
Journal of Network and Systems Management, Vol. 13, No. 2, June 2005 (C© 2005)
DOI: 10.1007/s10922-005-4441-x

CYCLON: Inexpensive Membership Management
for Unstructured P2P Overlays

Spyros Voulgaris,1,2 Daniela Gavidia,1 and Maarten van Steen1

Unstructured overlays form an important class of peer-to-peer networks, notably when
content-based searching is at stake. The construction of these overlays, which is es-
sentially a membership management issue, is crucial. Ideally, the resulting overlays
should have low diameter and be resilient to massive node failures, which are both
characteristic properties of random graphs. In addition, they should be able to deal
with a high node churn (i.e., expect high-frequency membership changes). Inexpensive
membership management while retaining random-graph properties is therefore impor-
tant. In this paper, we describe a novel gossip-based membership management protocol
that meets these requirements. Our protocol is shown to construct graphs that have low
diameter, low clustering, highly symmetric node degrees, and that are highly resilient
to massive node failures. Moreover, we show that the protocol is highly reactive to
restoring randomness when a large number of nodes fail.

KEY WORDS: Membership management; peer-to-peer; epidemic/gossiping proto-
cols; unstructured overlays; random graphs.

1. INTRODUCTION

The growth of the Internet in terms of size and speed, as well as the plethora of
network applications and services that have been deployed in the last few years
clearly indicate a shift from the traditional client–server model to that of highly dis-
tributed, peer-to-peer (P2P) systems. The main philosophy behind these systems
is communal collaboration among peers: sharing both duties and benefits. By dis-
tributing responsibilities across all participating peers, they can collectively carry
out large-scale tasks in a simple and generally scalable way, that would otherwise
depend on expensive, dedicated, and hard to administer centralized servers.

1Computer Science Department, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands.

2To whom correspondence should be addressed Computer Science Department, Vrije Universiteit
Amsterdam, De Boelelaan 1081a, 1081HV Amsterdam, The Netherlands. E-mail: spyros@cs.vu.nl

197

1064-7570/05/0600-0197/0 C© 2005 Springer Science+Business Media, Inc.

198 Voulgaris, Gavidia, and van Steen

A distinguishing feature of P2P systems is that the peers jointly maintain
an overlay network. Unlike traditional layer-3 networks, the structure of these
overlay networks is not dictated by the (often fairly static) physical presence and
connectivity of hosts, but by logical relationships between peers. In particular, P2P
overlay networks are generally designed to handle a much higher rate concerning
the joining and leaving of nodes, while at the same time assume that membership
behavior is roughly the same for all nodes. In other words, they are designed to
handle highly dynamic, symmetric networks. Overlay management is therefore a
key issue in designing P2P systems.

There are currently two main categories of P2P systems in terms of overlay
management. Structured P2P systems impose a specific linkage structure between
nodes. Distributed Hash Tables [1] are typical examples in this category. They
link peers based on their IDs in a way to enable efficient ID-based routing among
them. In contrast, in unstructured P2P systems, peers are not linked according to
a predefined deterministic scheme. Instead, links are created either randomly (as
is typically done in Gnutella), or are probabilistically based on some proximity
metric between nodes (i.e., semantic proximity, leading to what are known as
semantic overlay networks). Unstructured P2P systems are primarily designed to
support rapid information dissemination and content-based searching in highly
dynamic distributed environments.

In this paper, we concentrate on gossip-based unstructured P2P systems [2].
These systems aim at exploiting randomness to disseminate information across a
large set of nodes. A key issue is to keep the overlay connected even in the event
of major disasters without maintaining any global information or requiring any
sort of administration. Connections between nodes in these systems are highly
dynamic. Gossiping networks generally exhibit self-healing behavior with respect
to major network disasters. It has also been observed that some of these overlays
exhibit properties of small-world and scale-free networks [3, 4]. However, in many
cases it is better to construct overlays that are close to random graphs [5].

Gossip-based unstructured overlays can be used as a building block in a
variety of network management applications, especially when highly dynamic
environments are anticipated. A good example is self-monitoring in large-scale
networks, where each node is charged with monitoring a few random others, shar-
ing the monitoring cost. An appropriately chosen overlay management algorithm
can ensure load fairness, and can guarantee that no node is left unattended, re-
sulting in a robust self-monitoring system. Another example is our prior work
on managing routing tables in very large P2P networks [6]. Stavrou et al. [7]
suggest management of flash crowd crises by disseminating information over
gossip-based unstructured overlays. In [8], we build on the research presented
in this paper to maintain links between semantically related peers, and we show
that it substantially enhances distributed searching for content (i.e., in file-sharing
applications).

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 199

The problem we address is that of building and maintaining overlays with
properties suitable for diverse applications like the aforementioned ones. More
specifically, we are looking into inexpensively building and maintaining very large,
connected overlay networks that exhibit important properties of random graphs.
These properties should be maintained even in highly dynamic environments.
In essence, we are interested in inexpensive membership management, in the
sense that any disruption of the overlay’s properties resulting from joining or
leaving nodes should be quickly and efficiently corrected. We assume that nodes
maintain a small, partial view of the entire network. Our starting point is the view
exchange protocol described in [7]. This so-called shuffling protocol ensures that
connectivity of the overlay is maintained as long as membership does not change.

We make two contributions. First, we provide an experimental analysis of the
basic shuffling protocol for large networks, examining properties such as clustering
and node degree distribution. These experiments have not been conducted before,
and, in particular, not on large networks. We demonstrate that shuffling is indeed
a promising exchange protocol.

