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A B S T R A C T   

The computer aided design (CAD) files are often tagged manually or searched and retrieved from a database 
using machine learning algorithms. There has been significant interest in developing capabilities of searching 
CAD files based on shape of the object. The present work demonstrates a method that transforms the CAD files to 
frequency domain representations and generates a set of fingerprints from the spectrogram to enable a search 
function. The fingerprints can be adjusted to allow finding either an exact match or a broader range of 
approximate/partial matches with similar features. A matching index is developed based on the similarity be
tween the designs. The search does not require manual tagging of the files and is purely based on the geometry of 
the object. The success in comparing two files based on the object geometry is an important capability that can 
allow authentication of files in addition to conducting the search function.   

1. Introduction 

Computer aided design (CAD) models are widely used in the 
manufacturing industry. Digital manufacturing methods such as addi
tive manufacturing (AM) use CAD model files as inputs for 3D printers to 
manufacture the part [1,2]. CAD models are widely used in architecture, 
construction, fashion, and many other industries. CAD software have 
evolved to provide capabilities such as creating complex shapes, 
developing assemblies of thousands of parts, working collaboratively on 
design files in the cloud, and conducting analysis (such as stress or heat 
transfer analyses) directly from the CAD interface. However, it is highly 
desired to have capabilities built in the CAD programs to search for a 
specific geometric shape present in a library of design files. This capa
bility is especially missed as the new design tools taking advantage of 
embedded simulation tools or machine learning capabilities are able to 
automate the design process and create thousands of design variations, 
sometimes with only small geometrical differences, without human 
intervention. Sieving through this large number of design files for the 
ones containing the features of interest requires manual intervention of 
opening each file to observe the geometry, which defeats the purpose of 
automating the process. 

An example of such automated design tools is topology optimization 

methods. These methods can conduct a large number of design iterations 
based on the pre-set optimization criteria such as minimization of 
structural weight or obtaining a specific value of structural stiffness [3, 
4]. Such methods can generate a large number of design files automat
ically, which the designers have to manually check for the various de
signs [5]. The design iterations generated by these algorithms look very 
similar and may have only minute differences from each other in di
mensions of certain sections. Search and retrieve capabilities can help in 
selecting one or a small number of files containing a specific geometry. 
The search capability has the potential to transform the manufacturing 
industry into an automated service provider industry [6]. 

Several shape and solid model geometry retrieval techniques have 
been developed over the years with different degrees of automation. 
Manual tagging of files for certain shapes is a widely practiced method. 
Inclusion of metadata can be used for conducting search at a later stage. 
These methods, however, require user inputs for defining the shapes 
present in the file. In addition, tagging requires developing classifica
tions: for example, tags may include manufacturing classification such 
as cast or machined part, or functional classifications such as brackets, 
gears, or springs [7]. The Opitz code system is widely used as a shape 
signature to classify and index CAD models [8–11]. Such algorithms 
have difficulty in comparing models created by software that may run on 
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different geometric modeling kernels. Model setup steps also lead to 
differences in the representation of solid models that cannot be 
compared with each other. In addition, several design solutions pro
vided by topology optimization algorithms may have the exact same 
design but only one dimension slightly varied, which will require them 
to use the same tags and the search would provide all those designs as 
exact matches. Another approach is based on extracting signatures of an 
object by taking the eigenvalues of its Laplace–Beltrami operator [12]. 
Since the spectrum is an isometry invariant, it is independent of factors 
such as parametrization and spatial position [12,13]. This approach is 
successful in identifying variants of the same model in the database 
search. Another approach analyses heat signature of a body by solving 
the heat equation and computing heat kernel, which is defined as 
quantity of heat received by a point after a unit of heat is applied at a 
certain reference point [2,14,15]. The comparison of heat signature 
provides the basis for comparison of 3D shapes. Such approaches are 
useful for search but are likely not lossless for recovering the shape from 
any intermediate step, which can provide additional functionalities in 
the additive manufacturing application domain, where the design files 
are used as inputs. 

