block diagonal as only
transitions between neighbouring charge states have non-negligible probability. The rates usually
include photoexecitation and photodexeitation, photoionization and photorecombination, eollisional
excitation and de-exeitation, collisional ionization and three-body recombination and dielectronie
recombination. The rates of the processes can be caleulated by the atomic physics codes deseribed
above or via simplified analytic formmlas. For certain transitions, experimental data are available
and may be used either directly or for the correction of the data obtained from simulations. The
rates of inverse processes are caleulated using the prineiple of detailed balanee. In equilibrium,
the rates of direct and inverse processes are equal and the ealeulated rate coefficient of the inverse
process is valid even outside the equilibrinm. Such way of the rate caleculation eliminates possible
errors in the caleulation of equilibrium populations.

When plasma is assumed optically thin, photolonization, photoexeitation and stimulated emis-
sion are omitted. In optically thin plasmas, the rate equations are independent of the radiation
intensity. The rate equations in optically thin plasmas can be solved locally, the populations in each
Lagrangian cell depend only on the history of density and electron temperature in the particular
cell. The rates of collisional processes depend on electron density that in its turn depends on the
ion mean charge ealeulated from the veetor of populations. When the electron density n. is fixed,
then the rate equations are linear for optically thin plasmas. For given ion density, the svstem can
be solved easily via iteration.

If optical thickness is taken into account, populations of charge and energy states at different
places are interdependent through the transport of radiation. Detailed modelling of radiation trans-
port is a very difficult and computationally demanding task as the narrow spectral features require
a very fine spectral grid and additionally, ray-tracing in various directions must be performed. Sim-
plified treatment via escape factor formalism [10] is often used. Escape factors generally depend
on the shapes of spectral lines.
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11.2.2  Synthesis of spectrum

When populations of charge and energy states are known, emission and/or backlighter spectra
can be caleulated. Backlighter spectrum is absorption spectrum produced by known source back-
lighting plasma. Line and recombination emission uses known populations and photoexeitation
and photoionization rates. Continuons bremsstrahlung spectrum is then added. Line broadening
including natural, pressure and Doppler broadening of spectral lines has to be taken into account.
Pressure broadening in high-temperature plasmas is dominated by Stark broadening eaunsed by
electric mierofields that inelude both the impact broadening eaused by free electrons moving in the
ion neighborhood and the quasi-static broadening eansed by the neighbouring ions. Lines shapes
may be caleulated by specialized codes, such as STARCODE [11] and SimU [12]. This is a tedious
task and thus, more often, simplified models of spectral broadening are directly included into the
codes caleulating populations and spectra.

1123 Codes for population calculations and spectra synthesis

This subsection presents only a few examples of codes used without any effort for a complete
overview of existing codes.

FLYCHK [13] is a rapid tool providing populations and spectra of plasmas in zero dimension
assuming planar homogenous emitting (absorbing) plasma layer. Its advantage is an excellent avail-
ability as it can be used freely by anybody (after registration) via web page http://nlte.nist.gov /FLY /.
It can be applied from low- to high-7 plasmas both for LTE and either steady-state or time-
dependent NLTE situations. It can be used in all areas of EUV spectroscopy but it is especially
suited for K-shell spectroscopy as it evolved from the older RATION and FLY codes developed
R.W. Lee for this purpose. Plasmas with single or mmultiple electron temperatures as well as radi-
ation driven plasmas can be modelled. Finite width of plasmas is taken into account via escape
factors. Schematic atomie structures and sealed hydrogenie eross-sections are employed to achieve
fast response and excellent versatility of the code. Continuum lowering (also ealled ionization po-
tential depression) is included via the Stewart-Pyatt model [14]. The depression inereases with
the plasma density and is also temperature dependent. The states above the lowered ionization
potential are considered to become contimim states and they are excluded from the caleulation of
populations. For the spectrum synthesis, the jj confisuration averaged atomic states and oscilla-
tor strengths caleulated via the Dirac-Hartree-Slater mode] are used. Voigt line profiles including
natural and Doppler broadening are used for the caleulation of the emissivity and opacity of line
radiation and also for caleulation of the escape factors. Instrumental broadening can be defined
by the user. Stark broadening is included only for K-shell spectrum (H-, He- and Li-like ions) of
elements # < 26 which has to be taken into account in the spectra interpretation. FLYCHK is
easy-to-use, simple, versatile and fast eode providing sufficiently reasonable spectroscopy to most
users to have design and analysis tool.

PrismSpect [15] and Spect3D [16] are zero- and three-dimensional commercial codes devel-
oped by the same proup and based on the same models of atomic physies. Zero-dimensional eode
PrismSpect can treat planar, eylindrieal and spherical geometry. SPECTAD is a multi-dimensional
collisional-radiative code primarily meant for post-proeessing the output from radiation hydrody-
namic and particle-in-cell codes to simmlate diagnostic results (e.g. images, spectra). User can
supply geometry and properties of the detecting system and thus the diagnostic results may he
simulated for the design of experiment and /or for the interpretation of experimental data. In both
codes, the atomic database is available for elements with # < 36. It is caleulated via ATBASE
suite of codes [17]. An extensive configuration list for each isoelectronic sequence has been carefully
setup and tested to support modelling for a wide range of plasma spectral properties. Complete

Page | 168



. - & ff,’“,“% D UNIvERSITY e sy
UPSRBER  nae *E:} & Sk /

v - Erasmus+

collisional coupling between both all non-autoionizing and autoionizing states is included. The
ionization potential depression is treated via model decreasing probability of existence of excited
bound states with energies near to or above the lowered ionization potential. Line profiles are
modelled using a Voigt profile, and inelude natural (including autoionization), Doppler, and Stark
broadening. Photoabsorption is treated via escape factors in PrismSpect. Additionally, multi-
angle radiative transfer models are available in SPECT3D. Two-temperature electron distribution
is assumed, single ion temperature may be different. User can choose from 4 pre-configured atomic
models: (1) Emission K-Shell Spectroseopy; (2) Emission Visible /UV /EUV Spectroscopy; (3) Back-
lighter K-Shell Spectroscopy and (4) Low Temperature Spectroscopy. The energy level scheme is
very detailed in Emission Visible/ UV /EUV Spectroscopy model. The disadvantage of these codes
is their diffienlt availability due to high priee that has to be paid yearly.

Cretin [18] is a multi-dimensional NLTE radiation transfer code. Cretin is freely available upon
request to interested researchers. Cretin treats radiation in three separate phases. Continuum
and lines are handled separately, and are both coupled to the atomic kineties and other physical
processes. The third phase, spectral radiation, is actually a diagnostic for efficiently construeting
detailed synthetic spectra. The speetral radiation accurately reflects the plasma conditions but
does not couple back to the rest of the simulation. All three phases are available in the usual set
of geometries (planar, cylindrical and spherical in 1D, Cartesian and eylindrical in 2D, Cartesian
in 3D). Cretin includes an advanced treatment of radiation transport but it eontains no atomic
data. The level structure and transition processes for each element included in a simulation are
specified in an external datafile. The database added to the code distribution is very simple aimed
for testing the code and also serves as an example for database construction by users. While this
allows a great flexibility in choosing a suitable atomic model, the construetion of atomic model for
spectroscopic diagnosties requires rather high qualification and extensive effort.

Modern plasma atomic physics, atomic kineties and lineshape package ALICE is described in
the recent paper [19].

11.3 Summary of the section

The first part of this section is devoted to a brief introduetion into the strueture of the electron cloud
of an atom (ion) and the ways how electron orbitals, wave functions and energy levels are ealenlated.
We have deseribed atomic structure caleulations via non-relativistie Schridinger equation with
relativistic corrections. While analytic solution can be found for atoms/ions with single bound
eleciron (H atom and H-like ions), the effective potential has no simply expressible form and
analytic solution for the wavefunction cannot be found for atoms (ions) with more than 1 bound
electron. Electrons with the same prineipal and orbital numbers are called equivalent electrons
and the list all pairs of those numbers defines confipuration. Confipuration-average energies and
radial wavefunetion can be determined via self-consistent field (SCF) iteration or via approximate
loecal-potential methods. Energy level splitting inside one configuration is cansed by the relativistic
coupling of orbital and spin angular momentum. We have deseribed two basic coupling schemes - LS
and jj coupling. The former scheme is characteristie for low-Z elements where Coulomb repulsion
dominates over spin-orbit interaction, while the latter is usual for high-Z elements where spin-orbit
interaction is dominant. However, some configpurations behave aceording to other coupling schemes
and some (intermediate coupling) eannot be assigned to any general scheme. The aceuracy of the
atomic structure model may be improved by including more configurations with the same parity
differing at most in 2 orbital from the given configuration.

When the wavefunetions are known, the probabilities of transitions may be caleulated. The
most intense radiative transitions are the electrie dipole (E1) transitions. As the electric dipole
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operator has odd parity, E1 transitions can oecur only between states with opposite parities. In
LS coupling, selection rules allow only transitions with no change of the total spin and with the
alteration of the total orbital quantum mumber by +£1 or 0 and at least either the initial or the
final total orbital quantum number is non-zero. However, these selection rules are often violated
as LS coupling is usually not ideal in practice. Magnetic dipole (M1) and electric quadrupole (E2)
transitions are typically weaker than E1 transitions and higher multipole transitions are observed
rarely. Continnum states have to be included in ealeulations of photolonization and radiative
recombination rates.

The second part of this section briefly describes the way how the populations of the ionization
and excitation states are calculated and how emission and absorption spectra are synthetized. The
spectrum of radiation is usually far from equilibrium Planckian distribution due to insufficient op-
tical thicknesses of laboratory plasmas. However, collisional processes may be much faster than
radiative ones in dense plasmas, and then the plasma may be near to LTE (local thermodynamic
equilibrium), where thermodynamic equilibrium is assumed for massive particles, but not for radi-
ation. Populations may be also caleulated easily in the opposite case of dilute plasmas where in so
called eoronal equilibrinm collisional deexeitation, three-body and dielectronie recombination can
be omitted. When neither of above models is valid, non-L'TE populations have to be caleulated via
collisional-radiative model solving rate equations. Various selections of included states are nsed.
For K-shell spectroscopy, a detailed description of the states of H-, He- and Li-like ions is used
while the other ionization stages are treated in a simplified way. EUV spectroscopy uses a detailed
model for all ionization stages but the atomic database is enormous for high-Z atoms.

The rates of all elementary processes can be taken from caleulations by the atomic structure
codes or simplified analytic formulas may be used. The prineciple of detailed balance is used for
calenlation of the rates of the reverse processes. In optically thin plasmas, the rate equations can be
solved locally, as the populations in each Lagrangian cell depend only on the history of density and
electron temperature in the particular cell. If optical thickness is taken into account, populations of
charge and energy states at different places are interdependent through the transport of radiation.
Simplified treatment of the radiation transport via escape factors is often used. When populations
of charge and energy states are known, emission and /or backlighter spectra can be caleulated. Line
broadening including natural, pressure and Doppler broadening of spectral lines has to be taken
into account. Pressure broadening in high-temperature plasmas is typically dominated by Stark
broadening. We have also presented a concise description of several computer codes intended for
caleulations of populations and for the spectrum synthesis.
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AIM

The aim of the Finite Element Method - FEM, Lab session is to provide to the attendants the

ability of understanding and implementing simulations of laser mater interaction problems.

1. LS-DYNA
LS-DYNA from Livermore Software Technology Corporation (LSTC), is a highly advanced

general purpose nonlinear finite element program that is capable of simulating complex real-
world problems. The distributed and shared memory solver provides very short turnaround
times on desktop computers and clusters operated using Linux, Windows and UNIX.
LS-DYNA is suitable to investigate phenomena involving large deformations, sophisticated
material models and complex contact conditions for structural dynamic problems. LS-DYNA
allows switching between explicit and different implicit time stepping schemes. Disparate
disciplines, such as coupled thermal analyses, Computational Fluid Dynamics (CFD), fluid-
structure interaction, Smooth Particle Hydrodynamics (SPH), Element Free Galerkin (EFG),
Corpuscular Method (CPM), Discrete Element Method (DEM) and the Boundary Element
Method (BEM) can be combined with structural dynamics. For pre- and post-processing, LS-
DYNA comes with the LS-PrePost tool. LS-PrePost can be utilized to generate inputs and

visualize numerical results.

1.1 Keyword format input files

An LS-DYNA input file is a text-file in so called Keyword format usually with a *.k, *.key or
*.dyn suffix, e.g. laser.k. A finite element model in LS-DYNA is built up by different keywords,
which is defined for all ingoing definitions and parameters in a model (e.g. *PART, *NODE). A
short overview of the basic structure of such an input file for a basic 1 element finite element

model is provided.
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Consider a cube consisting of one element with eight node points as shown in Figure 1.1.

Figure 1.1 Cube consisting of one element with eight node points

The *PART keyword is used to begin the definition of the finite element model. The keyword
*PART contains data that points to other attributes of this part, e.g. material properties.
Keywords for these other attributes, in turn, point elsewhere to additional attribute definitions.

The organization of the keyword input for the cube looks like this:

*PART
S# pid secid mid
e 1 | 1| 1
*SECTIONstEiE///
SH# secid elform
1 1
*MAT ELASTIC
S mid | ro 8 pr
1| 7850.0 2.1 0ETT 0.3
*ELEMENT SOLID
SH eid pid nl n2 n3 n4 n5 no n7 ng
1 It i 2 4 3 5 6 8 7
*NODE T
$4 nid , — x v .
0.0 0.0 0.0
) 1.0 0.0 0.0
3 ;0 AL 20 0.0
4 1.0 1.0 0.0
5 0.0 0.0 g i)
6 1.0 0.0 1440
! 0.0 140 1.0
8 1.0 1.0 1.0

A brief description follows:
*PART: We have one part with identification pid=1. This part has attributes identified by section

identification secid=1 and material identification mid=1.
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*SECTION_SOLID: Parts definitions that reference secid=1 are defined as constant stress 8
node brick elements (elform=1).

*MAT_ELASTIC: Parts definitions that reference mid=1 are defined as an elastic material with
density, Young’'s modulus and Poisson’s ratio.

*ELEMENT SOLID: The element with identification eid=1 are defined by nid=1 to nid=8 and
belongs to pid=1.

*NODE: The node identified by nid has coordinates x,y,z.

Boundary conditions and time dependent loads are also set by keywords and are usually
applied on nodes, elements, segments or parts. Set definitions are often used to define groups
of these entities. Since all loads are time dependent, curves need to be defined that states
time vs load unit (force, pressure etc.).

One example of defining boundary conditions and loads on the cube looks like this:

*BOUNDARY SPC SET

S# hsid cid dofx dofy dofz dofrx dofry dofrz
i 0 0 1 0 1) 0 1
*SET_NODE LIST
S# sid
il
S# nidl nid2 nid3 nid4
1 2 5 6
*LOAD SEGMENT
ls# 1cid sf at nl n2 n3 n4d n5
1 i {0 0.0 4 8 il 3 0
*DEFINE CURVE
S# lcid
,,,7’ 1
S# al ol
0.0 0.0
1.0 10.0

About the keywords above:

*BOUNDARY_SPC_SET: The node set with identification nsid=1 are constrained in y-
translation and x- and z-rotations.

*SET_NODE_LIST: This keyword defines that node 1, 2, 5 and 6 belongs to node set sid=1.

*LOAD_SEGMENT: A pressure load is applied on a segment that are defined by node 4, 8, 7
and 3.
*DEFINE_CURVE: The curve consists of two points that defines the time vs pressure. This

curve with identification Icid=1 is used for the load.
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1.2 Consistent units
On the table below are presented consistent units for using LS-DYNA. The inappropriate
selection of consistent units is one of the most common error done by the user.

Consistent units
Definition of a consistent system of units (reguired for LS-DYNAY}:

- 1 force unit = 1 mass unit * 1 acceleration unit
1 acceleration unit = 1 iength unit / {1 time unit)*2
1 density unit = 1 mass unit / {1 length unit)*3

The following table provides examples of consistent systems of units. As points of reference, the mass density and Young's Modulus of steel are
provided in each system of units. "GRAVITY" is gravitational acceleration.

MASS LENGTHTIMEFORCE STRESS ENERGY DENSITYYOUNG'SJoubh.  GRAVITY
kg m s N Pa J 7.82e+032.07e+11 1565 9.806

kg cm S 1.0e-02N 7.83e-03 2.07e+09 1.56e+03 9.806e+02
kg cm ms 1.0e+04N 7.83e-03 2.07e+03 1.56 9.806e-04
kg cm us 1.0e+10N 7.53e-03 2.07e-03 1.56e-03 9.506e-10
kg mm ms kN GPa kN-mm 7.83e-06 2.07e+02 1565 9.506e-03
g cm s dyne dynelcm® erg 7.83e+002.07e+12 1.56e+03 9.806e+02
g cm us 1.0e+07 NMbar 1.0e+07 Ncm7.83e+002.07e+00 1.56e-03  9.506e-10
g mm s 1.0e-06 N Pa 7.83e-03 2.07e+11 1.56e+04 9.806e+03
g mm ms N MPa N-mm 7.83e-03 2.07e+05 1565 9.806e-03
ton mm s N MPa N-mm 7.83e-09 2.07e+05 1.56e+04 9.806e+03
Ibf-s*in in s Ibf psi Ibf-in 7.33e-04 3.00e+07 6.16e+02 336

slug ft s Ibf psf Ibf-ft 1.52e+014.32e+09 51.33 3217
kgf-s¥mmmm S kaf kgf/mm*  kgf-mm 7.93e-10 2.11e+04 1.56e+04 9.806e+03
kg mm s mN 1.0e+03 Pa 7.83e-06 2.07e+08 9.806e+03
4] cm ms 1.0e+1N 1.0e+05Pa 7.83e+002.07e+06 9.806e-04

Table 1.1 Consistent units using LS-DYNA

2. LS-PrePost

LS-PrePost is an advanced pre- and post-processor designed specifically for LS-DYNA. It is
developed for Windows, Linux and Apple and it is free to download from the web link
http://ftp.Istc.com/anonymous/outgoing/lsprepost/4.5/.

