<

. ¥4 Xtra

Lingo Reference Guide

Version 1.0

Copyright © 2000 / 2001 Havok.com Inc.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means whatsoever, including photocopying or
recording without the prior written permission of Havok.com.

Published in Ireland.

The author makes no representation, express or implied, with regard to the accu-
racy of the information contained in this guide and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

The information contained in this manual is subject to change without notice.

Havok.com Inc.

www.havok.com

Havok.com and the Havok buzzsaw logo are registered trademarks of Havok.com.
Shockwave and Lingo are registered trademarks of Macromedia Inc.

All other brand names, product names, or trademarks belong to their respective
holders.

Havok Xtra Lingo Reference Guide

Table of Contents

Havok Cast Member Lingo Property Referencecccccccoevviiiiiiiiiiiiiiiciiiceecennnnn. 1
RAVOKANTHALIZEA ...cooieeeiiiiiiiiiiieeeeee ettt ettt et ee e e 1
RAVOKTOLCTATICE ..eeeeonniiiiiiiiiiiieeeeeete ettt ettt e s st e e e e e eans 1
RAVOK.SCALE ...ttt ettt ettt e e e s eeeeeenans 1
RAVOKTIITIESIEP «..veeeeeeeeieieeeeeeeeeee ettt ettt st e e s e e e e esans 2
RAVOKSUDSICPS ...eeeeeeeeieieeeeeeeeee ettt ettt ettt et e e s s eeeeeeeans 2
RAVOKSTINTIINEceeviiiiiiiiiiiiieeeee ettt et e e e s eeeeeenans 2
RAVOK.ZTAVILY ..ttt ettt ettt e st e e s s st eeeesesaans 2
RAVOK.TIGIABOAY ..ceevviiiiiiiiiiiieieeee ettt ettt ettt e s s ee e e e eans 3
PAVOKSPTITIG ettt ettt e ettt e s st e e e s ssnnaeeeeeee e 3
RAVOK.TTNEATDASHPOTLoevveeiiiiiiiiiieeieeee ettt e e e snneeeeee e 3
RavoK.angulArDASHPOLcoovvuuuueeeeiieiiieee ettt ettt e e e eeenneeeeee e 4
RAVOK.COILISIONLISE «....eeeeeeiiieiiiiiiieeee ettt ettt ettt ettt e e e s e sneeeeee e e 4
havok.deactivationPATAIMETETScceeuveeeuiueeieeeeeeieeeeeeeeieeeeeeeeeeteee e s sseeeeeeeanans 4
RAVOK.ATAZPATAINELETS .cccooveiieiiiieeeeeeeeeeeeeee ettt e e e e e e aeeeaaaeaaaens 5

Havok Cast Member Lingo Function Referenceouueveeiiiiiiiiiiiiiiiinennnnnnenn. 6
RAVOK.INITIALIZO() coveeeeeeeeiieeeee ettt ettt e se e e e e e ettt eeeesaeaaeeeasaaaaeesaaeessennnannnnn 6
FUAVOK.TESEL() eeeeeeeeeeeeieeeeeee e ettt eee e e e e e e ettt ee e e e eeeeee e taa i aasssaaaeeeesssnaaaaasasseeseeennnnnnans 7
RAVOKSTEP() ettt e et e s st e e e e s snnneeeee e na 7
RAVOK.SHULAOWIL() ceeeeeeeeeeeee ettt et se e e e e e ettt eeesaeeaeeeetasasnaaeseaaaaeennssnnnns 8
RAVOK.TIGIABOAY () «ecoonniiieeiiiiieeeieee ettt ettt e e e e e e e ens 8
havok.deleteRigiABOAY()cccovveeuuueiiiieiniieieeeeeeeete ettt ettt e e e e 9
havok.makeMovableRigidBOAY()cccouvoumuuieeeiimeiiiiiiieieeiieeeeeeeeeeee e eeeeeee e 9
havok.makeFixedRigidABOAY ()ueeeeeimmioiiiiiiieieieeeeeeeeeee et 10
RAVOK.TEGSTLEITILETEST() oeeeeeeeeeeeeeeeeeeeee ettt te e e e e e e e e eeeaeaaaaaaaaaeaaeaeens 10
NAVOK.TEIMOVEITLETEST() wvvveveeeeeeeeeeeeeieeeeee e e ettt teee e e e e e e e e ettt taaesseeeesesessstsnnaanesaesaseensnes 12
havoK.diSADIECOILISION() ..vvvuueeeeeeeeeeeiiieeeeee ettt eeeeee e e e e ettt eaesseeeeseeassasaaaaesaaaeesennnnas 12
havoK.enableCOIISION() weeuuurruueeeeeee e et eeeee e e ee ettt eeete e e e e e e tte et eeseeeeaseeessatsnaaesaaeaesennnnns 12
havoK.diSADIEAIICOIISIONS() ..eeeeeeeeeeeeiieeee e e eeeeeeeeeee e e e e ettt eeeeeeeeeseetassaeeeesaaaaesennnnas 12
havoK.enableAIICOIISIONS() ...eeeeeeeeeeeiiieeeee e e eeee et eeete e e e e e ettt eeeseeeeeseeessasaeaeesaaaaeenannnas 12
havok.registerStepCallDACK()evveeeeeeemiiiiieiieieeeeeee et 13
havok.removeStepCallDACK()oceveeeeeeeimmiiiiiiieeeeeee ettt 13
RAVOKSPTINIG() evvveeeeeeeeiiee ettt ettt ettt e et e e e s snneeeeeeeas 13
RAVOKIMAKESPTING() «eeevenniiieeeeeieetee ettt ettt et e e e e s ssnnaneeeees 13
RAVOK.ACIETESPTING() .ttt ettt e e e e e e 14
RAVOK.TTNEATDASHPOT() ...evvveeeeieiiiiiiieeiittee ettt ettt e e e e e e 14
havok.makeLinearDASHPOL() «.......ueeeeeeeemniiiiiiiieeeeieeee ettt e e e e 14
havok.deleteLinearDaSHPOL()ceeeeeeemiuiieeiiineeieeee ettt eeeeee e ee e 15
havok.angularDASHPOL()cccoovvuueeeeeeimniieiiee ettt ettt ee e e e e e 15
havok . makeAnguIarDASHPOL()ceeeeeeemmmoiiiiiiiieeeiee ettt e e e 15
havok.delete AngularDASHPOT()coeeeeeeneemmieeiiieeieieee ettt eeteee e e e 16

Rigid Body Lingo Property Referenceccooooiiiiiiiiiiiiiiiiiiiiiiiiiiiieee 17
HKRIGIABOAY . IAMIEeeeoiiiiiiiiiieeee ettt ettt 17
HKRiGIABOAY POSTLIONeoooniieiieiiieieiie ettt 17
HKRiGIABOAY.TOTALIONcooeiieieiiiiiiee ettt e 18
HKRIGIABOAY THIASS ..ottt ettt st e s neee s 18
HKRigiABOAY.TESTILULIONeeeeeiiiiiiiiieeiee ettt e e 19

