Camera & Color

Overview

- •Pinhole camera model
- Projective geometry
- Vanishing points and lines
- Projection matrix
- Cameras with Lenses
- •Color
- •Digital image

Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3

The trip of Light

Image Formation

Let's design a camera. Is this going to work?

Pinhole Camera

- Add a barrier to block off most of the rays
- This reduces blurring
- The opening is known as the aperture

f = focal length c = camera center

Dimensionality Reduction – 3D to 2D

3D world

2D image

Point of observation

Projection Illusion

Projection Illusion

Projective Geometry

Lost Properties

Invariant Properties

•Length (size)

- •Angles
- .Shape

Straight Lines

Projective Geometry Angles-Shape

Projective Geometry Length-Size

Projective Geometry

Straight Lines

Projection Properties

•Many-to-one: any point along the same ray map to the same point in the image.

•Points \rightarrow Points

- •Lines \rightarrow Lines
 - -Line through the camera center projects to a point.

•Planes \rightarrow Planes

– Plane through the camera center projects to a line.

Vanishing Points

Parallel lines in the world intersect in the image at a "vanishing point"

Vanishing Point

Vanishing Lines

Planes in the world form a "vanishing line" in the image.

Vanishing Lines

• Horizon: vanishing line of the ground plane

Homogeneous Coordinates

Converting to homogeneous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Projection

3D World Coordinates to 2D Image Coordinates

Intrinsic Assumptions

- Unit aspect ratio •
- Optical center at (0,0)

P Μ

- No rotation
- Camera at (0,0,0) •

rojection
$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Projection Matrix

If the position of the optical center is at (u_0, v_0) : K:intrinsic matrix

Field of View

Field of View

$$\phi = \tan^{-1}(d/2f)$$

Lenses

A lens focuses light onto the film.

Lens Focus

There is a specific distance at which objects are "in focus".

Lens Focus – Depth of Field

perfocal distance opposit are using. If you the the depth of field will ce to infinity.[⊲] For amera has a hyperf

Depth of Field and Aperture

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- -But small aperture reduces amount of light need to increase exposure

Lens flaws: Spherical aberration

Rays farther from the optical axis focus closer.

Lens flaws: Vingetting

Radial Distortion

- •Caused by imperfect lenses
- •Deviations are most noticeable on the edges.

Real Lenses

Color

What is color?

•Color is the result of interaction between physical light in the environment and our visual system

•Color is a psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights (S. Palmer, Vision Science: Photons to Phenomenology)

Wassily Kandinsky, Murnau Street with Women, 1908

Physics of Light

A source of light can be described physically by its spectrum: the amount of energy emitted at each wavelength (~400-700nm).

Color Perception by Humans

•Photoreceptor cells: Rods and cones on the retina.

•Rods provide black and white vision.

•Cones provide color vision.

•3 kind of cones.

Rods and cones act as filters on the spectrum: To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths

RGB Color Space

•Additive color model.

•Each pixel is characterized by a value for each of the three components: (v_r, v_g, v_b) .

•Examples:

- Black: (0,0,0)
- Gray: (v,v,v)
 - White: (v_{max},v_{max},v_{max})

 $p_1 = 645.2 \text{ nm}$ $p_2 = 525.3 \text{ nm}$ $p_3 = 444.4 \text{ nm}$

Uses of Color in Computer Vision

Skin Detection

Uses of Color in Computer Vision

Image Segmentation and Retrieval

Digital Camera

Digital Image - Binary

Digital Image - Grayscale

Digital Image - Color

49	55	56	57	52	53
58	60	60	58	55	57
58	58	54	53	55	56
83	78	72	69	68	69
88	91	91	84	83	82
69	76	83	78	76	75
61	69	73	78	76	76

64	76	82	79	78	78
93	93	91	91	86	86
88	82	88	90	88	89
125	119	113	108	111	110
137	136	132	128	126	120
105	108	114	114	118	113
96	103	112	108	111	107

66	80	77	80	87	77
81	93	96	99	86	85
83	83	91	94	92	88
135	128	126	112	107	106
141	129	129	117	115	101
95	99	109	108	112	109
84	93	107	101	105	102

Red

Green

Blue

Digitization

- •Digital camera, scanner.
- •Quality depends on:
 - -Spatial Sampling (image resolution, number of pixels).
 - -Depth (number of intensity values).

Digitization – Spatial Sampling

Sampling points

Coarse sampling

Dense sampling

Sampling Interval

Sampling Interval

Look at the fence:

Now the fence is visible!

Sampling Theorem

If the width of the thinest structure is \mathbf{d} , then the sampling interval should be smaller than $\mathbf{d}/2$.

Image Quantization

•Determines the value of each sample.

•Mapping between analog continuous values and **K** digital quantized values.

Selection of K – Gray Scale Image

Selection of K - Color Image

"Analog" Image

K=2 (for each color)

K=4 (for each color)

Loss during Quantization

Loss during Spatial Sampling

Image Histogram H

•H(i) is the number of image pixels that have the value *i*.

Histogram Examples

? Questions ?