PROBADO3D is a 3D shape retrieval algorithm for automatically 
indexing 3D models used in architecture [16]. In order for a large 
database to be searchable using keywords, the models in the database 
are classified into categories. A supervised learning approach is used to 
segment 3D objects into local shape descriptors and teach the algorithm 
to classify each object (content-based indexing) [16]. Likewise, 
shape-based methods are used to retrieve 3D CAD files from databases 
[16–18]. VSC_WCO is a shape-based algorithm that converts models into 
three distance distribution histograms based on vertex classification 
(VSC) [18]. That algorithm is combined with a Weights Combination 
Optimization (WCO) scheme to improve the search results [18]. 
Content-based algorithms apply voxelization on the 3D model [19–21] 
before splitting the 3D model into a number of subspaces and calculating 
the entropy for all of them. By comparing those entropies, the algorithm 
can find the similar models [19]. These algorithms are more successful 
in finding a particular shape in large databases where a variety of shapes 
are available. However, if a database has variations of the same design, 
then the classification and retrieval become very challenging. Defining 
similarity is a complex issue in 3D designs, where different objectives for 
search may define similarity differently [22]. Classifications have been 
proposed to group object shapes together to define similarity. In the 
present work, either dimensional variations or design variations are 
used as similarity descriptors, which is elaborated in later sections. It is 
also pointed out in a previous work that some of these approaches are 
efficient in searching for manifold or isometric shapes but fail to apply to 
general 3D geometries of any shapes [23]. 

Another popular approach to find a matching model is by calculating 
the similarity between 2D views or sketches of 3D objects [24–29]. Chen 
et al. [25] proposed a system based on this approach, where the algo
rithm generates 100 orthogonal projections (excludes symmetry) per 
model and extracts a set of descriptors from those as the features for 
comparison. Pu et al. [29] find the difference between 2D views with 
these steps: (a) samples a large set of points on the edges, (b) calculates 
the Euclidean distance distribution between the points, and (c) finds the 
difference between the 2D shape distributions of 3D models [29]. In 
another sketch-based study, Li et al. [30] integrate adaptive view clus
tering and semantic information to improve the accuracy and efficiency. 
Liu et al. [31] use a feature mapping to retrieve 3D models from 2D 
images: First, they calculate the feature mapping metric based on the 
different forms of features from 3D models, and then their system uses 
the mapping metric to map the feature of the 2D image and the feature of 
the 3D model into one common space [31]. 3D point clouds are also used 
to represent a 3D shape in many cases. For example, Ip et al. [32] pre
sented an approach that uses 3D point clouds of a physical part and 
calculates the distances between points cloud and the CAD mesh to 
retrieve the CAD model in a database. 

Multiple groups have developed retrieval methods with design doc
uments [33,34]. Jeon et al. [34] designed a semantic reference model 
that generates the semantic representations from the design documents 
(search query) as well as the models in the database. Then, they calcu
late a similarity measure and find how many components are matched 
between the representations [34]. Characteristics such as assembly 
statistics, joint relationships, and mating conditions are commonly used 
in searching through CAD assemblies [35–37]. Katayama et al. [35] use 
layouts of the components in the assembly to retrieve sub-assemblies. 
Their system gets sinograms by applying the Radon transform of the 
3D model projections to find differences between shapes and layouts 
[35]. Min et al. [38] demonstrated a 3D CAD model retrieval system 
using multiple attributes providing better results than a single 
attribute-based retrieval system. Moreover, Funkhouser et al. [39] have 
presented a shape-based search engine that combines text and shape 
queries. Instead of using either one alone, their system employs text 
index, 2D index, and 3D index from each 3D model to improve the re
sults [39]. Li et al. [40] proposed a reuse-oriented retrieval method that 
reduces the gap between 3D CAD retrieval and reuse by constructing a 
feature dependency directed acyclic graph (FDAG), which exploits the 
feature dependency of CAD models. 