Copyright © 2000/2001 Havok.com Inc. 1

Havok Xtra Lingo Reference Guide

HKRIGIABOAY .fTICEION «.....eeoeiieiiiiiieieie ettt 19
HKRIGIABOAY.ACTIVE ...ttt 20
HKRiGIABOAY PINNEAccooeieiieiiiiieieeeeeee ettt 20
hkRigidBody.linearVelOCItyccceiireeeimiiieieieie ettt s 20
hkRigidBody.angularVelOCItyccoecoueiimioieiimiiieieeee ettt 21
hkRigidBody.linearMOMENEUNTcccuueeeieieeieaiieeeeetee ettt e e ee 21
hkRigidBody.angularMOMENTUIILcoccueeieeoieeeetieeeeeeee et 22
BKRIGIABOAY.FOTCE ..eeonnniiieiiieeeeeeeee ettt s 22
HKRiGIABOAY . LOTQUE ...ttt e e e 22
hKRigidBOAY.CENLETOIMUASSeeveeuieiiaieeieieee ettt ettt e e 23
hkRigidBody.corrector.enabledcooocueeieeiieiiieeieiiniiiieeeeeeeeee e 23
hkRigidBody.corrector threSHOIAcoocceeiiriieeimeiiiiineieieeeeeeeeee e 23
hkRigidBody.corrector MUIEIPIIErcoooeueeieiiieiiiiieiieie et 23
hKRigidBody.COrTeCtOr.1eVelcocomieiimmiiieineiiieieieeeeee et 23
hkRigidBody.cOrrector . MAXTIIEScccueeeeeueeieiieiiieiee ettt 24
hkRigidBody.corrector.MAXDISIANCEcccueeeeeueeeiriiieeeeiiiieeeeeeetee et eaeee e 24
Rigid Body Lingo Function Referenceccccceeeeieiiiiiiiiiiiiiiiiiiiiececccceeeeeenn 25
hKRigidBOAY.APPIYEOTCE() .eeevvveiniiiieeeiiitetee ettt ettt ee e e e e e 25
hkRigidBody.applyFOTCEALPOINI()ceeeeemnneiiieiiiieeeeieee e ettt eetteee e eee e 25
hKRigidBody.applyIMPUISe()c..eeeeeeeemmeeiiieeeiiiieeeeeeee ettt e eereeeeee e 25
hkRigidBody.applyImpulSeATPOINL()cccoveeumeueeeiiiiiiiieeeeieeiieeeeeeeeeee e e 26
hKRigidBody.ApplyTOTQUE()ccccoouumuueeeeiiiiieeeeieeeeeeeeee ettt e e e 26
hkRigidBody.applyAnGularImpulse()ccceeueeeeieemmmieoieeeeiiiiniiieieeeeneeeeeeeeeeeeeeee e 26
hkRigidBody.attemMPtMOVETO()uveeeeeeimneeiiieiieeeeeeieeee ettt eeeeee e eee e 27
hkRigidBody.interpolatingMOVETO()ccueeeeeeeemmeeiiieeeieiiiieeeee et e e 27
hKRigidBOAY.COTTECTOTMOVETOeeeeeeeeiiiiiiiiieeeeeeeeee ettt e e e 28
Spring Lingo Property Referencecocouiuuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeecccccceeeeeeeeee 29
PKSPTINGIIAINIEeeeveieeieieeeeiieieeee ettt ettt e e st e s s s aae e e e e e 29
PKSPTINGPOIIEA ...eeeeiieiieeieeeeeeeee ettt ettt ettt et e e s e e snaeeeee e s 29
PKSPTING.POINEB ...ceeiiiiiiieeieiieeeeee ettt ettt et e e s s e e e e e 29
PKSPTING.TESTLENGII «..cceeieeiiiiiiiieeeee ettt e e e e e 30
PKSPTING.CLASTICILY «ecoooneiiiiieiieiiiieeeee ettt ettt ettt e e s s e e e e 30
PKSPTING.AAMPING «eooooiiiiieieiiieeeeeeettee ettt ettt et e e s e e e e e e e 30
HKSPTing.ONCOMPTESSION ..ceveeeerneeieieeeeeiniiteteeeeeeeeee e ettt e e st ee s s ssenaeeeeeeenaas 30
PKSPTING.ONEXTENSIONevvvveiieiiiiiiiieeiitetee ettt ettt e et e e e saneeeeeeeas 31
Spring Lingo Function Referenceccouivuiiiiiimiiiiiiiicieeeee e 32
hkSpring.SetRIGIABOAYAooieveuieiieieiiieee ettt 32
hkSpring.StRIGIABOAYB.cocoveuieiieiieiiiee ettt s 32
hkSpring.getRIGIABOAYAcoiemeieiiiieiieeeeeeeee ettt s 32
hkSpring.getRiGIABOAYBcocoveieiiiiiieieiee ettt 32
Linear Dashpot Lingo Property Referencecccccccceeiiiiiiiiiiiiiiiiiiiiieccieceeeennn, 33
HKLiNeArDASHPOLIIAINEcccoovvouueiieeeiiiiiieeeeeeeeeeeee ettt e e eeateee e s seaneeeee e e 33
HKLinearDasHPOLPOIITAcooovvoueeieeeiiiieetie ettt ettt e et ee e 33
HKLinearDashpot.POiNEBocccuueeeeeiimiiiiiiieeeeeeeeee ettt ettt e e e e e 33
HKLinearDashpOL.STTENGINcoooouveveeiiimeiiiiee ettt e e e 34
HKLinearDashpot.dampingccccueeeeeemeeeiuiiieeeiiieeeeeeeeeeeeteeeesereeeeeeeeesneereeee s 34
Linear Dashpot Lingo Function Referenceccccoeiiiiiiiiiiiiimiiiiiieee 35
Copyright © 2000/2001 Havok.com Inc. 2

Havok Xtra Lingo Reference Guide

hkLinearDashpot.SetRIiGIABOAYAooomioieiiriieieeieeeeeeeeeeeeee et 35
hkLinearDashpot.setRiGIABOAYBccooioueiirivieiieeieieeeieeeeee et 35
hkLinearDashpot.getRigIABOAYAooeeuieimmiiieiiiiieeeeteeeeee et 35
hkLinearDashpot.getRigidABOAYBcoooouieiimiiiiiniieiineieieeeeeeeeee et 35
Angular Dashpot Lingo Property Referenceccccccceviiiiiiiiiiiiiiiiiiiicieeecenennn. 36
HKANGUIATDASHPOLTIATIEcccooonniiiiiiiiiaiieiee ettt ettt e e ee e 36
hKANGUIATDASHPOL.TOLALION ...ttt ettt e e 36
hKANGUIATDASHPOL.STTENGII ...ttt 36
hkAngularDashpot.dGMPINgc..eeeeeeiimeeiiiieiieeeeeeeee ettt e e e e e 37
Linear Dashpot Lingo Function Referencecccceiiiiiiiiiiiiimiiiiieee 38
hkAngularDashpot.SetRIGIABOAYAccovuueueeiieiiieeeiieieieee ettt 38
hkAngularDashpot.SetRIGIABOAYBccoooeevvuuieiiiimieiiiiiiiieeeieteee e eeeeee e eieeeeeeees 38
hkAngularDashpot.getRiGIABOAYAcoooouumvveeiiiiiiieeeeeeeeeee et 38
hkAngularDashpot.getRiIABOAYBccccuuvieiiiiiiiieeeieeeeeee et 38
Copyright © 2000/2001 Havok.com Inc. 3 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

1 Havok Cast Member Lingo Property Reference

You can access the following properties through the Havok cast member. The havok
term of each property description below indicates you must access them through a
Havok Xtra cast member. It does not mean that the actual word havok is part of the
syntax. In the example code the variable havok is an instance of the Havok cast mem-
ber:

havok = member (havokCastMemberNumber) .

havok.initialized

Syntax havok.initialized
Access Get
Description

This property returns the current state of the physical simulation.
Example

The following fragment of Lingo checks the simulation state before either initializing
or stepping it.

if not havok.initialized then
havok.initialize(member ("scene"))

else
havok.step(0.025, 5)
end if
havok.tolerance
Syntax havok.tolerance
Access Get

Description

This property holds the simulation’s initial collision tolerance. See havok.initialize()
for more information about collision tolerances.

Example
The example Lingo below displays the current tolerance value.

put havok tolerance

-- 0.1
havok.scale
Syntax havok.scale
Access Get

Description

This property holds the current scaling factor for the simulation. See havok.initial-
ize() for more information about simulation scale.

Copyright © 2000/2001 Havok.com Inc. 1 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

Example
The piece of Lingo below displays the current scaling factor.

put havok.scale

-- 0.0254
havok.timeStep
Syntax havok.timeStep
Access Get/Set
Description

This property holds the current time-step factor for the simulation. Time-step factor
represents the amount of time that the physics simulation advances with each call to
havok.step(). See havok.step() for more details.

havok.subSteps
Syntax havok.subSteps
Access Get/Set
Description

This property holds the current number of sub-steps used by Havok during each call
to havok.step(). See havok.step() for more details.

havok.simTime
Syntax havok.simTime
Access Get
Description

This property holds the total physics time that has elapsed since the beginning of the
Havok i.e. the total number of time steps * time step.

havok.gravity
Syntax havok.gravity
Access Get/Set
Description

This property holds the current force of gravity for the simulation. You specify gravity
display units, so you need to be careful when setting it up. If using a scale factor of
1.0 (i.e. meters) then gravity should be (0, -9.81, 0) to act appropriately (assuming
positive Y is up).

Example
The following Lingo example displays the current gravity before changing it.

put havok.gravity
-- vector(0, 0, -386.22)

Copyright © 2000/2001 Havok.com Inc. 2 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

havok.gravity = vector(0, 0, -100)
put havok.gravity
-- vector(0, 0, -100.0)

havok.rigidBody
Syntax havok.rigidBody
Access Get

Description

This property is a list of all rigid bodies in the simulation.

Example

The piece of Lingo below adds an anti-gravity force to all objects in the system.

repeat with i = 1 to havok.rigidbody.count
havok.rigidBody[i] .applyForce(-havok.gravity)
end repeat

havok.spring
Syntax havok.spring
Access Get

Description
This property is a list of all the springs in the simulation
Example

The piece of Lingo below sets the rest length of all the springs in the simulation to be
10.

repeat with i = 1 to havok.spring.count
havok.spring[i] .restLength = 10
end repeat

havok.linearDashpot

Syntax havok.linearDashpot

Access Get

Description

This property shows a list of all the linear dashpots in the simulation.
Example

The piece of Lingo below sets the damping of all the linear dashpots in the simula-
tion to be 0.5.
repeat with i = 1 to havok.linearDashpot.count

havok.linearDashpot[i] .damping = 0.5
end repeat

Copyright © 2000/2001 Havok.com Inc. 3 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

havok.angularDashpot
Syntax havok.angularDashpot
Access Get

Description
This property shows a list of all the angular dashpots in the simulation.
Example

The piece of Lingo below sets the damping of all the angular dashpots in the simula-
tion to be 0.5.

repeat with i = 1 to havok.linearDashpot.count
havok.angularDashpot[i] .damping = 0.5

end repeat

havok.collisionList

Syntax havok.collisionList

Access Get

Description

This property returns the current collision list. This list is made up from zero or more
sub-lists containing individual collision information. This information includes the

names of the colliding bodies, the world position of the contact point and the con-
tact normal.

