
Fitting

Book: Szeliski A.2, 4.3.2, 6.1.4, Forsyth 22.1, 10.1-10.4

Fitting

• We’ve learned how to

detect edges, corners,

blobs.

• We would like to form a

higher-level,

representation of the

features in the image by

grouping together multiple

features.

Source: K. Grauman

Fitting

• Choose a parametric model to represent a

set of features

simple model: lines simple model: circles

complicated model: car

Fitting: Issues

• Noise in the measured feature locations

• Extraneous data: clutter (outliers), multiple lines

• Missing data: occlusions

Case study: Line detection

Fitting: Overview

• If we know which points belong to the line,
how do we find the “optimal” line parameters?
• Least squares

• What if there are outliers?
• Robust fitting, RANSAC

• What if there are many lines?
• Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
• Model selection

Total least squares

),(yx

N = (a, b)

),(yyxx ii

ax+by=d

Total least squares

Point: (xi, yi)

Line: ax+by=d (a2+b2=1)

Distance: |axi + byi – d|

Find (a, b, d) to minimize:

n

i ii dybxaE
1

2)((xi, yi)

ax+by=d

n

i ii dybxaE
1

2)(

Unit normal:

N=(a, b)

0)(2
1

n

i ii dybxa
d

E
ybxay

n

b
x

n

a
d

n

i i

n

i i 11

n

i ii yybxxaE
1

2))()((0
dN

dE

Least squares: Robustness to noise

Least squares fit to the red points:

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

RANSAC

• Robust fitting can deal with a few outliers –
what if we have very many?

• Random sample consensus (RANSAC):
Very general framework for model fitting in
the presence of outliers

• Outline
• Choose a small subset of points uniformly at random

• Fit a model to that subset

• Find all remaining points that are “close” to the model and
reject the rest as outliers

• Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography. Comm. of

the ACM, Vol 24, pp 381-395, 1981.

http://www.ai.sri.com/pubs/files/836.pdf

RANSAC for line fitting example

Source: R. Raguram

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

18

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

19

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining

points (i.e., points whose distance from the

line is less than t)

• If there are d or more inliers, accept the line

and refit using all inliers

Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95)

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of iterations N
• Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

• Consensus set size d
• Should match expected inlier ratio

Source: M. Pollefeys

Fitting: The Hough transform

Voting schemes

• Let each feature vote for all the models that

are compatible with it

• Hopefully the noise features will not vote

consistently for any single model

• Missing data doesn’t matter as long as there

are enough features remaining to agree on a

good model

Hough transform

• An early type of voting scheme

• General outline:
• Discretize parameter space into bins

• For each feature point in the image, put a vote in every bin in

the parameter space that could have generated this point

• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.

Int. Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

Parameter space representation

• A line in the image corresponds to a point in

Hough space

Image space Hough parameter space

Source: S. Seitz

Parameter space representation

• What does a point (x0, y0) in the image space

map to in the Hough space?

Image space Hough parameter space

Parameter space representation

• What does a point (x0, y0) in the image space

map to in the Hough space?
• Answer: the solutions of b = –x0m + y0

• This is a line in Hough space

Image space Hough parameter space

Parameter space representation

• Where is the line that contains both (x0, y0) and

(x1, y1)?

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Parameter space representation

• Where is the line that contains both (x0, y0) and

(x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

• Problems with the (m,b) space:
• Unbounded parameter domains

• Vertical lines require infinite m

Parameter space representation

• Problems with the (m,b) space:
• Unbounded parameter domains

• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

 sincos yx

Each point (x,y) will add a sinusoid in the (,) parameter space

Algorithm outline

• Initialize accumulator H
to all zeros

• For each feature point (x,y)
in the image

For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a
local maximum

• The detected line in the image is given by
ρ = x cos θ + y sin θ

ρ

θ

features votes

Basic illustration

Hough transform demo:

http://liquify.eu/swf/HoughTransform.swf

http://liquify.eu/swf/HoughTransform.swf

Square Circle

Other shapes

Several lines

A more complicated image

http://ostatic.com/files/images/ss_hough.jpg

features votes

Effect of noise

features votes

Effect of noise

Peak gets fuzzy and hard to locate

Random points

Uniform noise can lead to spurious peaks in the array
features votes

Dealing with noise

• Choose a good grid / discretization
• Too coarse: large votes obtained when too many different

lines correspond to a single bucket

• Too fine: miss lines because some points that are not

exactly collinear cast votes for different buckets

• Increment neighboring bins (smoothing in

accumulator array)

• Try to get rid of irrelevant features
• E.g., take only edge points with significant gradient

magnitude

Incorporating image gradients

• Recall: when we detect an

edge point, we also know its

gradient direction

• But this means that the line

is uniquely determined!