Koch et al. [41] constructed a large CAD Model dataset for geometric 
deep learning (DL). Using DL for CAD model classification reduces the 
labor costs and error-prone manual classification [21,42–44]. Likewise, 
NormalNet is a voxel-based convolutional neural network (CNN) used 
for 3D object classification and recognition [21]. Qin et al. [42] propose 
a deep neural network to build automatic classifiers, where 3D shape 
descriptors (i.e., view-based descriptors) are used to extract and char
acterize the shape information of 3D models for training purposes. 

This work demonstrates the feasibility of a “Search” function by 
converting the CAD models files into frequency domain files and 
computing their audio IDStamps that enables search capability. Once a 
file is successfully converted to the frequency domain, a number of 
different possible approaches for audio fingerprinting and matching can 
be applied to find exact or similar matches. Indeed, there are several 
possible methods for file identification or authentication in the audio 
domain (e.g., a popular app for song identification is Shazam [45]). 
Nevertheless, the success of these methods for exact identification of 
CAD models depends on developing an algorithm that can provide a 
lossless conversion from CAD to audio domain. The loss in the conver
sion process would corrupt the audio signature, so that two files having 
only miniscule differences in shape or size may not be distinguished 
from each other. Our developed algorithm is demonstrated on 
complex-shaped 3D industrial component models of a wheel and a ro
botic gripper assembly. The database of CAD models includes models 
that have very similar shapes but contain only small differences to test 
the capability of the search method. The developed search methods are 
tested on a variety of shapes of different complexities to test the capa
bilities of the algorithm. The most challenging search case is found to be 
the design variations of a shape created by topology optimization 
methods that have only small differences, hence, these results are 
emphasized in the paper. 

2. CAD Model Database Development 

Solidworks and Fusion 360 are used to create a variety of shapes used 
in this work. The shapes include cubes, rectangular prisms, cones, discs, 
cylinders, donuts and other geometries of various dimensions. All the 
shapes described in this work are saved in the same database to conduct 
tests of search function. In addition, topology optimization algorithm is 
used on two base geometries to create a large number of variations of 
those designs. These model geometries are selected to have different 
features such as thin sections, sharp corners and edges, and curvatures of 
various sizes. Having a variety of geometrical features is useful in 
identifying potential limitations of the algorithms developed for con
verting the CAD file to frequency domain, as well as for conducting 
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search. The model development procedure is detailed in the following 
sections; the exact boundary conditions and loads are not of interest for 
this work. The intent is to develop a search function for similar looking 
geometries, which may or may not be a result of the same optimization 
process. Hence, the details of the design process parameters are omitted 
here for brevity, but the entire database of designs is made available. 
The topology optimized shapes are also saved in the same database as 
the other shapes. In addition, Thingi10 K database is downloaded [46] 
and over 1600 unique shapes are randomly picked from the database 
and merged with the in-house developed shapes to create a database of 
over 2000 shapes to test the search capabilities of the proposed 
algorithms. 

2.1. Model 1: Wheel hub 

A wheel assembly model is developed using the Altair Inspire soft
ware, which allows for topology optimization studies. In the original 
wheel assembly (shown in Fig. 1a), the brown color zone represents the 
hub of the wheel and shows where the topology optimization is per
formed. After creating the geometry, loads and constraints are applied. 
The red line in Fig. 1b shows the location where the support boundary 
condition is applied to constrain the displacement of the model in all 

three dimensions. A force is applied to the wheel in the radial direction 
from the center of the hub (shown as the Y-direction in Fig. 1a). Cyclic 
symmetry is applied to the design space to ensure the spoke will result in 
self-symmetric sectors. 