Second, and most importantly, we describe CYCLON,3 a complete frame-
work for inexpensive membership management. CYCLON introduces an en-
hanced version of shuffling, which results in node-degree distributions that exhibit
better properties than those found in overlays resulting from basic shuffling, or
even in random graphs. Moreover, it includes better, in terms of efficiency and
quality, management of node additions and removals, which allows us to establish
truly inexpensive membership management that does not disrupt the randomness
of the overlay network.

The paper is organized as follows. We start with explaining the basic protocols
underlying CYCLON in Section 2, followed by an analysis of basic properties in
Section 3. The effects of adding and removing nodes are discussed in Sections 4
and 5, respectively. CYCLON’s robustness in the presence of (massively) failing
nodes is discussed in Section 6. Section 7 provides an estimation of the protocol’s
cost with respect to network traffic. Section 8 demonstrates CYCLON’s utility in
a variety of applications. Related work is presented in Section 9, and we conclude
in Section 10.

2. THE PROTOCOL

2.1. Basic Shuffling

The basic shuffling algorithm, introduced in [7], is a simple peer-to-peer
communication model. It forms an overlay and keeps it connected by means of an

3The name CYCLON was inspired by the protocol’s power in mixing nodes in the network, sort of like
a tornado. It is also inspired by the Greek origin of the word, kyklos (= circle), due to the uniformity
it imposes on the overlay.

200 Voulgaris, Gavidia, and van Steen

Fig. 1. An example of shuffling between nodes 2 and 9. Note that, among other
changes, the link between 2 and 9 reverses direction.

epidemic algorithm. The protocol is extremely simple: each peer knows a small,
continuously changing set of other peers, called its neighbors, and occasionally
contacts a random one to exchange some of their neighbors.

More formally, each peer maintains a neighbor list in a small, fixed-sized
cache of c entries (with typical value 20, 50, or 100). A cache entry contains the
network address (i.e., IP address and port) of another peer in the overlay. Each
peer P repeatedly initiates a neighbor exchange operation, known as shuffle, by
executing the following six steps:

1. Select a random subset of � neighbors (1 ≤ � ≤ c) from P’s own cache,
and a random peer, Q, within this subset, where � is a system parameter,
called shuffle length.

2. Replace Q’s address with P’s address.
3. Send the updated subset to Q.
4. Receive from Q a subset of no more than � of Q’s neighbors.
5. Discard entries pointing to P, and entries that are already in P’s cache.
6. Update P’s cache to include all remaining entries, by firstly using empty

cache slots (if any), and secondly replacing entries among the ones origi-
nally sent to Q.

On reception of a shuffling request, peer Q randomly selects a subset of its
own neighbors, of size no more than t, sends it to the initiating node, and executes
steps 5 and 6 to update its own cache accordingly.

Figure 1 presents a schematic example of the basic shuffling operation.

2.2. Enhanced Shuffling

CYCLON employs an enhanced version of shuffling, that, as we shall show
in subsequent sections, among other things improves the quality of the overlay

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 201

in terms of randomness. Enhanced shuffling follows the same model as basic
shuffling. The key difference is that nodes do not randomly choose which neighbor
to shuffle caches with. Instead, they select the neighbor whose information was
the earliest one to have been injected in the network.

The first motivation behind this enhancement is to limit the time a pointer
can be passed around until it is chosen by some node for a cache exchange.
As we shall see in Section 5, this results in a more up-to-date overlay at any
given moment, as it prevents pointers to dead nodes from lingering around
indefinitely.

The second—and far less obvious—motivation is to impose a predictable
lifetime on each pointer, in order to control the number of existing pointers to a
given node at any time. In Section 3.3 we will show that as a consequence of that,
pointers are distributed in a remarkably even way across all nodes.

In enhanced shuffling nodes initiate neighbor exchanges periodically, yet not
synchronized, at a fixed period �T. In addition to the network address, cache
entries contain an extra field called age, which denotes roughly the age of the
entry expressed in �T intervals since the moment it was created by the node it
points at.

The enhanced shuffling operation is performed by letting the initiating peer
P execute the following seven steps:

1. Increase by one the age of all neighbors.
2. Select neighbor Q with the highest age among all neighbors, and � − 1

other random neighbors.
3. Replace Q’s entry with a new entry of age 0 and with P’s address.
4. Send the updated subset to peer Q.
5. Receive from Q a subset of no more that i of its own entries.
6. Discard entries pointing at P and entries already contained in P’s

cache.
7. Update P’s cache to include all remaining entries, by firstly using empty

cache slots (if any), and secondly replacing entries among the ones sent
to Q.

Like in basic shuffling, the receiving node Q replies by sending back a random
subset of at most � of its neighbors, and updates its own cache to accommodate
all received entries. It does not increase, though, any entry’s age until its own turn
comes to initiate a shuffle.

From now on, any references to shuffling apply to both basic and
enhanced shuffling. Otherwise, the shuffling type will be explicitly specified.

Note that after node P has initiated a shuffling operation with its neighbor
Q, P becomes Q’s neighbor, while Q is no longer a neighbor of P. That is, the
neighbor relation between P and Q reverses direction.

202 Voulgaris, Gavidia, and van Steen

3. BASIC PROPERTIES

In this section we show and analyze the basic properties of the basic and en-
hanced shuffling epidemic protocols. All experiments presented have been carried
out with an event-driven simulator we developed in C++.

3.1. Connectivity

The fundamental property of shuffling is that, given a fail-free environment,
connectivity of the overlay is guaranteed.

