Tracking and Motion

Book: Forsyth 11.

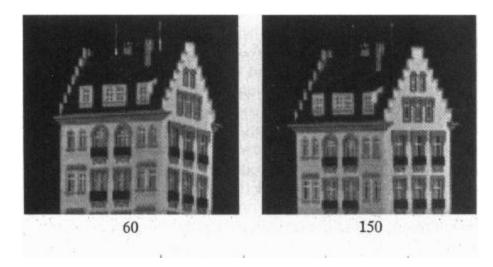
Overview

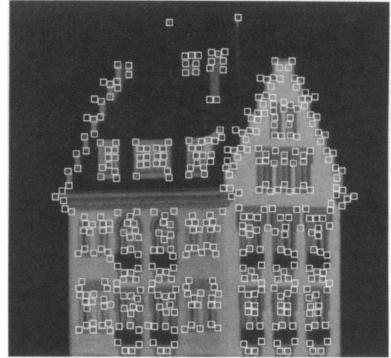
- Feature tracking
 - Extract visual features (corners, textured areas) and "track" them over multiple frames.
- Optical flow
 - Recover image motion at each pixel from spatiotemporal image brightness variations.
- Single Object tracking
- Multi-object tracking

- Track multiple possibly similarly looking objects.

Feature tracking

- Many problems, such as structure from motion require matching points
- If motion is small, tracking is an easy way to get them

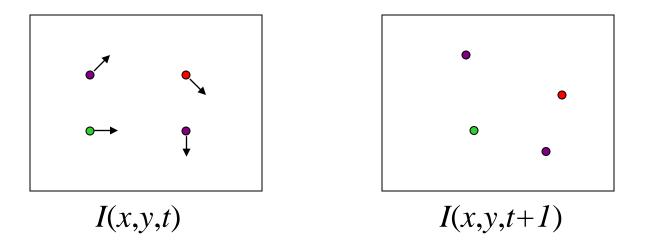




Feature tracking

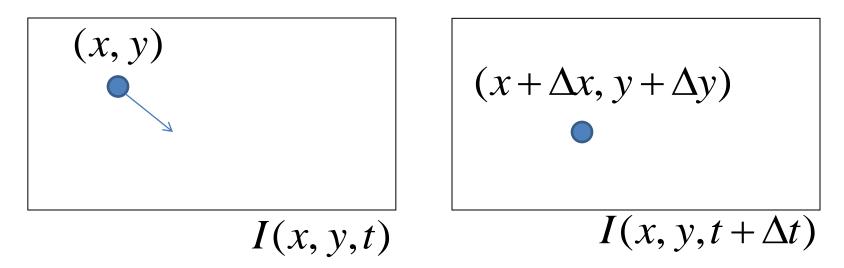
- Challenges
 - Figure out which features can be tracked
 - Efficiently track across frames
 - Some points may change appearance over time (e.g., due to rotation, moving into shadows, etc.)
 - Drift: small errors can accumulate as appearance model is updated
 - Points may appear or disappear: need to be able to add/delete tracked points

Feature tracking: KLT Algorithm



- Given two subsequent frames, estimate the point translation
- Assumptions of Lucas-Kanade Tracker (KLT)
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

The brightness constancy constraint



• Brightness Constancy Equation:

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

• Taylor expansion:

 $I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + I_x \Delta x + I_y \Delta y + I_t \Delta t$

The brightness constancy constraint

• Brightness Constancy Equation:

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

• Taylor expansion:

 $I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + I_x \Delta x + I_y \Delta y + I_t \Delta t$ $I_x \Delta x + I_y \Delta y + I_t \Delta t = 0$

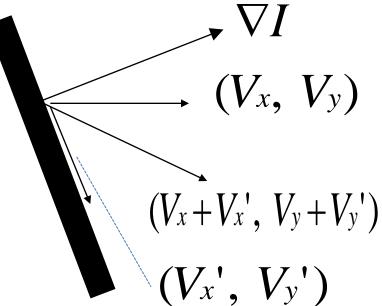
$$I_x V_x + I_y V_y + I_t = 0$$
$$\nabla I^T \cdot \vec{V} + I_t = 0$$