Example

This following piece of Lingo displays the current list of collisions within a physical
simulation.
put havok.collisionList

-- [["BallWhite", "DisplayFelt", 83.6288, 2.1487, 15.0180, 0.0000,
0.0000, 1.0000]1

havok.deactivationParameters

Syntax havok.deactivationParameters
Access Get/Set
Description

This property is a list of two frequencies that simulations use to deactivate low-
energy objects. Simulations check objects at regular intervals to decide whether or
not they should be deactivated. To make deactivation more aggressive, raise the fre-
quencies. To make it less aggressive, lower them. A deactivated object is removed
from the physical simulation and therefore takes no CPU time. It is still involved in
collision testing, but purely in case objects hit it and so reactivate it.

The property’s two frequencies are short- and long-range deactivation parameters. In
both cases, they refer to a time period during which the behaviors of all simulated
objects are monitored. The short-range frequency selection specifies a time period

Copyright © 2000/2001 Havok.com Inc. 4 ‘

-
. VT eRTYY
=

Havok Xtra Lingo Reference Guide

during which Havok attempts to deactivate objects that move by very small amounts
or not at all, and is typically 1/20th of a second. Sometimes objects are effectively at
rest and should be deactivated, but due to the current time step or numerical error,
they jitter. In such cases, the short-range non-aggressive deactivator fails, as the
objects are moving too much to be considered inactive. The long-range test is more
aggressive but acts over a longer time period (typically 10 seconds).

To turn off deactivation, either long-range or short-range, set the appropriate param-
eter to 0. To make either the short or long range deactivation more aggressive
increase the frequency value (a value of 60Hz, when simulating with a frame rate of
60Hz, is the most aggressive possible).

Example

The piece of Lingo below displays the current frequencies used for deactivations. The
default short frequency is 2 Hz (1/2 of a second period). The long frequency default is
0.1 Hz (10 second period).

put havok.deactivationParameters
-- [2.0000, 0.1000]

havok.dragParameters
Syntax havok.dragParameters
Access Get/Set

Description This property is a list which contains the linear drag coefficient and
the angular drag coefficient respectively. The drag force is applied to oppose the
motion of a rigid body and is applied equally to all bodies in a havok simulation. At
high values the drag can nearly instantaneously oppose all motion. A reasonable
value for these is [0.1, 0.1].

Copyright © 2000/2001 Havok.com Inc. 5 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

2 Havok Cast Member Lingo Function Reference

You can access the following functions through the Havok cast member. The havok
syntax guidelines from the previous chapter apply here.

havok.initialize()

Syntax havok.initialize(W3DMember)
havok.initialize(W3DMember, tolerance, worldScale)

Description

You can create physical information for the Havok simulation in two ways:

The first method for creating physical simulation information is through a modeling
tool. The modeling tool that you use must support exporting .hke files. You can
import this .hke file as a movie cast member using the File > Import menu options.
.hke files already contain world scaling information and tolerance (as specified
within the 3D modeler), so you do not have to supply this value when initializing.

The second method for creating physical information is directly from the models
from within a 3D scene. In this case, you must create a blank Havok cast member
using the Insert > Media Element > Havok Physics Scene menu option. It is very
important that you establish the scale of the physics scene from the start. Internally,
the Havok physics simulation employs the metric system (i.e. default unit is meters).
A W3D cast member may have been created in any number of world units (meters,
inches, feet, user, generic). The Havok Xtra interface can work with the same units as
this W3D cast member. However, in order to perform the proper simulation, Havok
Xtra must know the correspondence between the display (3D scene) units and the
simulation units.

You must provide a world-scaling factor when initializing the physical simulation.
For example, if you designed a scene using inches, then you would supply a scaling
value of 0.0254 (1 inch = 0.0254 meter). Be aware that any values in the scene (like
gravity, rest length of springs, etc.) are interpreted as scene units rather than internal

physics units. That means that a real-world gravity value of 9.81 meters/second?
would have to be set as 386.22 inches/sec? if working in inches.

You must also provide a collision tolerance parameter. This tolerance is used to deter-
mine when objects are touching (i.e. if they are closer than the tolerance). In general,
higher collision tolerance values yield more stable simulations. However, setting too
high a value could lead to noticeable gaps between stacked objects. So, it is recom-
mended that you set the collision tolerance to the highest value at which it does not
visually affect the scene.

For example, if a scene consists of many objects in a room (crates, tables, chairs, etc.)
a tolerance of around 0.1m should be fine. However, if the objects in the scene are
dice on a table a smaller tolerance, say 0.01m or less, is preferable. If the objects are
cars or buildings, a higher tolerance applies, etc. If no value is supplied then the
default tolerance of 0.1 is used. As a general rule of thumb, set the tolerance value
close to 10% of the scaling factor used in the simulation.

Copyright © 2000/2001 Havok.com Inc. 6 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

Tolerance

Example

The world scale in the following example is set to 0.0254 as the scene was con-
structed in inches i.e. 1 meter * 0.0254 = 1 inch and the collision tolerance is set to 4
inches.

havok.initialize (member ("MyScene"), 4.0, 0.0254)

Note

Collision tolerance is a value measured in scene units. That means that the scaling
factor affects its actual value. havok.initialize() must be the first Havok function
called or other Havok functions will have no effect.

havok.reset()

Syntax havok.reset()
Description

This function resets the current physical simulation to its initial state. This is only
really appropriate for physical simulations initialized from a .hke file where a reset()
call reverts the entire scene back to the state defined in the .hke file. A physical simu-
lation not using an imported .hke file has an initial state that contains no rigid bod-
ies.

havok.step()

Syntax havok.step()
havok.step(Timelncrement)
havok.step(Timelncrement, NumOfSubsteps)
Description

This function steps the physical simulation by the time increment and uses the spec-
ified number of sub-steps to super sample and split that interval into smaller units.
This function is usually called each frame to advance the physics simulation by some
small time period. To pause the simulation, simply refrain from calling step(). To
achieve approximate real-time performance you should step the simulation accord-
ing to the frame rate of the movie. For example, for a Director tempo of 60 fps you
should step the world 0.0167 seconds each frame (= 1.0 / 60).

Copyright © 2000/2001 Havok.com Inc. 7 a

- .'
)
-

Havok Xtra Lingo Reference Guide

Example

This steps the simulation by 0.0167 seconds (i.e. 60 updates per second) with 4 inter-
nal sub-steps.

havok.step(0.0167, 4)
Note

The frame rate specified in Director is not necessarily the actual frame rate at which
the movie plays. It depends on how long it takes Director to render the movie. To
achieve true real-time performance, you need to keep track of elapsed absolute time.

The number of sub-steps gives display-independent control over the accuracy of the
simulation. You should always try to step the simulation with NumOfSubSteps = 1
because it is the fastest. Sometimes numerical instability results, for example with
large stacks. Increasing the number of sub-steps causes the simulation to make a
number of passes over the simulation for each call to step(). This gives more accurate
results but at the cost of additional CPU overhead.

_-O--@®
/O/O t,
/’.
jeos t;
/’O/
o .
/ @ update display
4 ’t O no display
[y L2
1/60 /P
| ¢ *1/240
v eyl
t,
havok.shutdown()
Syntax havok.shutdowny()
Description

This function stops the current simulation and removes it from memory.
Note

Be careful not to confuse this with Director’s shutdown() function, which attempts to
shut down your computer.

havok.rigidBody/()

Syntax havok.rigidBody(RBName)
Description

This function queries the physical simulation for a rigid body of a given name. If it
tinds the rigid body, it returns a reference for it. You can use this to alter properties
and call functions on rigid bodies. (See below)

Copyright © 2000/2001 Havok.com Inc. 8 a

- .'
)
-

Havok Xtra Lingo Reference Guide

Example

The piece of Lingo below looks for a rigid body and then sets its position to the origin
of the world.

rb = havok.rigidBody(model.name)
rb.position = Vector(0.0, 0.0, 0.0)

havok.deleteRigidBody()

Syntax havok.deleteRigidBody(RBName or RBIndex)

Description

This function removes a rigid body from the physics simulation given the rigid bod-
ies name or index.

havok.deleteRigidBody ("WhiteBall")

Convex Concave

havok.makeMovableRigidBody()

Syntax havok.makeMovableRigidBody(modelName, mass)
havok.makeMovableRigidBody(modelName, mass, isConvex)
havok.makeMovableRigidBody(modelName, mass, true, type)

Description

This function creates a movable rigid body, with specified mass greater than zero
(specified in kilograms), from a model of name modelName and adds it to the simu-
lation. The optional Boolean flag isConvex indicates whether the new rigid body is to
be convex or concave, where the default is convex. Furthermore if you specify the
type parameter to be convex (i.e. true), you can then construct a bounding sphere
(#sphere) or axis-aligned box (#box) rather than the default convex hull.

It is easier and faster to use convex geometries to resolve collisions, so you should use
them wherever possible. A convex body is one where any line from its inside to the
outside world results can only cross the object’s boundary once. Convex objects can-
not have holes, or hollows or loops like a teapot’s handle. Concave geometries have
no geometric restrictions, but their collision resolution is much more complex, and
slower as a result.