LS-Prepost main functions contain:
o Full support of LS-DYNA keyword files
e Full support of LS-DYNA result files
e Robust handling of geometry data (new CAD engine)

e Pre-processing (meshing, model clean-up, entity creation)
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e Post-processing (animation, fringe plotting, curve plotting)

2.1 Input and output files
Input
FEM: LS-DYNA Keyword, Nastran, I-DEAS Universal, PAM-CRASH, RADIOSS, ABAQUS
CAD: IGES, STEP
ASCII: glstat, matsum, etc.
Binary: d3plot, binout, etc.
Output
FEM: LS-DYNA Keyword, Nastran
Image: PNG, TIFF, BMP, GIF, JPG, PostScript
Movie: AVI, MPEG, Animated GIF, JPEG
XY Data: CRV, CSV, XML o CAD: IGES, STEP, STL
Other: Post.db, Project File

2.2 Mouse and Keyboard
Dynamic Model Operation

Rotate: Shift + Left-click

Translate: Shift + Middle-click

Zoom: Shift + Right-click/Scroll-wheel

Graphics Selection
Pick (single): Left Click o Area (rectangle): Left-click + Drag
Poly (polygon): Left-click at corners / Right-click to finish

List Selection
Multi-Select: Left-click + Drag / Ctrl + Left-click

2.3 Graphical user interface

The graphical interface of LS-PrePost is shown in Figure 2.1. On the right hand side, you
can see the main toolbar. When clicking on one of these, a sub-toolbar just to the left will be
shown. That is the location where you'll find most of the tools needed to create/modify/delete
entities in your model.

In the bottom toolbar, are found the tools which are the most commonly used to determine

how LS-PrePost should render mesh/surfaces, orient the model, etc. There are a couple of
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the drop-down menus on the top left corner that you will use more or less frequently:

File/View/Application/Settings. The Floating Toolbar is used to toggle between different views.

Fie M View Geometry FEM Application Settings Help

e

&

Menus St
S

File management & preferences Floting Toolbar 5:;

Movable semitransparent

Right Toolbar

Acces to pre- and postprocessing tools

Graphics Viewport .

Command Line Bottom Toolbar

Type in operation command Model rendering controls

Message Window

Prompt message

B2 99 @ 9 @ # @ &'@ . VU |9 ® %EZ@.@.“;J{G'W ? =

- X ¥ & 5 4
Ot | Hacle |Shul| viEle wiEle Fest Edge Gid | Mesh | Shonk Secton Frin el |[EdgGs) Shaceo Weceo | SHCW Clew Aucen 2o e Rome | Perpp Home AGAl Sacol Anim Sean Resart Fiot

Section Mode

Figure 2.1 Graphical interface of the LS-PREPOST

Fast Renderer

2.4 Menus

In this section are presented the useful menus for the user, the File Menu, the Geometry Menu
and the FEM menu.
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File Menu
New - Launch a new session of LS-PrePost, all model/data will be
File | Misc. View Geometry FEI ClOSEd

New Open — Open file (new model created for each file opened)

Bpen * Import — Import file (adds keyword data to current model)

Import ’

SR ,  Recent — Open recent files (stored in /user/.Ispp_recent)

Savi , Save - Over-write current Keyword or Project file

Save As » Save As - Save any of the following file formats using advanced

Update Crl+U options: Keyword, Active Keyword (visible data), Project, Post.db

Run LS-DYNA (condensed d3plot data), Geometry, Keyword and Project (using the
same file name).

Print... Ctrl+P .

L e Update — Load new d3plots for run in progress

Exit CrieX Run LS-DYNA - Pop up LS-DYNA job submission dialog, currently

b only limited to the same local machine LS-PrePost is running

Print... — Launch printing interface (send to printer or image file)
Movie... — Launch movie generation interface
Exit — Exit LS-PrePost

Save and Exit — Save data to current file and exit LS-PrePost

Figure 2.2 File menu

Geometry Menu

Geometry | FEM Application S Reference Geometry — Access tools for creating and editing refer-  »~ i)

[E] Reference Geometry  » | €NCE geometry (Axis, Plane, Coordinate System, Point, Reference RefG...
Geometry Edit) V
Y cune > , " T
Curve — Access tools for creating and editing curves (Point, Line, Cir- Curve
&7  Surface "' | cle, Circular Arc, Ellipse, Elliptical Arc, BSpline Curve, Helix, Compo- P, Yod
g Solid » | site Curve, Break Curve, Merge Curve, Bridge Edge, Smooth Curve, Surf
Middle Curve, Morphing Curve, Fillet Curve, Parabola, Hyperbola, %
TP Geomety Toois " | Function, Polygon, Convert, Sketch) Solid
Surface — Access tools for creating and editing surfaces (Plane, Cyl- g

inder, Cone, Sphere, Torus, Ellipsoid, Fill Plane, Extrude, Revolve, =

Sweep, Loft, N-Side Surface, Patch Surface, Bridge Two Faces, Com- ‘@
bine Faces, Fit From Points/Mesh, Middle Surface, Surface Morphing, Mesh

Fit Primary Surface, Break Surface) =
Solid — Access tools for creating and editing solids (Box, Cylinder, M:;e'
Cone, Sphere, Torus, Extrude, Revolve, Sweep, Loft, Fillet, Chamfer, E:TJO ‘
Draft, Thicken, Wedge, Boolean, Prism) =
Geometry Tools — Access other geometry tools (Delete Face, Blank Postj
Entity, Extend Curve, Extend Face, Intersection, Offset, Project, Re-
place Face, Stitch Faces, Trim, Transform, Reverse Direction, Copy ':’Ss
Entity, Management, Heal, Topology Simplify, Measure, Text Object, @
Array flow) &
MdChk
(£ )

18
Favorl

Figure 2.3 Geometry menu
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FEM Menu
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| FEM | Application Settings - Element and Mesh — Access mesh creation tools (Shape

\‘lé Element and Mesh ’

‘; Model and Part »
% Element Tools ’
Post »

Mesher, Auto Mesher, Solid Mesher, Block Mesher, N-Line
Mesher, 2D-Mesher, Tetrahedral Mesher, Blank Mesher, BulkF
Mesher, Element Generation, Node Editing, Element Editing,
Nurbs, Mass Trimming, Spot Welding, SPH Generation, Disc
Sphere Generation, Multiple Solver Mesh, Result Mapping)

Model and Part — Access model and part tools (Assembly and
Select Part, Keyword Manager, Create Entity, Part Data, Display
Entity, Reference Check, Renumber, Section Plane, Model Selec-
tion, Subsystem Manager, Group, View, Part Color, Appearance,
Annotation, Split Window, Explode, Lighting Setup, Reflect Model,
Trace Light)

Element Tools — Access element tools (Identify, Find, Blank,
Move or Copy, Offset, Transform, Normals, Detach, Duplicate
Nodes, Node Editing, Element Editing, Measure, Morph, Smooth,
Part Trim, Part Travel, Edge Face, Regionalize)

Post — Access post-processing tools (Fringe Component, Fringe
Range, History, XY Plot, ASCII, Binary Output, Follow, Trace,
State, Particle, Circle Grid, Chain Model, FLD, Output, Setting,
Vector)

Figure 2.4 FEM Menu

3. Getting started

3.1 Purpose

Model
oy
EleTol

&

Mg
MS

&
MdChk
e

.

Favo‘rl
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The purpose of this tutorial is to get familiar with the pre- and post-processing tools in LS Pre-
Post and also the basics of the LS-DYNA solver.

3.2 Problem Description

Consider the deformation of a cube on the ground with an applied pressure on the top surface.

The task is to compute the vertical displacement of the cube due to this pressure.

p =10 MPa

Material properties

Density, p 7850 kg/m?3
'Young’s modulus, E 210 GPa
Poisson’s Ratio, v 0.3 0.3

1m
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3.3 Data files and unit system
The code can be found in cube_results.k

The S2 unit system is used in this tutorial

S1 S2
length meter millimeter
time second second
mass kilogram tonne
force Newton Newton
Young’s modulus of stecl 210.0E+09 | 210.0E+03
density of stecl 7.85E+03 7.85E-09
gravitation 9.81 9.81E+03

3.4 Preparation LS-PrePost
The most common way to work with/open LS-PrePost is to have a short-cut on the desktop
directly. This gives you control over which version of LS-PrePost you would like to use and

you can easily update LS-PrePost separately.

3.4.1 View settings

In LS-PrePost, go to View > Toolbar and activate Text and Icon (Right) |v| it

v | Legend

\'f Time Stamp
v | Triad

different toolbars. pert

Ii" Feature Tree

Check SO you can see your Airbag NodeRG

Airbag ShellRG

Floating Toolbar in the LS- _ Soende
[¥] 150 View
PrePost window. "~ hoimPlye
m Shortcut Toolbar
Geom ID
Active Label

and Text and Icon (Bottom). This is done to easier navigate through the

Dimension
Fringe MinM

If not, activate it by clicking on Opti > ISO View in the bottom toolbar. & @ | q

Opti | HidEle | ShaEle | Viel

v v v v
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3.5 Create model

3.5.1 Geometry and mesh

Click Mesh > ShapeM (always use the menu on the right side,

Eﬁ";m_a"xﬁs‘;"dﬁ BV if nothing else is mentioned).
(® Region () Define Box

pMin || PMax . Enter the values as in the picture to create a 1000x1000x1000
X 0 1000
) 0 1000
z 0| 1000 . Set Target Name to Cube.

(® Number () Size

mm solid cube with two elements in the x-, y- and z-directions.

” z . Click Create, Accept and then Done.

Vy 2
Vz 2

4 4 4
-

If you can’t see your mesh, activate Mesh in the bottom toolbar.

Gap

Target Name W‘
Target Part ID 1
Start Element ID 1
Start Node ID 1

Create Reject

Done

&
3.5.2 Boundary conditions
Apply boundary conditions to fix one side of the cube:
e Click Model > CreEnt
¢ In the Entity Creation box, double-click on Boundary and click Spc in the dropdown
that appears.
e Select Cre
e Set shall be activated.
e Select XOZ as Sym Plane, Y, RX and RZ will then be activated. The boundary
conditions will then have a translational constraint in global y —direction and rotational
constraints about x- and z-axis.

o From the ISO-views on the top of the screen, click at the one called Top.
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=~ Airbag
ShellRefGM

[#- Application

=-Boundary

Spc

Prescribed Motion(BPM)
(- Constrained
(- Contact
[#- Damping
(- Database
(- Define
(- Element
(- Initial
(- Load
- Rigidwall
(- Set Data

(O Show @cCre (OMod O Del

bel: None

Auto Merge Tra
[ ¢ylindrical €5 7
Symplane |X0Z[010101] v
X Z RX RY RZ
] (] [
[IBirth 0.0
Death 1.0E+20
CID

NSID 1| Newld

Done

Check that your coordinate system looks like the one above. To show the coordinate system,

click Opti and activate Triad.

()selt ()Frin
(") Sphe (_)Plan

o] Type any
[Jiabel selection [ ]3DSurf
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(®) ByNode

This box shows alternatives to select the nodes. Select

Area.

«  Select the nodes in the yellow square by making

a box with the mouse.

. A node set will be created from the nodes that

were chosen, NSID = 1 in Entity Creation indicates

that it will get an Id = 1.

«  Click Apply, then Done in the Entity Creation

box.

The nodes are now constrained.

- Erasmus+
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3.5.3 Apply the load
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For loads, a curve must be defined that states the variation of the load over time. Click Model

> Keywrd. In the dialog window that opens, there one can change between Model and All.

Model shows the keywords that already have been created. All shows all possible keywords

that are available in LS-DYNA.

Select All at the top of Keyword Manager window. Double-click DEFINE > CURVE. Name the

curve Curve — Pressure for example. All titles are optional, but it is good practice to make

use of them to make the model clear and structured. The points for the curve will be written

in Al and O1:
*DEFINE_CURVE_(TITLE) (0)
TITLE
Curve - Pressure
1 LCID SR SFA SFO OFFA
0 vi10 1.0 0.0
Repeated Data by Button and List
Al o1
0.0 0.0
» Data Pt.
Replace
Delete
ChangeXY

e Write 0 and 0O, Click Insert.

e Then 1 and 1, Insert.
e Finally, 1.1 and 1, Insert.
e Click Accept

OFFO DATTYP LCINT
0.0 0 vl o
Load XYData
Insert Plot Raise
Help New Padd
Copy Paste

It is important that the curve extends beyond the end time of the simulation. The simulation

will have the termination time 1 s (will be set later). Therefore, the last point of 1.1 was added.

*DEFINE_CURVE_(TITLE) (1)
TITLE
Curve - Pressure
1 LCD SIDR SFA SFO OFFA
;h 0 v || 1.0000000 1.0000000 0.0
Repeated Data by Button and List
Al o1
0.0 0.0
(1 00 00 Data Pt. 1
25 10 10
3 1.10000002 1.0 Replace
Delete
ChangeXY
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To view the curve, Click Plot. Close the PlotWindow (X or Quit) and the *DEFINE_CURVE

(Done) window.

et 0y & »‘(’M(:‘\x % D univeRsITY Queens Universit
W université s { & .g‘ ook 2““7 =
TELof Crete }: “BORDEAUX  }MIBIA e o Z’I/ Q

Define Curve

_A _Curve 1

Ordinate

0.2 04 0.6 0.8 1
Abscissa

Scale Attr Filter Print Save Load Oper Hide Close

Now click Model > CreEnt:

¢ In the Entity Creation box, double-click on Load and click on

Segment in the dropdown that appears.

e Click Cre
e Change Type: to LOAD_SEGMENT_SET.
e Give the load the title Pressure. ‘qx

o Click on LCID and select 1 Curve — Pressure, press Done.

o To obtain a pressure of 10 MPa, the scale factor SF will be used.

e Set SF to 10 (the pressure unit is MPa for the selected unit system).

e From the selection box, Pick can be activated.

e Click on the four segments on the top of the cube, as in the figure. If necessary,
deactivate entities with right mouse button.

e Click Apply, then Done

3.5.4. Termination
The end time for the simulation needs to be set. This keyword is almost always mandatory for
any simulation using LS-DYNA:

e Click Model > Keywrd.
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Double-click CONTROL > TERMINATION
Set ENDTIM to 1. The simulation will then last for 1 time unit, which is second in this
case.

Accept, then Done.

*CONTROL_TERMINATION (0)

1 ENDTIM ENDCYC DTMIN ENDENG ENDMAS
1.0 0 0.0 0.0 100000000.0

3.5.5 Output

The user must request all the data needed to post-process an analysis using LS-DYNA, before

starting the simulation. We will create something called d3plot, which gives complete output

states of the simulation:

Click Model > Keywrd.
Double-click DATABASE > BINARY_D3PLOT
Set DT to 0.1. This implies that results will be printed every 0.1 time unit.

Accept, then Done

*DATABASE_BINARY_D3PLOT (1)

1 DT LCDT BEAM NPLTC PSETID

0.1000000 0 e 0 0 0 L]

2 I00PT
0 v

3.5.6 Material properties

To create a material card to define the material properties:

Click Model > Keywrd

Double-click MAT > 001-ELASTIC. This is an isotropic elastic materia

Name the material to Steel.

Set the material properties RO, E and PR as in the figure below (also stated in section
1.3).

Click Accept, then Done.
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*MAT_ELASTIC_(TITLE) (1)

1 MID RO E PR DA DB NOT USED
1 7.850e-009 2.100e+005 0.3000000 0.0 0.0 0

3.5.7 Element properties

The element type to be used:
e From Keyword Manager, double-click SECTION > SOLID.
e Name the section to Cube
e Use ELFORM = 1, which is the default element formulation.

e Click Accept, then Done.

*SECTION_SOLID_(TITLE) (1)

TITLE
Cube
1 SECID ELFORM AET
1 1 vi0 v

Now apply the material and element properties to the part. Since the part already is created,
one can activate Model, instead of All, in the Keyword Manager. This makes it easier to
navigate through the list of keywords.
e Double-click PART > PART
e Click on the black dot next to SECID, defined entities will then be shown Select your
newly created section (1 Cube) and Accept and then Done
e Do the same thing for MID. Click Accept, then Done.

The result should be as shown below.

