
Fitting

Book: Szeliski A.2, 4.3.2, 6.1.4, Forsyth 22.1, 10.1-10.4 



Fitting

• We’ve learned how to 

detect edges, corners, 

blobs. 

• We would like to form a 

higher-level, 

representation of the 

features in the image by 

grouping together multiple 

features.



Source: K. Grauman

Fitting

• Choose a parametric model to represent a 

set of features

simple model: lines simple model: circles

complicated model: car



Fitting: Issues

• Noise in the measured feature locations

• Extraneous data: clutter (outliers), multiple lines

• Missing data: occlusions

Case study: Line detection



Fitting: Overview

• If we know which points belong to the line, 
how do we find the “optimal” line parameters?
• Least squares

• What if there are outliers?
• Robust fitting, RANSAC

• What if there are many lines?
• Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
• Model selection



Total least squares
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Total least squares

Point: (xi, yi) 

Line: ax+by=d (a2+b2=1)

Distance: |axi + byi – d|
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Least squares: Robustness to noise

Least squares fit to the red points:



Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers



RANSAC

• Robust fitting can deal with a few outliers –
what if we have very many?

• Random sample consensus (RANSAC): 
Very general framework for model fitting in 
the presence of outliers

• Outline
• Choose a small subset of points uniformly at random

• Fit a model to that subset

• Find all remaining points that are “close” to the model and 
reject the rest as outliers

• Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model 

Fitting with Applications to Image Analysis and Automated Cartography. Comm. of 

the ACM, Vol 24, pp 381-395, 1981.

http://www.ai.sri.com/pubs/files/836.pdf


RANSAC for line fitting example

Source: R. Raguram



RANSAC for line fitting example

Least-squares fit

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram



RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining 

points (i.e., points whose distance from the 

line is less than t)

• If there are d or more inliers, accept the line 

and refit using all inliers



Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of iterations N
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

• Consensus set size d
• Should match expected inlier ratio

Source: M. Pollefeys



Fitting: The Hough transform



Voting schemes

• Let each feature vote for all the models that 

are compatible with it

• Hopefully the noise features will not vote 

consistently for any single model

• Missing data doesn’t matter as long as there 

are enough features remaining to agree on a 

good model



Hough transform

• An early type of voting scheme

• General outline: 
• Discretize parameter space into bins

• For each feature point in the image, put a vote in every bin in 

the parameter space that could have generated this point

• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. 

Int. Conf. High Energy Accelerators and Instrumentation, 1959 

Image space Hough parameter space



Parameter space representation

• A line in the image corresponds to a point in 

Hough space

Image space Hough parameter space

Source: S. Seitz



Parameter space representation

• What does a point (x0, y0) in the image space 

map to in the Hough space?

Image space Hough parameter space



Parameter space representation

• What does a point (x0, y0) in the image space 

map to in the Hough space?
• Answer: the solutions of b = –x0m + y0

• This is a line in Hough space

Image space Hough parameter space



Parameter space representation

• Where is the line that contains both (x0, y0) and 

(x1, y1)?

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1



Parameter space representation

• Where is the line that contains both (x0, y0) and 

(x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1



• Problems with the (m,b) space:
• Unbounded parameter domains

• Vertical lines require infinite m

Parameter space representation



• Problems with the (m,b) space:
• Unbounded parameter domains

• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

  sincos yx

Each point (x,y) will add a sinusoid in the (,) parameter space 



Algorithm outline

• Initialize accumulator H 
to all zeros

• For each feature point (x,y) 
in the image

For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a 
local maximum

• The detected line in the image is given by 
ρ = x cos θ + y sin θ

ρ

θ



features votes

Basic illustration

Hough transform demo: 

http://liquify.eu/swf/HoughTransform.swf

http://liquify.eu/swf/HoughTransform.swf


Square Circle 

Other shapes



Several lines



A more complicated image

http://ostatic.com/files/images/ss_hough.jpg



features votes

Effect of noise



features votes

Effect of noise

Peak gets fuzzy and hard to locate



Random points

Uniform noise can lead to spurious peaks in the array
features votes



Dealing with noise

• Choose a good grid / discretization
• Too coarse: large votes obtained when too many different 

lines correspond to a single bucket

• Too fine: miss lines because some points that are not 

exactly collinear cast votes for different buckets

• Increment neighboring bins (smoothing in 

accumulator array)

