Feature Detectors/Descriptors

Book: Szeliski 4.1.2 , Forsyth 4.5-4.7, 5.4-5.5,



Blob detection
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Feature detection with scale selection
e \We want to extract features with

characteristic scale that is covariant with the
image transformation
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Blob detection: Basic idea
* To detect blobs, convolve the image with a

“blob filter” at multiple scales and look for
extrema of filter response in the resulting
scale space
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Blob detection: Basic idea

minima

maxima

* Find maxima and minima of blob filter
response in space and scale

Source: N. Snavely



Blob filter

e Laplacian of Gaussian: Circularly symmetric
operator for blob detection in 2D




Signal

Kernel

Convolution

Recall: Edge detection

Sigma = 50
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Derivative
of Gaussian

Edge = maximum
of derivative

Source: S. Seitz



Signal

Convolution

Edge detection, Take 2

Sigma = 50
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Second derivative
of Gaussian
(Laplacian)

Edge = zero crossing
of second derivative

Source: S. Seitz



From edges to blobs

e Edge =ripple

e Blob = superposition of two ripples

Original signal

L LT,

|

=20 -10 10 20 -20 -7 7 20 -20

3 2 0 -2

o=1)

- /\/ ........ \/\ | & /\f_\/\ ________ o

Convolved with Laplacian (

A

-20 =T 10 20 -20 = 7 20

-20

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob
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Scale selection

e \We want to find the characteristic scale of the
blob by convolving it with Laplacians at several
scales and looking for the maximum response

e However, Laplacian response decays as scale
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Scale normalization

e The response of a derivative of Gaussian filter

to a perfect step edge decreases as o
Increases

e To keep response the same (scale-invariant),
must multiply Gaussian derivative by ¢

e Laplacian is the second Gaussian derivative, so
it must be multiplied by c?2



Effect of scale normalization

Original signal Unnormalized Laplacian response
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Blob detection in 2D

e Laplacian of Gaussian: Circularly symmetric
operator for blob detection in 2D

Scale-normalized: VZ — 02 |




Scale selection

e At what scale does the Laplacian achieve a maximum
response to a binary circle of radius r?

image Laplacian



Scale selection

At what scale does the Laplacian achieve a maximum
response to a binary circle of radius r?

To get maximum response, the zeros of the Laplacian have
to be aligned with the circle

The Laplacian is given by (up to scale):
L(X y) _ (XZ 4 y2 . 202) e—(X2+y2)/20-2
Therefore, the maximum response occurs at o=r/ \/E

Laplacian —

image



Characteristic scale

e Characteristic scale of a blob: the scale that
produces peak of Laplacian response in the blob
center
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T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116.



http://www.nada.kth.se/cvap/abstracts/cvap198.html

Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales



Scale-space blob detector: Example




Scale-space blob detector: Example




Scale-space blob detector

Convolve image with scale-normalized
Laplacian at several scales

Find maxima of squared Laplacian response
in scale-space




Example

Scale-space blob detector
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Feature Description/Matching



Correspondence and alignment

* Correspondence: matching points, patches,
edges, or regions across images




Overview of Keypoint I\/Iatching

1. Find aseto
distinctive key-
points

2. Define a region
around each
keypoint

3. Extract and
normalize the
region content

4. Compute a local
descriptor from the
normalized region

d(f,, fg)<T

5. Match local
descriptors

K. Grauman, B. Leibe



Image representations

N ‘

* Templates )
1 '.'

— Intensity, gradients, etc. A A.

* Histograms

— Color, texture, SIFT descriptors, etc.



Template matching
 Goal: find @ inimage

* Main challenge: What is a
good similarity or distance
measure between two
patches?

— Correlation
— Zero-mean correlation
— Sum Square Difference

— Normalized Cross
Correlation




Matching with filters

* Goal: find @ inimage
 Method O: filter the image with eye patch
h[m,n]=> g[k,1] f[m+k,n+1]
kI
S5 ’ f = image

= F | g = filter

What went wrong?

Input Filtered Image



Matching with filters
* Goal: find @ inimage

* Method 1: filter the image with zero-mean eye

h[m n] = Z(f[k ] - f)(g[m+k n+1])

mean of f

Inpt Filtered Image (scaled) Thresholded Image



Matching with filters

* Goal: find @ inimage
e Method 2:SSD
h[m,n]:Z(g[k,I]— f[m+k,n+1])?
k)

1- sqrt(SSD) Thresholded Image



Matching with fjlter |
e Goal: find in image @23%525?&?5‘3'

* Method 2: SSD
h[m,n]:Z(g[k,I]— f[m+k,n+1])°
S k.|

Input 1- sqrt(SSD)



Matching with filters

* Goal: find @ inimage
e Method 3: Normalized cross-correlation

mean template mean image patch

l |
2 gLk, 11-g)(f[m-k,n=11-f,,)
h[m,n] = ——

[Z(g[k,ll—g)ZZ(f [m—Kk,n—1]- f_m,n)zj

Matlab: normxcorr2 (template, im)



Matching with filters

* Goal: find @ inimage
e Method 3: Normalized cross-correlation

Thresholded Image



Matching with filters

* Goal: find @ inimage
e Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image



Q: What is the best method to use?

A: Depends
e SSD: faster, sensitive to overall intensity

* Normalized cross-correlation: slower, invariant
to local average intensity and contrast

e But really, neither of these baselines are
representative of modern recognition.



Image representations

N ‘

* Templates )
1 '.'

— Intensity, gradients, etc. A A.

* Histograms

— Color, texture, SIFT descriptors, etc.



Image Representations: Histograms
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Global histogram

* Represent distribution of features

— Color, texture, depth, ...

Images from Dave Kauchak



Image Representations: Histograms

Histogram: Probability or count of data in each bin
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* Joint histogram Marginal histogram

— Requires lots of data * Requires independent features
— Loss of resolution to « More data/bin than

avoid empty bins joint histogram

Images from Dave Kauchak



What kind of things do we compute
histograms of?

L*a*b* color space HSV color space
* Texture (filter banks or HOG over regions)



SIFT

* Histograms of oriented gradients
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SIFT — Lowe [JCV 2004



SIFT vector formation

e Computed on rotated and scaled version of window
according to computed orientation & scale

Image gradients



SIFT vector formation

e 4x4 array of gradient orientation histogram weighted
by magnitude

* 8 orientations x 4x4 array = 128 dimensions

 Motivation: some sensitivity to spatial layout, but not
too much.
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Image gradients Keypoint descriptor
showing only 2x2 here but is 4x4




Ensure smoothness

e Gaussian weight
* Trilinear interpolation

— a given gradient contributes to 8 bins:
4 in space times 2 in orientation
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Image gradients Keypoint descriptor



Reduce effect of illumination

e 128-dim vector normalized to 1

* Threshold gradient magnitudes to avoid excessive
influence of high gradients

— after normalization, clamp gradients >0.2

— renormalize
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Image gradients Keypoint descriptor



