
Linear filtering

Book: Szeliski 3.2, Forsyth 4.1, 4.2 



Motivation: Image denoising

• How can we reduce noise in a photograph?



∙ Let’s replace each pixel with a weighted

average of its neighborhood

∙ The weights are called the filter kernel

∙ What are the weights for the average of a 

3x3 neighborhood?

Moving average
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“box filter”

Source: D. Lowe
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Key properties

∙ Linearity: filter(f1 + f2) = filter(f1) + filter(f2)

∙ Shift invariance: same behavior regardless of 

pixel location: filter(shift(f)) = shift(filter(f))

∙ Theoretical result: any linear shift-invariant 

operator can be represented as a convolution



Properties in more detail

∙ Commutative: a * b = b * a
∙ Conceptually no difference between filter and signal

∙ Associative: a * (b * c) = (a * b) * c
∙ Often apply several filters one after another: (((a * b1) * b2) * b3)

∙ This is equivalent to applying one filter: a * (b1 * b2 * b3)

∙ Distributes over addition: a * (b + c) = (a * b) + (a * c)

∙ Scalars factor out: ka * b = a * kb = k (a * b)

∙ Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],

a * e = a



Annoying details

What is the size of the output?

∙ Python(scipy.signal): convolve2d(f,g,mode..*)
∙ mode = ‘full’: output size is sum of sizes of f and g

∙ mode = ‘same’: output size is same as f

∙ mode = ‘valid’: output size is difference of sizes of f and g 
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full same valid

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html


Annoying details

What about near the edge?
∙ the filter window falls off the edge of the image

∙ need to extrapolate

∙ methods:
∙ clip filter (black)

∙ wrap around

∙ copy edge

∙ reflect across edge

Source: S. Marschner



Annoying details

What about near the edge?
∙ the filter window falls off the edge of the image

∙ need to extrapolate

∙ methods (Python):
∙ clip filter (black): convolve2d(f, g, boundary=‘wrap’, fillvalue=0)

∙ wrap around: convolve2d(f, g, boundary=‘wrap’)

∙ reflect across edge: convolve2d(f, g, boundary=‘symm’)

Source: S. Marschner



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Blur (with a

box filter)

Source: D. Lowe



Practice with linear filters
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(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters
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Sharpening filter

- Accentuates differences 

with local average

Source: D. Lowe



Sharpening

Source: D. Lowe



Sharpening

What does blurring take away?

original smoothed 

(5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ 



Smoothing with box filter revisited

∙ What’s wrong with this picture?

∙ What’s the solution?

Source: D. Forsyth



Smoothing with box filter revisited

∙ What’s wrong with this picture?

∙ What’s the solution?

∙ To eliminate edge effects, weight contribution of 

neighborhood pixels according to their closeness 

to the center

“fuzzy blob”



Gaussian Kernel

∙ Constant factor at front makes volume sum to 1 (can be 

ignored when computing the filter values, as we should 

renormalize weights to sum to 1 in any case)

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Source: C. Rasmussen



Gaussian Kernel

∙ Standard deviation σ: determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30 

kernel

σ = 5 with 30 x 30 

kernel



Choosing kernel width

∙ The Gaussian function has infinite support, 

but discrete filters use finite kernels

Source: K. Grauman



Choosing kernel width

∙ Rule of thumb: set filter half-width to about 3σ



Gaussian vs. box filtering



Gaussian filters

∙ Remove high-frequency components from the 

image (low-pass filter)

∙ Convolution with self is another Gaussian
∙ So can smooth with small-σ kernel, repeat, and get same 

result as larger-σ kernel would have

∙ Convolving two times with Gaussian kernel with std. dev. σ

is same as convolving once with kernel with std. dev. 

∙ Separable kernel
∙ Factors into product of two 1D Gaussians

∙ Discrete example:

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Noise

∙ Salt and pepper 
noise: contains 
random occurrences 
of black and white 
pixels

∙ Impulse noise: 
contains random 
occurrences of white 
pixels

∙ Gaussian noise: 
variations in 
intensity drawn from 
a Gaussian normal 
distribution

Source: S. Seitz



Gaussian noise

∙ Mathematical model: sum of many 

independent factors

∙ Good for small standard deviations

∙ Assumption: independent, zero-mean noise

Source: M. Hebert



Smoothing with larger standard deviations suppresses noise, 

but also blurs the image

Reducing Gaussian noise



Reducing salt-and-pepper noise

What’s wrong with the results?
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Alternative idea: Median filtering

∙ A median filter operates over a window by 

selecting the median intensity in the window

∙ Is median filtering linear?
Source: K. Grauman



Median filter

∙ What advantage does median filtering have 

over Gaussian filtering?
∙ Robustness to outliers

Source: K. Grauman



Median filter

Salt-and-pepper noise Median filtered

Source: M. Hebert

Python (scipy.signal): medfilt2d(image, [w, h]*)
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt2d.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html


Gaussian vs. median filtering
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??Questions??