The design optimization goal is to find the optimized shape for the 
spokes of the wheel assembly with the least amount of mass and 
maximum stiffness. The design space mass target was set to 30% of the 
total design space volume for all the optimization studies. Fig. 2 shows 
the results of the optimization for two different iterations. A different 
symmetry constraint was applied to the model to achieve the different 
results. For each topology optimization study, the shape explorer con
ducts 21 iterations of the design, where the first iteration has a minimal 
amount of mass of the design and the last iteration shows the original 
design with no mass removed. In the STL file, the optimized spoke part is 
saved along with the components that were not affected by the opti
mization study such as the wheel rim and nuts. 

2.2. Model 2: Robotic arm bracket 

A robotic arm bracket is used as the second model, with the initial 
geometry of the model is shown in Fig. 3a. Three different magnitudes of 
loads are applied to the underside of the bracket, and a planar symmetry 

Fig. 1. (a) Model of a wheel. (b) Displacement boundary condition applied to the model.  

Fig. 2. Optimized model from the first study with (a) 1/4 symmetry and (b) 1/8 symmetry constraint.  
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shape control constraint is applied at the midplane of the bracket’s 
thickness. A total of 19 different topology optimization studies were 
created with the objective (same objective as for Model 1) of maximizing 
the stiffness of the bracket. Each of the optimization result groups has 
about 10 iterations saved for each study, and the dataset has 210 STL 
files of the optimization study. Each study was run multiple times at 
different mass target values and some of the results are summarized in 
Fig. 3(b)-(d). 

3. Results and Discussion 

3.1. Converting CAD files to frequency domain representation 

A lossless algorithm is developed to convert the CAD 3D solid model 
files to frequency domain representation. The CAD programs offer 
export functionality, including the ability to store the model files in both 
STEP and STL formats, two of the widely used file types. Workflow is 
developed to convert STEP and STL formats to their frequency domain 
representation, and the conversion algorithm is summarized in the 
process diagrams of Fig. 4. 

Conversion of the CAD files to frequency domain starts with con
verting a given solid model file into an audio file (WAV in this case). STL 
files can be saved in the binary format, which can be converted to WAV 
format using a built in function in Python. The STEP files need to un
dergo an intermediate conversion from STEP into a binary TXT file and 
then the Python function can be used for conversion. While using the 
“Impact Wave” function of Python [47], several parameters need to be 
defined, which are selected as: Channels: mono, Bitrate: 8, and Frame 
rate: 9000 or 44100 Hz. The frame rate or sampling rate of 9 kHz is the 
commonly used AM broadcast frequency and 44.1 kHz is the frequency 
used in compact discs (CDs). Other frame rates can be selected at will. 

STL files do not contain metadata, which ensures that only model 
geometry is used to generate the frequency domain data in WAV format. 
Conversely, the metadata embedded in the STEP files needs to be 
scrubbed to retain only the geometry information. The metadata (such 
as timestamps) can make the file unique even for the same geometries; 
therefore, removal of this data can help in comparing the solid geome
try. The Fast Fourier Transform (FFT) is used to convert the time-domain 
data into the desired frequency domain representation. The Python li
brary scipy.signal.spectrogram helps to generate an array of sample fre
quency (f), an array of sample time (t), and the spectrogram of the input 
audio. Fig. 5a shows the spectrogram output of the wheel model design 
corresponding to Fig. 1a. This figure contains f and t as x- and y-axes 
while the colors in the figure represent the amplitude. Likewise, Fig. 5b 

shows the 3D representation of the spectrogram including amplitude 
peaks on the vertical axis. When converting the given TXT file into audio 
file (WAV) using the wave function, the user also needs to define the 
sampling rate of the output audio file. A possibility exists that the order 
of vertices in the STL file may be different in the query and the search 
database file. It is noted that the representation of a geometry does not 
depend on the order of vertices in the STL file. Hence, such possibilities 
can be addressed by conducting an intermediate step where the vertices 
are ordered in the ascending or descending order. However, such step 
was not conducted in this work. 