Considering the trivial case of individual nodes’ connectivity, it should be
clear that no node becomes disconnected as a result of a shuffling operation. It
simply moves from being the neighbor of one node to being the neighbor of another.
This provides an intuitive indication that connectivity is generally preserved.

To provide a complete proof, we now show that an overlay cannot be split
in two disjoint subsets as a result of a shuffling operation. Assume two subsets A
and B connected by at least one link. For instance, some node in A has a pointer to
some node in B. Shuffles within subset A may pass this pointer around, but it will
always point at the same node in B, keeping the two subsets connected. Shuffles
within subset B do not interfere with this link. Finally, a shuffle between the node
in A currently holding the pointer, and the node in B being pointed at, will simply
reverse the direction of the pointer, thus maintaining the link between the two
subsets. Therefore, no shuffling operation can result in A and B (or generally any
two subsets of the overlay) becoming disconnected.

3.2. Convergence

As it turns out, shuffling has some desirable statistical properties. In order
to observe the characteristics of the overlay, we need to consider the connectivity
graph, that is, the graph having the peers as vertices, and the links between them
as (directed) edges. We consider the undirected version of the connectivity graph,
which is taken by simply dropping the direction of the edges. The motivation
behind this is that we are interested rather in the “can-communicate” than the
“knows-about” version of the graph. A node has the same potential to commu-
nicate with another node either if the first is a neighbor of the second or vice
versa.

The shortest path length between nodes P and Q is the minimum number of
edges needed to traverse to reach Q from P. The average path length is the average
of the shortest path lengths between any two nodes. The average path length is a
metric of the number of hops (and hence, communication costs and time) to reach
nodes from a given source. A small average path length is therefore essential for
broadcasting or, generally, information dissemination applications.

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 203

Fig. 2. (a) Average shortest path length between two nodes for different cache sizes. (b) Average
clustering coefficient taken over all nodes.

We conducted a series of experiments involving networks containing up to
100,000 nodes. To study the emergent behavior of the protocol, we define a cycle to
be the time period during which a number of shuffle operations equal to the number
of nodes have been made. Since nodes initiate shuffle operations periodically, at
the same rate, a cycle coincides with the shuffle period �T. Note that during
a cycle, each node has initiated a shuffling operation exactly once. We studied
the protocol’s emergent behavior by observing its state at times 0, �T, 2�T,
etc.

Note that the selection of the period �T effectively regulates the speed at
which an experiment runs in real time. However, it does not affect the protocol’s
emergent behavior or its convergence speed with respect to the number of cycles
elapsed. Nevertheless, �T should not be comparably short to twice the typical
latencies in the underlying network, as network delays would unpredictably affect
the order in which events are taking place. Typical values of �T = 10 s or higher
are recommended for experiments running over a wide-area network.

Figure 2(a) demonstrates a significant aspect of the emergent behavior of
shuffling. It clearly shows that the average path length converges to a very small
value, which coincides with the average path length of a random graph with the
same number of edges.

The clustering coefficient of a node is defined as the ratio of the existing links
among the node’s neighbors over the total number of possible links among them.
It basically shows to what percentage the neighbors of a node are also neighbors
among themselves. The average clustering coefficient is the clustering coefficient
averaged across all nodes in the network. It is generally undesirable for an overlay
to have a high average clustering coefficient for two reasons. First, it weakens
the connectivity of a cluster to the rest of the network, therefore, increasing the
chances of partitioning. Second, it is not optimal for information dissemination

204 Voulgaris, Gavidia, and van Steen

Fig. 3. (a) Average shortest path length between two nodes for different cache sizes. (b) Average
clustering coefficient taken over all nodes.

applications due to the high number of redundant message deliveries within highly
clustered node communities.

Figure 2(b) shows that shuffling exhibits convergent behavior for the clus-
tering coefficient. In our experiments, the clustering coefficient always converged
to values practically equal to the clustering coefficient of random graphs. More-
over, both the average path length and the clustering coefficient converge almost
exponentially (linearly in the log-linear graph).

Note that these experiments ran for several thousand cycles. However, only
the initial cycles are depicted, as the values remained stable for all the subsequent
cycles, indicating convergent behavior. Also note that we carried out experiments
bootstrapped in various different ways, but they all converged to the exact same
values. The experiments presented in Figure 2 were—intentionally—bootstrapped
with the worst imaginable setting. Nodes were set to form a “chain,” each node
having a single neighbor, namely its previous one. This way, the average path
length was initially the longest possible (i.e., 99,999 hops were needed to reach
the first from the last one).

Figure 3 shows the converged values for the average path length and the
clustering coefficient, for overlays of different numbers of nodes and cache sizes.
Two initial observations can be made. First, the average path length increases
logarithmically as a function of the number of nodes in the overlay. Second,
the clustering coefficient drops exponentially (linearly in the log–log graph) as a
function of the number of nodes.

What is more interesting is that both the average path length and the clustering
coefficient converge to the exact values expected in a random graph of the same
number of nodes and links. A random graph is a graph where an edge between two
random nodes exists with a probability p. Consequently, p is equal to the ratio of
existing links among nodes, over the total number of node pairs (total number of
possible links). Also, in random graphs, the average clustering coefficient, Crand,

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 205

is equal to p. Therefore, it follows that

Crand = p = no. of links

total no. of possible links
= no. of links

N × (N − 1)

2

(1)

where N is the number of nodes. For the sake of comparison, we consider random
graphs with an equal number of links as in our graphs. In our overlay, the number
of links is N × c, where c is the cache size. By substituting that in (1), we get:

Crand = 2 × c

N − 1
(2)

One can observe that formula 2, which gives the clustering coefficient for
random graphs of the same number of nodes and edges as ours, also provides
the exact values retrieved through experimentation in 3(b). This proves that the
overlays formed by shuffling have the same clustering coefficient as equivalent
random graphs.