The brightness constancy constraint

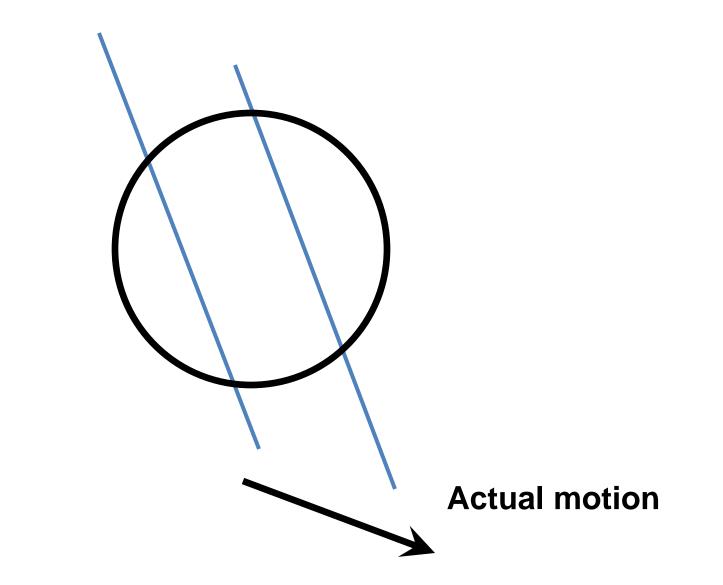
- Can we use this equation to recover image motion (V_x,V_y) at each pixel?
- NO. One equation, two unknowns (V_x, V_y) .
- The component of the motion perpendicular to the gradient (i.e., parallel to the edge) cannot be measured.

If (V_x, V_y) satisfies the equation, so does $(V_x + V_x', V_y + V_y')$ if:

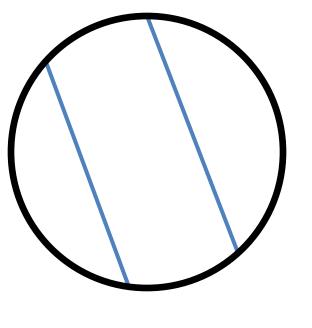
$$\nabla I^T \cdot \left[V_x' V_y' \right] = 0$$



The aperture problem



The aperture problem



Solving the ambiguity

- Spatial coherence constraint
- Assume the pixel's neighbors have the same velocity (so a 5x5 window, that gives us 25 equations per pixel).

$$\nabla I^{T} \cdot \begin{bmatrix} V_{x} & V_{y} \end{bmatrix} = -I_{t}$$

$$\begin{bmatrix} I_{x}(p_{1}) & I_{y}(p_{1}) \\ I_{x}(p_{2}) & I_{y}(p_{2}) \\ \dots & \dots \\ I_{x}(p_{N}) & I_{y}(p_{N}) \end{bmatrix} \begin{bmatrix} V_{x} \\ V_{y} \end{bmatrix} = -\begin{bmatrix} I_{t}(p_{1}) \\ I_{t}(p_{1}) \\ \dots \\ I_{t}(p_{N}) \end{bmatrix}$$