*PART_(TITLE) (1)

2 PID SECID MID EOSID HGID GRAV ADPOPT TMID

1 1 e 1 e 0 e 0 e 0 v| 0 e 0

3.5.8 Check the model before running

Now check for errors using the Model Check:
e From the top menu, click Application > Model Checking > General Checking.
e Switch to Keyword Check. The warnings and error should not exist.

e Click Done.
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Note that even if no errors or warnings occurs, the model can still be incomplete or wrong.
There is no way for any pre-processor to know your intended use of the model. Hence, the
loadings and boundary conditions can only be checked if they make any sense, not if they are

correct with respect to your load case.

Total Error(0) Warning(0) UnRef(0) UnDefined(0)
#-BOUNDARY(3) Error(0) Warning(0) UnRef(0) UnDefined(0)
- CONTROL(1) Error(0) Warning(0) UnRef(0) UnDefined(0)
[#-DATABASE(1) Error(0) Warning(0) UnRef(0) UnDefined(0)
- DEFINE(T) Error(0) Warning(0) UnRef(0) UnDefined(0)
#-ELEMENT(8) Error(0) Warning(0) UnRef(0) UnDefined(0)
- LOAD(1) Error(0) Warning(0) UnRef(0) UnDefined(0)
#-MAT(1) Error(0) Warning(0) UnRef(0) UnDefined(0)
- NODE(27) Error(0) Warning(0) UnRef(0) UnDefined(0)
#-PART(1) Error(0) Warning(0) UnRef(0) UnDefined(0)
- SECTION(1) Error(0) Warning(0) UnRef(0) UnDefined(0)
[#--SET(4) Error(0) Warning(0) UnRef(0) UnDefined(0)

[VIDo not Check Contacté‘ Recheck '! Model Clean H Write

\: Done

3.5.9 Save and run the simulation

It is preferable to run each simulation in a separate folder, thus create one before saving if you
have not done so, e.g. CUBE. First save the finished keyword model from LS-PrePost in the
new “CUBE” folder that you have created on your computer using File > Save As > Save

Keyword As. Use the file name cube.k, note the .k suffix.

To how to run the simulation, you will be given orders from the instructor.

3.5.10 Post processing
To visualize the results, you need to open the d3plot result file. This is done by selecting

File>Open>LS DYNA Binary Plot. Once Binart Plot is opened, the animate toolbar is the tool
Page | 189



- Erasmus+

that enables you to step through the different states of the simulation. Hold the mouse over

the different buttons, a text box will pop up and show information about the different

possibilities using the animator toolbar. Play around with the buttons to see what happens.

Note that the deformations are very small, therefore you will probably not notice that anything

happens with the cube.

[JEigen First|  1|Last| 12 /lnc| 1 [Time: 0 State:

[ Animate l“ . " '»'

30 S 9 B =

Post Settings

(® Displacement Scale Factor
(O Reflections

(O HIC/CSI Constants

(O Concrete Crack Width

(O Coordinate Scale Factor
[CJFLD E'Strain

[[JLocal B'Strain
[ClExtrapolate

® Whale (O Part

Displacernent Scale Factor:

5000/ | 1.0

% MY Mz

Done

Apply || Clear || Reset |
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To easier see what happens, you can scale up the deformations:
« Click Settings > Post Settings in the top menu.

- Select Displacement Scale Factor, write 5000 as the factor. X,
Y and Z shall be activated, which implies that the displacements
will be scaled in all directions.

« Click Apply, then Done.

Play around with the animate toolbar again and see how the cube

deforms.
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Sum Mats [Jalong Path

Then plot the deformation history as a curve:

History . .

O Global OPart « Click Post > History.

@® Nodal OR-Nodal « In the History Box, select Nodal > Y-displacement.

(O Elerment: (O Scalar Sel

Olnt Pt O Vol Fail . elect a

node on the top

X-coordinate
Y-coordinate
Z-coordinate
Total Coordinate

Z-displacement
<

X-displacement

A

Value:  Node
Ay
Global

Maxima

@®Popup (O Main

Plot MNew
Clear Raise
Done

of the box.
. Click Plot.
v
>
Split
Padd
Pop

In the Plot Window, Y-displacement vs Time are stated. Zoom by pressing Ctrl and make

a box with the mouse. A right-click will reset the window to original. Zoom in on the curve

around Time=1, click on the final state.

Note that the Y-displacement is -0.0476 mm.
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Y-displacement

'1.00,-0.0476)

When you click on the curve, information about the picked point will be stated in the Message

box, which is located at the bottom of the LS-PrePost window. If you double-click in this box,

a bigger box will pop up.

Close the Message box and Plot Window.

4 B @ ©® @ & . v
Clear AutCen Zoln ZoOut PicCen VCrd Iso Angle
I PROREU ITUUE %20

1D=26 pt:=12, abs=1.000003e+000, ord=-4.760742e-002

Now, click Post > FriComp> Ndv > y-displacement. Use the Animate toolbar and go to the

last state. The values in the Fringe Level shows that the maximum y displacement is -4.761e-

02 mm.
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Fringe Levels

| Stress | |x-displacement 0.000e+00

et e

| Ndv | |z-displacement 85
‘ ~ |result displacement : -
Resuft | |xy-displacement -1.428e-02 _

*—St — w-g@spl;cemeng -1.904e-02

rain | |xz-displacemen

s Bl velocity -2.380e-02

y-velocity -2.856e-02

I z-vel'tt)cit»; - -3.333e-02

result veloc

7 | x-acceleration -3.809e-02

| | y-acceleration -4.285e-02

| |z-acceleration .4.761e-02

" |result acceleration
e ne. | |-displacement
| | ry-displacement
| | rz-displacement
| | r-result disp

| | x-coordinate

| |y-coordinate
z-coordinate
residual x-force
residual y-force
residual z-force

3.5.11 Analytical solution

The analytical solution of the vertical displacement due to a 10 MPa pressure load is derived
from Hooke’s law.

. pl 10e®:1
Displacement = — =

- - -5 .
5T 510s0 4. 70e " m = 00476 mm

The simulation result should be nearly identical to the analytical solution.

4. Exercises

There are several possibilities to try out different features in LS-DYNA with this simple model.
What happens if you change:
« material?
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» boundary conditions?
« element formulations?
« |oad level?

References

e université
TEI of Crete W BORDEAUX

Fian S vy
VB W ok

T Rl = asrus -+

Tutorials taken from: https://www.dynasupport.com/tutorial/introduction-Is-dyna-Is-prepost-

for-explicit-and-implicit-analysis

https://www.dynasupport.com/manuals
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EXP 2: Laser matter interaction FEM
simulations - Tensile stress & thermal stress
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Tensile test

1.1 Problem Description

The task is to perform a tensile test on a flat specimen. The end of the specimen is constrained
while a prescribed motion is applied on the other end. The task is to compare the stress vs.
strain curve in an element when the uniaxial tension test is simulated using the explicit solver
in LS-DYNA.

Material properties

Density, p
7850kg/m?
Young’s modulus, E
210 GPa
WIDTH = 20 mm —/ Poisson’s Ratio, v 0.3
e Yield limit 250 MPa

Tangent modulus 1000MPa

1.2 Data files

The geometry that will be used - tensile_test.k. and the whole code tensile_test_results.k

2. Explicit structural analysis
2.1 Read geometry

Open tensile_test.k in LS-PrePost, which contains the geometry of the test specimen.

2.2 Material properties

LS-DYNA accepts, for most materials, input in terms of true stress vs. true strain. Normally an
experimental uniaxial tension test is performed and engineering stress and strain data are
obtained. Before these data are used as an input in a material model in LS-DYNA, they are
converted to true stress and strain. The curves behave as in the figure.

Engineering stress is the applied load divided by the original cross-sectional area of a material,
while true stress is the applied load divided by the actual cross-sectional area (changing area

with respect to time) of the specimen at that load.
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€

true stress-strain

Figure 2.1 Engineering and true stress-strain curves

To create the material card:
Click Model > Keywrd. Activate All in the Keyword Manager. Double-click MAT > 024-

PIECEWISE_LINEAR_PLASTICITY, which is an elasto-plastic material.
Define Yield stress SIGY and Tangent Modulus ETAN, which gives linear hardening.

4
Draw | MatDB || RefBy || Pick Add || Accept || Delete || Default || Done
["] Use *Parameter (Subsys: 1) Setting
*MAT_PIECEWISE_LINEAR_PLASTICITY_(TITLE) (024) (0)
TITLE ~
Steel 1
1 MD RO E PR SIGY ETAN AL TDEL
7.85e-9 210e3 3 03 250 | 1000 10.E+20 0.0
2die P Lcss | CSR 3
0.0 0.0 0 of 0 e 0.0 v
3 EPSL EPS2 EPS3 EPS4 EPS5 EPS6 EPS7 EPS8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4JESL ES2 ES3 ES4 ESS ES6 ES7 ES8
0.0 || 0.0 0.0 0.0 0.0 0.0 0.0 0.0
v
SIGY:=Yield stress. 2

Enter the title and the values as in the figure above and click Accept, then Done.

2.3 Element properties

To set the element formulation and properties do as follows:
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e Double click SECTION > SHELL in the Keyword Manager.

e Enter Specimen_shell as TITLE.

e SetT1to 1.5 and press Enter, T2-T4 will then be changed to 1.5 as well and this defines
the thickness of the nodes in every element.

e Click Accept, then Done.

Now go to Part in the Keyword Manager and assign the newly created material and section.
There one can also change the name of the part, to Tensile specimen for example. Click

Accept, then Done.

2.4 Boundary conditions
Apply the fixed boundary conditions as follows:

e Click on the Bottom view in the Floating

Toolbar.

o Click Model > CreEnt.
o Double-click Boundary > Spc, click Cre. Make sure that

Set is selected in the Entity Creation window.

o Select Area in the node selection window (Sel.Node).
° Make a box around the nine nodes as in the figure.
. Fix the nodes in X- and Z-translation and all rotations.

This is done by activating X, Z, RX, RY and RZ.
. Click Apply.

[~

Now create another boundary condition:

[« ~
& 2
[« 2
<&

Y
Ll

[«] >

¢ In the node selection window, write 80 in the ID box and press Enter. Write 87 and press

Enter. Two nodes will now be selected at the outer edges of the test specimen. Fix the

nodes in Y translation by only activating Y. _
o Click Apply.

o Close Entity Creation window.

Z RX RY RZ
0O O o O

€ <

X
L]
2.5 Prescribed motion/displacement
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For motions and loads, a curve must be defined that states the variation of the
load/displacement/velocity etc. over time.

First create the curve defining the motion:

¢ In the top menu, click Application > Tools > CurveGen

¢ Change Method to X-Y.

e Deactivate Smooth.

e Write X=0 and Y=0 (ignore the value of smooth)

e Click Insert. Then 0.01 and 1, Insert.

X Y []Smooth

0.011 1 50
e Finally, 0.011 and 1, Insert (the termination time

will be 0.01 s for this tutorial).

Insert Remove

0 0 lnear 50
0.01 1 linear 50
0.011 1 linear 50

e Change Curve Name to e.g. Motion. E
o Click Create, then Done. |
Note that the curve could alternatively have been created using DEFINE > CURVE in the
Keyword Manager. A curve created in CurveGen will contain a larger amount of points,
compared to a curve created by DEFINE > CURVE.

Now apply the motion to the end of the tensile specimen:

o Click Model > CreEnt.

o In the Entity Creation window, double-click Boundary

> Prescribed Motion.

o Select Cre. Change Type to SET and activate Pick.
o Make a box around the nine nodes as in the figure.
o Set DOF = 1 (X-translational as degree of freedom) and

VAD = 2 (displacement as the prescribed nodal quantity, there

Jd are possibilities to prescribe the nodal velocity or acceleration
t’x as well).
o Click on LCID and select the previously created curve.
e Set SF = 20, which implies that the node set will be moved 20 mm.

e Click Apply, then Done.

2.6 Set the termination time
To set the termination time:
e Click Model > Keywrd.
o Double-click CONTROL > TERMINATION.
e Set ENDTIM to 0.01. The simulation will then last for 0.01 seconds.
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e Click Accept and then Done.
2.7 Output
Here the output to be saved by LS-DYNA during the simulation is defined, first specify d3plot
output:

o Create d3plots.

e Click Model > Keywrd.

o Double-click DATABASE > BINARY_D3PLOT.

e SetDT =5e-4.

e Click Accept and then Done.

Since the task was to compare the stress vs. strain curve for an element with the material
curve, we want to obtain this data frequently. In the first tutorial (1-Getting Started) we used
the History command to plot information. The time-history graphs created by History, use
information found in the d3plot files. To obtain data more frequently we can specify which type
of data are of interest and how often it will be printed for selected elements. Therefore:

e Click Model > Keywrd.
¢ Double-click DATABASE > ASCII_option. We are interested in the stress and strains
in the elements, therefore activate ELOUT. On the same row, set DT = 5e-6.

e Click Accept, then Done.

The element/elements that we want to gather data from must be defined:
o Double-click DATABASE >
HISTORY_SHELL in the

Keyword Manager.

e Write, for example, shell element number 314 under ID1, which is an element close to
the center of the specimen.
e Click Insert, Accept, then Done.

e Check the model to see that everything looks okay.

2.8 Save
The model is now ready to be saved. File > Save As > Save Keyword As. Choose a folder
path and name your file tensile_test_model.k for example. Note that the folder path cannot

contain any spaces. Close LS-PrePost.
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2.9 Run the simulation

Run the simulation you will get information by the instructor.

2.10 Post processing
Open the d3plot in LS-PrePost from LS-Run or from the File menu of LS-PrePost. Start to
press the Forward button in Animate toolbar to see what happens with the specimen. Now
plot the stress-strain-curve from the elout file, first plot and save stress vs. time:

e Click Post > ASCII.

e Select elout* and click Load.

e Select Sh-314, Ip-1 or Ip-2 (doesn’t matter which integration point in this case) and

9Effective Stress (v-m).

e Click Plot.

e Inthe PlotWindow, click Save.

o Letthe Output Type be Curve file.

o Enter Stress as the Filename (also set correct folder path).

e Click Save (located at the bottom toolbar, see red square).

e Click Quit

400 LS-DYNA keyword deck by LS-PrePost
A’_///J‘Elementid
// A sn314 1p=1)
300 —
@ 200
o
=
@
x
100
0 1 1 1 1
0 2 4 6 8
Time (E-03)
SRS l Title | Scale | Attr | Filter | Print | Save [ Load Oper ‘ Hide | Close | Quit
oot Gmvest! (Output Type: | Curve file v| Output Interval: 1 vt f_n:
| id
‘; Al__||Tinterpolate [ curve Clip ® Points Value [ Frame
Rev  Jepes 1000 Amin Amax :z:'ﬁ":
ar
C i i ile_Test\ [] Timelis
o U ey
|——rilename: | stress |1 E1Maxgraph
[ Minmax

in
Show All Show Select Redraw I Save I Reset Done ["| Minorgrid

Now plot and save the effective plastic strain vs. time:
e Select 7-Yield Value (eps) instead of Effective Stress (v-m).
e Click Plot.

e Save the curve in the same way as for the stress, but name the curve Strain.
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e Close PlotWindow and ASCII

Now combine the above two curves (Stress and Strain) to plot the stress vs. strain:

e Click Post > XYPIlot.

(@ File () Window .
Stan e Activate Cross.

¢ Note that X-Axis is activated, select Strain in the top box and it will

popup under Curve Names.

Add | Remove Info
O show ® Cross e Click on Strain:1:Sh-314..... and it will be inserted in X:.
(®) X-Axis O Y-Axis

X: | Strain:1:5h-314(np=2001"

vi swsisaso00e| o gelact Stress in the top box and click on Stress:1:Sh-314... under

[l Auto match and clip

[l Interpolate | 1000 Il Curve Names and it will be inserted in Y:.
e Click Plot.

When you do this, Y-Axis will be activated.

Curve Names:

Curve Name Fifter:

(®) Popup () Main
| Plot || New Padd

Clear | Raise Pop

| Done

The curve shows effective plastic strain vs. effective stress (von Mises). The yield limit is about

250 MPa as was stated in the material model.

400 LS-DYNA keyword deck by LS-PrePost
Element id
/A/%)
- % A1
h

300
£ |_—{5.0149,265)
2
»
§ 200
»
3
2 L
-]
3
& 100

0 1 1 1 1
0.02 0.04 0.06 0.08 0.1 0.12
Yield Value (eps)

SRS I Title I Scale I Attr l Filter I Print [ Save I Load I Oper | Hide I Close | Quit

Let's check that the tangent modulus ETAN (1000 MPa) are correct as well. Click on two
points on the curve and calculate the tangent. Using 2 points in the figure gives:

377 MPa — 265 MPa
=999 MPa
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0.127 — 0.0149
2.11 Work to be done
1) For practice change the boundary conditions so that it is fixed on the right side and loaded

on the left side.

2) 3D Thermal stress problem. This problem addresses the unconstrained expansion of
a block due to heating. The model consists of one 8 node brick element at an initial

temperature of 10°C. The brick material is given a volumetric thermal generation rate. It

holds:
qVt =mcAT
Where:

volumetric heat generation rate q=10 W/m’

volume V=Im’

mass m=pV=(1)1)=1 kg
heat capacity c=1JkgC

time for heat generation t=3 see

The block increases in temperature by 30 C. The final block temperature is 10C + 30C = 40C.