After analyzing each spectrogram, the coordinates of the amplitude 
peaks (i.e., pairs of frequency and time) are identified by using a 
maximum filter. The latter employs a sliding window as input and re
places each amplitude value with the local maximum amplitude within 
its neighborhood window. For example, Fig. 6 shows the result of 
applying the maximum filter function on an input image with a size of 
5 × 5. It is noted that the sliding window size is defined by the user, so 
that when the user inputs a window size of 3 (as in Fig. 6), the maximum 
filter generates a 3 × 3 array (sliding window) to filter the local 
maximum value and returns a new multidimensional array. Then, the 

Fig. 4. Workflow to convert the CAD file (in the STEP and STL format files) to 
the frequency domain. 

Fig. 3. (a) A robotic arm bracket. Different optimization results of the bracket where the design space kept (b) 50%, (c) 25% and (d) 5% of the total volume.  
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algorithm compares this new multidimensional array with the original 
spectrogram to get the coordinates of maximum amplitude, which are 
listed as frequency-time index pairs, which is called “IDStamps.” The 
sampling rate does not affect the IDStamps, which are based on the 

indices of frequency and time and not on the height of the amplitude 
peak. Fig. 7 shows the spectrogram of the wheel model design of Fig. 1a, 
with the identified peak locations marked with red dots. The number of 
output peaks major depends on the window size. 

Fig. 6. Example of maximum filter with sliding window size of 3 × 3 on input image size 5 × 5 (a) and (b).  

Fig. 7. (a) 2D and (b) 3D spectrograms showing peaks identified to generate IDStamps of the wheel model design.  

Fig. 5. (a) 2D and (b) 3D spectrograms of the wheel model design without any metadata.  
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Using the proposed approach, the same CAD model geometry can be 
recovered from the generated frequency domain file with a two-step 
process: First, a wave function library (without loss of generality, this 
work uses Python functions) is used to read the audio file (WAV) and 
generate a new TXT file with binary data. Then, the binary TXT file is 
converted back into a STEP design file from which can ultimately 
generate a CAD file using Autodesk Fusion 360.1 

To store the IDStamps and support the search feature, a MySQL 
database is used. Moreover, to successfully find not only the exact 
match, but also close matches, the algorithm does not store all the 
IDStamps along with the corresponding filename into the database as a 
single entry. Instead, the pairs of frequency and time indices are stored 
individually along with the filename into the database. Therefore, each 
filename corresponds to multiple entries of IDStamps in the database. 
This approach offers freedom to calculate a matching rate based on the 
number of IDStamp matches between two candidate files. In this study, 
the implementation uses MySQL Connector Python to build the MySQL 
database. Although the present database contains all the converted files 
in WAV format for enabling the search functionality, algorithm can be 
modified to convert the files on the go from CAD format to frequency 
domain for capturing the fingerprints before conducting the search 
function. The files may or may not be saved in the WAV format after 
conducting the search. 

3.2. Searching for the exact geometry match 

To employ the search functionality, the query input CAD model is 
processed to generate its IDStamps. The algorithm executes a search 
query in the database and finds the result that has 100% match with the 
IDStamps of the search query. In the first set of tests, a number of 
different geometric shapes and conversion parameters are tested for 
determining the capability and accuracy of the algorithm. 

All the models are saved in the same database so the search query has 
a potential to return results of any other shapes stored in the database. In 
the first test, the model is tested to determine if there is a limit to the 
smallest feature size that can be detected by the search algorithm. A disc 
of 5 mm radius and 0.1 mm thickness is taken as the test model. The size 
of disk in the search query is changed to by a fraction of a mm as per the 
data shown in Table 1. Change in the radius by 10-5 mm is the limit of the 
software for creating the smallest feature in this design. All cases show 
that the search query does not show a match with the original model 
when the dimensions are altered by any extent. 

The test is further repeated with a rectangular prism and the results 
are shown in Table 2. Model P4 represents the limit of the software to 
make the smallest possible change in the geometry. The algorithm was 
successful in finding the exact match in the database. The examples of 
disc and prism are tested in. step format, which usually contains meta
data as the part of the. step files. The tests were repeated after removing 
all the metadata and retaining only the part geometry and found to show 
the match only for the geometry of the exactly the same dimensions. 