Matching patches across images

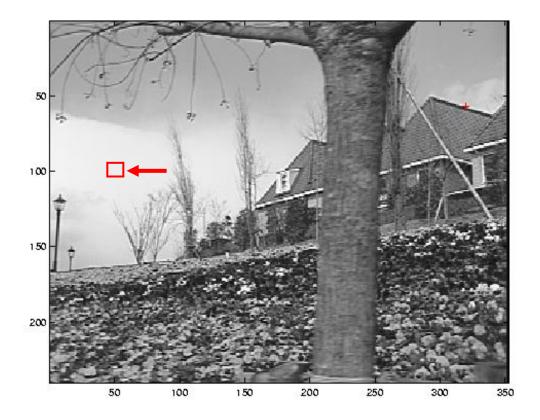
 $\begin{bmatrix} I_{x}(p_{1}) & I_{y}(p_{1}) \\ I_{x}(p_{2}) & I_{y}(p_{2}) \\ \dots & \dots \\ I_{x}(p_{N}) & I_{y}(p_{N}) \end{bmatrix} \begin{bmatrix} V_{x} \\ V_{y} \end{bmatrix} = -\begin{bmatrix} I_{t}(p_{1}) \\ I_{t}(p_{1}) \\ \dots \\ I_{t}(p_{N}) \end{bmatrix} A = b_{25\times 2 \ 2\times 1 \ 25\times 1} \\ I_{t}(p_{N}) \end{bmatrix}$

Least squares solution for *d* given by $(A^T A) d = A^T b$

 $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} V_x \\ V_y \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$

The summations are over all pixels in the K x K window

Low-texture region

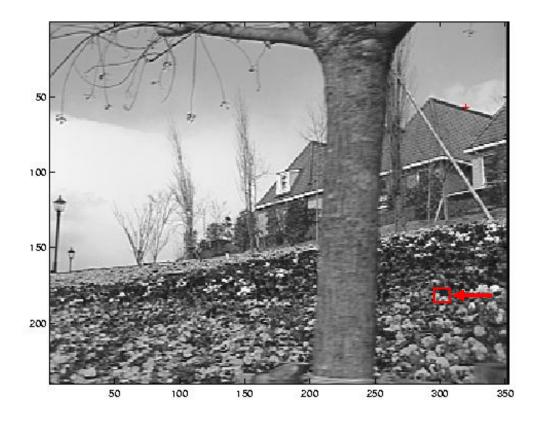


– gradients have small magnitude – small λ_1 , small λ_2

Edge

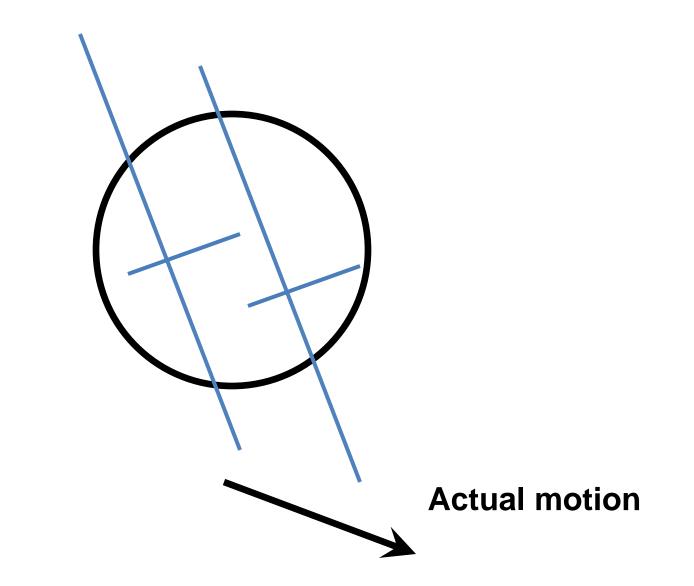
- gradients very large or very small - large λ_1 , small λ_2

High-texture region

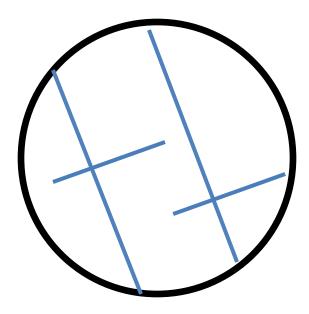


– gradients are different, large magnitudes – large λ_1 , large λ_2

The aperture problem resolved



The aperture problem resolved



Summary of KLT algorithm

- Find a good point to track (harris corner)
- Use intensity second moment matrix and difference across frames to find displacement
- Iterate and use coarse-to-fine search to deal with larger movements
- When creating long tracks, check appearance of registered patch against appearance of initial patch to find points that have drifted