• Modified Hough transform:

For each edge point (x,y)

θ = gradient orientation at (x,y)

ρ = x cos θ + y sin θ

H(θ, ρ) = H(θ, ρ) + 1

end

Generalized Hough transform

• We want to find a template defined by its

reference point (center) and several distinct

types of landmark points in stable spatial

configuration

c

Template

Generalized Hough transform

• Template representation:

for each type of landmark

point, store all possible

displacement vectors

towards the center

Model

Template

Generalized Hough transform

• Detecting the template:
• For each feature in a new image,

look up that feature type in the

model and vote for the possible

center locations associated with

that type in the model

Model

Test image

Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical

Learning in Computer Vision 2004

training image

visual codeword with

displacement vectors

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical

Learning in Computer Vision 2004

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Image alignment

Book: Forsyth 12.1, Kriegman 2007 paper.

Image alignment: Challenges

Small degree of overlap

Occlusion,

clutter

Intensity changes

Feature-based alignment: Overview

• Alignment as fitting
• Affine transformations

• Homographies

• Robust alignment
• Descriptor-based feature matching

• RANSAC

• Application: searching the night sky

Alignment as fitting

• Previous lectures: fitting a model to features in

one image

Alignment: fitting a model to a transformation

between pairs of features (matches) in two

images

i

i Mx),(residual

i

ii xxT)),((residual

Find model M that minimizes

Find transformation T

that minimizes

M

xi

T

xi
xi

'

2D transformation models

• Similarity

(translation,

scale, rotation)

• Affine

• Projective

(homography)

Let’s start with affine transformations

• Simple fitting procedure (linear least squares)

• Approximates viewpoint changes for roughly

planar objects and roughly orthographic

cameras

• Can be used to initialize fitting for more

complex models

Fitting an affine transformation

• Assume we know the correspondences, how

do we get the transformation?

),(ii yx
),(ii yx

2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i

tMxx ii

Want to find M, t to minimize

n

i

ii

1

2|||| tMxx

Fitting an affine transformation

• Assume we know the correspondences, how

do we get the transformation?

),(ii yx
),(ii yx

2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i

i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Fitting an affine transformation

• Linear system with six unknowns

• Each match gives us two linearly independent

equations: need at least three to solve for the

transformation parameters

i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Fitting a plane projective transformation

• Homography: plane projective

transformation (transformation taking a quad

to another arbitrary quad)

Homography

• The transformation between two views of a

planar surface

The transformation between images from two

cameras that share the same center

Fitting a homography

• Recall: homogeneous coordinates

Equation for homography:

Converting to homogeneous

image coordinates

Converting from homogeneous

image coordinates

11 333231

232221

131211

y

x

hhh

hhh

hhh

y

x

Fitting a homography

• Equation for homography:

ii xHx

11 333231

232221

131211

i

i

i

i

y

x

hhh

hhh

hhh

y

x

0 ii xHx

i

T

ii

T

i

i

T

ii

T

i

T

i

T

i

i

T

i

T

i

T

i

i

yx

x

y

y

x

xhxh

xhxh

xhxh

xh

xh

xh

3

2

1

12

31

23

1

0

0

0

0

3

2

1

h

h

h

xx

xx

xx

TT

ii

T

ii

T

ii

TT

i

T

ii

T

i

T

xy

x

y
3 equations,

only 2 linearly

independent

Direct linear transform

• H has 8 degrees of freedom (9 parameters, but
scale is arbitrary)

• One match gives us two linearly independent
equations

• Homogeneous least squares: find h minimizing
||Ah||2

• Eigenvector of ATA corresponding to smallest eigenvalue

• Four matches needed for a minimal solution

0

0

0

0

0

3

2

1111

111

h

h

h

xx

xx

xx

xx

T

nn

TT

n

T

nn

T

n

T

TTT

TTT

x

y

x

y

 0hA

Robust feature-based alignment

• So far, we’ve assumed that we are given a

set of “ground-truth” correspondences

between the two images we want to align

• What if we don’t know the correspondences?

),(ii yx
),(ii yx

Robust feature-based alignment

• So far, we’ve assumed that we are given a

set of “ground-truth” correspondences

between the two images we want to align

• What if we don’t know the correspondences?

?

Robust feature-based alignment

Robust feature-based alignment

• Extract features

Robust feature-based alignment

• Extract features

• Compute putative matches

Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T

Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T

• Verify transformation (search for other matches consistent

with T)

Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T

• Verify transformation (search for other matches consistent

with T)