Example

The code below first creates a movable rigid body, 1kg in mass, from the object called
"Whiteball" and uses a convex hull representation by default. The second line also

Copyright © 2000/2001 Havok.com Inc. 9 ‘

Z

-
LR S X2)

Havok Xtra Lingo Reference Guide

creates a moveable rigid body of 1kg mass but uses a bounding sphere for the physi-
cal representation.

havok.makeMovableRigidBody ("WhiteBall", 1)
havok.makeMovableRigidBody ("WhiteBall", 1, true, #sphere)

Note

When you are creating a rigid body from a model, you must add the meshdeform
modifier to the model, i.e. model.addModifier(#meshDeform). Otherwise, Havok
Xtra cannot access the geometry of the model.

The convex representation of a rigid body is called a convex hull. When you create a
convex hull for a new rigid body, the resulting mesh is heavily dependent on the
original mesh of the object. In particular, Havok does handle lots of co-planar poly-
gons easily, and this is common in 3D elements like extruded text.

The resulting convex hull may have many badly formed triangles that seriously
degrade performance, and in some rare cases cause failure of the collision detection.
In these cases, you are often better off using the actually geometry itself by creating
the rigid body as concave. Alternatively, specifically in the case of extruded text, you
could use a bounding box.

havok.makeFixedRigidBody()

Syntax havok.makeFixedRigidBody(modelName)
havok.makeFixedRigidBody(modelName, isConvex)
havok.makeFixedRigidBody(modelName, true, type)

Description

This function creates a fixed rigid body from a model of name modelName and adds
it to the simulation. The optional Boolean flag isConvex indicates whether the new
rigid body is to be convex or concave (see havok.makeMovableRigidBody). The
default value is convex. Fixed rigid bodies never move, but are still involved in colli-
sion detection. These are mostly used for scenery elements like walls.

Note

When you create a rigid body from a model, you must add the meshdeform modifier
to it, as in model.addModifier(#meshDeform). If you don’t add the meshdeform
modifier, then Havok Xtra cannot access the geometry of the model.

Fixed bodies do not have mass. Mass is a property that only makes sense for objects
which are free to move.

havok.makeFixedRigidBody ("PoolTable", false)

havok.regsiterinterest()

Syntax havok.registerInterest(RBName1l, RBName2, Frequency, Threshold)

havok.registerInterest(RBNamel, RBName2, Frequency, Threshold, \
#LingoHandler, scriptIntance)

Description

This function allows detecting of specific collisions between rigid bodies and passing

Copyright © 2000/2001 Havok.com Inc. 10 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

details of the collision a specified Lingo callback handler. The following information
is passed to a callback handler in the form of a list:

c
Point

RBName1: Name of first object involved in collision

RBName2: Name of second object involved in collision

Contact Point: Point of collision between the two objects

Contact Normal: Collision direction equals the normal of the second object
at the point of collision

¢ Normal Relative Velocity: The relative velocity of the two objects involved
in the collision. This value is the sum of the absolute value of the objects'

velocities in the direction of the collision normal. So, for two spheres, each
traveling at 10 m/s directly towards the other, the NRV is be 20 m/s.

Contact
Normal

If you do not specify a collision handler, then collision information is simply added
to a collision list, which you can access using the havok.collisionList function at any
time. If the type #all is passed in for RBName2 then any collision involving RBName1
initiates a callback. Frequency determines how often a collision is recorded. Applica-
tions that require callbacks for every collision should set a frequency of zero. The
value that you set for frequency determines the number callbacks per second. For
example, when you set frequency at ten, you only get ten events raised every second,
invoking the callback a maximum of 10 times each second. Threshold specifies how
strong a collision must be before the Lingo callback is invoked. Threshold is defined
in terms of the normal relative velocity (i.e. meters per second), which is the relative
speed of the objects in collision. Positive values indicate the objects are heading
towards each other.

Example

The following Lingo fragment registers interest in any collisions involving the rigid
bodies named rb1 and rb2. When this collision occurs, the Lingo handler collision-
Hander displays the collision point in the message window.

havok.registerInterest(rbl, rb2, 0, 0, #collisionHandler, me)

on collisionHandler (me, collisionDetails)
put collisionDetails
end

To register interest only in collisions involving rb1 and rb2 where they are collide at

Copyright © 2000/2001 Havok.com Inc. 11 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

a relative velocity of greater than 10 m/s, use:
havok.registerInterest(rbl, rb2, 0, 10, #collisionHandler, me)
Note

You must provide a rigid body name for RBName1l.

havok.removelnterest()

Syntax havok.removelnterest(RBName)
Description
This function stops collisions involving the specified rigid body being recorded.

havok.removeInterest(rb.name)

havok.disableCollision()

Syntax havok.disableCollision(RBNameA, RBNameB)
Description

This function disables any collision between two rigid bodies identified by their
names.

havok.enableCollision()

Syntax havok.enableCollision(RBNameA, RBNameB)
Description

This function re-enables any collision between two rigid bodies identified by their
names.

havok.disableAllCollisions()

Syntax havok.disableAllCollisions(RBNameA)
Description

This function disables any collisions between a rigid body of a given name and the
other objects in the physics simulation.

havok.enableAllCollisions()

Syntax havok.enableAllCollisions(RBNameA)

Description This function re-enables all collisions between a rigid body of a given
name and the other objects in the simulation.

Copyright © 2000/2001 Havok.com Inc. 12 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

havok.registerStepCallback()

Syntax havok.registerStepCallback(#stepHandler, scriptInstance)
Description

During each physics simulation step the Havok engine may take a number of sub
steps (specified by the havok.subSteps property). This function allows the users to
register a callback to a lingo handler that will get called at each sub step passing the
length of time since the last sub step. This allows behaviors to be written that are
called after each step of the physics engine (which is important for behaviors involv-
ing real-world parameters).

Example

The following Lingo fragment registers the step callback to the lingo handler
stepHandler.

havok.registerStepCallback (#stepHandler, me)

on stepHandler (me, timeStep)
put "I’ve been called"
end stepHandler

havok.removeStepCallback()

Syntax havok.removeStepCallback(#stepHandler, scriptInstance)
Description

This function removes the callback to the given handler and it’s script instance.

havok.spring()

Syntax havok.spring(SpringName)
Description

This function queries the physical simulation for a spring of a given name. If it finds
the spring, it returns a reference for it. You can then use this for altering properties
and calling functions on springs (see below).

Example
The piece of Lingo below looks for a spring and then sets its rest length to 5.

spring = havok.spring("TheSpring")
spring.restLength = 5

havok.makeSpring()

Syntax havok.makeSpring(SpringName, RBNameA, RBNameB)
havok.makeSpring(SpringName, RBName, WorldPoint)
Description

A spring is an object with a preferred rest length which is attached to a pair of objects.
When the spring is stretched or squashed it attempts to restore equilibrium by apply-

Copyright © 2000/2001 Havok.com Inc. 13 ‘

-
. VT eRTYY
=

Havok Xtra Lingo Reference Guide

ing a restoring force to the attached objects.

The first version of this function makes a spring between the centers of mass of two
named rigid bodies.

The second version of this function makes a spring between a rigid body given its
name (RBName), and a world point.

Example

This piece of Lingo creates a spring between the center of mass of two rigid bodies.

spring = havok.makeSpring("MySpring", "Box1l", "Box2")
havok.deleteSpring()
Syntax havok.deleteSpring(SpringName)

havok.deleteSpring(SpringIndex)
Description

This function removes a spring of a given name or index from the physics simula-
tion.

havok.deleteSpring("TheSpring")

havok.linearDashpot()

Syntax havok.linearDashpot(LinearDashpotName)
Description

This function queries the physical simulation for a linear dashpot of a given name. If
it finds the linear dashpot it returns a reference for it. You can then use this to alter
properties and call functions on linear dashpots (see below).

Example

The piece of Lingo below looks for an angular dashpot and then sets its damping to
0.5.

dashpot = havok.linearDashpot("TheLinearDashpot")
dashpot.damping = 0.5

havok.makeLinearDashpot()

Syntax havok.makeLinearDashpot(DashName, RBNameA, RBNameB)
havok.makeLinearDashpot(DashName, RBName, WorldPoint)
Description

A linear dashpot is a heavily damped zero length spring. It applies forces to objects
when the velocities of their attached points begin to differ. Dashpots can be made
stiffer than regular springs because velocities are taken into account. In addition you
can use a dashpot to attach a point on a body to a fixed point in world space.

The first version of this function makes a linear dashpot between the centers of mass
of two named rigid bodies.

Copyright © 2000/2001 Havok.com Inc. 14 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

The second version of this function makes a linear dashpot between a rigid body
given a rigid body’s name (RBName), and a point in world space where the other end
of the dashpot is attached (WorldPoint).