3.3. Degree Distribution

The degree of a node is the number of links it has to other nodes, in the
undirected connection graph. The interest in the degree distribution stems from
three reasons. First, the degree distribution is highly related to the robustness
of the overlay in the presence of failures as it shows the existence of weakly
connected nodes and massively connected hubs. Second, it is an indication of the
way epidemics are spread. Third, it provides an indication of how fairly links are
distributed among nodes, and, as a consequence, an indication of the distribution of
resource usage (processing, bandwidth) across nodes. For the sake of robustness,
efficient information dissemination, and load balancing, it is desirable to have a
balanced, uniform distribution of links across all nodes of the overlay. In other
words, it is desirable to have a degree distribution with low standard deviation.

In the directed version of the connection graph, we distinguish between the
out-degree, and the in-degree of a node, which are the number of edges leaving
from and ending at the node respectively. In our case, the out-degree of every node
is fixed, and equal to the cache size. Therefore, we concentrate on observing the
in-degree distribution of our overlays.

Figure 4 shows the in-degree distribution for both basic and enhanced shuf-
fling for two different cache sizes. The in-degree distribution of an overlay with c
randomly chosen outgoing links per node is shown as well for comparison. In both
protocols, the in-degree distributions demonstrate a peak at the in-degree equal
to the cache size, while the number of nodes having larger or smaller in-degrees
drops symmetrically according to the shift from the cache size.

206 Voulgaris, Gavidia, and van Steen

Fig. 4. In-degree distribution in converged 100,000 node overlay, for basic shuffling, enhanced
shuffling, and an overlay where each node has c randomly chosen outgoing links.

It is, however, clear that enhanced shuffling does a significantly better job
with respect to spreading out the links extremely evenly across all nodes. For the
experiment with cache size 20, 80.31% of the nodes have an in-degree of 20 ± 5%.
For the experiment with cache size 50, 93.95% of the nodes have an in-degree of
50 ± 5%. The respective percentages for basic shuffling are 36.22 and 38.47%.

To understand CYCLON’s enhancement with respect to the in-degree distribu-
tion, we should take a closer look at the life cycle of pointers. A pointer to node P
is born when P initiates a shuffle with one of its neighbors, say Q. In the absence
of failures, this pointer will remain in the network, possibly hopping from node to
node as a result of subsequent shuffles. It will die only when it is selected by the
node currently holding it, say R, to perform a shuffle with P, in which case it will
be replaced by a fresh pointer from P to R.

In both basic and enhanced shuffling exactly one new pointer to each node
is born in each cycle, since each node initiates exactly one shuffle. However, the
two protocols differ in the death rate of pointers.

In basic shuffling, any number of existing pointers to a given node can die in
a single cycle, as they are selected for shuffling at random. As the death rate does
not follow the birth rate closely, the distribution of the population of pointers to
individual nodes has a high standard deviation, resulting in the wide distribution
of Fig. 4.

In enhanced shuffling, in each cycle a node P is contacted by one other node
on average to do shuffling, thus inserting one new pointer of age 0 in its cache, and
pushing out of its cache the pointer of maximum age. In the subsequent cycle, that
pointer of age 0 is upgraded to age 1, and a new pointer with age 0 replaces the
currently oldest pointer. As a result, a node’s cache contains on average one pointer
of each age, from 0 to c − 1. This means that replaced pointers are typically of
age around c − 1. In other words, a pointer has a lifetime of about c cycles. Taking
this observation one step further, in each cycle one pointer to a given node will
die, the one injected by that node c cycles ago. So, the death rate of pointers to
a given node is very close to one per cycle, that is, very close to the birth rate,

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 207

keeping the population of pointers to that node almost static. This intuitive result
can be clearly seen in the distribution of Fig. 4.

3.4. Dependency on Shuffle Length

We conducted a series of experiments to examine the effect of the shuffle
length on convergence. Interestingly, for all overlays we tried, the converged
state with respect to the average path length, average clustering coefficient, and
in-degree distribution, proved to be independent of the shuffle length used. The
only effect of the shuffle length was in the number of cycles it took to reach the
converged state.

We used the in-degree distribution as a metric to identify at which cycle
an overlay converges. As the in-degree distribution does not converge to exact
numbers, but to a certain graph shape whose points keep fluctuating slightly,
we had to use an approximation algorithm to identify the convergence point. In
particular, we calculated the in-degree distributions for the first 1000 cycles of each
experiment. In all cases, by looking at the distribution series we could tell that they
were certainly converged well before the 900th cycle. We computed the average in-
degree distribution of the last 100 cycles, namely cycles 900–999. Subsequently,
for each cycle i = 900 . . . 999 we computed the sum of squared errors,4 E2

i ,
between this cycle’s in-degree distribution and the average one, and we figured
out the maximum, E2

max(900,...,999). This was used as the maximum threshold of the
sum of squared errors to consider a distribution converged. Finally, starting from
cycle 0, we checked one distribution at a time to find the first cycle i whose E2 was
below that threshold. This cycle was logged as the cycle for which this experiment
converged.