• Try to get rid of irrelevant features 
• E.g., take only edge points with significant gradient 

magnitude



Incorporating image gradients

• Recall: when we detect an 

edge point, we also know its 

gradient direction

• But this means that the line 

is uniquely determined!

• Modified Hough transform:

For each edge point (x,y) 

θ = gradient orientation at (x,y)

ρ = x cos θ + y sin θ

H(θ, ρ) = H(θ, ρ) + 1

end



Generalized Hough transform

• We want to find a template defined by its 

reference point (center) and several distinct 

types of landmark points in stable spatial 

configuration

c

Template



Generalized Hough transform

• Template representation: 

for each type of landmark 

point, store all possible 

displacement vectors 

towards the center

Model

Template



Generalized Hough transform

• Detecting the template:
• For each feature in a new image, 

look up that feature type in the 

model and vote for the possible 

center locations associated with 

that type in the model

Model

Test image



Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 

Learning in Computer Vision 2004

training image

visual codeword with

displacement vectors

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 

Learning in Computer Vision 2004

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Image alignment

Book: Forsyth 12.1, Kriegman 2007 paper.



Image alignment: Challenges

Small degree of overlap

Occlusion,

clutter

Intensity changes



Feature-based alignment: Overview

• Alignment as fitting
• Affine transformations

• Homographies

• Robust alignment 
• Descriptor-based feature matching

• RANSAC

• Application: searching the night sky



Alignment as fitting

• Previous lectures: fitting a model to features in 

one image

Alignment: fitting a model to a transformation 

between pairs of features (matches) in two 

images
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2D transformation models

• Similarity

(translation, 

scale, rotation)

• Affine

• Projective

(homography)



Let’s start with affine transformations

• Simple fitting procedure (linear least squares)

• Approximates viewpoint changes for roughly 

planar objects and roughly orthographic 

cameras

• Can be used to initialize fitting for more 

complex models



Fitting an affine transformation

• Assume we know the correspondences, how 

do we get the transformation?
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Fitting an affine transformation

• Assume we know the correspondences, how 

do we get the transformation?

),( ii yx 
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Fitting an affine transformation

• Linear system with six unknowns

• Each match gives us two linearly independent 

equations: need at least three to solve for the 

transformation parameters
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Fitting a plane projective transformation

• Homography: plane projective 

transformation (transformation taking a quad 

to another arbitrary quad)



Homography

• The transformation between two views of a 

planar surface

The transformation between images from two 

cameras that share the same center



Fitting a homography

• Recall: homogeneous coordinates

Equation for homography:

Converting to homogeneous

image coordinates

Converting from homogeneous

image coordinates
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Fitting a homography

• Equation for homography:
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Direct linear transform

• H has 8 degrees of freedom (9 parameters, but 
scale is arbitrary)

• One match gives us two linearly independent 
equations

• Homogeneous least squares: find h minimizing 
||Ah||2

• Eigenvector of ATA corresponding to smallest eigenvalue

• Four matches needed for a minimal solution
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Robust feature-based alignment

• So far, we’ve assumed that we are given a 

set of “ground-truth” correspondences 

between the two images we want to align

• What if we don’t know the correspondences?

),( ii yx 
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Robust feature-based alignment

• So far, we’ve assumed that we are given a 

set of “ground-truth” correspondences 

between the two images we want to align

• What if we don’t know the correspondences?

?



Robust feature-based alignment



Robust feature-based alignment

• Extract features



Robust feature-based alignment

• Extract features

• Compute putative matches



Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T



Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T

• Verify transformation (search for other matches consistent 

with T)



Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T

• Verify transformation (search for other matches consistent 

with T)