Example

This piece of Lingo creates a linear dashpot between the centers of mass of two rigid
bodies.

dashpot = havok.makeLinearDashpot ("MyDash", "Boxl", "Box2")

havok.deleteLinearDashpot()

Syntax havok.deleteLinearDashpot(DashpotName)
havok.deleteLinearDashpot(Dashpotindex)
Description

This function removes a linear dashpot of a given name or index from the physics
simulation.

havok.deleteLinearDashpot ("TheDashpot")

havok.angularDashpot()

Syntax havok.angularDashpot(AngularDashpotName)
Description

This function queries the physical simulation for an angular dashpot of a given
name. If it finds the angular dashpot it returns a reference for it. You can use this to
alter properties and call functions on angular dashpots (see below).

Example

The piece of Lingo below looks for an angular dashpot and then sets its damping to
0.5.

angularDashpot = havok.angularDashpot("TheAngularDashpot")
angularDashpot.damping = 0.5

havok.makeAngularDashpot()

Syntax havok.makeAngularDashpot(DashName, RBNameA, RBNameB)
havok.makeAngularDashpot(DashName, RBName)
Description

An angular dashpot is the rotation equivalent of a linear dashpot. An angular dash-
pot tries to align two objects so that they have the same orientation. If the objects’
orientations differ, forces are applied to both bodies that push them closer to the
same orientation. You can also use an angular dashpot to align a single body to an
orientation in world space.

The first version of this function makes an angular dashpot between two rigid bodies
given their names (RBNameA, RBNameB). The initial rotation is the zero angle.

Copyright © 2000/2001 Havok.com Inc. 15 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

The second version of this function makes an angular dashpot between a rigidbody
(RBName) and the reference frame. The initial rotation is the zero angle.

Example
The piece of Lingo creates an angular dashpot between the two named rigid bodies.

angDashpot = havok.makeAngularDashpot ("My Dash", "Boxl", "Box2")

havok.deleteAngularDashpot()

Syntax havok.deleteAngularDashpot(AngularDashpotName)

havok.deleteAngularDashpot(AngularDashpotIndex)
Description

This function removes an angular dashpot of a given name or index from the physics
simulation.

havok.deleteAngularDashpot ("TheAngularDashpot")

Copyright © 2000/2001 Havok.com Inc. 16

- .'
)
-

Havok Xtra Lingo Reference Guide

3 Rigid Body Lingo Property Reference

The following properties can be accessed through a Havok Rigid Body that can be
obtained from a Havok cast member using the function:

havok.rigidBody (RBName) or havok.rigidBody[il]

The word hkRigidBody has been added in front of each property description in order
to indicate that access must be made through a hkRigidBody. This notation is equiva-
lent to the use of havok in previous chapters. In the example code the variable rb is
an instance of a hkRigidBody:

rb = member (havokCastMemberNumber) .rigidBody ("Box01")

RigidBody() can take either a string name or an index / number to identify the cast

member.
hkRigidBody.name
Syntax hkRigidBody.name
Access Get
Description

This property returns the name of a rigid body. In general this equates to the rigid
body’s display equivalent in the 3D scene.

Example
The following fragment of Lingo displays the name of a rigid body in the message
window.
put rb.name
-- "BoxOl1l"
hkRigidBody.position
Syntax hkRigidBody.position
Access Get/Set
Description

This property sets or gets the position of a rigid body. Position is in the form of a
Director vector object.

Example

The following fragment of Lingo sets the position of a rigid body to position (2.0, 3.0,
4.0) and then displays the position in the message window.

rb.position = vector (2.0, 3.0, 4.0)
put rb.position
-- vector(2.0000, 3.0000, 4.0000)

Note

If you place a rigid body in a position so that it interpenetrates another rigid body,
collisions between these two rigid bodies are not resolved. See hkRigidBody.attempt-

Copyright © 2000/2001 Havok.com Inc. 17 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide
MoveTo() for further information.

hkRigidBody.rotation

Syntax hkRigidBody.rotation
Access Get/Set
Description

You may use this property to set or get the rotation of a rigid body. Rotation is in the
form of a Director list containing a vector object indicating rotation axis and a real
number indicating rotation angle. Rotations use the right hand rule (i.e. point the
thumb of your right hand in the direction of the axis of rotation and the fingers curl
in the direction of the rotation). Angles are specified in degrees.

Y,

§

Example

The following fragment of Lingo script gets the rotation of a rigid body and displays
it in the message window.

put rb.rotation
-- [vector(1.0000, 0.0000, 0.0000), 90.0000]

Note

If you place a rigid body in an orientation such that it interpenetrates another rigid
body then collisions between these two rigid bodies are not resolved. See hkRigid-
Body.attemptMoveTo() for further information.

hkRigidBody.mass
Syntax hkRigidBody.mass
Access Get/Set

Description
You can use this property to set or get the mass of a rigid body (specified in kg.).
Example

The following fragment of Lingo script displays the mass of a rigid body in the mes-
sage window.

put rb.mass
-- 1.0000

Copyright © 2000/2001 Havok.com Inc. 18 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

Note

Only movable rigid bodies can have mass. If a fixed rigid body needs to move, then
create it as a movable rigid body and lock its position (see hkRigidBody.pinned prop-
erty below)

hkRigidBody.restitution

Syntax hkRigidBody.restitution
Access Get/Set
Description

You can use this property to set or get the restitution or bounciness of a rigid body.
Restitution relates to an object’s energy loss or gain after a collision. If an object has a
restitution value of zero, then all energy is lost on collision and it does not bounce. A
restitution value of 1 gives a perfect bounce. A restitution value greater than 1 means
a bouncing object gains energy after each collision. So, a bouncing ball would reach
a higher height after each time it hits the floor.

Example

The following fragment of Lingo script sets the restitution of a rigid body.

rb.restitution = 0 -- no bounce
rb.restitution = 1 -- perfect bounce
rb.restitution = 0.5 -- lose 50% of energy after each bounce
hkRigidBody.friction
Syntax hkRigidBody.friction

Access Get/Set
Description

You can use this to set or get the coefficient of friction or stickiness of a rigid body (0
= no friction, typical values are 0.8...1.0). Friction relates to how much force is
required to move or roll one rigid body over another. If a sliding object has a friction
value of zero then it never stops sliding. In reality there are two forms of friction:
dynamic and static. Objects moving relative to each other (i.e. sliding) use dynamic
friction. Objects at rest and stacked are held in place by static friction. The transition
from static to dynamic friction is crucial for the realism of a physics simulation and a
difficult problem to solve in general.

For example, when you strike a pool ball with a cue, it initially slides over the surface
of the pool table and slows due to dynamic friction. Eventually it catches and begins
to roll. Static friction takes over and maintains the contact between the ball and
table, converting forward momentum into torque. This causes the ball to spin or roll.
The ball eventually comes to rest due to energy loss resulting from the static friction.
Havok Xtra requires only a single value of friction to be specified, but internally fully
simulates both static and dynamic friction behaviors and the transition between
them.

Example

The following fragment of Lingo script sets the friction of a rigid body.

Copyright © 2000/2001 Havok.com Inc. 19 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

rb.friction = 0 -- slide forever
Note

For objects in contact you need to specify both friction parameters to get the desired
result. The friction used is the square root of the sum of the squares of the friction

coefficients.
hkRigidBody.active

Syntax hkRigidBody.active

Access Get/Set

Description

You may use this property to set or get whether a movable rigid body is active. A
deactivated object never moves until struck by another object or because of a force
that acts upon it.

Example

The following piece of Lingo deactivates an object if it falls outside a specified dis-
tance from the world origin.

if rb.position.length > 10000 then

rb.active = false
end if
hkRigidBody.pinned
Syntax hkRigidBody.pinned
Access Get/Set

Description

You can use this property to set or get whether a movable rigid body is pinned in
place. A pinned object never moves when struck by another object, but may be
released under Lingo control at a later point in the simulation. This is unlike an
object initially created as fixed.

Example
The following piece of Lingo fixes a movable rigid body if currently movable.

if not rb.pinned then
rb.pinned = true -- fix body
end if

hkRigidBody.linearVelocity

Syntax hkRigidBody.linearVelocity
Access Get/Set
Description

You may use this property to set or get the linear velocity of a rigid body. A Lingo vec-
tor specifies the value. Linear velocity is simply the speed of the object. The magni-

Copyright © 2000/2001 Havok.com Inc. 20 ‘

-
. VT eRTYY
=

Havok Xtra Lingo Reference Guide

tude of the velocity vector is the actual speed of the body and the vector specifies the
direction in which the object is moving.

Example

The following fragment of Lingo script prints the linear velocity of a rigid body,
which in this case is moving at 10 units per second in the positive Z direction.

put rb.linearVelocity
-- vector(0.0000, 0.0000, 10.0000)

hkRigidBody.angularVelocity

Syntax hkRigidBody.angularVelocity
Access Get/Set

Description

You may use this property to set or get the angular velocity of a rigid body. A Lingo
vector specifies the value of the velocity. The magnitude of the vector determines the
speed in degrees per second CCW about the specified axis. The normalized vector, or
the unit length version of the vector, gives its axis. So an angular velocity of (2.0, 0.0,
0.0) corresponds to a rotation speed of 2.0 degrees per second counter-clockwise
around the positive X axis.

Example

The following fragment of Lingo script prints the angular velocity of a rigid body.

put rb.angularVelocity
-- vector(10.0000, 0.0000, 0.0000)

hkRigidBody.linearMomentum

Syntax hkRigidBody.linearMomentum
Access Get/Set
Description

You may use this property to set or get the linear momentum of a rigid body. A Lingo
vector specifies the value. Momentum is mass multiplied by velocity.