To demonstrate the shuffle length’s effect independently of the initial condi-
tion, two different bootstrapping methods were used. The first one, chain, is the
one described in Section 3.2: considering nodes in a line, each node has a single
link to its previous one, forming a chain topology. In the second bootstrapping
method, star, all nodes initially have a single neighbor, the same one for all of
them, essentially forming a star topology.

Figure 5 presents the number of cycles an experiment took to converge
as a function of the shuffle length, for 100,000 nodes, and cache sizes 20 and
50. In all cases, shuffling just one neighbor at a time took clearly the longest.
Shuffling two, three, or more neighbors, gradually sped up the process. However,
no significant improvement was noticed beyond shuffle lengths of about 8 or
10. Counter intuitively, convergence speed degraded suddenly when shuffling the
whole cache, or almost all of it. The reason behind slow convergence either when

4E2
i = ∑∞

k=0 (xik − x̄k)2, where Xi = {xi0, xi1, xi2, . . .} is the i-cycle distribution, and Xi =
{x̄0, x̄1, x̄2, . . .} is the average distribution.

208 Voulgaris, Gavidia, and van Steen

Fig. 5. Effect of shuffle length on convergence speed. N = 100,000.

shuffling too few or too many neighbors is that in either case caches are not mixed
up too much by each shuffling operation. Therefore, a cache is only minimally (if
at all) enriched with new links, even if it has moved as a whole to a new node in
the case of full cache shuffling.

This result has more significance when bandwidth is an issue, since the shuffle
length linearly affects the amount of bandwidth used by CYCLON. Choosing a
shuffle length as low as around six or eight results in nearly optimal convergence
speed, while keeping bandwidth utilization to relatively low levels. We return to
this issue in Section 7.

4. ADDING NODES

CYCLON introduces a new method for nodes to join the overlay efficiently,
without disrupting randomness. To join, a new node simply needs to know any
single node that is already part of the overlay, called its introducer. Such a node
can be discovered in various ways, including broadcasting in the local network,
making use of a designated multicast group, or even contacting a well-known
server, etc. Finding such an introducer is out of the scope of this paper. Here, we
are interested in how to join once an introducer is known, without affecting the
basic properties of the system.

To this end, a key observation is that due to the randomness of the connec-
tivity graph, a random walk of length at least equal to the average path length is
guaranteed to end at a random node of the overlay, irrespectively of the starting
node.

Based on this observation, a new node P can join in a fairly straightforward
manner. P’s introducer initiates c (cache size) random walks, setting their time to
live (TTL) to a small value close to the expected average path length, such as four
or five. A node Q, where a random walk ends, replaces one of its cache’s entries
with a new entry of age 0 and the address of P. Q then forwards the replaced cache

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 209

entry to P, who, in turn, has to include the entry in one of its cache’s empty slots.
In effect, this operation is equivalent to P initiating a shuffle of length 1 with a
nonadjacent node, namely Q. The join operation ends when all c random walks
have ended and the corresponding neighbor exchanges have been accomplished.

We claim that this join operation makes it impossible for an external observer
to distinguish P as being different from the rest of the nodes, or to discover any
randomness disruption in the overlay. First, P’s cache is filled up with c randomly
chosen neighbors, which renders the values of P’s average path length to reach
any other node as well as its clustering coefficient, indistinguishable from the
respective values of other, older nodes. Second, since there are c random nodes in
the overlay that know P, P’s in-degree is equal to the cache size. Third, no other
node’s in-degree has been modified.

In the presence of node failures or an unreliable network, some of the random
walks may fail. Note, however, that a node’s join does not depend on the complete
execution of this join procedure. We ran experiments (not presented here) that
showed that a node can join by simply being involved in a shuffle with a single
participating node. In that case, though, it will take a few cycles until the new node’s
properties become indistinguishable from the respective properties of other nodes.
The join procedure described earlier in the paper is meant as a means of efficient
node joining at a cost of a constant number of messages.

5. REMOVING NODES

In a dynamically changing overlay, nodes may leave for various reasons and
in various ways. We make no distinction between nodes disconnecting gracefully
or abruptly. What we are interested in is that, once a node disconnects, other
nodes should detect it and remove any pointers to it in a timely manner. We
consider pointers to disconnected nodes to consist a sort of cache pollution, as
they take up slots that could be otherwise holding valid, useful links. Particularly
in highly dynamic environments, timely elimination of dead links is crucial for
the robustness of the overlay.

In order to keep the protocol simple and inexpensive, we do not add any
explicit messages (such as frequent pings) to detect disconnected nodes. Instead,
CYCLON uses a transparent dead-link detection mechanism, based on the default
shuffling message exchange. We do, however, employ an effective strategy (by
means of the age field introduced in enhanced shuffling) to improve timely detec-
tion of disconnected nodes “for free,” as a natural consequence of the emergent
behavior of enhanced shuffling.

When a node tries to initiate a shuffle with a neighbor and gets no reply
within a predefined timeout, it simply assumes that neighbor to be disconnected
and removes the corresponding entry from its cache. This way, dead links are
gradually being removed. Note that the timeout should be at least twice the

210 Voulgaris, Gavidia, and van Steen

maximum typical latency in the underlying network. For simplicity, a timeout
equal to the shuffle period �T would suffice.

