What is spatial image filter

Image filter is an N*M operator, with center at w(0,0)

w(i, j) is coefficient	w(-1,+1)	w(0, +1)	w(+1,+1)
	w(-1,0)	w(0,0)	w(+1,0)
3x3 image filter	w(-1,-1)	w(0,-1)	w(+1,-1)

Image filtering (1)

- A typical spatial filtering process is as follows
 Move the filter from point to point in an image
 - At each point (x,y), calculate the response of the filter
- Response of filtering is calculated by convolution

$$f * w = \sum_{\substack{(a,b) \in w \\ (x-a,y-b) \in f}} f(x-a,y-b)w(a,b)$$

Image filtering (2)

Convolution includes three steps:

- 1. Position the center of the filter at the first pixel of an image and flip the filter.
- 2. Calculate the inner product between the filter and the sub-image covered by the filter.
- 3. Slide to next pixel, repeat steps 2 and 3 until the whole image is processed

Lowpass filtering (1)

Low pass image filters are used in image smoothing

□ Reduce noise

□ Image may become blurred

Example:

□ Average filter

□ Guassian filter

Lowpass filtering (2)

-4

-4

Х

Example of smoothing

a b c

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

Median Filter

- Median filtering is to replace each pixel value in an image by the median of its neighborhood
- Procedure of Median filtering (filter size nxm):
 - □ Sort the pixel values in the nxm sub-image, centered at (x,y), to find the median;
 - \Box Replace the pixel value f(x,y) by the median.

Gaussian vs. Median

Source

Gaussian

Median (5 X 5)

Edge detection (1)

- Highpass filtering is used to sharpen the image or detect the edges
- What is edge?
 - Gray level discontinuity
 - An important concept related to edge detection -- Gradient

Edge detection (2)

Gradient is defined as a vector

- Gradient reflects the degree of change of gray levels in x and y directions
- An edge is detected if the gradient is larger than a threshold

1st order digital edge detector

Robert's operator

Prewitt's operator

Sobel's operator

An example of edge detection

a b

FIGURE 3.45 Optical image of contact lens (note defects on the boundary at 4 and 5 o'clock). (b) Sobel gradient. (Original image courtesy of Mr. Pete Sites, Perceptics Corporation.)