One of the parameters in converting the design files to frequency 
domains is the sampling frequency. The tests results presented in Ta
bles 1 and 2 used 9 kHz sampling frequency for the conversion of files to 
the frequency domain. The sampling rate dependence of the search 
function was further tested on a variety of geometries as shown in 
Table 3. The database files were saved at 9 kHz frequency, while the 
search query files were saved at 44.1 kHz frequency in this example. The 
search function was able to find the correct match irrespective of the 
sampling frequency. Since each fingerprint is a pair of indices of fre
quency and time but excludes the peak height, the same model with 
different sampling frequency sound file leads to a match. These tests are 
also conducted at other frequencies and with and without metadata with 
success in retrieving the exact match. 

Since this test focused on finding only the exact match, in most cases 

Table 1 
A disc shape is tested for search accuracy and dimensional limits.  

Disc (.step) 

Similarity 
Index 

Radius (mm) ×0.1 mm Height 

Model ID Original Model 
Radius 

Search query 
Radius  

D1 5 5 1 
D2 5 5.1 0.3967 
D3 5 5.001 0.2833 
D4 5 5.00001 0.2143  

Table 2 
A prismatic shape tested for search accuracy2.  

Model (.step) 

Similarity 
Index  Prism (mm) 

Model 
ID 

Original Model 
Dimensions 

Search String Dimensions  

P1 35(L) x 25(H) x 20(W) 35(L) x 25(H) x 20(W) 1 
P2 35(L) x 25(H) x 20(W) 35(L) x 25.01(H) x 20(W) 0.3158 
P3 35(L) x 25(H) x 20(W) 35(L) x 25.0001(H) x 20 

(W) 
0.0920 

P4 35(L) x 25(H) x 20(W) 35(L) x 25.00001(H) x 20 
(W) 

0.1130  

Table 3 
Results of matching IDStamps obtained at two different frequencies. In each 
case, matching index of 1 is shown for the exact match.  

Model (.step) File conversion 
frequency 1 (Hz) 

File conversion 
Frequency 2 (Hz) 

Cube 9000 44100 

Triangular 
prism 

9000 44100 

Disc 9000 44100 

Prism 9000 44100 

Cone 9000 44100  

1 The lossless recovery is implemented in the binary2step.py script available 
in the Appendix. 
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it was noticed that the number of IDStamps captured using the same 
window size were different for files having geometric variations of the 
same shape, for example discs of different thicknesses. A simple com
parison of the number of IDStamps can also provide a fast first step 
elimination, where actual indices captured in the IDStamps are 
compared only for those files that have exactly the same number of 
IDStamps. Having several matching IDStamps is an indication of simi
larity between two shapes, which is explored in the next step in detail. 

3.3. Searching and indexing the search results 

The search functionality is expanded to include potentially similar 
matches. To determine whether the file in the database is a match or not, 
the algorithm calculates a similarity Index (S) for each CAD file in the 
database using number of IDStamps in the query input file (T), number 
of IDStamps for each file in the database (D), and number of matches 
between the two files (N) 

S =
N

(T+D)

2

=
2 × N
T + D

(1) 

The index is a statistical parameter that captures the ratio of 
matching IDStamps with the total number of IDStamps. Since the size of 
each CAD file is different, the absolute number of IDStamps associated 
with each CAD file may vary. Thus, while calculating the similarity 
index, the formula may not consider only the number of IDStamps in 
query input or only the number of IDStamps in a database file, as there 
would be two limiting cases when running a search:  

when T > D and D = N                                                                     (i)  

when T < D and T = N                                                                     (ii) 

For case (i), consider the scenario where a query input file A contains 
2000 IDStamps, and file B in the database contains 200 IDStamps. Then, 
if the number of matches is 200 (i.e., the maximum possible matches) 
and the equation for S simply uses “N divide by D”, the result would 
saturate to 1. Nevertheless, file A may not be an exact match of file B. A 
similar issues arises in case (ii). Instead, the formula for S computes the 
sum of the number of IDStamps from both files as total number 
IDStamps. Then, the number of matches is divided by the average 
(T+D)/2 to compute the similarity index S, as shown as Equation (1). 