A tangent coetficient of thermal expansion is defined by

A=20e-07*T

The thermal expansion can be calculated by
40 -
Al'= [2.0e-07+TdT = [1.0e - 07+ [/ =1.5¢ - 04
10

The problem should be specified as a coupled thermal structural analysis in the
(*CONTROL_SOLUTION) section.

LS-DYNA uses a tangent coefficient of thermal expansion, which is defined as the slope of
the thermal strain versus temperature curve for the material.

The mechanical mass scaled time step is set to 0.01 seconds (*CONTROL_TIMESTEP) and
the thermal time step is set to 0.1 seconds (*CONTROL_THERMAL_TIMESTEP). Explicit time
integration is used for the structural calculations and implicit time integration is used for the
thermal calculations. Implicit time integration is unconditionally stable and, therefore, a larger

thermal time step can be taken.
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Task: You will be given the LS-DYNA input file and the results. Your task is to
understand the building of the model and the usage of the keywords.
The following keywords are needed for the simulation:

*CONTROL_SOLUTION
$# soln nlg isnan Icint
2 0 0 100

The Keyword *CONTROL_SOLUTION is used to specify the analysis solution procedure
when there is thermal, coupled thermal or structural analysis is performed.

Variables:

Soln: Analysis solution procedure:

0: Structural analysis only,

1: Thermal analysis only,

2: Coupled structural thermal analysis.

*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas nosol
1.2 0 0.0 0.01.000000ES8 0
The Keyword *CONTROL_TERMINATION is used to set the termination conditions.

Variables:

endtim: It defines the termination time of the analysis. It is a mandatory variable for the LS-
DYNA software.

endcyc: It defines the maximum number of steps that will be analyzed, according to the step
time (dtstart) that we will set for out problem’s analysis. Always variable endtim is more
important and analysis will be terminated if we reach endtim value.

dtmin: It defines the minimum time between steps that is allowed. When the time step drops
to dtmin, LS-DYNA terminates. By default, is inactive.

endeng: This variable sets the maximum total energy change ratio that is allowable. If
succeeded analysis is terminated. By default, is inactive.

endmas: This variable sets the maximum total mass change ratio that is allowable. If
succeeded analysis is terminated. By default, is inactive.

*CONTROL_THERMAL_SOLVER

$# atype ptype solver cgtol gpt egheat fwork sbc
1 2 31.00000E-6 1 1.0 1.0 0.0

$# msglvl maxitr abstol reltol omega unused unused tsf
0 5001.0000E-101.00000E-4 1.0 1.0

The keyword *CONTROL THERMAL SOLVER sets options for the thermal solution in a thermal
only or coupled structural-thermal analysis. To use it is required the usage of the proper solver
(variable soln)in *CONTROL SOLUTION keyword.

*CONTROL_THERMAL_TIMESTEP
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$# ts tip its tmin tmax dtemp tscp Icts

0 0.5 0.0011.00000E-7 0.0139 100.0 0.5 0
The keyword *CONTROL THERMAL TIMESTEP sets timestep for a thermal only or coupled
structural-thermal analysis. To use itis required the usage of the proper solver (variable so1n)
in *CONTROL_SOLUTION keyword and the *CONTROL THERMAL SOLVER keyword.

*CONTROL_TIMESTEP
$# dtinit tssfac  isdo tslimt dt2ms Ictm erode msilst
0.0 0.6 0 0.0 0.0 0 0 0
$# dt2msf dt2mslc  imscl unused unused rmscl
0.0 0 0 0.0
The keyword *CONTROL_TIMESTEP sets the timestep for structural problem analysis.

dtini: This variable defines the initial timestep size. By default, is blank or 0 and LS-DYNA
determines initial step size.

*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid

0.0 0 0 100 0
$# ioopt

0
The keyword *DATABASE_BINARY_D3PLOT defines parameters for the output from entire
of the model. From these outputs by post processing them we will conclude to an final
presentable output of our solution analysis.

dt: In this variable we set the time interval between output states.

nr: In this variable we set Number of RUNning ReStart Files, RUNRSF, written in a cyclical
fashion. The default is 1, i.e., only one runrsf file is created and the data there in is overwritten
each time data is output.

npltc: In this variable we calculate DT = ENDTIME/NPLTC applies to D3PLOT and D3PART
only. This overrides the DT specified in the first field.

*DATABASE_GLSTAT
S# dt binary lcur ioopt
0.003 0 0 1

The keyword *DATABASE has many options to define to obtain output files containing results
information. One of them is the *DATABASE GLSTAT, which provide us with the global data
of the solution analysis of our model.

Dt : In this variable we se the time step between outputs. If is set to 0 then no output is
printed.
binary : Inthis variable we set the type for binary output.

1 : Data written to an ASCII file default for SMP LS-DYNA.

2 : Data written to binary database “binout”, default for MPP LS-DYNA.

3 : Both ASCII and binary outputs.
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*PART
$# title

$# pid secid mid eosid hgid grav adpopt tmid
2 1 1 1 0 0 0 1

The keyword *PART is essential for the model identification and characterization in the
solution analysis. Within it variables we combine various properties and messes to form the
parts we want to analyze. To form a part in LS-DYNA we combine the identity of a formed
mess with the identity of the material, with the identity of the used Equation Of State for that
material, with the thermal properties identity, etc.

pid: In this variable we put the part id number

secid: In this variable we put the section id number, defined in a *SECTION keyword.

mid: In this variable we put the material id number, defined in a *MAT keyword.

eosid: In this variable we put the Equation Of State id number, defined in a *EOS keyword.
tmid: In this variable we put the thermal properties id number, defined in a *MAT_THERMAL
keyword.

*SECTION_SOLID
$# secid elform aet
1 1 0
In this keyword, we define section properties for solid continuum and fluid elements.

secid: In this variable we put the section id number, defined in a *SECTION keyword.
elform: Element formulation options:
-2: Fully integrated S/R solid intended for elements with poor aspect ratio, accurate
formulation
-1: Fully integrated S/R solid intended for elements with poor aspect ratio, efficient
formulation
0: 1 point corotational for *MAT_MODIFIED_HONEYCOMB
1: Constant stress solid element: default element type.
2: Fully integrated S/R solid
3: Fully integrated quadratic 8 node element with nodal rotations
4: S/R quadratic tetrahedron element with nodal rotations
5: 1 point ALE
6: 1 point Eulerian
7: 1 point Eulerian ambient
8: Acoustic
9: 1 point corotational for *MAT_MODIFIED_HONEYCOMB
10: 1 point tetrahedron
11: 1 point ALE multi-material element
and various others.
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*MAT_ELASTIC_PLASTIC_THERMAL
Task: Determine the usage of this material keyword.
*MAT_THERMAL_ISOTROPIC
$# tmid tro tgric tgmult tlat hlat
1 0.0 0.0 0.0 0.0 0.0
$# hc tc
560.03.70000E-5

This keyword *MAT_THERMAL_ISOTROPIC defines thermal isotropic properties to the
material that selects it.

tmid: In this variable we set the unique ID number of the thermal material identification.

tro: In this variable we set the thermal density of the material. If set to 0.0 then it is equal to
the structural density.

hc: In this variable we set the specific heat of the material

tc: In this variable we se the thermal conductivity of the material.

*ELEMENT_SOLID

$# eid pd nl n2 n3 n4d n5 n6 n7 n8
1 1 4313 4309 5283 5313 4308 4308 5138 5138
2 1 5313 5283 5284 5314 5138 5138 5139 5139
3 1 5314 5284 5285 5315 5139 5139 5140 5140

In this keyword *ELEMENT _SOLID we define each element of the created mess of our model
that we are going to perform solution analysis. Elements are defined in three-dimensional solid
elements including 4 noded tetrahedrons and 8-noded hexahedrons. Most common are the 8-
noded hexahedrons.

eid: In this variable we set the unique ID number of the element.

pid: In this variable we set part ID number from with this element comes from.

nl — n8: In these variables we set the nodal points ID that consists the element. If we use
tetrahedron shape for our elements then we set only n1 — n4 nodal point variables.

*NODE

$# nid X y z tc rc
1 -0.027596 0.019934 0.2715 0 0
2 0.0576701 1.0 0.2715 0 0
3 -0.027596 0.019934 0.1285 0 0

In the keyword *NODE we define the nodes of our model. We also can define boundary
conditions for that nodes. Nodes are defined by setting their coordinates at X-Y-Z axis.

nid: In this variable we set the unique node ID number
X: In this variable we set the X coordinate of the node
y: In this variable we set the Y coordinate of the node
Z. In this variable we set the Z coordinate of the node
tc: In this variable we set the translational constraint:
0: no constraints,
1: constrained x displacement,
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2: constrained y displacement,
3: constrained z displacement,
4: constrained x and y displacements,
5: constrained y and z displacements,
6: constrained z and x displacements,
7: constrained x, y, and z displacements.
rc: In this variable we set the rotational constraint:
0: no constraints,
1: constrained x rotation,
. constrained y rotation,
: constrained z rotation,
: constrained x and y rotations,
. constrained y and z rotations,
: constrained z and x rotations,
: constrained x, y, and z rotations.

~NOoO O~ WN

*INITIAL_TEMPERATURE_NODE

It defines the initial temperature for the selected nodes.

References

Tutorials taken from: htips://www.dynasupport.com/tutorial/introduction-Is-dyna-Is-
prepost-for-explicit-and-implicit-analysis

https://www.dynasupport.com/manuals

Page | 208


https://www.dynasupport.com/tutorial/introduction-ls-dyna-ls-prepost-for-explicit-and-implicit-analysis
https://www.dynasupport.com/tutorial/introduction-ls-dyna-ls-prepost-for-explicit-and-implicit-analysis

Page | 209

f"?? i T i A‘ S uversiy Quens Uniers
e N vpmie, . (8 F ek @

- Erasmus+

PowerLaPs

Innovative Education & Training in High Power Laser Plasmas

Computational Modeling & Simulations in Laser Matter Interactions

EXP 3: Laser matter interaction FEM

simulations- Laser heating of a metal

E. Kaselouris, A. Baroutsos, V. Dimitriou

Erasmus+

HELLENIC
MEDITERRANEAN
UNIVERSITY



-

‘v‘ﬂ{fz " . & “Tc"m",‘ SR viversiTy usens Universiy
e N viemie R (8 @k @

- Erasmus+

1. Laser heating of a metal

1.1 Problem Description

The heating of a AISI H13 steel workpiece is examined during irradiation by a CW continuous
laser. 3D transient coupled thermal-structural numerical simulations take place using LS-
DYNA.

The workpiece is defined as a deformable body. The laser beam is modeled as a Gaussian
moving heat source. For the dynamic elastoplastic behavior of the workpiece: a Johnson-Cook

constitutive strength material model will be used.

2 Governing equations

2.1 3D transient heat conduction equation

(6T+ v oT
P\ Bt

d Ty | _
o a) =3 (K(T) E) +Q —arTo(3A + 2u)é;;

1)

i=Xx,y,z coordinates, t time

p the density, ¢ the specific heat, VX the laser scanning speed along the x-direction

k thermal conductivity and Q the power generation per unit volume

T temperature, TO ambient temperature, a thermal expansion coefficient,

A, W lame coefficients, &;; strain rate

2.2 3D transient mechanical equation

0%U; 0%
P oz = F i

9 (aU, oT
+ (/1 + ﬂ)a(ﬁ) - (3/1 + ZM)CZTE (2)

U the displacement, p the density, A and u lame coefficients, a thermal expansion coefficient

_1(ou; oy,
i =2\ay; " au; @A)

Oij = Z‘Ll.Sij + Aekk(sij - (3). + 2,u)aT (T - TO)6L] (4)

The strain tensor

The stress tensor
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2.3 Modeling of laser heat source
The Gaussian distribution of the q(r) absorbed laser heat flux or laser power intensity is given
by:

_ 2,2
2Ptot _(2((x thZ) +z%) )

q(x,z) = TI.'TbZ e T )

where Py is the total absorbed power and ry is the laser beam radius. It also holds that:

Piot = NPinc (6)

where Pinc is the incident laser power, n is the average absorptivity of the workpiece material
and t is the time.

The laser heat flux is applied to the top surface of the workpiece. The boundary condition on
the top laser irradiated surface takes into account the heat flux, convection and radiation and
it holds:

—kgy=a(a2) —h(T = Ty) — oe(T* ~ T§) )

where h is the convective heat transfer coefficient, To is the ambient temperature, o is the
Stefan—Boltzmann constant (5.67 108W/m?K#) and ¢ is emmisivity. Heat flux is considered to
be normal to the laser irradiated surface, while the motion of the laser beam is considered
along the X-direction.

Moreover, the laser beam diameter is considered to be 250 pm, the laser power is 98.2 W
and the heat flux is 2 kW/mm?,
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3 Finite Element Modeling
The workpiece dimensions are 3.0 x 0.4 x 0.5 mm. The workpiece is modeled with

approximately 115,000 solid elements. The mesh of the workpiece is shown in Figure 1.

LS-DYNA keyword deck by LS-PrePost

Figure 1.1 Mesh and geometry of the workpiece

Regarding the initial and boundary conditions, all translations and rotations of the bottom and
the left side of the workpiece are fully constrained and Z translations at its front and back side

are also constrained. The ambient temperature is assumed to be 20 °C.

3.1 Material model
The adoption of a suitable material-constitutive model for the workpiece is critical. The

selected material model is the Johnson-Cook (J-C), a purely empirical one that takes into
account the effect of plastic strain, strain rate and temperature. The flow stress is expressed

as:

(A+ Be™)(1 + Cl é)(1 T_Tr)m
g, = & n— -
Y £ Tn — T @8)

where ¢ is the equivalent plastic strain, /¢, is the dimensionless plastic strain rate, £¢,=1s" is
a reference strain rate used to normalize the strain rate, A is the yield stress, B is the hardening
constant, C is the strain rate sensitivity, n is the hardening exponent, m is the thermal softening
exponent, Tn, is the melting temperature of the workpiece and T, the room temperature. The

material constants A, B, C, n, m are determined from experimental results.
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3.2 Material properties
The physical properties of the AISI H-13 steel workpiece are listed in Table 1 for room

temperature. The J-C material model and failure parameters of the workpiece are listed in
Table 2.

Property Workpiece
Density [kg/m?3] 7800
Elastic modulus [GPa] 211
Poisson’s ratio [-] 0.28
Specific heat [J/kg K] 560
Thermal conductivity [W/m K] 37
Thermal expansion [10°C] 10.4
Melting Point [K] 1700

Table 1.1 Mechanical and physical properties of AlSI H-13 in room temperature

Material model A [MPa] B [MPa] n [-] CI[] m [-]
Parameters
Values 674.8 239.2 0.28 0.027 13

Table 1.2 Johnson-Cook material model and failure parameters of AISI H-13

Furthermore, a mean value of absorptivity n=0.5 and a mean value of emmisivity £=0.4 are
considered based on the work of Singh et al. For the convectional heat transfer to the
surrounding air, a heat transfer coefficient of h=5 W/m?K is also considered. The laser

scanning speed is considered to be 150 m/min.

4 Work to be done
1) Read the keywords of the code so you can understand what each of them does.

2) From the code that you will be given identify first which consistent units you use.
3) Create a mesh that will have dimensions 3 x 0.4 x 0.5 mm along the x,y,z directions and
the discretization will be 225 x 30 x 30 respectively resulting in a total number of 202500

elements using the Shapemesher command.
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Figure 1.2 Shapemesher

4) Constrain all the translations and rotations at the bottom and the left side of the workpiece.
Moreover constrain the Z translations at its front and back side. For this purpose you will
need to use the keywords *BOUNDARY_SPC_SET, *SET_NODE_LIST.

5) Define the surface where the laser heat flux is applied. This will be on the top of the
workpiece. Use the *SET_SEGMENT command.

6) Then your work will be examined by the instructor and he will further help you to complete

the simulation.
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The following keywords needed for the simulation are explained:

*CONTROL_SOLUTION

S# soln nlqg isnan lcint
2 0 0 100

The Keyword *CONTROL_SOLUTION is used to specify the analysis solution procedure
when there is thermal, coupled thermal or structural analysis is performed.

Variables:

Soln: Analysis solution procedure:

0: Structural analysis only,

1. Thermal analysis only,

2: Coupled structural thermal analysis.

*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas nosol
1.2 0 0.0 0.01.000000E8 0

The Keyword *CONTROL_TERMINATION is used to set the termination conditions.

Variables:

endtim: It defines the termination time of the analysis. It is a mandatory variable for the LS-
DYNA software.

endcyc: It defines the maximum number of steps that will be analyzed, according to the step
time (dtstart) that we will set for out problem’s analysis. Always variable endtim is more
important and analysis will be terminated if we reach endtim value.

dtmin: It defines the minimum time between steps that is allowed. When the time step drops
to dtmin, LS-DYNA terminates. By default, is inactive.

endeng: This variable sets the maximum total energy change ratio that is allowable. If
succeeded analysis is terminated. By default, is inactive.

endmas: This variable sets the maximum total mass change ratio that is allowable. If
succeeded analysis is terminated. By default, is inactive.

