
Pipelining

Chapter 4 — The Processor — 1

Chapter 4 — The Processor — 2

Pipelining Analogy
  Pipelined laundry: overlapping execution

  Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining   Four loads:
  Speedup

= 8/3.5 = 2.3
  Non-stop:

  Speedup
= 2n/0.5n + 1.5 ≈ 4
= number of stages

Chapter 4 — The Processor — 3

MIPS Pipeline
  Five stages, one step per stage

1.  IF: Instruction fetch from memory
2.  ID: Instruction decode & register read
3.  EX: Execute operation or calculate address
4.  MEM: Access memory operand
5.  WB: Write result back to register

Chapter 4 — The Processor — 4

Pipeline Performance
  Assume time for stages is

  100ps for register read or write
  200ps for other stages

  Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 5

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 6

Pipeline Speedup
  If all stages are balanced

  i.e., all take the same time
  Time between instructionspipelined

= Time between instructionsnonpipelined
 Number of stages

  If not balanced, speedup is less
  Speedup due to increased throughput

  Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 7

Pipelining and ISA Design
  MIPS ISA designed for pipelining

  All instructions are 32-bits
  Easier to fetch and decode in one cycle
  c.f. x86: 1- to 17-byte instructions

  Few and regular instruction formats
  Can decode and read registers in one step

  Load/store addressing
  Can calculate address in 3rd stage, access memory

in 4th stage
  Alignment of memory operands

  Memory access takes only one cycle

Chapter 4 — The Processor — 8

Hazards
  Situations that prevent an instruction from

entering the next stage.
  Structural hazards

  A required resource is busy
  Data hazard

  Need to wait for previous instruction to
complete its data read/write

  Control hazard
  Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 9

Structural Hazards
  Conflict for use of a resource
  In MIPS pipeline with a single memory

  Load/store requires data access
  Instruction fetch would have to stall for that

cycle
  Would cause a pipeline “bubble”

  Hence, pipelined datapaths work best with
separate instruction/data memories
  Or separate instruction/data caches

Chapter 4 — The Processor — 10

Data Hazards
  An instruction depends on completion of

data access by a previous instruction
  add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 11

Forwarding (aka Bypassing)
  Use result when it is computed

  Don’t wait for it to be stored in a register
  Requires extra connections in the datapath

more on this later….

Chapter 4 — The Processor — 12

Load-Use Data Hazard
  Can’t always avoid stalls by forwarding alone

  If value not computed when needed
  Can’t forward backward in time!

stall + forwarding

Chapter 4 — The Processor — 13

Code Scheduling to Avoid Stalls
  Reorder code to avoid use of load result in

the next instruction
  C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

Chapter 4 — The Processor — 14

Control Hazards
  Branch determines flow of control

  Fetching next instruction depends on branch
outcome

  Pipeline can’t always fetch correct instruction
  Still working on ID stage of branch

  In MIPS pipeline
  Nominally, branch condition is resolved in EX

stage, which leaves us with two stalls.
  They added branch delay slots – instruction

after branch is always executed. Now we only
have one stall to get rid of.

Chapter 4 — The Processor — 15

Branch Prediction
  Longer pipelines can’t readily determine

branch outcome early
  Stall penalty becomes unacceptable

  Predict outcome of branch
  Kill instructions after branch if prediction is

wrong

Chapter 4 — The Processor — 16

Pipeline Summary

  Pipelining improves performance by
increasing instruction throughput
  Executes multiple instructions in parallel
  Each instruction has the same latency

  Subject to hazards
  Structure, data, control

  Instruction set design affects complexity of
pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 17

MIPS Pipelined Datapath
§4.6 P

ipelined D
atapath and C

ontrol

WB

MEM
Stage

Right-to-left
flow leads to
hazards

Chapter 4 — The Processor — 18

Pipeline registers
  Need registers between stages

  To hold information produced in previous cycle

Chapter 4 — The Processor — 19

Pipeline Operation
  Cycle-by-cycle flow of instructions through

the pipelined datapath
  “Single-clock-cycle” pipeline diagram

  Shows pipeline usage in a single cycle
  Highlight resources used

  c.f. “multi-clock-cycle” diagram
  Graph of operation over time

  We’ll look at “single-clock-cycle” diagrams
for load & store

Chapter 4 — The Processor — 20

IF for Load, Store, …

Chapter 4 — The Processor — 21

ID for Load, Store, …

Chapter 4 — The Processor — 22

EX for Load

Chapter 4 — The Processor — 23

MEM for Load

Chapter 4 — The Processor — 24

WB for Load

Wrong
register
number

Chapter 4 — The Processor — 25

Corrected Datapath for Load

Chapter 4 — The Processor — 26

EX for Store

Chapter 4 — The Processor — 27

MEM for Store

Chapter 4 — The Processor — 28

WB for Store

Chapter 4 — The Processor — 29

Multi-Cycle Pipeline Diagram
  Form showing resource usage

Chapter 4 — The Processor — 30

Multi-Cycle Pipeline Diagram
  Traditional form

Chapter 4 — The Processor — 31

Single-Cycle Pipeline Diagram
  State of pipeline in a given cycle

Chapter 4 — The Processor — 32

Pipelined Control (Simplified)

Chapter 4 — The Processor — 33

Pipelined Control
  Control signals derived from instruction

  As in single-cycle implementation

Chapter 4 — The Processor — 34

Pipelined Control

Chapter 4 — The Processor — 35

Data Hazards in ALU Instructions
  Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