Example

The following piece of script sets prints the linear momentum of a rigid body.

rb.linearMomentum = vector(1, 0, 0) * rb.mass

Copyright © 2000/2001 Havok.com Inc. 21 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

hkRigidBody.angularMomentum

Syntax hkRigidBody.angularMomentum
Access Get/Set
Description

You may use this property to set or get the angular momentum of a rigid body. A
Lingo vector specifies the value.

Example

The following fragment of Lingo script sets the angular momentum of a rigid body.

rb.angularMomentum = vector(1, 0, 0) * rb.mass
hkRigidBody.force
Syntax hkRigidBody.force
Access Get
Description

You may use this property to get the current total force acting on a rigid body. The
total force acting on a body depends on the forces applied through Lingo script and
also the forces applied by the Havok system during simulation.

Example

The following fragment of Lingo script puts the current force on a rigid body to the
message window.

put rb.force
-- vector(15.0000, 0.0000, -9.8100)

hkRigidBody.torque

Syntax hkRigidBody.torque
Access Get
Description

You may use this property to get the current torque on a rigid body. Torque is the
angular analog of force. You should apply a torque to induce a spin in an object.
Torque, like angular velocity, is a single vector. The vector’s magnitude is that of the
exerted torque. The normalized vector specifies the axis about which the torque
exerts.

Example

The following fragment of Lingo script displays the current torque exerted on a rigid
body in the message window.

put rb.torque
-- vector(0.0000, 10.0000, 0.0000)

Copyright © 2000/2001 Havok.com Inc. 22 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

hkRigidBody.centerOfMass

Syntax hkRigidBody.centerOfMass
Access Get
Description

This property gives the user the offset from the models origin to the rigid body’s cen-
ter of mass.

hkRigidBody.corrector.enabled

Syntax hkRigidBody.corrector.enabled
Access Get/Set
Description

Enables or disables the corrector for a particular rigid body. It can be set to true or
false. For more details see the function hkRigidBody.correctorMoveTo.

hkRigidBody.corrector.threshold

Syntax hkRigidBody.corrector.threshold
Access Get/Set
Description

This property is used to determine how close the body is gotten to the final destina-
tion before any reckoning occurs (see hkRigidBody.corrector.level for the different
reckoning levels) . This is measured in design units. The Havok simulation will set
this to a default parameter depending on the scene. The user may wish to change it.
A reasonable threshold is anywhere from 0.01 to 0.7 depending on the design of the
scene. If the threshold is too small the corrector may go into an infinite loop i.e. can-
not get to the exact position. If the threshold is too large the corrector may have little
or no effect on the body.

hkRigidBody.corrector.multiplier

Syntax hkRigidBody.corrector.multiplier
Access Get/Set
Description

This property is used to determine how fast a rigid body will move to its destination
using hkRigidBody.correctorMoveTo. A multiplier of value 1.0 gives 1 unit of time to
get there. With a very high multiplier, the objects may hit each other with too much
force. The default for this parameter is 5.

hkRigidBody.corrector.level

Syntax hkRigidBody.corrector.level

Copyright © 2000/2001 Havok.com Inc. 23 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

Access Get/Set

Description

This property sets the reckoning level of the corrector. The levels are:
0 - Hold - (never stop correcting) (HOLD)
1 - No dead reckoning (leave go with vel=0)
2 - Dead Reckoning (set velocities)

3 - 2nd order reckoning (set accelerations)

hkRigidBody.corrector.maxTries

Syntax hkRigidBody.corrector.maxTries
Access Get/Set
Description

The property is the number of attempts made to move the rigid body to its final des-
tination during a hkRigidBody.correctorMoveTo (if blocked).

hkRigidBody.corrector.maxDistance

Syntax hkRigidBody.corrector.maxDistance
Access Get/Set
Description

If the difference between the current position of the body and the desired position of
the body is greater than the maxDistance property then the corrector will simply
move the rigid body to it’s desired position.

Copyright © 2000/2001 Havok.com Inc. 24 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

4 Rigid Body Lingo Function Reference

You can access the following properties through a Havok rigid body, which you can
obtain from a Havok cast member, using the function:

havok.rigidBody (RBName)
or
havok.rigidBody [RBNum]

As with the entries in chapter 3, each entry in this chapter is preceded by an hkRigid-
Body tag to indicate method of access.

rb = member (havokCastMemberNumber) .rigidBody ("Box01")

hkRigidBody.applyForce()
Syntax hkRigidBody.applyForce(force)

Description

This function applies a force to a rigid body at its center of mass. A Lingo vector spec-
ifies the value of this force. An example application of applying a force would be
applying the brakes in a car, which takes time to have an effect. Applying a force at
the center of mass does not affect the spin of the object.

Example

The follow fragment of Lingo script applies an anti-gravity force to a rigid body.

grav = havok.gravity ()
rb.applyForce(-grav)

hkRigidBody.applyForceAtPoint()
Syntax hkRigidBody.applyForceAtPoint(force, point)

Description

This function applies a force to a rigid body at a specified point in model space. Lingo
vectors specify the value of the force and the position. Forces applied at points other
than the center of mass of an object induce a torque effect, causing the object to spin.

Note

The model space point does not have to be on or contained within the object. It
works as though a lever connects the specified point to the object’s center of mass
and the force applies to the end of the lever.

hkRigidBody.applylmpulse()
Syntax hkRigidBody.applylmpulse(impulse)
Description
This function applies an impulse to a rigid body at its center of mass. A Lingo vector
specifies the value of the impulse. An example stopping impulse would be like a car

hitting a wall, whereby the car stops immediately. An impulse, unlike a force, has an
immediate effect on the velocity of the rigid body so gives a greater degree of control

Copyright © 2000/2001 Havok.com Inc. 25 ‘

-
. VT eRTYY
=

Havok Xtra Lingo Reference Guide

over the object.
Example

The follow fragment of Lingo script applies an impulse to a rigid body straight up in
the air.

rb.applyImpulse (vector (0.0, 0.0, 100.0))

hkRigidBody.applylmpulseAtPoint()
Syntax hkRigidBody.applylmpulseAtPoint(impulse, point)
Description

This function applies an impulse to a rigid body at a specified point relative to the
position of the model. Lingo vectors specify the value of the impulse and the posi-
tion. Similar to applying forces at a point, applying an impulse at a point other than
the center of mass of an object induces a torque effect, causing that object to spin.

Example

The follow fragment of Lingo script applies an impulse to a rigid body in it’s up direc-
tion. As the impulse is offset from the object’s center of mass, the body acquires an
angular velocity.

rb.applyImpulseAtPoint (Vector (0.0, 0.0, 100.0), Vector(0, 0, 5)
Note

The follow fragment of Lingo script applies an impulse to a rigid body in it’s up direc-
tion. As the impulse is offset from the object’s center of mass, the body acquires an
angular velocity.

hkRigidBody.applyTorque()
Syntax hkRigidBody.applyTorque(torque)
Description

This function applies torque to a rigid body at its center of mass. A Lingo vector spec-
ifies the value of the torque. The magnitude of the vector determines the size of the
torque. The normalized vector gives the axis about which the torque is applied.

Example

The follow fragment of Lingo script applies a torque of magnitude ten times the mass
of the rigid body inducing a CCW rotation about the positive X axis. This effectively
works like a motor action to the object along the its local X-axis.

rb = havok.rigidBody ("FrontLeftWheel")
rb.applyImpulse (Vector(10.0, 0.0, 0.0) * rb.mass)

hkRigidBody.applyAngularimpulse()
Syntax hkRigidBody.applyAngularImpulse(impulse)
Description

This function applies an angular impulse to a rigid body at its center of mass. A Lingo
vector specifies the value of the impulse. The magnitude of the vector determines the
size of the impulse. The normalized vector gives the axis about which the impulse is

Copyright © 2000/2001 Havok.com Inc. 26 ‘

-
. VT eRTYY
=

Havok Xtra Lingo Reference Guide

applied. An angular impulse has an immediate effect on the angular velocity of the
object in a similar way that an impulse has an immediate effect on the linear velocity
of an object.

Example

The follow fragment of Lingo script applies an angular impulse of magnitude 100 to a
rigid body. This applies a twist about the object’s local Z-axis.

rb.applyImpulse (vector (0.0, 0.0, 100.0))

hkRigidBody.attemptMoveTo()

Syntax hkRigidBody.attemptMoveTo(position, rotation)
Description

This function takes a position (vector) and a rotation (in the form of a list containing
an axis and an angle, expressed as a vector and a floating-point value respectively).
The function attempts to move the rigid body to a position and orientation specified
by the three parameters. If the rigid body is in an acceptable physical state when
repositioned, such as not interpenetrating, it is left there and the function returns
true. Otherwise the function returns false. In both cases below, the function returns

false:
move
—
Interpenetrations
rotate
—
Example

The follow fragment of Lingo script attempts to position a rigid body at world coordi-
nates (0, 0, 100) with its initial orientation.

m = rb.attemptMoveTo (vector(0,0,100), [vector(0,1,0), 0])

if not m then

put "Move Failed"
end if

hkRigidBody.interpolatingMoveTo()
Syntax hkRigidBody.interpolatingMoveTo(position, rotation)
Description

This function takes a position (vector) and a rotation (passed in the form of a list con-
taining an axis and an angle, expressed as a vector and a floating-point value respec-
tively). The function attempts to move the rigid body to a position and orientation

Copyright © 2000/2001 Havok.com Inc. 27 ‘

-
. VT eRTYY
=

Havok Xtra Lingo Reference Guide

specified by the three parameters. If the rigid body is not in an acceptable physical
state when repositioned, such as interpenetrating another object, it is moved back
from the specified position to the first valid point along a direct path from its initial
position to the specified position.