*CONTROL_THERMAL_SOLVER

S# atype ptype solver cgtol gpt egheat
fwork sbc

1 2 31.00000E-6 1 1.0
1.0 0.0
S# msglvl maxitr abstol reltol omega unused
unused tsf

0 5001.0000E-101.00000E-4 1.0

The keyword *CONTROL THERMAL SOLVER Sets options for the thermal solution in a
thermal only or coupled structural-thermal analysis. To use it is required the usage of the
proper solver (variable soln) in *CONTROL SOLUTION keyword.
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*CONTROL_THERMAL_TIMESTEP

S# ts tip its tmin tmax dtemp
tscp lcts

0 0.5 0.0011.00000E-7 0.0139 100.0
0.5 0

The keyword *CONTROL THERMAL TIMESTEP sets timestep for a thermal only or coupled
structural-thermal analysis. To use itis required the usage of the proper solver (variable so1n)
in *CONTROL_SOLUTION keyword and the *CONTROL THERMAL SOLVER keyword.

*CONTROL_TIMESTEP

S# dtinit tssfac isdo tslimt dt2ms lctm
erode mslst
0.0 0.6 0 0.0 0.0 0
0 0
S# dt2msf dt2mslc imscl unused unused rmscl
0.0 0 0 0.0

The keyword *CONTROL_TIMESTEP sets the timestep for structural problem analysis.

dtini: This variable defines the initial timestep size. By default, is blank or 0 and LS-DYNA
determines initial step size.

*CONTROL_THERMAL_NONLINEAR

S# refmax tol dcp lumpbc thlstl nlthpr
phchpn

100 0.0 1.0 0 0.0 0
0.0

The keyword *CONTROL_THERMAL_ NONLINEAR set parameters for a nonlinear thermal or
coupled structural-thermal analysis. The control card, *CONTROL_SOLUTION, (variable soln)
is also required.

*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid

0.0 0 0 100 0
$# ioopt

0

The keyword *DATABASE_BINARY_D3PLOT defines parameters for the output from entire
of the model. From these outputs by post processing them we will conclude to an final
presentable output of our solution analysis.

dt: In this variable we set the time interval between output states.

nr: In this variable we set Number of RUNning ReStart Files, RUNRSF, written in a cyclical
fashion. The default is 1, i.e., only one runrsf file is created and the data there in is overwritten
each time data is output.
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npltc: In this variable we calculate DT = ENDTIME/NPLTC applies to D3PLOT and D3PART
only. This overrides the DT specified in the first field.

*DATABASE_GLSTAT
S# dt binary lcur ioopt
0.003 0 0 1

The keyword *DATABASE has many options to define to obtain output files containing results
information. One of them is the *DATABASE GLSTAT, which provide us with the global data
of the solution analysis of our model.

Dt: In this variable we se the time step between outputs. If is set to 0 then no output is
printed.
binary: Inthis variable we set the type for binary output.

1: Data written to an ASCII file default for SMP LS-DYNA.

2: Data written to binary database “binout”, default for MPP LS-DYNA.

3: Both ASCII and binary outputs.

*MAT_ADD_THERMAL_EXPANSION
$# pid Icid mult Icid multy Icid multz
2 69 1.0 0 1.0 0 1.0

With this keyword *MAT_ADD_THERMAL_EXPANSION we add thermal expansion
properties to all nonlinear solid, shell, thick shell and beam elements and all material models.

pid: In this variable we put the PART ID of the part that we add thermal expantion

Icid: For isotropic material models, LCIDY, MULTY, LCIDZ, and MULTZ are ignored, and
LCID is the load curve ID defining the thermal expansion coefficient as a function of
emperature. If zero, the thermal expansion coefficient is constant and equal to MULT.

mult: Scale factor scaling load curve given by LCID.

*PART
$# title

$# pid secid mid eosid hgid grav adpopt tmid
2 1 1 1 0 0 0 1

The keyword *PART is essential for the model identification and characterization in the
solution analysis. Within it variables we combine various properties and messes to form the
parts we want to analyze. To form a part in LS-DYNA we combine the identity of a formed
mess with the identity of the material, with the identity of the used Equation Of State for that
material, with the thermal properties identity, etc.

pid: In this variable we put the part id number
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secid: In this variable we put the section id number, defined in a *SECTION keyword.

mid: In this variable we put the material id number, defined in a *MAT keyword.

eosid: In this variable we put the Equation Of State id number, defined in a *EOS keyword.
tmid: In this variable we put the thermal properties id number, defined in a *MAT_THERMAL
keyword.

*SECTION_SOLID
$# secid elform  aet
1 1 0
In this keyword, we define section properties for solid continuum and fluid elements.

secid: In this variable we put the section id number, defined in a *SECTION keyword.
elform: Element formulation options:
-2: Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation
-1: Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation
0: 1 point corotational for *MAT_MODIFIED_HONEYCOMB
1: Constant stress solid element: default element type.
2: Fully integrated S/R solid
3: Fully integrated quadratic 8 node element with nodal rotations
4: S/R quadratic tetrahedron element with nodal rotations
5: 1 point ALE
6: 1 point Eulerian
7: 1 point Eulerian ambient
8: Acoustic
9: 1 point corotational for *MAT_MODIFIED_HONEYCOMB
10: 1 point tetrahedron
11: 1 point ALE multi-material element
and various others

*MAT_JOHNSON_COOK_TITLE
*MAT JOHNSON COOK_TITLE

blank
S# mid ro g e pr dtf
vp rateop
17.80000E-6 81.0 211.0 0.281.80000E-7
0.0 0.0
S# a b n c m tm
tr epso
0.675 0.239 0.28 0.027 1.3 1427.0
20.0 0.001
S# cp pc spall it di dz2
d3 d4
560.0 0.0 2.0 0.0 -0.8 2.1 -
0.52.00000E-4
S# ds c2/p erod efmin numint
2.7 0.0 01.00000E-6 0.0
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Johnson-Cook is an empirical model for the flow stress and strain rate. It is the most common
used Viscoplasticity and yield stress model.

So in this keyword (*MAT_JOHNSON_COOK_TITLE) we set the variables of the Johnson-
Cook model for a material.

mid: In this variable we put the material identification number.

ro: In this variable we set the mass density of the material

g: In this variable we set the shear modulus of the material.

e: In this variable we set the Young’s modulus of the material

pr: In this variable we set the Poisson’s ratio of the materia

dtf: In this variable we set the Minimum time step size for automatic element deletion (shell
elements).

vp: In this variable we set the formulation for rate effects:
0.0 for scale yield stress
1.0 for Viscoplastic formulation

a,b,n,c,m: These variables are the input constants of the Johnson-Cook formula

tm: In this variable we set the melt temperature of the material

tr: In this variable we set the room temperature

cp: In this variable we set the specific heat

pc: In this variable we set the tensile failure stress or tensile pressure cutoff (PC < 0.0)

*EOS_LINEAR_POLYNOMIAL
*EOS LINEAR POLYNOMIAL

S# eosid c0 cl c2 c3 c4
cb c6
1 0.0 160.0 0.0 0.0 0.0
0.0 0.0
S# el vO0
0.0 1.0

This is the keyword *EOS_LINEAR_POLYNOMIAL where we define coefficients for a linear
polynomial Equation Of State and initialize the thermodynamic state of the material.

P=Cy+Cip+ Cop? +Cyp® + (Cy + Csu + Cypi?)E.

eosid: In this variable we set the uniqgue number ID of the EOS

c0: In this variable we set the Oth polynomial equation coefficient.

cl: In this variable we set the 1st polynomial equation coefficient (when used by itself, this
is the elastic bulk modulus)

*MAT_THERMAL_ISOTROPIC

S# tmid tro tgrlc tgmult tlat hlat
1 0.0 0.0 0.0 0.0 0.0
S# hc tc

560.03.70000E-5
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This keyword *MAT_THERMAL_ISOTROPIC defines thermal isotropic properties to the
material that selects it.

tmid: In this variable we set the unique ID number of the thermal material identification.
tro: In this variable we set the thermal density of the material. If set to 0.0 then it is equal to
the structural density.

hc: In this variable we set the specific heat of the material

tc: In this variable we se the thermal conductivity of the material.

*ELEMENT_SOLID

$# eid pid nl n2 n3 n4 n5 n6 n7 n8
1 1 4313 4309 5283 5313 4308 4308 5138 5138
2 1 5313 5283 5284 5314 5138 5138 5139 5139
3 1 5314 5284 5285 5315 5139 5139 5140 5140

In this keyword *ELEMENT _SOLID we define each element of the created mess of our model
that we are going to perform solution analysis. Elements are defined in three-dimensional solid
elements including 4 noded tetrahedrons and 8-noded hexahedrons. Most common are the 8-
noded hexahedrons.

eid: In this variable we set the unique ID number of the element.

pid: In this variable we set part ID number from with this element comes from.

nl —n8: In these variables we set the nodal points ID that consists the element. If we use
tetrahedron shape for our elements then we set only n1 — n4 nodal point variables.

*NODE

$# nid X y z tc rc
1 -0.027596 0.019934 0.2715 0 0
2 0.0576701 1.0 0.2715 0 0
3  -0.027596 0.019934 01285 0 O

In the keyword *NODE we define the nodes of our model. We also can define boundary
conditions for that nodes. Nodes are defined by setting their coordinates at X-Y-Z axis.

nid: In this variable we set the unique node ID number
X: In this variable we set the X coordinate of the node
y: In this variable we set the Y coordinate of the node
z: In this variable we set the Z coordinate of the node
tc: In this variable we set the translational constraint:

0: no constraints,

: constrained x displacement,

: constrained y displacement,

: constrained z displacement,

. constrained x and y displacements,

: constrained y and z displacements,

: constrained z and x displacements,

. constrained x, y, and z displacements.

NOoO o~ WNRE
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rc: In this variable we set the rotational constraint:

0: no constraints,
: constrained x rotation,
: constrained y rotation,
: constrained z rotation,
. constrained x and y rotations,
: constrained y and z rotations,
: constrained z and x rotations,
. constrained x, y, and z rotations.

NoO o~ WNRE

*DEFINE_FUNCTION

S# fid heading
3

S# function

f(x,z,time, temp)==-(2)/ (exp (128* ((x-2.5*time) * (x-2.5*time) +(z-0.2) *(z-0.2))) )+ (5%

10** (=8)) * (temp-20)+ (5.7*10** (=17) ) *0.5* ((temp**4)-160000)

In this keyword *DEFINE_FUNCTION we define a function that we can used by other
keywords.

fid: In this variable we set the function ID number
heading: In this variable we set an optional descriptive heading.

function: In this variable we set the arithmetic expression that represents our function.

*BOUNDARY_FLUX_SET

S# ssid
1

S# lcid mlcl mlc?2 mlc3 mlc4d loc nhisv fid
3 1.0 1.0 1.0 1.0 0 0 3

The keyword *BOUNDARY FLUX is to apply a flux boundary condition.

ssid: In this variable we set the set ID number

Icid : In this variable we set the ID of a reference load curve
micl-mic4: In this variables we set the curve multipliers.

fid: in this variable we set the ID number of the function we use

*SET_SEGMENT

S# sid dal da2 da3 da4 solver
1 0.0 0.0 0.0 0.0MECH
S# nl n2 n3 n4 al a2 a3 a4
129285 129645 129647 129287 0.0 0.0 0.0 0.0
123165 123525 123527 123167 0.0 0.0 0.0 0.0
117045 117405 117407 117047 0.0 0.0 0.0 0.0

In this keyword *SET SEGMENT we define set of segments with optional identical or unique
attributes.

sid: In this variable we set the unique set ID number.
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solver: In this variable we set the name of the solver of the set.
nl-n4: In this variable we set the nodal points
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High Power Laser Plasma Physics

Outline
* We will simulate a laser wakefield accelerator in %S YN
2D using the EPOCH PIC code g naoure
* You will get hands on experience on how toruna & EE—

PIC code and analyse the results “Dlream bgam\
* We will see how the wakefield accelerator works ' \\ /(

and experiments with some parameters to see -

how the it affects the acceleration of electrons v
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Electron Acceleration

*Pondermotive force of the laser can expel electrons away from the focal
spot in a plasma creating a cavity or bubble

*Electrons accumulate at the rear of the bubble creating a region of large
electric field propagating close to speed of light

*Electrons accelerated in this relativistic plasma wave

- -
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The EPOCH Particle In Cell code

&y " i Frnd G vnvmsiy Qusens Universi
[ universite i il @ ! -
TELof Crete }: “BORDEAUX  }MIBIA e o W Q

The EPOCH Project

A freely available EM PIC code

Principle Investigators Senior Developers
Prof.A. R. Bell (Oxford) Keith Bennett (Warwick)
Prof. R. G. Evans (Imperial) Chris Brady (Warwick)
Prof.T. D.Arber (Warwick) Holger Schmidz (Imperial)

Chris Ridgers (Oxford)

Based on core algorithm from PSC by Hartmut Ruhl

*We will use the EPOCH code in this session
*If you want to continue to use it afterwards then go to the EPOCH website
and register as a user and download it
*We will just use the code....no explanation of how it works!
*There are many things to understand about PIC codes but we won’t discuss
them here

2N g 2 @ $om @ X
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The input file: Constant Block

» High Power Laser Plasma Physics

begin:constant
###4# wavelength
lambda0 = 0.8 * micron
omega = 2 * pi * ¢ / lambda0
den_plasmal = 5.0e24 # per meter cubed
##### angle e.m wave is launched
theta = 0.0 * pi / 180.0
##### laser energy
laser _energy = 1.2 ##### Joules #H####
pulse length of intensity FWHM
pulse length FWHM = 25.0e-15
##### focal spot diameter of intensity FWHM
spot_size FWHM = 10.0 *micron ##### diameter
radius = spot size FWHM/2.0
area = pi * radius”2
laser intensity MKS = laser_energy/(area * pulse_length FWHM)
peak_electric field = sqrt(2.0*laser_intensity MKS/c/epsilon0)

*Note: We will work in terms of the electric field and not the laser intensity and intensity goes as the square of the electric field

Y - Erasmus+

The input file: Boundaries Block

&
2 R universite Vs
TEI of Crete X “BORDEAUX 12!

» High Power Laser Plasma Physics

O — We choose the type of boundaries. In this

bc_y min = open case they are open and so particles and
bc_y_max = open electromagnetic waves leave the
bc_x min = simple_laser

simulation. In practice e.m. waves can

bc_x max = open
= % reflect a small amount form the boundary

end:boundaries

We will launch an e.m wave from the left
boundary, that's a laser in plain english

5&%’/\ Q ko X

& . université
TElofCrete 49N “BORDEAUX
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The input file: Constant Block

##### FWHM of E field

wt_Efield = sqrt(2.0)
##### FWHM of E field
w0 = sqgrt(2.0)

##4### focus position
focus_position 30.0

is root 2 times FWHM of intensity
% pulse_length_FWHM/(Z.O * sqrt(loge(2.0)))
spot 1s root 2 times FWHM of intensity

* spot_size FWHM /2.0

* micron

ym = (y max + y min)/2.0

rayleigh length

Xr2 =

X2 =

wx = wO*sqgrt(l. +
WX2 = WX*WX

Rx =

psi =

kg = 2.0 *pi/lambda0
norm = w0/wx
variable =

end:constant

TEI of Crete

» High Power Laser Plasma Physics

(2.0*pi/ (lambda0) *

A

pi* (w0*w0) /lambda0

rayleigh length*rayleigh length

(x_ min - focus position)*(x min - focus_position)
(X2 XE2) )

(x_min - focus_position) + xr2/(x _min - focus position)
atan((x_min-focus position)/rayleigh length)/2.0 ##### Guoy

(-y * sin(theta))

universite o
“BORDEAUX  }M1ai!
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The input file: Control Block

begin:control
600
500

ny =
nx =

# final
t_end =

The number of grid points in the x and y

/ direction

time of simulation

1000 * fomto "1 The end time of the simulation

# size of domain

y_min
y_max
x_min
X_max

stdout_frequency = 10 w3

npart =

end:control

3

TEI of Crete
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-30.0 * micron
30.0 * micron
-15.0 * micron
35.0 * micron

//{ The spatial extents in the x and y direction

How often we dump info STDIO a.k.a the
screen

\ Basciall in out example how many particle

per cell

nx * ny * 3

) universite
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High Power Laser Plasma Physics

Gaussian Beam

E(r,z) = Ey & wu()(;) exp (w_(:; ) GXP(—i (kz - k2;:z) - w(z))) )

wherel!]

r is the radial distance from the center axis of the beam,

z is the axial distance from the beam's focus (or "waist"),

1 is the imaginary unit,

k = 2=/ is the wave number (in radians per meter) for a wavelength A,

Ey = E(0,0), the electric field amplitude (and phase) at the origin at time 0,

w(2) is the radius at which the field amplitudes fall to 1/e of their axial values, at the plane z along the beam,
wy = w(0) is the waist size,

R(z) is the radius of curvature of the beam's wavefronts at z, and

¥(2) is the Gouy phase at z, an extra phase term beyond that attributable to the phase velocity of light.