Tracking example

Figure 1: Three frame details from Woody Allen's Manhattan. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

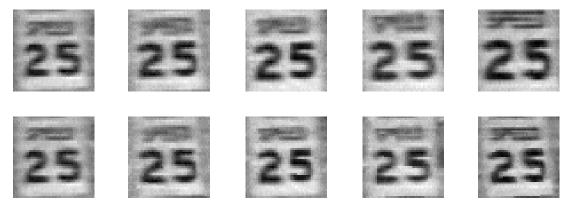
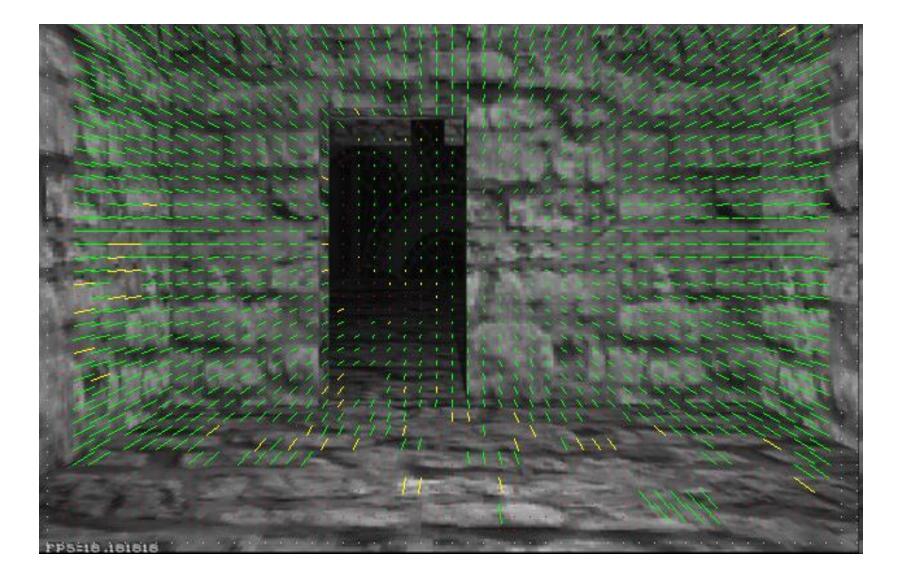


Figure 2: The traffic sign windows from frames 1,6,11,16,21 as tracked (top), and warped by the computed deformation matrices (bottom).

Optical flow



Optical flow

- Definition: optical flow is the *apparent* motion of brightness patterns in the image
- Ideally, optical flow would be the same as the motion field
- Have to be careful: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

Uses of motion

- Estimating 3D structure
- Segmenting objects based on motion cues
- Learning and tracking dynamical models
- Recognizing events and activities
- Improving video quality (motion stabilization)

KLT Optical Flow

- Same as KLT feature tracking, but for each pixel:
 - As we saw, works better for textured pixels
- Operations can be done one frame at a time, rather than pixel by pixel.

Errors in KLT:

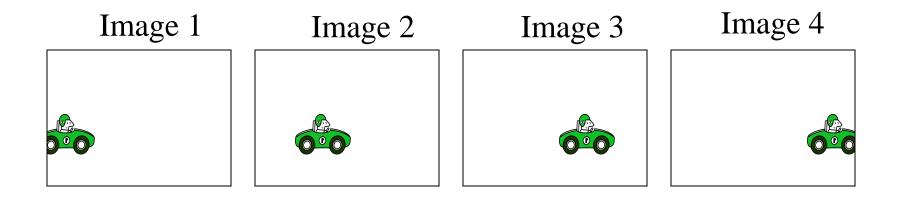
- The motion is large
 - Possible Fix: Keypoint matching
- A point does not move like its neighbors
 Possible Fix: Region-based matching
- Brightness constancy does not hold
 - Possible Fix: Gradient constancy