In the case of basic shuffling, the detection of dead links relies on chance
and takes unbounded time. In CYCLON’s enhanced shuffling, though, the age field
defines a key priority in which neighbors are contacted. A fresh entry (one that has
low age), and therefore an entry of a node more probable to be still alive, is less
likely to be chosen for shuffling. In contrast, an entry that has been injected in the
network several cycles ago (and has since been hopping around between nodes
due to shuffles), is more likely to be the oldest one in the cache currently holding
it, and therefore more likely to be selected for shuffling. In general, the longer an
entry stays in the network, the higher the chances it is selected for shuffling. When
P initiates a shuffle and selects an entry with, say, Q’s address, that entry is then
replaced by a new entry with P’s address and age 0. This process naturally recycles
the entries, maintaining an equilibrium with respect to their ages, consequently
limiting the lifetime of an entry. This way, it is no longer possible for old entries
of disconnected nodes to linger around indefinitely.

To demonstrate the advantages of CYCLON’s enhanced shuffling with respect
to node removal, we ran experiments where we suddenly killed half of the nodes
after the overlay had converged. As we shall show in the next section, such a drastic
change poses no threat to the (remaining) overlay’s connectivity. We observed how
long it took for the remaining nodes to “forget” the dead ones. Figure 6 shows
the respective graphs for the experiment with 100,000 nodes, out of which 50,000
were killed at once. Figure 6(a) shows how long dead nodes are still referenced,
while Figure 6(b) shows the number of dead links that are maintained since the
nodes were killed. It is clear that enhanced shuffling limits the detection of dead
nodes to a number of cycles equal to (in fact, less than) the cache size, while basic
shuffling takes almost an order of magnitude more cycles to decontaminate the
surviving nodes’ caches.

Fig. 6. (a) Time until dead nodes are forgotten. (b) Number of dead links.

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 211

6. ROBUSTNESS—SELF-HEALING BEHAVIOR

In the previous section, we dealt with node disconnections, and we mentioned
that killing half of the nodes at once does not threaten the connectivity of the
remaining ones. In this section, we explore CYCLON’s limits in terms of robustness
to node disconnections. Shuffling proves to be a very strong and robust epidemic
protocol with respect to keeping an overlay connected. Moreover, it appears to
exhibit robustness to node disconnections similar to the one found in random
graphs.

We conducted experiments as follows. We used CYCLON to create over-
lays (until they converged), and subsequently examined how the connectivity is
affected by node removals. Figure 7 presents the results for networks with initially
100,000 nodes, and cache sizes 20, 50, and 100, respectively. For the sake of
comparison, it also presents the same graphs for overlays of cache size 20 and
50, where the neighbors were randomly chosen among the whole node set. Note
that simple shuffling has the same behavior as enhanced shuffling with respect
to robustness, and therefore the corresponding graphs are not shown. Figure 7(a)
shows the number of disjoint clusters as a function of the percentage of nodes
removed. Note that the number of clusters decreases as we approach 100% node
removal because the total number of surviving nodes becomes too small. Fig-
ure 7(b) shows the number of nodes not belonging to the largest cluster, in log
scale.

These graphs show considerable robustness to node failures, especially con-
sidering the fact that in the early stages of clustering very few nodes are out of
the largest cluster, which indicates that most nodes are still connected in a single

Fig. 7. (a) Number of disjoint clusters, as a result of removing a large percentage of nodes. Shows
that the overlay does not break into two or more disjoint clusters, unless a major percentage of the
nodes are removed. (b) Number of nodes not belonging to the largest cluster. Shows that in the first
steps of clustering only a few nodes are separated from the main cluster, which still connects the
grand majority of the nodes.

212 Voulgaris, Gavidia, and van Steen

Fig. 8. Tolerance to node removal, as a function of the cache size.

large cluster. Moreover, shuffling appears to share the same robustness properties
with overlays where each node’s neighbors are a random sample of the nodes in
the network.

Note that the graph for the experiment with cache size 100 is practically a
flat line. That is, for 100,000 nodes and cache size 100, the overlay created is so
robust, that no matter how many nodes are removed, the remaining ones remain
connected in a single cluster.

The effect of the cache size on the overlay’s robustness is shown in Fig. 8. We
carried out 100 experiments, with cache sizes 1, 2, . . . , 100, and for each of them
we determined the percentage of random nodes needed to be removed in order to
partition the overlay. It can be seen that there is a critical value of the cache size
around 11. Overlays with smaller cache sizes exhibit significantly worse behavior
with respect to robustness. On the other hand, overlays with cache size over 85 or
90, are almost impossible to partition, no matter how many nodes are removed.

It is important to point out that the results presented in this and the previous
section, suggest that CYCLON is capable of repairing an overlay after a serious
disaster, a property often referred to as self-healing behavior. This comes as
a consequence of the following two facts. First, the overlay has proven to be
highly resilient to large-scale node failures. Second, once such a massive failure
has occurred, the surviving nodes quickly strengthen the connectivity among
themselves by replacing links to dead nodes with valid links in a timely manner.

7. BANDWIDTH CONSIDERATIONS

Due to the periodic behavior of gossiping, the price of maintaining a robust
overlay may inhibit a high usage of network resources (i.e., bandwidth). In the

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 213

case of CYCLON, the per-node network load depends on two factors: the amount
of data transferred per cycle, and the cycle duration.

In each cycle, a node gossips on average twice: exactly once as an ini-
tiator and on average once as a responder. It, therefore, on average, sends two
gossip messages and receives another two in each cycle. If � is the shuffle
length, a gossip message consists of � cache entries. A cache entry is 10 bytes
long (IP address: 4 bytes, port: 2 bytes, age: 4 bytes), so, a gossip message is
10 · � bytes long. Therefore, in each cycle a node experiences total traffic of 40 ·
� bytes.