The matching algorithm ranks all the files based on the IDStamps 
matched using the aforementioned process and then either all or some of 
the matches are displayed based on the matching rank; alternatively, the 
desired number of similar matches can also be pulled from the database. 
As expected, an exact match of the query file will have S = 1. Notably, 
the major parameter affecting the matching performance is the window 
size during peak selection: using a larger window size would decrease 
the number of identified peaks, as it will identify only one peak within 
the selected window, and eventually decrease the number of IDStamps 
of a given CAD model. Hence, when the search function runs with the 
larger window size, the algorithm may output similar (but not exactly 
identical) CAD files with S reported as equal to 1. Conversely, when the 
algorithm uses a smaller window size, each CAD file will have a larger 
number of IDStamps, which offers higher search accuracy. 

The tests for searching similar shapes are conducted on the models 
created by a topology optimization algorithm. These shapes retain 
geometric features based on applied constraints and result in models 
that may have similar geometries, sometimes with only subtle 

differences in dimensions or contours. The file tagging methods cannot 
be applied to these datasets because the same tags would apply to all the 
files that belong to the same design family. Here, the present work is 
expected to demonstrate the advantage. The search is run on the data
base containing all the shapes described in this work, including the basic 
geometries shown in the first test. The search will allow analyzing if the 
models belonging to the same family of designs are identified by the 
algorithm. 

Fig. 8 illustrates the search results in a database containing design 
files of 90 different wheel models and 224 different gripper models for a 
particular design iteration to find an exact match. For our evaluation, 
the window size is set to 5k during search. Then, a CAD file is randomly 
selected (e.g., 40.stl) and then converted to generate its corresponding 
IDStamps, which are then used to conduct the search functionality. The 
results summarized in Table 4 demonstrate 7 out of possible 89 matches 
from a total of 314 files present in the database. Only one result has 
S = 1, which is the exact model, and the rest of the models are ranked 
based on their computed similarity score. It is observed that the similar 
matches are based on the frequency domain parameters and one possible 
limitation of the current approach is that there is no direct correspon
dence identified between certain geometric features and the corre
sponding fingerprints. The latter can be an exciting topic to be 
investigated in detail in the future work. While some of these models 
have only subtle differences, the similarity index still deviates from 1 in 
Table 4. A detailed study was conducted to investigate the level of 
change in a CAD model that will provide deviation in the similarity 
index. Even if the change is the smallest allowed dimensional step by the 
CAD software in one dimension of solid model, the similarity index is not 
1 as documented for a disc in results included in Table 1. 

The second test was performed using the gripper bracket model and 
Table 5 illustrates part of the output for an input file "P8.stl" and a 
window size of 200. The search function returns one exact match and 56 
similar matches for this geometry; these partial outputs are illustrated in 
Table 5. It is observed that the search is able to provide the exact match 
and also list other gripper models from the database. 

The tests of the algorithm developed in this work shows success in 
identifying exact match and also list the variation of the same model 
although the same database contains files for both designs. This algo
rithm can result in the possibility of identifying desired files in a large 
database of solid models. It is also possible to use the algorithm devel
oped in the present to authenticate the CAD files or test them against any 
tempering because any change results in a different similarity index 
value. 

Fig. 8. Format of printed search results from the MySQL database.  
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Table 5 
Partial output using window size 200 using an input query file "P8.stl".  