&5 2
2 } universite
TElofCrete 4% *BORDEAUX

Ly (]
NS~ /2X
o

W

High Power Laser Plasma Physics

S wiid e ~Z
- = e
/ Z, \

At a position z along the beam (measured from the focus), the spot size parameter w is given by!"]
2\ 2
w(z) =wo4/1+ (-—) 5
2R
wherel')

1r'w(2)
ZR = —0—

A
is called the Rayleigh range as further discussed below.

The spot size w(2), at any position z along the beam, is related to the full width at half maximum (FWHM) at that position according
to:(5

~ FWHM
2In2

w(z)

universite
TEI of Crete 2% “BORDEAUX
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The input file: Laser Block

Lape
Pawer Laser Plasma Physics

Ve

» High Power Laser Plasma Physics

begin:laser
boundary = % min
amp = peak electric_field *norm
lambda = lambda0 * cos (theta)
##### temporal gauss profile
t_profile = gauss(time,2*wt Efield,wt Efield)
##### spatial gauss profile
profile = gauss(y,0, (2*wx/1.6651))
##### phase

phase = (-1)*((kg * 0.5 * (y-ym)"2 / Rx) + (kg * (x_min -
focus _position)) - psi) + variable
pol angle = (-1) * pi / 2.0

end:laser

* Polarisation angle in this case is in the z direction, out of the plane of the simulation. For pol_angle =0 polarisation
is in the y direction

* We have to set the phase, profile, polarization, time and amplitude of the e.m. wave

;”:;'v 3 L &
= » universiie i
TEI of Crete 0 “BORDEAUX hi
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» High Power Laser Plasma Physics

The input file: Species Block

begin:species
name = helium2plus
charge = 2.0
mass = 1836.2 * 4.0
frac = 0.333
density = den plasmal /2.0
temp ev = 100.0
end:species

begin:species

name = electron
charge = -1.0
mass = 1.0

frac = 0.666

density = den plasmal

temp ev = 100.0
end:species

» We assume a fully ionised helium plasma with an electron density of 5e18 cm uniformly over the grid

* We arbitrarily initialise the plasma temperature

¥

L . université
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We need to resolve the Debye length

_ €okpTe - Te (eV)
Ap = /—neez 7.4 /—ne o) (m)

Sometimes it is better to use Terwhere
1 1 1

= — 4+ —
Tefr Te T
*PIC codes “cheat” in order to be valid by initialising the ion and electron
temperature so the Debye length is resolved
*For T=1keV, n=10%?cm=Ap =2 nm (solid target)
*For T=100eV, n=5e18 cm>Apo= 33 nm (gas jet)

* Do we resolve the Debye length in our simulations? If not the plasma will
self heat until it is resolved

& . ‘:;-.. e Y Sad univensity aesk Unkiinl X
2 universite it P00t Y Aok Q ‘ y
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The input file: Window Block
begin:window

move window = T

window v _x = c

window _start time = 1.9e-13
bc_x min_after move = simple outflow
bc x max after move = simple outflow

end:window

* EPOCH has a moving window so that we can simulate only the region of interest
and follow the interaction of 100’s of microns

» Window moves at the speed of light, but you may see that the laser does not!
Why?

» The moving window starts when the laser gets to the end of the simulation box

ey " Pt = *
P51 . 12 L4 Fnay % '\n/.u\(.\ Q iy X
g universite L/0s .’@ ¢ y
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We determine the minimum time step
* In two dimensions we define a length d based on the grid spacings Ax and Ay

1
=T
Ax2+Ay2

* The time step is given At
Cxd
t=——o
€
* An em wave or particle should not move more than 1 grid spacing per time
step: Courant—Friedrichs—Lewy (CFL) condition
* In EPOCH C =0.95 by default
» For em simulations we must resolve gyration of electrons too

*At< 0.1 Wpe
* EPOCH calculates time step for us

E%e ; &
W ) universite i
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The input file: Output Block
begin:output

# number of timesteps between output dumps

dt_snapshot = 25.0 * lambdaO /(2.0%c)

# Number of dt_snapshot between full dumps

#full dump every = 5

#restart dump every = 5

force final to be restartable = T

# Properties at particle positions

#particles = full

#particle weight = full #

Properties on grid

ex = always

ez = always

number density = always + species

distribution functions = always
end:output
« EPOCH has many diagnostic outputs using its own SDF format
« Afile is dumped at specified intervals including the electron density, Ex, Ez and user specified distribution
functions

S . &
¢ université e
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The input file: Output Block

" université
TEI of Crete W BORDEAUX

Powurlabs
High Pawer Laser Plasma Physics.

Aoy

» High Power Laser Plasma Physics

begin:dist_fn
name = X px

ndims = 2

directionl = dir x

direction2 = dir px

# range is ignored for spatial
coordinates

rangel = (1, 1)

range2 = (-2.0e-21, 5.0e-20)

# resolution is ignored for spatial
coordinates

resolutionl = 1

resolution2 = 100

include_species:electron
end:dist_fn

* Here we tell EPOCH to output the phase space of momentum in the x direction
as function of x

Ex ; &
W ) universite i
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» High Power Laser Plasma Physics

Relationship between energy and momentum
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How to run EPOCH

. # P " V
N o, B D WO Q X

* \We will use 2D executable of EPOCH located
in pathtoepoch/epoch2d/bin and called epoch2d

» First, we change directory to the epoch2d directory where the folders
containing our input files are located

cd pathtoepoch/epoch2d

* EPOCH is compiled to be used with OpenMPI so to run EPOCH in parallel
we type
mpirun -np 8 bin/epoch2d

* You will be prompted to type the name of the directory that contains the
input file
* Choose number of processors with -np 8 argument

Page | 233

@00 epoch2d — mpirun -np 8 bin/epoch2d » epoch2d — 80x24
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How to run EPOCH

A#ERRRFFFP dF¥FFEEFRED FERERED d##¥gees d¥¥P
AEXRFRXRIP  dARIFFIRFRIRR AR FRERERERRR HFERFEEEFRR  dXFP
A#FEXERERP  ARFEE | FEEIP #EER #EFE AFRREP A#RERERERRRZZP
ARFFRERRED  AFBEFIEEERP L2 2 FEEP FEER A#FRRZFHXRRRRP
d##pP d##P H#EEE d#see #EER d##P d##P
AR#FXFFFREP  d¥FP HEERRRARRRRP FERRXIFBRRP  A¥FP d##P
A##RXZXFEFP  dA#¥FP A##RREEP FEXFAXEP  AXFXP d##P

Th

1s running on 8 Pro = elements

Specify output directory
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High Power Laser Plasma Physics

What to do

*First let’s run the input file 1laser
— Change the spot size
— Change the angle

*This runs quick as there are no particles in the simulation
*Now run the input file gasjet
*This will take a while depending on fast your computer is
-Laser wakefield accelerator is sensitive to the gas density, spot
size and pulse length
*A laser wakefield is optimised when laser pulse length (cT) is
half the plasma period (A;,) where A, = 2mrc/w, and wp =V (n.e2/m.g,)
« So for our 25 fs pulse, we require n, = 518 cm=3

— Change the electron plasma density

— Change the focal spot size
— See how the maximum electron energy is changed after 1 ps

P
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& Time=1.00003e-12

Type visit at command line to start Visit

o R omatinnty NG
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5.1 Simulating Particles In Cells

The particle-in-cell (PIC) method is used to solve a certain class of partial deferential equations

(PDEs) in order to model physical systems behavior. Often used is a plasma physics simulation.

In this method, collections of physical particles are represented using a smaller number of
macroparticles. The E, B fields generated by the motion of these macroparticles are calculated
using a Finite Differences technique on an underlying grid of fixed spatial resolution. The
forces on the macroparticles due to the calculated fields are then used to update the

macroparticle velocities, and these velocities are then used to update their positions.

In PIC method, the individual particles (or fluid elements) are tracked in a continuous phase
space, whereas moments of the distribution such as densities and currents are computed

concurrently on stationary mesh points

Scope of this presentation is to introduce and familiarize the participants with the opensource
advance relativistic EM MPI parallelized code EPOCH, developed under the Extendable PIC
Open Collaboration project in UK. Likewise, perform of numerical simulations of an intense,

fs laser pulse interacting with solid density plasma.

EPOCH initially calculates the electric and magnetic field values on the grid, by solving the
Maxwell equations. At the next step the velocity of the particles is calculated and their new
position on the grid is updated. Finally, the current density from the particle flux, through the
grid is calculated, which in turn affects the electric and magnetic fields on the grid. After a full

iteration these steps are repeated, as it is schematically depicted in the flowchart of figure 1.
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Calculating/Updating E,B
on the grid via Maxwell
equations.

0B

I VxE= *a—t
oE
V x B = pgd + pess 5

calulating J,p from
particle flux though
the grid

)

<

Figure 0-1: The particle-in-cell scheme. The steps of one full iteration.

EPOCH follows the Kinetic description of plasma that is based on a set of equations for
(macroscopic) distribution function f;(x,p) of each plasma particle species together with
Maxwell equations. The distribution function is a statistical description of a very large number
of interacting particles. Each particle has its own position in the phase space (x,p), where x,

y, z are the coordinates for all the degrees of freedom and py, p,, p, are the corresponding

momentum components.

calculating F via
Lorentz equation.
Updating x,u of
the particles

EPOCH solves the following set of equations (Normalized Vlasov-Maxwell equations):

o %E(x, t) =V XB(x,t) —Jr(x,t) (Ampere)

o %B(x, t) = -V X E(x,t) (Faraday)

e V-E(x,t) = pr(x,t) (Poisson)

e V-B(x,t) =0 (Gauss)

J %fn(x, v,t) + vV fr(x,v,t) — Z—Z(E + v X B)V,f,(x,v,t) = 0 (Vlasov)

o pr(xt)= I[Zn qn fun(x, v, 0)] dv
o Jr(xt) = [[Znan fu(x,v,t)] vdv

During the pre-processing of a simulation, numerous parameters and limitations must be

taken into account. The dimensions of the simulation are chosen. EPOCH allows for 1,2 and
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3D simulations, while the more the dimensions used, the higher the computational demands.
Then, the simulation solution domain (box size) and the total simulation duration are set,
based on the interaction time of interest. The spatial resolution of the simulation comes from
the chosen grid points that divide the simulation box into cells. The cell size should meet
certain criteria, e.g.: if the cell size exceeds the Debye length of the simulated plasma,
nonphysical electric fields will arise on the grid, leading to rapid increase of the particle
energy. Thisissue is known as numerical heating. EPOCH uses macroparticles which represent
many real particles, acting collectively. This division of actual particles into less macroparticles
relaxes the computational demands of a simulation, although a very low number of
macroparticles will lead to unnatural heating of the plasma. The electron temperature should
be also taken into consideration. For higher electron temperatures the Debye length
increases in size and this relaxes the spatial discretization requirements in order to resolve it
although one should be careful not to excide the actual temperatures the electrons would
acquire from a real laser prepulse. Additionally, unnaturally high electron temperature will

lead to unreal plasma expansion rate. If Ap is resolved, the time step must be

to preserve the numerical stability.
5.2 EPOCH for TNSA

During the hands-on course, the participants initially installed a Virtual box machine running
on Ubuntu 18.04 with pre-installed all the required software packages. During the lecture,
step by step instruction were given in order to run the provided TNSA testcase on EPOCH 2D.
Followed by visualization of the output e.g. particle density, laser electric field and particle
momentum using the Open Source, interactive, scalable, visualization, animation and analysis tool
Vislt. The first simulation was only the laser pulse without the target, this was done by having
pre-set the number of sudoparticles per cell equal zero. Afterwards, it was required to modify
the input file of the TNSA testcase in order to familiarize the participants with the setting of a
2D testcase. The training simulations were perform using low number of particles per cell and

a low-resolution grid in order not to be extremely time consuming and able to be performed
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in any laptop using at least 2 parallel processors. The required modifications of the input file
were to change the number of grid point, set the number of particles per species per cell from
0 to 1 and set the simulation duration to 100fs. This run was estimated to require
approximately 30 minutes using 2 CPU cores. After the visualization of the outputs, it was
required one more modification of the testcase, this time it was asked to change the plasma
density, pulse duration, energy, focal spot diameter and aluminum ionization degree, based
the participants preferences. This was given as a homework to the participants along with an

extra task to create on new block of partially ionized carbon.
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5.4 Hands on TNSA with PIC

ol 2 W a W ad ./

EFPOCH

* (Extendable PIC Open Collaboration, the H is silent!) is an
opensource, relativistic, MPI parallelized code developed under the
Extendable PIC Open Collaboration project, University of Warwick.

* EPOCH is a plasma physics simulation Particle in Cell - PIC code.
» Advanced features include: Collisions, Field ionization, QED effects.

Target Normal Sheath Acceleration

Al target ~{im
return current f “ycl: 55T
e Aans underdense
Y B plasma . =
. -
. * . accelerated particle -
42 \ T =
e W /’
3 " . o I
o tet Y & o
— b - . . .
p-polarized e s " -
Bt ;‘ o .. * @0, .
e 0 .
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/ l-:,,' . * wlle
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/
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,
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TNSA schematic representation: The peak intensity pulse interacts with the formed preplasma. Hot
electrons from the critical plasma surface accelerate through the overdense plasma and the foil target while
cold electrons rush to shield the abundant positive charge. An electrons sheath is formed to the rear of the

target. Tons of the contamination layer are accelerated as the electrons drag them to the vacuum behind the
target.
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Finite-Difference Time-Domain - FDTD - Leapfrog

Finite-Difference Time-Domain (FDTD) is a grid-based numerical technique used for modeling computational
electrodynamics. The time-dependent finite-difference equations are discretized using central-difference approximations
and solved using the leapfrog scheme. Leapfrog integration is a method for numerically integrating partial differential
equations.

X, X X

o 1 2
[l s 1 | |

L L.
In leapfrog, the equations for updating position and velocity are: ' b . ' ' v,

v -
iz

1+§*

. L \ :
a; = F(x) Xi+1 =X "‘uﬂ_%m el = u:-% +a;4t \‘—4——"}\‘——“—"}
0 tlﬂ'? t'l. tn tB t"lu'z

carara-difference

t
Where x at steps j, u at steps i+1/2, Atis the time step.
These equations can be expressed in a farm that gives velacity at integer steps as well.

1 1
- 2 .
X141 = X+ w AU+ S aAt Uips = U +5(a;+ @iy )At - ol

scheme

These equations can be expressed in a form that gives velocity at integer and half-time steps. a
+ 1 ﬂt . Particle pusher
ui+% = U daj 2 X141 = X; ar uH%ﬂt U; = 'l!H_% + Aj+1 Eﬂt Boris

Ampere and Faraday coupling

o Ay - 1 The black grid has nodes at integer values of (x, t) =j, n, it is defined
e A O at full space and time steps.
o+2
¢ o Bz The blue grid is defined at (x, t) = (j + 1/2, n + 1/2); it is shifted by x/2
n+l and t/2.
n+l/2 O N o
n & 12 . _4153'1 Replace continuous fields B(x, t), E(x, t) and Maxwell’s equations by

J 5 - their discretized counterparts.

0,0 EGn+D)-EGn) _ B(j+zn+g)-B.(i-gmn+3)

at y{xr t) = ax z(x- t) At - Ax

d a
ng(x, t) = —a—xE,,(x, ) B.G+1/2n+1/2)—B,(j+1/2n—1/2)  E,(.n) —E,( + 1,n)
At - Ax
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Particle In Cell - PIC scheme

Kinetic description is based on a set of equations for {macroscopic) distribution function f;(x,p) of each
plasma particle species s together with Maxwell equations. The distribution function is a statistical description
of a very large number of interacting particles. Each particle has its own position in the phase space (x,p),
where x are the coordinates for all the degrees of freedom and p are the corresponding momentum

components.

Calculating/Updating E,B
on the grid via Maxwell
equations.

KE=-—
Vo i

Vo B = pgd -l-g-'n_f.-_.z—flz

(ur)

calulating J,p form
particle flux though
the grid

calculating F via

Updating x.u of
the particles

Loreniz equation.

F->u->x

1. Initialize plasma phase space distribution:
— Place particles in space according to density
— Initialize velocities with random numbers
2. Initialize E and B fields

3. From E.B fields calculate acceleration

4. Multiply acceleration with time step

—= Velocity increment

5. Multiply velocity with time step

—=> Position increment

6. From new positions and velocities:
Calculate new E.B

EPOCH Input.deck File Blocks/Control Block

begin:control
# nx = 25008
# ny = 16898 -
nx = 4888
ny = 288@

# final time of simulation
t_end = 258 * femto

® size of domain

¥ _min = 8.8 * micron
x_max = 48.8 * micron
y_min = -18.8 * micron
y_max = 18.8 = micron

nprocy=6e¢ *

stdout_fraguency = 18 <
fnpart = nx * ny = 18
dlb_threshold = 8.95 =
#restart_snapshot = 048, sdf

end:control

begin:boundaries
be_x_min = simple_laser =
bc_x_max = open
bc_y_min = open
bc_y_max = open
end:boundarles
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Number of grid points in the x,y.z direction. .L 5
. o

Lagrangian Particles . e
Eulerian Grid » , o

Number of processors in the x,y,z directions.

The code will print a one-line status message to stdout after every given
number or timesteps.

The minimum ratio of the load on the least loaded processor to that on
the most loaded processor allowed before the code load balances.