Choosing a shuffle length in the range of 3–8, we achieve nearly optimal
convergence speed with respect to the number of cycles (see Fig. 5). The choice
of the period �T depends on the underlying network’s bandwidth availability, as
well as on the network’s expected churn rate and the application’s need for quick
convergence. For relatively fast convergence, say, within a few minutes, we could
set � = 8 and �T = 10 s. In this case, a node would transfer 320 bytes every 10 s,
that is, 32 bytes/s (256 bps). This is very low bandwidth that could be sustained
even by modem connections. For less-demanding environments that experience
limited churn and failure rate, we could set � = 1 and �T = 1 min, resulting in
the negligible bandwidth of 5.3 bps per node.

This analysis backs our claim about CYCLON being inexpensive. Finally,
note that all communication is carried out in a connectionless fashion, sending
UDP packets.

8. APPLICATIONS

CYCLON is a core technology that can be employed as a building block in
P2P applications, particularly in highly dynamic environments. The applications
briefly described in this section demonstrate the utility of CYCLON in a range of
different contexts.

In our work on semantic-based content searching [8], we use CYCLON as a
component in a composite gossiping protocol that establishes links between nodes
of similar content in order to enhance searching. In this case, CYCLON serves
as a lightweight means of learning random nodes of the network. That work can
be generalized to grouping nodes based on any proximity metric, such as their
domain name, geographical distance, latency distance, etc.

Another potential use of CYCLON is self-monitoring for very large clusters of
nodes, possibly in the wide area, avoiding centralized or hierarchical architectures.
In such a scheme, each node of a cluster is monitored by some other random nodes
of the cluster. The bounded in-degree of nodes ensures that at any given moment,
each and every node will be pointed at (and therefore monitored) by a number of
other nodes more or less equal to the cache size. This ensures that no node will be
left unattended at all.

214 Voulgaris, Gavidia, and van Steen

In [7], the basic shuffling algorithm is employed to construct an overlay that
handles flash crowds. On detection of a flash crowd condition with respect to a
document request, a client node abandons the respective server, and attempts to
retrieve the document in question from peers that have already obtained it. In order
to locate the document, the client node performs a series of randomized, scoped
searches over the links of the overlay created by basic shuffling.

In [6], we apply a different gossiping protocol, Newscast [9, 10], in managing
P2P routing tables. In particular, we exploit Newscast’s randomized overlay to
pick nodes that satisfy certain criteria, to fill in Pastry-like [11] routing tables.
CYCLON is, in fact, a better candidate than Newscast in that application, as
it exhibits a superior randomness property and lower bandwidth requirements
compared to Newscast.

Finally, in Newscast EM [12], Kowalczyk and Vlassis use CYCLON for data
aggregation, and more specifically as a component of a distributed Expectation-
Maximization (EM) algorithm for probabilistic clustering of a set of (geographi-
cally) dispersed data. In particular, they conclude that aggregation using CYCLON
is performed faster than in a fully connected graph. This is due to the bounded
in-degree of nodes, which results in each node having an equal influence on the
aggregation.

9. RELATED WORK

There are currently several efforts in constructing unstructured overlays that
share properties with random graphs. We have already described basic shuffling,
introduced in [7], forming the starting point for our own work described in this
paper.

Another example is the Scamp protocol [13]. Scamp is reactive, in the sense
that cache exchanges take place only when nodes join, leave, or a failure is
detected. As it turns out, the protocol exhibits similar properties in comparison
to random graphs when considering its capabilities for information dissemination
and recovering from massive node failures. However, no thorough analysis has
been undertaken to compare the communication graph with random graphs as
we did, but it is known that there are important differences (A.-M. Kermarrec,
personal communication).

In many unstructured overlays, such as CYCLON, scalability of the network is
achieved by maintaining a partial view on the entire network. The construction of
the network itself, that is, membership management, is crucial as we have argued
in this paper. It is interesting to see that the assumption is sometimes made that the
communication graph resulting from a specific membership protocol is random.
However, as is shown in [2], there is a large family of membership protocols for
unstructured overlays for which this assumption is false. This includes the work
on lightweight probabilistic multicasting [14], as well as the Newscast system

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 215

[9, 10]. As it turns out, such membership protocols generally lead to small-world
graphs, which distinguish themselves from random graphs by a high clustering
coefficient. So far, shuffling appears to fall outside the category of small-world
networks.

Of course, random graphs may not be the best structure for communication
networks. Alternative schemes are described in [15, 16]. In these cases, the re-
quirements of low diameter, resilience to massive node failures, and inexpensive
membership management lead to specific graph-construction protocols. We argue
that with enhanced shuffling these requirements are all met, and that the resulting
communication graphs allow us to adopt the rigorous analysis of random graphs.
Moreover, in contrast to, for example [15], there is no need to use a central server.

In this light, it is also interesting to mention the recent work on Phenix for the
decentralized construction of low-diameter, scale-free networks [17]. In Phenix,
an additional goal is to construct networks that are resilient to massive malicious
attacks. We have not yet examined this feature for CYCLON, but suspect its good
randomness properties will help in also making it attack resilient.

10. CONCLUSIONS AND FUTURE WORK

In this paper we presented CYCLON, a complete framework for inexpensive
membership management in very large P2P overlays. CYCLON is highly scalable,
very robust, and completely decentralized. Most important is that the resulting
communication graphs share important properties with random graphs. Besides
the fact that desirable features such as low diameter and robustness are supported,
this similarity justifiably opens the possibility to rigorously analyze the networks.