Model Description Output Similarity Index 

P8.stl 

Study P - Iteration #8 

Search string file (query)  

Smooth Results - Enabled 
Total Mass (kg) - 0.3726 
Total Volume (cm3) - 46.571 
Max Length (cm) - 16.159 
Max Height (cm) - 4.612 
Max Thickness (cm) - 3.023 

P8.stl 

Study P - Iteration #8 

Match 1 
(exact match) 

1 

Smooth Results - Enabled 
Total Mass (kg) - 0.3726 
Total Volume (cm3) - 46.571 
Max Length (cm) - 16.159 
Max Height (cm) - 4.612 
Max Thickness (cm) - 3.023 

R7.stl 

Study R - Iteration #7 

Match 2 0.0112 

Smooth Results - Enabled 
Total Mass (kg) – 0.3934 
Total Volume (cm3) - 49.172 
Max Length (cm) - 17.23 
Max Height (cm) - 4.613 
Max Thickness (cm) - 3.02 

A1.stl 

Study A - Iteration #2 

Match 3 0.0051 

Smooth Results - Enabled 
Total Mass (kg) – 0.0320 
Total Volume (cm3) – 4.0002 
Max Length (cm) – 15.476 
Max Height (cm) - 4.621 
Max Thickness (cm) - 3.02  

Table 4 
Partial output using window size 5k on input file "40.stl" showing matching models.  

Model File description Output Similarity Index 

40.stl 

Study 1 - Iteration #2 

Search string file (query)  

Smooth Results - Disabled 
Total Mass (kg) - 20.109 
Total Volume (cm3) - 2513.658 
Optimized Part Mass (kg) - 0.125 
Optimized Part Volume (cm3) - 15.624 

40.stl 

Same as the search string file. Match 1 (Exact match) 1 

21.stl 

Study 1 - Iteration #1 

Match 2 0.8667 

Smooth Results - Enabled 
Total Mass (kg) - 19.984 
Total Volume (cm3) - 2498.0395 
Optimized Part Mass (kg) - 4.4004 × 10-5 
Optimized Part Volume (cm3) - 0.0055 
contains no volume of material from the design space of the optimization study 

20.stl 

Study 1 - Iteration #2 

Match 3 0.8667 

Smooth Results - Enabled 
Total Mass (kg) - 20.109 
Total Volume (cm3) - 2513.658 
Optimized Part Mass (kg) - 0.125 
Optimized Part Volume (cm3) - 15.624 

Original.stl 

Original Wheel 

Match 4 0.8125 

Smooth Results - N/A 
Total Mass (kg) - 45.108 
Total Volume (cm3) - 5638.534 
Optimized Part Mass (kg) - 25.124 

Optimized Part Volume (cm3) - 3140.5 

39.stl 

Study 1 - Iteration #3 

Match 5 0.7879 

Smooth Results - Disabled 
Total Mass (kg) - 20.418 
Total Volume (cm3) - 2552.253 
Optimized Part Mass (kg) - 0.43375 

Optimized Part Volume (cm3) - 54.218  
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4. Conclusions 

This work is focuses on developing a new method that enables 
searching CAD files for 3D solid model geometries. In our approach, the 
CAD model files are converted to a frequency domain representation 
using our lossless algorithm that enables fully reversible conversion of 
CAD files. The desired lossless conversion property is confirmed by 
transforming the frequency domain file back to the original CAD model 
without any loss of information in the 3D solid model. The present 
approach is focused on two widely used file formats, namely STL and 
STEP, and both formats can be successfully converted to/from the fre
quency domain. Once the exact frequency domain representation of the 
CAD file is obtained, search functionality could be implemented by 
comparing the proposed IDStamps of the corresponding spectrograms. 
The search function is demonstrated to find the exact match of geome
tries of various shapes including prism, cylinder, cone, disc, and many 
other shapes. Moreover, a similarity index is developed that quantifies 
the similarity between any two files on a scale between 0 to 1, where a 
perfect match is rated as 1. The method is extensively evaluated using 
databases of two geometries, a wheel and a robotic gripper generated 
using topology optimization methods. Our results indicate that the 
proposed search algorithm can find an exact match for the given query 
file, as similar matches based on the same geometry. 
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