A simple case of simulation domain boundaries block
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begin:constant Intensity of 8 Gaussian Beam (w = 40mm, 4 = 30mm)

#REEE wavelength

lambda® = ©.8 * micron

omega = 2 * pi * ¢ / lambda®

den_plasma = 60.8 * critical(omega)

#RAEE angle

theta = 8.8 * pi / 180.8

#RAAE laser energy

laser_energy = 1.8 28,144 #HHE Joules
#idd# pulse length of intensity FWHM
pulse_length_FWHM = 25.8e-15

#2888 focal spot diameter of intensity FWHM
spot_size FWHM = 3.8 *micron ###FF diameter
radius = spot_size_FWHM/2.8

area = pi * padius”2

laser_intensity_MKS = laser_energy/(area * pulse_length_FWHM) E amplitude of
peak_electric_field = sqrt(2.8%laser_intensity_MKS/c/epsilon@) electric field [V,"m]
#R#EE FWHM of E field is root 2 times FWHM of intensity
wt_EFi%ld = sqrt(2.8) * pulse_length_FWHM/(2.8 * sqrt{loge(2.2)))
#2488 FWHM of E field spot is root 2 times FWHM of intensity

wd = sqrt(2.8) * spot_size FWHM /2.8

x (mrn}

intensity [W/m |

#eaed focus position
focus_position = 18.8 * micron
ym = (y_max + y_min)/2.0
The radius of the beam w(z), at any position z along the beam, is relaled to the full width at hall maximum (FWHM) at that
position according to:i®
FWHM(z)
wiz) = ——
v2In2

EPOCH Constant Block

«rayleigh_length = pi*(w@*w@)/lambda®
xr2 = rayleigh_length*rayleigh_length
x2 = (x_min - focus_position)*(x_min - focus_position)

Efi wx = wl*sqrt(l. + (x2/xr2))
A WX2 = WX*wX

#Rx = (x_min - focus_position) + xr2/(x_min - focus_position)
Rx = (x_min - focus_position) * (1+(xr2/x2))
psi = atan((x_min-focus_position)/rayleigh_length)
kg = 2.0 *pi/lambda@
norm = w@/wx
variable = (2.0*pi/(lambda® * cos(theta)) * (-y * sin(theta))

end:constant

ZR =

the radius of curvature as a function of

The radius of the beam at a distance z from the waist is ek :
; position along the beam, given by

position x
5
- L -
¥ . wz)
w2 V‘a; Wou e ] vz

232 %2
tu(z) =wp4/1+ (..—) . 2R \ 2 The Gouy phase of the beam at z is given by
R %2 R(z) =z |1+ (_)
WX z b4
. W(z) = arctan(-—’ ) -
Rx psi 2R
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EPOCH Laser Block

begin:laser A

boundary = x_min

amp = peak_electric_field -
lambda = lambda® * cos(theta)

##### temporal gauss profile

t_profile = gauss(time,2*wt_Efield,wt_Efield)
###H#H# spatial gauss profile

profile = gauss(y,9, (2*wx/1.6651)) | The Gaussian function has a 1/e? diameter 2w =1.7*FWHM.,

##HHEE phase

phase = (-1)*((kg * 9.5 * (y-ym)*2 / Rx) + (kg * (x_min - focus_position)) - psi) + variable

WM

CECLabiat

pol_angle = 8.0 o
end: laser (h"km[:} _v[‘})
. : VZFWHM .
For a Gaussian beam, the relationship between the 1/e? width and the full width at half maximum is. 2w = = = 1.699 x FWHM , where 2w is the full width of the
beam at 1/e?.

EPOCH Particles Block

begin:species
name = aluminum
charge = 5.8
mass = 26.0%1836.2
#frac = 0.5
npart_per_cell - 4
density = if((x gt 18.8e-6) and (x 1t 15.8e-6) and (y 1t 18.2e-6) and (y gt -18.8e-6), den_plasma, 0.8)
temp_x_ev = 188.8
end: species

begin:species
name = proton
charge = 1.8
mass = 1836.2
#frac = 8.5
npart_per_cell = 4
density = if{({x gt 18.8e-&) and (x 1t 1@.le-8) and (y 1t 18.Be-&) and (y gt -18.8e-6), den_plasma/188@, 8.8)
density = if(({x gt 14.9e-8) and (x 1t 15.@e-8) and (y 1t 18.8e-6) and (y gt -10.8e-6), den_plasma/1008, density(proton))
temp_x_ev = 180.8
end:species

begin:species
name = electron
charge = -1.8
mass = 1.8
npart_per_cell = 4
#frac - 8.5
density = if(({x gt 18.8e-6) and (x 1t 15.@8e-6) and (y 1t 18.2e-6) and (y gt -18.8e-6), den_plasma*5, @.@)
temp_x_ev = 1808.8
end: species
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EPOCH Particles lonization Block

begin:species
name = aluminum
charge = 8.8
mass = 26.8%1836.2
ionisation_energies=(5.98577%ev,18.82856%ev, 28, 44765%ev, 119.992%ev, 153 . 825%ev, 190, 49%ev, 241, Te*ev, 284 . 66%ev,
B38.13%ev, 398.75%ev,442.88%ev, 2085. 98%ev, 2384, 1418%ev)
ionisation_electron_species = \

{electron,electron,electron3,electron,electron5,electron,electron?,electron,electrond,electron,electronll electron,electronl3)
#frac = 8.5

npart_per_cell = 1

density = if({x gt 5.8e-6) and (x 1t 6.5e-6) and (y 1t 8.8e-6) and (y gt -8.8e-6), den_plasma, 8.8)
temp_x_ev = 106.8

end:specles

Set field_ionization =T

+ Multiphoton ionization F/T

* Tunneling ionization F/T

* Barrier Suppression lonization F/T

We need to resolve the Debye Length

Iils To calculating the

L Coulomb force
et S Aamamacs between all particles,
PLASMA the calculation would
P - + + 4_{- L)

take a prohibitively
long time

*Over distances longer the Debye length, charged particles are unaware of the presence of other
*So we don’t need to calculate the forces between all particles

*We calculate locally on a grid and we resolve the Debye length

EnkBTe
PIC codes will exponentially heat the plasma until the Debye length is ilD = ?

*For T,~1000 eV
resolved

n~1.7 « 102 fem?
Ap~2nm
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We determine the minimum

0.95 = Ax
For numerical stability of the EM field the time step must be: ~ &tgm < Y CFL condition
+ An em wave or particle should not move more than 1 grid spacing per time
step: Courant-Friedrichs—-Lewy (CFL) condition
* |[n EPOCH C =0.95 by default
1 nee?
To resolve the plasma frequency the time step is:  At, = — Wpe =
w £y
re 0¥te
Numerical stability requires the smaller At or:
* If Debye length is resolved then Atgy is the limiter.
* If Debye length is not resolved, then Aty is the limiter.
- . 0.95
In 2D-3D the stability condition : Mgy =
1 .1 1)\
c(ﬁ tay? +E) *For 2u2nm cell ~ 00047 fe

* This division of actual particles into less macroparticles relaxes the computational demands of a simulation,
although a very low number of macroparticles will lead to unnatural heating of the plasma.

EPOCH Output Block

begin:output
# number of timesteps between output dumps
dt_snapshot = 25 = femto
# Number of dt_smapshot between full dumps
restart_dump_every = 58*femto
force_final_to_be_restartable = T

# Properties at particle positions
particles = full
particle_weight = full] *

# Properties on grid
grid = always
ex = always
ey = always

-

#particles = always
#px = always

#ekbar = always

#charge_density = full

number_density = always + species™

distribution_functions = always
end:output
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This variable will be written at full dumps only

This variable will be written at full, normal and restart dumps.

Qutput on a species by species basis
(deferent output for each species)
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EPOCH Distribution Function Block

begin:dist_f£n

pames = X _px P The momentum component along x.
ndims = 2
directionl = dir x
. . . - -
direction2 = dir_ px

The range along space always covers the full

£ range is ignored for spatial coordinates b
OX.

rangel (1, 1)+
range2 = (-2.0e-15%, 2.0e-19) * Momentum range for protons.

§ resolution is ignored for spatial coordinates
resolutionl
resolution2 =

00 - For positions it is set by default
to the grid cell number.

=t

finclude species:electron
include species:proton

end:dist_fn How many cells we have along

the p.-direction.

How to Run EPOCH

power laps@power laps-Vir
£ %

epo es  Videos *If VB doesn't work go to
examples.desktop F ¢ visitInstallScript20171102.5h~ BIOS>Security>V'|rtuaIizati

power Laps@powerlaps-VirtualBox:~$ cd epoch-4.7.3/epoch2d EPOCH Path on>Enabled
power laps@powerlaps-VirtualBox:~/epoch-4.7.3/epoch2d$ mpirun -np 2 bin/epoch2d Ca” EPOCH

duruaRyanP dessysassb .sasnanb dawssnass  dowp dosp
dogyenseop  desmpysspsny dagropresrys LBRRERRNERRE  dREP dasp
P
dRNDRNEANP  dESNE, , BENNP NEEW. .mass deswp ARRVTRRTARNTRP
dassuasenP desaNssRNEP wuow JEERP wNew. desssoayonNnP
desp darp guoy dasss sxss, daep dnep
dessasessp  deap RREGREBRNERP FREBRRERRLP  daNP dasp
dewgaRssRpP  desp deanassp sRRABRNP  doRP dawp

The code was compiled with no compile time options
Welcome to EPOCH2D version 4.7.3 (comnit v4.7.3-0-g398eb7a-clean)
Code is running on 2 processing elements

Specify output directory

Testcase Name

sor subdivision is 1 2
Initial conditions complete and valid. Attempting to load particles

Equilibrium set up OK, running code
0.448144323982E-16 and iteration after 00:00.00 lterations
0.896288647965E-15 and iteration after 00:00.68
9593E-14 and iteration after 00:01.07
0.268886594389E-14 and iteration after ©:00:00:01.52
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Homework

* Run VirtualBox-5.2.14-123301-Win.exe. After the installation is complete, Run virtual box.

* Got to file>Import Appliance an choose the powerlaps.ova file. Select the powerlaps session and
press start (if it fails to start you should restart/bios and virtualization [enabled], ask for help)

* Open Terminal. Type cd epoch-4.7.3/epoch2d
+ Run Epoch by typing mpirun -np 2 bin/epoch2d (-np 2 for 2 processors). Type TNSA.
* Type visit to visualize the result. Press Open find the path of TNSA file and then click the SDF files.

+ to Plot the E-field of the laser FW& and the hit Draw.
T et b et oo
P st » Partichi .
L& 1o st
:;::.““'

+ Open File>Epoch-4.7.3>epoch2d>TNSA [ttt e input.deck file to alter the

parameters of the simulation

Homework

= Open input.deck file.
= Set nx=1000, ny=500, number of particles per cell =1 for each species. set Simulation time 100fs.
* Run the testcase. Plot Pseudocolor> Derived>Particle density. take a lineout of electron density.

= Plot, Pseudocolor, dist_fn, Protons. (save figures)

= Open input.deck file.

= Change plasma density, pulse duration, energy, focal spot, Aluminum ionization degree, target
thickness Etc.

= Run the testcase. Plot as before and compare.

= Extra! Create a partially ionized Carbon species block.
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1  Computer labs: Particle-in-cell simulations of laser-
plasma interaction

In the following simulation study cases, we will use particle-in-cell code
Smaler. Smalei is open-source code protected by a licence CeCILL, the french
equivalent to the open-source Gnu GPL license.

Extract: This software is governed by the Ce CILL-B license under French
law and abiding by the rules of distribution of free software. You can use,
modify and’ or redistribute the software under the terms of the CeCILL-
B license as cwculated by CEA, CNRS and INRIA at the following URL
http: //wuw. cecill. info)

milei

Figure 1: Smilei is a Particle-In-Cell code for plasma simulation. Open-

source, collaborative, user-friendly and designed for high performances on
super-computers, it is applied to a wide range of physics studies: from re-

lativistic laser-plasma interaction to astrophysics.

e Smulet source code, user’s manual, and tutorials are available at http:|
//wuw .maisondelasimulation.fr/smilei

e Smilet’s development depends on its visibility from publications or
presentations featuring its results. When publishing simulation res-
ults involving Smuler, please cite the following article:

J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A.
Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent,
C. Riconda, M. Grech, SMILEL: a collaborative, open-source, mulli-
purpose particle-mn-cell code for plasina simulation, Comput. Phys.
Commun. 222, 351-373 (2018)

1.1 Case study: Laser-driven ion acceleration
Aim of this study

e tostudy the interaction of ultrashort intense laser pulse with overdense
plasma

e to demonstrate how to run a sinulation i both the shared memory
and distributed memory parallel mode (i.e., OpenMP and MPI)

e to become familiar with particle-in-cell code Smilei
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Simulation parameters
e 1D simulation

e laser parameters: intensity 2 x 102! W/em?, wavelength 800 nm, dur-
ation 30 fs at FWHM (in intensity), circularly polarized

e plasma parameters: hydrogen plasma layer of thickness 1 pm and elec-
tron density 50 ne., where ng. is plasma critical density

e numerical parameters: cell size 10 nm, length of the simulation box
40 pm, duration of the simlation 200 fs

» % SIMULATION PARAMETIERS FOR THE PIC-CODE SMILEI

DEFINING MY OWN VARIABLES

Simple Python script

i import math

i 10 = 2.0emath. pi # laser wavelength [in code units |

t) — 10 7 optical cvele
13 Lsim = 50.«10 # length of the simulation box (= 40 nmm)
1 Tsim = 75.+t0 f duration of the simulation (= 200 fs)
1n resx = 80. # nb of c¢ells in on laser wavelength
w reéest = resx /0.8 4 nb of timesteps in one optical ¢yvele
17 dtt = t0/rest
i ne = 50. ¢ electron density (code units = 1 = plasma

eritical density)

w Te = 0.01 2 Te normalised in mec™2 (¢ode units) (= 5110 eV)
X

nppé = 200 # number of particle —per—cell
x diagEvery = int (2.5+t0/dt} # frequency of some outputs

a1 DEFINING SMILEI's VARIABLES
» 7 All in "blocks™

» Main (
X geometry — "1Dcartesian" |
1 interpolation_order = 2,
timestep = dt,
simulation _time = Tsim,
cell _length = [10/resx]|.
grid _length = [Lsim].
¥ number_of patches = | 16 |.
87 EM _boundary _conditions = | | "silver —muller °| |
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25 print_every = 50,
random _seed = smilei_mpi_rank

Species|

name = ‘proton
position _initialization = ‘random’,

momentum _initialization = "maxwell—juettner *,
particles _per _cell = nppe,

1 mass — 1836.,

e charge = 1.0,

) number density = trapezoidal(ne. xvacuum=25.«10 . xplatean
—=1.25«10}.,

g temperature = [Te| .

m boundary _conditions = | | ‘remove | |.
time frozen = 24.+t0

)

w Species(

" name = ‘electron |

n7 position _initialization = ‘random’,

momentum _initialization = ‘maxwell—juettner *,
particles per _cell = nppe,

o mass = 1.0,

i1 charge = —-1.0,

number density = trapezoidal(ne. xvacuum=25.«10 . xplatean
=1.2510) ,
temperature — [Te| .
boundary _conditions = | | ‘remove | |.

time frozen — 24.+t(

o )

« LoadBalancing(
initial _balance = True,
every = 100

7 LaserPlanariD(

7 box_ side =" xmin-;
af = 30.0, laser intensity 2.0e121 Wiem?2,
wavelength 800 mn
omega = 1.

T polarization_phi = 0.,

7 ellipticity — LA circular polarization
time__envelope = tgaussian (start =0.., duration=24.«t(, fwhm

=11.25+t0 . center =12.«t0)
DIAGNOSTICS

si DiagScalar (
every = 3
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« DiagFields (
every = diagEvery .,
X fields = | 'Ex’, 'Ev'.'Bz’', 'Rho_proton”, "Rho_electron’ |
n 3
DiagParticleBinning(
" deposited _quantity = “weight ",
every = diagEvery.
v time average — 1.
i species = | ‘proton’},
i axes = |
| Tekin *. 0., 50.. 500]
w ]
)
a2
iz DiagParticleBinning(
1 deposited _quantity = “weight *,
109 every — diagEvery,
Lo time_ average = 1,
to7 species = [electron '],
10 axes — |
10 | ‘ekin ', 0., 50.. 500]
1 |
11 )
Tasks

1. Explain the meaning of parameters defined in a namelist (an input file)
for Smulet simulation. You can look athttp://www.maisondelasimulation.
fr/smilei/namelist.html]|for help.

2. Compare the resolution of cell size with skin depth and plasma Debye
length.

3. Run the simulation on four CPU cores using MPIL, type top command
in Linux terminal in order to observe the load of computer during
simulation rumn.

4. Run the simulation on multiple threads with shared memory using
openMP (set the environment variable OMP_NUM_THREADS be-

fore the run), observe the load of computer during simulation run.

5. Plot energy balance during simulation: how particle kinetic energies,
electromagnetic field energy and total energy evolves in time. Explain
that. If you need help, you can look at http://www .maisondelasimulation.
fr/smilei/post-processing .htmlloron tutorial athttps://smileigic.
lgithub.io/tutorials/tutoriall.html!

