
Feature Detectors/Descriptors 

Book: Szeliski 4.1.2 , Forsyth 4.5-4.7, 5.4-5.5,  



Blob detection 



Feature detection with scale selection 
• We want to extract features with 

characteristic scale that is covariant with the 
image transformation 



Blob detection: Basic idea 
• To detect blobs, convolve the image with a 

“blob filter” at multiple scales and look for 
extrema of filter response in the resulting  
scale space 



Blob detection: Basic idea 

• Find maxima and minima of blob filter 
response in space and scale 
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Source: N. Snavely 



Blob filter 

• Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D 
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Recall: Edge detection 
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Source: S. Seitz 

Edge 

Derivative 
of Gaussian 

Edge = maximum 
of derivative 



Edge detection, Take 2 
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Edge 

Second derivative 
of Gaussian  
(Laplacian) 

Edge = zero crossing 
of second derivative 

Source: S. Seitz 



From edges to blobs 
• Edge = ripple 

• Blob = superposition of two ripples 

Spatial selection: the magnitude of the Laplacian 
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is 
“matched” to the scale of the blob 

maximum 



Scale selection 
• We want to find the characteristic scale of the 

blob by convolving it with Laplacians at several 
scales and looking for the maximum response 

• However, Laplacian response decays as scale 
increases: 

increasing σ original signal 
(radius=8) 



Scale normalization 

• The response of a derivative of Gaussian filter 
to a perfect step edge decreases as σ 
increases 

• To keep response the same (scale-invariant), 
must multiply Gaussian derivative by σ 

• Laplacian is the second Gaussian derivative, so 
it must be multiplied by σ2 



Effect of scale normalization 

Scale-normalized Laplacian response 

Unnormalized Laplacian response Original signal 

maximum 



Blob detection in 2D 

• Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D 
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Scale selection 
• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r? 

r 

image Laplacian 



Scale selection 
• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r? 

• To get maximum response, the zeros of the Laplacian have 
to be aligned with the circle 

• The Laplacian is given by (up to scale): 
 
 

• Therefore, the maximum response occurs at  
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Characteristic scale 
• Characteristic scale of a blob: the scale that 

produces peak of Laplacian response in the blob 
center 

characteristic scale 

T. Lindeberg (1998). "Feature detection with automatic scale selection." 
International Journal of Computer Vision 30 (2): pp 77--116.  

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Scale-space blob detector 

1. Convolve image with scale-normalized 
Laplacian at several scales 



Scale-space blob detector: Example 



Scale-space blob detector: Example 



Scale-space blob detector 

1. Convolve image with scale-normalized 
Laplacian at several scales 

2. Find maxima of squared Laplacian response 
in scale-space 



Scale-space blob detector: Example 



Feature Description/Matching 

 



Correspondence and alignment 

 

• Correspondence: matching points, patches, 
edges, or regions across images 
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Overview of Keypoint Matching 

K. Grauman, B. Leibe 
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1. Find a set of    
    distinctive key- 
    points  

3. Extract and  
    normalize the     
    region content   

2. Define a region  
    around each  
    keypoint    

4. Compute a local  
    descriptor from the  
    normalized region 

5. Match local  
    descriptors 



Image representations 
 

• Templates 

– Intensity, gradients, etc. 

 

 

• Histograms 

– Color, texture, SIFT descriptors, etc. 

 



Template matching 
• Goal: find       in image 

 

• Main challenge: What is a 
good similarity or distance 
measure between two 
patches? 
– Correlation 

– Zero-mean correlation 

– Sum Square Difference 

– Normalized Cross 
Correlation 

 



Matching with filters 
• Goal: find       in image 

• Method 0: filter the image with eye patch 

 

Input Filtered Image 
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What went wrong? 

f = image 

g = filter 



Matching with filters 
• Goal: find       in image 

• Method 1: filter the image with zero-mean eye 

 

Input Filtered Image (scaled) Thresholded Image 
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True detections 

False 

detections 

mean of f 



Matching with filters 
• Goal: find       in image 

• Method 2: SSD 

 

Input 1- sqrt(SSD) Thresholded Image 
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True detections 



Matching with filters 
• Goal: find       in image 

• Method 2: SSD 

 

Input 1- sqrt(SSD) 
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What’s the potential 

downside of SSD? 



Matching with filters 
• Goal: find       in image 

• Method 3: Normalized cross-correlation 
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Matlab: normxcorr2(template, im) 

mean image patch mean template 



Matching with filters 
• Goal: find       in image 

• Method 3: Normalized cross-correlation 

 

 

Input Normalized X-Correlation Thresholded Image 

True detections 



Matching with filters 
• Goal: find       in image 

• Method 3: Normalized cross-correlation 

 

 

Input Normalized X-Correlation Thresholded Image 

True detections 



Q: What is the best method to use? 

 

A: Depends 

• SSD: faster, sensitive to overall intensity 

• Normalized cross-correlation: slower, invariant 
to local average intensity and contrast 

• But really, neither of these baselines are 
representative of modern recognition. 



Image representations 
 

• Templates 

– Intensity, gradients, etc. 

 

 

• Histograms 

– Color, texture, SIFT descriptors, etc. 

 



Space Shuttle 

Cargo Bay 

Image Representations: Histograms 

Global histogram 
• Represent distribution of features 

– Color, texture, depth, … 

Images from Dave Kauchak 



Image Representations: Histograms 

• Joint histogram 
– Requires lots of data 

– Loss of resolution to  
avoid empty bins 

Images from Dave Kauchak 

Marginal histogram 
• Requires independent features 

• More data/bin than  

joint histogram 

Histogram: Probability or count of data in each bin 



What kind of things do we compute 
histograms of? 

 
• Color 

 
 
 
 
 
 

• Texture (filter banks or HOG over regions) 
L*a*b* color space  HSV color space  



SIFT 

• Histograms of oriented gradients 

 

 

 

 

 

 
SIFT – Lowe IJCV 2004 



SIFT vector formation 

• Computed on rotated and scaled version of window 
according to computed orientation & scale 



SIFT vector formation 
• 4x4 array of gradient orientation histogram weighted 

by magnitude 

• 8 orientations x 4x4 array = 128 dimensions 

• Motivation:  some sensitivity to spatial layout, but not 
too much. 

showing only 2x2 here but is 4x4 



Ensure smoothness 
• Gaussian weight  

• Trilinear interpolation  

– a given gradient contributes to 8 bins:  
4 in space times 2 in orientation 



Reduce effect of illumination 
• 128-dim vector normalized to 1  

• Threshold gradient magnitudes to avoid excessive 
influence of high gradients 

– after normalization, clamp gradients >0.2 

– renormalize 


