Edge and corner detection

Book: Szeliski 4.1.1, 4.2, Forsyth 5.1, 5.2, 5.3

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features Step 3: align images

Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Applications

Feature points are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval
- Object recognition

Applications - currently

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels

 Ideal: artist's line drawing (but artist is also using object-level knowledge)

Origin of edges

Edges are caused by a variety of factors:

Edge detection

An edge is a place of rapid change in the image intensity function

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement the above as convolution, what would be the associated filter?

Partial derivatives of an image

 $\frac{\partial f(x,y)}{\partial x}$ $\frac{\partial f(x,y)}{\partial y}$ -1 1 -1 1

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ;
 $M_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

 Sobel:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

 Roberts:
 $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Source: K. Grauman

Image gradient

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

• How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1} \left(\frac{\partial f}{\partial u} / \frac{\partial f}{\partial x} \right)$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

Consider a single row or column of the image

Where is the edge?

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$

• This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filters

Scale of Gaussian derivative filter

137pixelpixelspixelsSmoothed derivative removes noise, but blursedge. Also finds edges at different "scales"

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

original image

Slide credit: Steve Seitz

norm of the gradient

thresholding

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

requires checking interpolated pixels p and r

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

Use a high threshold to start edge curves, and a low threshold to continue them.

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Image gradients vs. meaningful contours

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Data-driven edge detection

Input images

Training data

Ground truth

Output

P. Dollar and L. Zitnick, Structured forests for fast edge detection, ICCV 2013

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction "corner": significant change in all directions

Corner Detection: Mathematics

Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u, y+v) - I(x, y)]^2$$

Corner Detection: Mathematics

Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u, y+v) - I(x, y)]^2$$

I(x, y)

E(u, v)

Corner Detection: Mathematics

The quadratic approximation can be written as

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives:

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

(the sums are over all the pixels in the window W)

Quadratic Form Approximation

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$ This is the equation of an ellipse.

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$

This is the equation of an ellipse.

Diagonalization of M:
$$M = P^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} P$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by P

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

Corner response function

 $R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$

α: constant (0.04 to 0.06)

Harris corner detector

Harris corner detector

large λ_1 , small $\lambda_{2 30}$

Harris corner detector

small λ_1 , small $\lambda_{2,31}$

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function R
- 4. Threshold R
- 5. Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Compute corner response R

Find points with large corner response: R >threshold

Invariance and covariance

We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations

- Invariance: image is transformed and corner locations do not change
- **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

x (image coordinate)

Partially invariant to affine intensity change

Image translation

· Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

Corner location is not covariant to scaling!