6. Plot the evolution of electromagnetic fields and electron and proton
densities. Explain what you see.
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7. Plot energy spectra of electrons and protons. Explain.

8. Try to run the same simulation except for another laser polariza-
tion (use linear polarization). Observe differences in energy balance,
particle densitics and energy spectra of particles.

Tips: You can use ipython to plot data or yvou can write a seript in Python.
Examples of two Python scripts plotting densities and energy spectra of
protons and electrons are shown below.

| import happi

» S=happi.Open(". /")

: ne=S. Field (0.field="-Rho _electron" ., label="ne")
np=S.Field (0, field="Rho_praoton" . label="np")
happi . multiPlot (ne,np ,saveAs="./ dens.png")
raw _input ()

1 import happi
» S=happi.Open(". /")
tstop=S.namelist  Main.simulation time
tstep=S.namelist . Main.timestep
tfrozen=S.namelist . Species|"electron"]. time_frozen
o ntfrozen=int(tfrozen tstep 1 0.000001)
» ntstop=int (tstop /tstep 10.000001)
s eenspectr=S. ParticleBinning (1, timesteps—[ntfrozen . ntstop]|.
data_log=True, label="¢lectrons")
 penspectr=S. ParticleBinning (0. timesteps—|[ntfrozen , ntstop],
data_log=True. label="protons")
0 happi.multiPlot (eenspectr , penspectr )
i1 raw_input ()

1.2 Case study: Laser-driven electron acceleration
Aim of this study

e to study the interaction of ultrashort intense laser pulse with under-
dense plasma

e todemonstrate the function of moving window and the model of frozen
ions, which both simmplifies the calculation

e to run multidimensional particle-in-cell simulation

e to use advanced diagnostics implemented in Smalet

Simulation parameters

e 2D simulation
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e laser parameters: intensity 5.8 x 10 W/em? (dimensionless amplitude
ag = eEy/(mwe) = 5.2), wavelength 800 nm, duration 21.3 fs (8
laser cycles) at FWHM (in intensity), gaussian beam width 10pm at
FWHM, linearly p-polarized

e plasma parameters: underdense plasma layer of total thickness 10 mm,
electron density profile 1/(1 + exp (hﬁz‘.@) * Timar, WHEre fmge =
10" em—3, 20 = 5000 pm, wr = 4700 pm, Lr = 50 pm, ions are

frozen in the whole simulation

e numerical parameters: cell size 50 nm along laser propagation axis,
400 nm in transverse direction, length of the simulation box 120 pm x
64 pm, duration of the simulation 4 ps

2 #  SIMULATION PARAMETERS FOR THE PIC-CODE SMILEI

DEFINING MY (OWN VARIABLES

Simple Python script

o import math

i 10 = 2. 0emath. pi 4 laser wavelength [in code units|

i t0 =10 Zeooptical ovele

13 Lsimx = 150.¢10 # length of the simulation box in x (= 120 nmum)
1+ Lsimy = 80.+10 # length of the simulation box in y (= 64 mum)
in Tsim = 1500.«t0 # duration of the simulation (= 4 ps)

1w resx = 16:

17 TSy = 2: 7 nb of cells in on laser wavelength

1« rest = resx /0.8 # nb of timesteps in one optical ¢xcle

w dt = t0/rest

o nx = 15016 ¥ nb of cells along x—axis

a1 npatchx = 32 7 nb of patches along x—axis

¢ xtot = 12500.«10 = 10000 tum)

u x0 = xtot /2.0

» owidthx = 5875.«10 #(= 4700 num)

v Lx = 62.5+10 H= 50 rmen)

w nimax = 5.734e—-3 # electron density (code units — 1 = plasma

critical density)
w # initial density profile of electrons
i def nl_electron(x,y):
12 return 1./(L. } math.exp((abs(x—=x0)—widthx ) /Lx) }en{max
i FWHMinl = 12.5«10 #(= 10 nomm)
 waistinl = FWHMinl /(2. 0smath . sqrt (math.log(2.0) )}
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v waistinE = FWHMinI/math . sqrt (2.0smath. log(2.0) )
FWHMtinl = 8§.0«t0 =23 18’
FWIHMtinE — FWHMtinlemath . sqrt (2.0) H= 30 fs)

w diagEvery = int (37.5«t0/dt) # frequency of some outputs |
100 fs)

DEFINING SAMILEI's VARIABLES
All in "blocks"

Main (

7 geometry = "2Dcartesian",
interpolation _order = 2,
timestep = dt,

Z simulation time = Tsim,

il cell _length = | 10 /resx. 10 /resy |,
grid _length = | Lsimx, Lsimy |,
number_of _patches = [32. 16},
clrw = nx /npatchx .

EM _houndary _conditions = |

["silver —mullexr" '

n7 ["silver —muller" |

'silver —muller” | <

"silver —muller"” ],

solve poisson = False .
print_every = 100,
random _seed = smilei_mpi_rank

MovingWindow (
time_start — 0.9«Main. grid_length [0] ,
velocity _x = 0.9997

)
LoadBalancing(
n initial _balance = False
71 every = 20,
cell _load = 1.,
3.
= Species(
™ name = "electron".,
position initialization = "regular",
78 momentum _initialization = "caold",
o particles per _cell = 4,
mass = 1.0,
41 charge = —1.0,
number _density = nl_electron |
mean _velocity = [0.0, 0.0, 0.0],
pusher = "boris",
time frozen = 0.0,
bhoundary conditions = |

5y ["remove" . "remove"|.
["remove" | "remove"|.

Page | 258



- Erasmus+

)

w LaserGaussian2D |
box _side =T i
af) = T intensity 5.8¢0 119
omega = 1.,
focus = [0., Main. grid _length[1]/2.].

;7 waist = waistinE |

time__envelope = tgaussian (start =0., duration =2.«FWHMtnE,

fwhin=FWIHMtinE, center=FWHMtnkE)

list _fields = [*Ex’,’Ey', Bz’ ;"Rho ", Jx"]

DiagFields (

107 every — diagEvery,
fields = list _fields
)
i DiagProbe (
110 every = diagEvery .,
origin = [0., Main.grid_length|1]/2.].

corners —
[ Main. grid _length [0] . Main. grid_length [1]/2.],
number = [nx],
11 fields = list _fields

DiagSecalar (
1y every = int (diagEvery /10) .
vars=|
122 Uelm ™. " Ukin _electron 7,
123 "ExMax " "ExMaxCell” | "EyMax " "EyMaxCell * | "RholMlin* ,*
RhoMinCell * |
"Ukin_bnd’ | "Uelm_bnd ", "Ukin_out_mvw ', 'Ukin_inj mvw’

Uelm_out_mvw’; "Uelm_inj mvw

1 DiagParticleBinning(

1 deposited _quantity = "weight".
131 every — diagEvery,
species = ["electran],

axes = |
["moving x" ., 0., Lsimx, 300],
["ekin", 1., 500., 200]

DiagPerformances(
L9 every — diagEvery
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Tasks

1. Run the simulation on four CPU cores using MPI, type top command
in Linux terminal in order to observe the load of computer during
simulation run.

2. Explain the meaning of parameters defined in a namelist (an input file)
for Smualet simulation. You can look athttp://www.maisondelasimulation.
fr/smilei/namelist.html|for help.

3. Compare the resolution of cell size with plasma Debve length.

4. Plot the evolution of electron densities and laser fields throughout the
whole simulation (2D images). If you need help, you can look at http:
|//www.maisondelasimulation.fr/smilei/post-processing.html]

5. Plot the evolution of kinetic energy of electrons depending on their
position along laser propagation axis. Explain what vou see.

6. Select electrons trapped in the first bubble (based on the results from
previous diagnostics) and plot their energy spectrum.

7. Plot the evolution of electric field component along the laser propaga-
tion axis in the middle of the simulation box (use Smilet’s Probe dia-
ENOSTICS ).

Tipa: You can use ipython to plot data or yvou can write a script in Python.
Example of Python script plotting energy spectra of electrons in the selected
region 18 shown below.

1 import happi

: S=happi.Open(". ")

i eenspectr=S. ParticleBinning (0. sum={"moving x":[500, 800]}.

data_log=True)

eenspectr. animate ()

s raw_input ()

1.3 Case study: Generation of electron-positron plasma
Aim of this study

e to study the interaction of two counter-propagating extremely intense
laser pulses with thin dense plasma layer leading to the production of
electron-positron pairs (the so-called multiphoton Breit-Wheeler pro-
CORS )

e to demonstrate QED (quantum electrodynamics) effects which are ex-

pected to be investigated in near future with next generation laser
technology
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e to analyze a simulation run performed on larger number of CPU cores
than in previous cases (single node of computer cluster with 16 CPU

cores was used to obtain our data)

Simulation parameters
e 1D simulation

e laser parameters: two counter-propagating laser pulses of maximum
intensity 5 x 102 W/em?, wavelength 1 pm, duration 30 fs at FWHM
(i intensity ), linearly p-polarized

e plasma parameters: hydrogen plasma layer of thickness 1 pm, and
electron density 50 nee, where nge is plasma critical density

e numerical parameters: cell size 12.5 nm, length of the simulation box
51.2 pm, duration of the simulation 233 fs; the total number of cells
in the simulation box is set to the value which enables to create larger
number of patches

SIMULATION PARAMETERS FOR THE PIC-CQODE SMILEI

DEFINING MY (AN VARIABLES

Simple Python seript

import math

10 = 2. 0emath. pi # laser wavelength [in code units|
t) = 10 7 optical cyele
v Lsim = 51.2«10 # length of the simulation box (= 51.2 pum)
: Tsim = 70.»t0 # duration of the simulation (= 233 fs)
resx = 80. # nb of cells on laser wavelength
rest = resx /0.8 # nb of timesteps in one optiecal cyele
dt = t0/rest
ne = 50. # electron density (code units =- 1 = plasma
critical density)
Te = 0.01 i Te normalised in mee™2 (¢code units) (= 5110 V)
uppe = 100 # number of particle —per—cell
e = 299792458 # Speed of light
lambdar = le—6 # Wavelength for normalization
vowr = 2»math . piec/lambdar 7 Normalization angular frequency
diagEvery = int (3.33«t0/dt) # frequency of some outputs

‘v

|

DEFINING SMILEI's VARIABLES

Page | 261




- Erasmus+

. . - & ff,’“,“% D UNIvERSITY QueensUnversty
. b* UPSRBER  nae Q:} & ik /

PowuckaF
High Pawer Laser Plasma Physics.

w # All in "blocks"

Main (

geometry = "1Dcartesian" |

interpolation _order = 2.

y timestep — dt.
simulation _time = Tsim,

.» cell _length = [10/resx] .
grid _length = |Lsim].

, number_of patches = | 512 |,
EM _boundary _conditions = | [ "silver —muller ] | .
print _every — 50,
reference _angular frequency SI = wr,
random _seed — smilei_mpi_rank

o)

¥

i Species(
name — ‘proton ",
position _initialization = ‘regular’,

" momentum _initialization = ‘maxwell—juettner
particles per _cell = nppe,

mass — 1836. .,
charge = 1.0,
number _density = trapezoidal(ne., xvacuum=24.5«10 . xplateau
=1.010) ,
temperature = [Te] .

” boundary conditions = | [ ‘remove’] |.

57 time frozen — 2.+Tsim

55 )

w Species(

o1 name = 'electron’,

position _initialization = ‘random’,
momentum _initialization = "maxwell—juettner ",
particles per _cell = nppe.

i mass = 1.0,

-- charge = —1.0,
number _density = trapezoidal(ne, xvacuum=25.1«10 ., xplateau
=1.0e10) .

temperature — [Te] ,

o radiation _model="Monte—Carlo *,

o radiation _photon__species = "photon" .

71 radiation__photon _sampling = 1,

radiation _photon gamma_ threshold = 2,

7 boundary conditions = [[| ‘remove ||,

7 time frozen — 20.+t(

)

7 Species|

74 name = 'positron ',

position _initialization = "random",

5 momentum _initialization = "cold” |

81 particles per_cell = 0,
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g2 ¢_part_max = 1.0,
53 mass = 1.0,
charge = 1.0,
47 charge density = 0.,
mean _velocity = (0.0, 0.0, 0.0],
temperature = [0.] .
radiation _model = "Monte—Carlo” |
w radiation _photon _species = "photon" |
X radiation_photon _sampling = 1.
i radiation _photon _gamma_threshold = 2
boundary _conditions = || "remave ' ||,
time frozen = 20+t
)
v Species|
17 name — ~photon 7,
i position _initialization = "random"
i momentum _initialization = "cold" |
particles per _cell = 0,
101 ¢_part_max = 20.0,
mass = 0,
1643 charge = 0.,
number density = (.,
mean _velocity = [0.0 0.0, 0.0],
1ox temperature = [0.],
pusher = "norm" |
108 multiphoton_Breit_ Wheeler = ["electron" . " positron"|,
10 multiphoton_ Breit _Wheeler _sampling = [1.1].
BT boundary _conditions = || “remave ' ||,
111 )
11
111 LoadBalancing(
114 initial _balance = True,
115 every = 100
116 )
11
119 77 first laser pulse
1 LaserPlanariD(
1) box_side = Symin’,
121 al = 604. . laser intensity 5.0e123 Wem2,
wavelength 1 um
omega = 1
423 polarization _phi = 0.,
124 ellipticity =05,
125 time_envelope = tgaussian(start=0., duration=19.2«t0 . fwhm
=00t . center =9.6+t0)
N )

128 second lasor
12 LaserPlanariD(
150 box_side
1341 &XO

waveleneth
132 omega
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polarization phi = 0.,
ellipticity =0
time__envelope = tgaussian (start =0., duration=19.2«t0, fwhm

=0.0«t0) . center =9.6+t0 )

OFED parameters

111 RadiationReaction (
chipa_dis¢_min_threshold = le—-2,
output _format = 'hdf5’

"

table path = databasesg"

1w MultiphotonBreitWheeler (
144 output _format = 'hdf5’

table _path = " ./ databases"
1% )

DIAGNOSTICS

DiagScalar(

every = 9.

vars —I Welm” , "Ukin * . Utot ™,
177 Vexp ',
158 .I‘l‘léll‘.

‘Urad’

"Ukin _electron |

"Ukin _peositron ’

“Ukin_photon * |
163 "Ntot _electron * |

‘Ntot _positron’

'Ntot _photon’

e DiagFields (

1670 every — diagEvery .

figlds = ["Ex" 2Ey = 7Bz",

‘Rho_proton’
‘Rho_electron *

174 'Rho_positron ",

'7 ‘Rho_photon ')

177 DiagParticleBinning(

deposited _quantity = “weight ™,
every — diagEvery .
time_average — 1,

181 species = [ ‘electron '] .
axes — |

[ “ekin®, 0., 5000.., 500]
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196
157 DiagParticleBinning(

188 deposited quantity = “weight ™,
140 every = diagEvery,

1K time average — 1,

19 species = [ "positron ],

1 axes = |

13 I ‘ekin ’ . 0.. 5000.. 500|

o7 DiagParticleBinning(

L8 deposited quantity = ‘weight ",
LK) every — diagEvery ,
time_average — 1,

201 species = | photon’|.

202 axes = [

| "ekin ., 0., 3000., 500]
|

2 )
wr DiagPerformances (
every — diagEvery
am )

Tasks

1. Download data from the simulation already performed on computer
cluster. You can download this data at http://kfe.fjfi.cvut.cz/|

I

“psikal/PowerLaPs/case3.tar.gz!

2. Explain the meaning of parameters defined in input file QEDpaws_ 1d.py
for this simulation.

3. Plot laser electric field. Observe the amplitudes of the fields before and
after the interaction with plasma. Explain that.

1. Plot temporal evolution of the number of electrons, positrons, and
photons in the simulation. Determine the ratio of the number of gen-
erated positrons to the initial number of electrons.

9. Show the number of cells and particles per each CPU core during the
whole simulation run (use Performances diagnostic in Smilet ).

6. Image densities of particles during the whole interaction. Interpret the
results.

7. Plot energy spectra of positrons and photons.

Tips: You can use ipython to plot data or you can write a script in
Python. Examples of Python script plotting the number of positrons and
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electrons during the whole simulation and determining their ratio as well as
the seript illustrating the number of cells and particles per each CPU core
are shown below.

| import happi
import matplotlib.pvplot as plt
S=happi.Open(". ")
Nel=S.Scalar (" Ntot_electron")
Npos=S. Scalar("Ntot _positron")
Nphot=S. Scalar ("Ntot _photon")
happi .multiPlot ( Nel,Npos.Nphot . figure=1}

happi.multiPlot (Nel ,Npos, figure=1)
tig=plt . fignure (1)

w plt.savefig(®./Npartnbs.png’)

11 Nposmax—max(Npos. getData () )

iz Nel0=min( Nel.getData() )

i oprint ("Ratio of the number of generated positrons to the initial

number of electrons: " | str(Nposmax/NelQ})
1 raw_input ()

1 import happi
» S=happi.Open("./ ")
diage=S.Performances (raw="number of cells")
diage . animate(saveAs=". 'ncells . png")
raw _input()
diagp=S.Performances (raw="number _of particles")
- diagp.animate(saveAs=". nparts. png")
v raw_input ()
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