0 0.7 1

desired new position / orientation

L.

interpolatingMoveTo gets 70% there

This returns a floating-point value between 0 and 1. O indicates that the rigid body
cannot move from its initial spot. A value of 1 indicates that the object has been suc-
cessfully repositioned where specified. A value of 0.5 means the object has been repo-
sitioned to exactly halfway point between its initial and desired location. This value
also applies to the orientation, both axis and angle.

Example

The follow fragment of Lingo script attempts to position a rigid body at world coordi-
nates (0, 0, 100) with its initial orientation. It then prints the result.

newPos = vector (0, 0, 100)

newRot = [vector (0, 1, 0), 0]

d = rb.interpolatingMoveTo (newPos, newRot)
put "Got " & (d * 100) & "% of the way there"

hkRigidBody.correctorMoveTo

Syntax hkRigidBody.correctorMoveTo(position, rotation)

hkRigidBody.correctorMoveTo(position, rotation, linearVelocity, \
angularVelocity)

hkRigidBody.correctorMoveTo(position, rotation, linearVelocity, \
angularVelocity, linearAcceleration, angularAcceleration)

Description

A corrector receives a desired state for a body, via the this function. The corrector will
then attempt to bring the body to that desired state. This corrector uses impulses to
get a body to a desired position. If the body’s current position is greater than the max
distance property of the corrector away from the desired position the body will be
then moved to the desired position. The first function sets the position and rotation
of the body. The second version of this function sets position, rotation, linear veloc-
ity and angular velocity. The third version sets position, rotation, linear velocity,
angular velocity, linear acceleration and angular acceleration.

Copyright © 2000/2001 Havok.com Inc. 28 a

- .'
)
-

Havok Xtra Lingo Reference Guide

5 Spring Lingo Property Reference

You can access the following properties through a Havok spring, which you can
obtain from a Havok cast member using the function:

havok.spring (SpringName) or havok.spring[il]

The hkSpring of each property description below indicates your means of access to
them. It does not mean that the actual word hkSpring is part of the syntax. In the
example code the variable spring is an instance of an hkSpring:

spring = member (havokCastMemberNumber) .spring ("Spring01")

hkSpring.name

Syntax hkSpring.name
Access Get
Description

This property gets the name of the spring.

hkSpring.pointA

Syntax hkSpring.pointA
Access Get/Set
Description

This property contains the position on rigid body A to which the spring is attached.
The position is relative to rigid body A.

Example
This piece of Lingo attaches the spring to the origin of rigid body A.

newPos = vector (0, 0, 0)
spring.pointA = newPos

hkSpring.pointB

Syntax hkSpring.pointB
Access Get/Set
Description

This property contains the position on rigid body A to which the spring is attached.
The position is relative to rigid body B. If there is no rigid body B, then this point is a
point in world space to which the spring is attached.

Example
This piece of Lingo attaches the spring to the origin of rigid body B.

newPos = vector (0, 0, 0)
spring.pointB = newPos

Copyright © 2000/2001 Havok.com Inc. 29 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

hkSpring.restLength
Syntax hkSpring.restLength
Access Get/Set

Description

This property contains the rest length of the spring.

Example

This piece of Lingo sets the rest length of the spring to be 10.

spring.restLength = 10

hkSpring.elasticity

Syntax hkSpring.elasticity
Access Get/Set
Description

This property contains the elasticity of the spring. The higher the elasticity the stron-
ger the spring.

Example
This piece of Lingo sets the elasticity of the spring to be 0.5.

spring.elasticity = 0.5

hkSpring.damping
Syntax hkSpring.damping
Access Get/Set

Description

This property contains the damping value for the spring. Higher damping values
cause the spring to come to rest fast. If specified too high however, this can lead to
numerically unstable solutions.

Example
This piece of Lingo sets the damping of the spring to be 0.5.

spring.damping = 0.5

hkSpring.onCompression

Syntax hkSpring.onCompression
Access Get/Set
Description

If this property is set to true, the spring applies a restoring force when compressed
(i.e. distance between pointA and pointB is less than the restLength). If the property
is false, it does not.

Copyright © 2000/2001 Havok.com Inc. 30 9

- .'
)
-

Havok Xtra Lingo Reference Guide

hkSpring.onExtension

Syntax hkSpring.onExtension
Access Get/set
Description

If this property is set to true, the spring applies a restoring force when extended (i.e.
distance between pointA and pointB is greater than the restLength). If the property is
false, it does not.

Copyright © 2000/2001 Havok.com Inc. 31 ‘

- o
R
Y

Havok Xtra Lingo Reference Guide

6 Spring Lingo Function Reference

You can access the following functions through a Havok spring, which you can
obtain from a Havok cast member using the function:

havok.spring (SpringName) or havok.spring[il]

The hkSpring of each function description below indicates your means of access to
them. It does not mean that the actual word hkSpring is part of the syntax. In the
example code the variable spring is an instance of an hkSpring:

spring = member (havokCastMemberNumber) .spring ("Spring01")

hkSpring.setRigidBodyA

Syntax hkSpring.setRigidBodyA(RBName)

Description

This function sets the rigid body connected to the first end of the spring (pointA by
convention).

hkSpring.setRigidBodyB

Syntax hkSpring.setRigidBodyB(RBName)
hkSpring.setRigidBodyB(“none”
Description

This function sets the rigid body connected to the second end of the spring (pointB
by convention). If you pass #none as a parameter here the spring will be attached to a
world point, specified by the spring property pointB (see above).

hkSpring.getRigidBodyA

Syntax hkSpring.getRigidBodyA(RBName)
Description

This function returns the name of the rigid body connected to the first end of the
spring. If it is not connected to any rigid body it will return #none.

hkSpring.getRigidBodyB

Syntax hkSpring.getRigidBodyB(RBName)
Description

This function returns the name of the rigid body connected to the second end of the
spring. If it is not connected to any rigid body it will return #none.

Copyright © 2000/2001 Havok.com Inc. 32 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

/ Linear Dashpot Lingo Property Reference

You can access the following properties through a Havok linear dashpot, which you
can obtain from a Havok cast member using the function:

havok.linearDashpot (LinearDashpotName) or havok.linearDashpot [i]

The hkLinearDashpot of each property description below indicates your means of
access to them. It does not mean that the actual word hkLinearDashpot is part of the
syntax. In the example code the variable linearDashpot is an instance of an hkLinear-
Dashpot:

linearDashpot =
member (havokCastMemberNumber) .linearDashpot ("LinearDashpot")

hkLinearDashpot.name

Syntax hkLinearDashpot.name
Access Get
Description

This property contains the name of the linear dashpot.

hkLinearDashpot.pointA

Syntax hkLinearDashpot.pointA
Access Get/Set
Description

This property contains the position on rigid body A to which the linear dashpot is
attached. The position is relative to rigid body A

Example
This piece of Lingo attaches the linear dashpot to the center of mass of rigid body A.

newPos = vector (0, 0, 0)
linearDashpot.pointA = newPos

hkLinearDashpot.pointB

Syntax hkLinearDashpot.pointB
Access Get/Set
Description

If the linear dashpot is attached to another rigid body, this property contains the
position on rigid body B to which the linear dashpot is attached. The position is rela-
tive to rigid body B. If the linear dashpot is attached to a point in world space, this
property contains a position relative to the origin of the scene to which the dashpot
is attached.

Copyright © 2000/2001 Havok.com Inc. 33 9

- .'
)
-

Havok Xtra Lingo Reference Guide

Example
This piece of Lingo attaches the linear dashpot to the center of mass of rigid body B.

newPos = vector (0, 0, 0)
linearDashpot.pointB = newPos

hkLinearDashpot.strength

Syntax hkLinearDashpot.strength
Access Get/Set
Description

This property contains the strength of the linear dashpot and controls how quickly
the stable state for the dashpot is achieved. High strength values yield very stiff dash-
pots, which can lead to unstable results. A good initial range is 0.5 - 1.

Example
This piece of Lingo sets the strength of the linear dashpot to be 10.

linearDashpot.strength = 10

hkLinearDashpot.damping

Syntax hkLinearDashpot.damping
Access Get/Set
Description

This property specifies the damping factor for the linear dashpot. The damping fac-
tor controls how quickly the dashpot comes to rest. Very high damping factors can
yield unstable results. A good initial value is 0.1.