KLT Feature Tracking Summary

- Major contributions from Lucas, Tomasi, Kanade (KLT)
 - Tracking feature points
 - Optical flow
- Key idea:
 - By assuming brightness constancy, truncated
 Taylor expansion leads to simple and fast patch matching across frames

Object Tracking

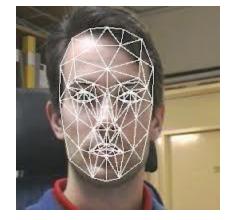
The Object Tracking Problem

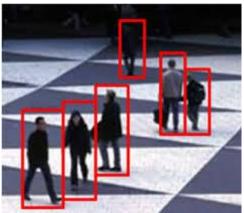


- Can we estimate the position of the object?
- Can we estimate its velocity?
- Can we predict future positions?

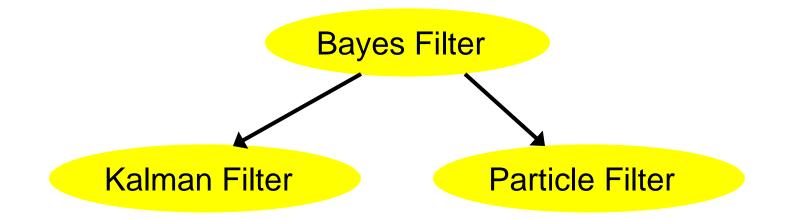
Image Features for Tracking

- Color
- Shape
- Motion (e.g. using local features)
- Object detector

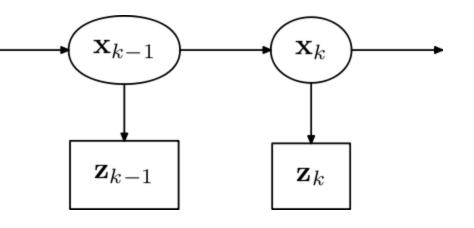




Probabilistic Tracking Methods

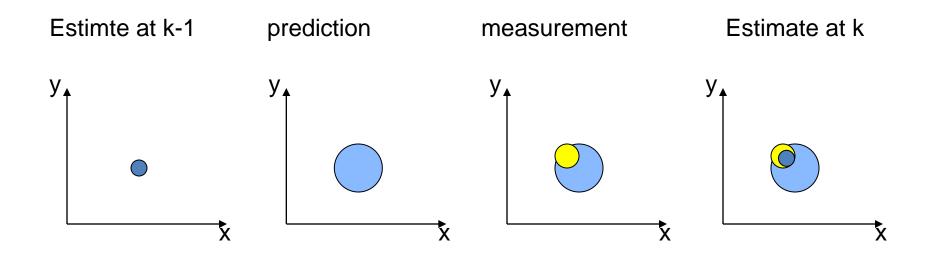


- Object state x_k
- Measurement z_k
- Estimate:

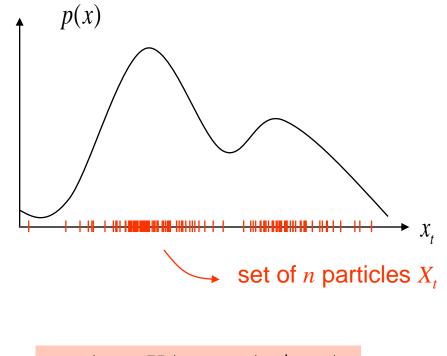


 $p(x_k | z_{1:k}) \propto p(z_k | x_k) p(x_k | z_{1:k-1})$

Kalman Filter: Gaussian Modeling



Particle Filters: Basic Idea



$$p(x_t \in X_t) \approx p(x_t \mid z_{1..t})$$

Tracking Examples

https://www.youtube.com/watch?v=wCMkpHzScE&list=PLtrtHGBZ86GTl2nkP63cc1e2XXE9dn7y2&index=1

http://cvrlcode.ics.forth.gr/handtracking/