We also conclude that CYCLON is an improvement of the basic shuffling
protocol developed by Stavrou et al. [7]. We offer a scalable and inexpensive
membership protocol, achieve better node-degree distributions, and significantly
lower the pollution of caches concerning stale references to previous members.

In addition to our continued pursuit for new applications of CYCLON, we will
also explore potential improvements of the protocol itself. An important next step
in our research will be the replacement of the periodic cache exchanges with a
reactive exchange protocol, as in Scamp. We envisage that this replacement will
lead to a better utilization of network resources, and incur only minimal costs for
detecting failed nodes. Another important subject that we will address is taking
network proximity into account. The latter will be largely based on our scalable
latency estimation service, described in [18].

REFERENCES

1. H. Balikrishnan, M. Frans Kaashoek, D. Karger, R. Morris, and I. Stoica, Looking up data in p2p
systems, Communications ACM, Vol. 46, No. 2, pp. 43–48, 2003.

216 Voulgaris, Gavidia, and van Steen

2. M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, The Peer Sampling Service: Ex-
perimental Evaluation of Unstructured Gossip-Based Implementations, Fifth ACM/IFIP/USENIX
International Middleware Conference, Toronto, Canada, October 2004.

3. R. Albert and A.-L. Barabasi, Statistical mechanics of complex networks, Reviews of Modern
Physics, Vol. 74, No. 1, pp. 47–97, 2001.

4. M. E. J. Newman, Random graphs as models of networks. In S. Bornholdt and H. G. Schuster
(eds.), Handbook of Graphs and Networks: From the Genome to the Internet, Chapter 2, Wiley,
New York, 2002.

5. B. Bollobas, Random Graphs, 2nd edn., Cambridge University Press, Cambridge, UK,
2001.

6. S. Voulgaris and M. van Steen, An Epidemic Protocol for Managing Routing Tables in Very
Large Peer-to-Peer Networks. 14th IFIP/IEEE Workshop on Distributed Systems: Operations and
Management (DSOM2003), Heidelberg, Germany, October 2003.

7. A. Stavrou, D. Rubenstein, and S. Sahu, A lightweight, robust P2P system to handle flash crowds,
IEEE Journal on Selected Areas in Communications, Vol. 22, No. 1, pp. 6–17, 2004.

8. S. Voulgaris and M. van Steen, Epidemic-style management of semantic overlays for content-
based searching, Technical Report IR-CS-011, Vrije Universiteit Amsterdam, November
2004.

9. M. Jelasity, W. Kowalczyk, and M. van Steen, Newscast computing, Technical Report IR-CS-006,
Vrije Universiteit Amsterdam, Department of Computer Science, 2003.

10. S. Voulgaris, M. Jelasity, and M. van Steen, A Robust and Scalable Peer-to-Peer Gossiping
Protocol, 2nd International Workshop on Agents and Peer-to-Peer Computing (AP2PC 2003),
Melbourne, Australia, July 2003.

11. A. Rowstron and P. Druschel, Pastry: Scalable, Decentralized Object Location and Routing for
Large-Scale Peer-to-Peer Systems. IFIP/ACM Middleware 2001, Heidelberg, Germany, November
2001.

12. W. Kowalczyk and N. Vlassis, Newscast EM. In Advances in Neural Information Processing
Systems (NIPS), Vol. 17, MIT Press, Cambridge, MA, 2005.

13. A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, Peer-to-peer membership management for
gossip-based protocols, IEEE Transactions on Computers, Vol. 52, No. 2, pp. 139–149, 2003.

14. P. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, and P. Kouznetsov, Lightweight
probabilistic broadcast, ACM Transactions on Compute Systems, Vol. 21, No. 4, pp. 341–374,
2003.

15. G. Pandurangan, P. Raghavan, and E. Upfal, Building low-diameter P2P networks, IEEE Journal
on Selected Areas in Communications, Vol. 21, No. 6, pp. 995–1002, 2003.

16. C. Law and K.-Y. Sui, Distributed Construction of Random Expander Networks, 22nd INFOCOM
Conference, Los Alamitos, CA, March 2003, IEEE, IEEE Computer Society Press.

17. R. Wouhaybi and A. T. Campbell, Supporting Resilient Low-Diameter Peer-to-Peer Topologies,
23rd INFOCOM Conference, Los Alamitos, CA, March 2004, IEEE, IEEE Computer Society
Press.

18. M. Szymaniak, G. Pierre, and M. van Steen, Scalable Cooperative Latency Estimation, Tenth
International Conference on Parallel and Distributed Systems, Los Alamitos, CA, July 2004,
IEEE, IEEE Computer Society Press.

Spyros Voulgaris is a PhD student in the Computer Systems department at the Vrije Universiteit
Amsterdam. He received his MSc degree from the University of Michigan, Ann Arbor, and his BSc
degree from the University of Patras, Greece. His research involves peer-to-peer systems, epidemic pro-
tocols, and ad-hoc networks. He is a scholarship recipient of the Greek State Scholarships Foundation
(IKY) and the Alexander Onassis Foundation.

CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 217

Daniela Gavidia is a PhD student in the Computer Systems group at the Vrije Universiteit
Amsterdam. She received her MSc degree from the Universiteit van Amsterdam. Her research in-
terests include peer-to-peer systems and ad-hoc networks. Her recent work focuses on information
dissemination in ad-hoc environments.

Maarten van Steen is professor of Computer Science at the Vrije Universiteit Amsterdam.
His research concentrates on large-scale distributed systems, notably content delivery networks and
peer-to-peer systems. He is senior member of the IEEE and member of the ACM.