Example
This piece of Lingo sets the damping of the linear dashpot to be 0.5.

linearDashpot.damping = 0.5

Copyright © 2000/2001 Havok.com Inc. 34 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

8 Linear Dashpot Lingo Function Reference

You can access the following functions through a Havok linear dashpot, which you
can obtain from a Havok cast member using the function:

havok.linearDashpot (LinearDashpotName) or havok.linearDashpot [i]

The hkLinearDashpot of each function description below indicates your means of
access to them. It does not mean that the actual word hkLinearDashpot is part of the
syntax. In the example code the variable linearDashpot is an instance of an hkLinear-
Dashpot:

linearDashpot =
member (havokCastMemberNumber) .linearDashpot ("LinearDashpot

hkLinearDashpot.setRigidBodyA
Syntax hkLinearDashpot.setRigidBodyA(RBName)

Description

This function sets the rigid body connected to the first end of the linear dashpot
(pointA by convention).

hkLinearDashpot.setRigidBodyB

Syntax hkLinearDashpot.setRigidBodyB(RBName)
hkLinearDashpot.setRigidBodyB("none")
Description

This function sets the rigid body connected to one end of the linear dashpot. If you
pass #none as a parameter here the linear dashpot will be attached to a world point,
which is specified in the linearDashpot property pointB (see above).

hkLinearDashpot.getRigidBodyA
Syntax hkLinearDashpot.getRigidBodyB(RBName)

Description

This function returns the name of the rigid body connected to the first end of the lin-
ear dashpot. If it is not connected to any rigid body it will return #none.

hkLinearDashpot.getRigidBodyB
Syntax hkLinearDashpot.getRigidBodyB(RBName)

Description

This function returns the name of the rigid body connected to the second end of the
linear dashpot. If it is not connected to any rigid body it will return #none.

Copyright © 2000/2001 Havok.com Inc. 35 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

9 Angular Dashpot Lingo Property Reference

You can access the following properties through a Havok angular dashpot, which you
can obtain from a Havok cast member using the function:

havok.angularDashpot (AngDashpotName)
or
havok.angularDashpot [i]

The hkAngularDashpot of each property description below indicates your means of
access to them. It does not mean that the actual word hkAngularDashpot is part of
the syntax. In the example code the variable angDashpot is an instance of an hkAn-
gularDashpot:

angDashpot =
member (havokCastMemberNumber) .AngularDashpot ("AngDashpot")

hkAngularDashpot.name

Syntax hkAngularDashpot.name
Access Get
Description

This property contains the name of the linear dashpot.

hkAngularDashpot.rotation

Syntax hkAngularDashpot.rotation
Access Get/Set
Description

This property contains the angle of rotation that the angular dashpot attempts to
maintain between another rigid body or world space.

Example
This piece of Lingo sets the rotation to be zero.

newAngle = [vector(1l, 1, 1), 0]
angDashpot.rotation = newAngle

hkAngularDashpot.strength

Syntax hkAngularDashpot.strength
Access Get/Set
Description

This property contains the strength of the angular dashpot and controls how quickly
the stable state for the dashpot is achieved. High strength values yield very stiff dash-
pots, which can lead to unstable results. A good initial range is 0.5 - 1.

Example

This piece of Lingo sets the strength of the angular dashpot to be 10.

Copyright © 2000/2001 Havok.com Inc. 36 9

- .'
)
-

Havok Xtra Lingo Reference Guide

angDashpot.strength = 10

hkAngularDashpot.damping

Syntax hkAngularDashpot.damping
Access Get/Set
Description

This property specifies the damping factor for the angular dashpot. The damping fac-
tor controls how quickly the dashpot comes to rest. Very high damping factors can
yield unstable results. A good initial value is 0.1.

Example
This piece of Lingo sets the damping of the angular dashpot to be 0.5.

angDashpot.damping = 0.5

Copyright © 2000/2001 Havok.com Inc. 37 ‘

- .'
)
-

Havok Xtra Lingo Reference Guide

10 Linear Dashpot Lingo Function Reference

You can access the following properties through a Havok angular dashpot, which you
can obtain from a Havok cast member using the function:

havok.angularDashpot (AngDashpotName)
or
havok.angularDashpot [i]

The hkAngularDashpot of each property description below indicates your means of
access to them. It does not mean that the actual word hkAngularDashpot is part of
the syntax. In the example code the variable angDashpot is an instance of an hkAn-
gularDashpot:

angularDashpot =
member (havokCastMemberNumber) .AngularDashpot ("AngularDashpot")

hkAngularDashpot.setRigidBodyA
Syntax hkAngularDashpot.setRigidBodyA(RBName)
Description

This function sets the rigid body connected to one end of the angular dashpot.

hkAngularDashpot.setRigidBodyB
Syntax hkAngularDashpot.setRigidBodyB(RBName or “none”)
Description

This function sets the rigid body connected to one end of the angular dashpot. If you
pass #none as a parameter here the angular dashpot will be attached to a world point,
which is specified in the angularDashpot property rotation (see above).

hkAngularDashpot.getRigidBodyA
Syntax hkAngularDashpot.getRigidBodyA(RBName)
Description

This function returns the name of the rigid body connected to the first end of the
angular dashpot. If it is not connected to any rigid body it will return #none.

hkAngularDashpot.getRigidBodyB
Syntax hkAngularDashpot.getRigidBodyB(RBName)
Description

This function returns the name of the rigid body connected to the second end of the
angular dashpot. If it is not connected to any rigid body it will return #none.

Copyright © 2000/2001 Havok.com Inc. 38 9

- .'
)
-

	Lingo Reference Guide
	Table of Contents
	1 Havok Cast Member Lingo Property Reference
	havok.initialized
	havok.tolerance
	havok.scale
	havok.timeStep
	havok.subSteps
	havok.simTime
	havok.gravity
	havok.rigidBody
	havok.spring
	havok.linearDashpot
	havok.angularDashpot
	havok.collisionList
	havok.deactivationParameters
	havok.dragParameters

	2 Havok Cast Member Lingo Function Reference
	havok.initialize()
	havok.reset()
	havok.step()
	havok.shutdown()
	havok.rigidBody()
	havok.deleteRigidBody()
	havok.makeMovableRigidBody()
	havok.makeFixedRigidBody()
	havok.regsiterInterest()
	havok.removeInterest()
	havok.disableCollision()
	havok.enableCollision()
	havok.disableAllCollisions()
	havok.enableAllCollisions()
	havok.registerStepCallback()
	havok.removeStepCallback()
	havok.spring()
	havok.makeSpring()
	havok.deleteSpring()
	havok.linearDashpot()
	havok.makeLinearDashpot()
	havok.deleteLinearDashpot()
	havok.angularDashpot()
	havok.makeAngularDashpot()
	havok.deleteAngularDashpot()

	3 Rigid Body Lingo Property Reference
	hkRigidBody.name
	hkRigidBody.position
	hkRigidBody.rotation
	hkRigidBody.mass
	hkRigidBody.restitution
	hkRigidBody.friction
	hkRigidBody.active
	hkRigidBody.pinned
	hkRigidBody.linearVelocity
	hkRigidBody.angularVelocity
	hkRigidBody.linearMomentum
	hkRigidBody.angularMomentum
	hkRigidBody.force
	hkRigidBody.torque
	hkRigidBody.centerOfMass
	hkRigidBody.corrector.enabled
	hkRigidBody.corrector.threshold
	hkRigidBody.corrector.multiplier
	hkRigidBody.corrector.level
	hkRigidBody.corrector.maxTries
	hkRigidBody.corrector.maxDistance

	4 Rigid Body Lingo Function Reference
	hkRigidBody.applyForce()
	hkRigidBody.applyForceAtPoint()
	hkRigidBody.applyImpulse()
	hkRigidBody.applyImpulseAtPoint()
	hkRigidBody.applyTorque()
	hkRigidBody.applyAngularImpulse()
	hkRigidBody.attemptMoveTo()
	hkRigidBody.interpolatingMoveTo()
	hkRigidBody.correctorMoveTo

	5 Spring Lingo Property Reference
	hkSpring.name
	hkSpring.pointA
	hkSpring.pointB
	hkSpring.restLength
	hkSpring.elasticity
	hkSpring.damping
	hkSpring.onCompression
	hkSpring.onExtension

	6 Spring Lingo Function Reference
	hkSpring.setRigidBodyA
	hkSpring.setRigidBodyB
	hkSpring.getRigidBodyA
	hkSpring.getRigidBodyB

	7 Linear Dashpot Lingo Property Reference
	hkLinearDashpot.name
	hkLinearDashpot.pointA
	hkLinearDashpot.pointB
	hkLinearDashpot.strength
	hkLinearDashpot.damping

	8 Linear Dashpot Lingo Function Reference
	hkLinearDashpot.setRigidBodyA
	hkLinearDashpot.setRigidBodyB
	hkLinearDashpot.getRigidBodyA
	hkLinearDashpot.getRigidBodyB

	9 Angular Dashpot Lingo Property Reference
	hkAngularDashpot.name
	hkAngularDashpot.rotation
	hkAngularDashpot.strength
	hkAngularDashpot.damping

	10 Linear Dashpot Lingo Function Reference
	hkAngularDashpot.setRigidBodyA
	hkAngularDashpot.setRigidBodyB
	hkAngularDashpot.getRigidBodyA
	hkAngularDashpot.getRigidBodyB