  We can resolve hazards with forwarding
  How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. S

talling

Chapter 4 — The Processor — 36

Dependencies & Forwarding

Chapter 4 — The Processor — 37

Detecting the Need to Forward

  Pass register numbers along pipeline
  e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register
  ALU operand register numbers in EX stage

are given by
  ID/EX.RegisterRs, ID/EX.RegisterRt

  Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Chapter 4 — The Processor — 38

Detecting the Need to Forward
  But only if forwarding instruction will write

to a register!
  EX/MEM.RegWrite, MEM/WB.RegWrite

  And only if Rd for that instruction is not
$zero
  EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 39

Forwarding Paths

Chapter 4 — The Processor — 40

Forwarding Conditions
  EX hazard

  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10

  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

  MEM hazard
  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Chapter 4 — The Processor — 41

Double Data Hazard
  Consider the sequence:

 add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

  Both hazards occur
  Want to use the most recent

  Revise MEM hazard condition
  Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 42

Revised Forwarding Condition
  MEM hazard

  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Chapter 4 — The Processor — 43

Datapath with Forwarding

Chapter 4 — The Processor — 44

Load-Use Data Hazard

Need to stall
for one cycle

Chapter 4 — The Processor — 45

Load-Use Hazard Detection
  Check when using instruction is decoded

in ID stage
  ALU operand register numbers in ID stage

are given by
  IF/ID.RegisterRs, IF/ID.RegisterRt

  Load-use hazard when
  ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

  If detected, stall and insert bubble

Chapter 4 — The Processor — 46

How to Stall the Pipeline
  Force control values in ID/EX register

to 0
  EX, MEM and WB do nop (no-operation)

  Prevent update of PC and IF/ID register
  Using instruction is decoded again
  Following instruction is fetched again
  1-cycle stall allows MEM to read data for lw

  Can subsequently forward to EX stage

Chapter 4 — The Processor — 47

Stall/Bubble in the Pipeline

Stall inserted
here

Chapter 4 — The Processor — 48

Stall/Bubble in the Pipeline

Or, more
accurately…

Chapter 4 — The Processor — 49

Datapath with Hazard Detection

Chapter 4 — The Processor — 50

Stalls and Performance

  Stalls reduce performance
  But are required to get correct results

  Compiler can arrange code to avoid
hazards and stalls
  Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 51

Exceptions and Interrupts
  “Unexpected” events requiring change

in flow of control
  Different ISAs use the terms differently

  Exception
  Arises within the CPU

  e.g., undefined opcode, overflow, syscall, …

  Interrupt
  From an external I/O controller

  Dealing with them without sacrificing
performance is hard

§4.9 E
xceptions

Chapter 4 — The Processor — 52

Handling Exceptions
  In MIPS, exceptions managed by a System

Control Coprocessor (CP0)
  Save PC of offending (or interrupted) instruction

  In MIPS: Exception Program Counter (EPC)
  Save indication of the problem

  In MIPS: Cause register
  We’ll assume 1-bit

  0 for undefined opcode, 1 for overflow

  Jump to handler at 8000 00180

Chapter 4 — The Processor — 53

An Alternate Mechanism
  Vectored Interrupts

  Handler address determined by the cause
  Example:

  Undefined opcode: C000 0000
  Overflow: C000 0020
  …: C000 0040

  Instructions either
  Deal with the interrupt, or
  Jump to real handler

Chapter 4 — The Processor — 54

Handler Actions
  Read cause, and transfer to relevant

handler
  Determine action required
  If restartable

  Take corrective action
  use EPC to return to program

  Otherwise
  Terminate program
  Report error using EPC, cause, …

Chapter 4 — The Processor — 55

Exceptions in a Pipeline
  Another form of control hazard
  Consider overflow on add in EX stage

add $1, $2, $1

  Prevent $1 from being clobbered
  Complete previous instructions
  Flush add and subsequent instructions
  Set Cause and EPC register values
  Transfer control to handler

  Similar to mispredicted branch
  Use much of the same hardware

Chapter 4 — The Processor — 56

Pipeline with Exceptions

Chapter 4 — The Processor — 57

Exception Properties
  Restartable exceptions

  Pipeline can flush the instruction
  Handler executes, then returns to the

instruction
  Refetched and executed from scratch

  PC saved in EPC register
  Identifies causing instruction
  Actually PC + 4 is saved

  Handler must adjust

Chapter 4 — The Processor — 58

Exception Example
  Exception on add in

 40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

  Handler
 80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
…

Chapter 4 — The Processor — 59

Exception Example

Chapter 4 — The Processor — 60

Exception Example

Chapter 4 — The Processor — 61

Multiple Exceptions
  Pipelining overlaps multiple instructions

  Could have multiple exceptions at once
  Simple approach: deal with exception from

earliest instruction
  Flush subsequent instructions
  “Precise” exceptions

  In complex pipelines
  Multiple instructions issued per cycle
  Out-of-order completion
  Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 62

Imprecise Exceptions
  Just stop pipeline and save state

  Including exception cause(s)
  Let the handler work out

  Which instruction(s) had exceptions
  Which to complete or flush

  May require “manual” completion

  Simplifies hardware, but more complex handler
software

  Not feasible for complex multiple-issue
out-of-order pipelines

Chapter 4 — The Processor — 63

Fallacies
  Pipelining is easy (!)

  The basic idea is easy
  The devil is in the details

  e.g., detecting data hazards

  Pipelining is independent of technology
  So why haven’t we always done pipelining?
  More transistors make more advanced techniques

feasible
  Pipeline-related ISA design needs to take account of

technology trends
  e.g., predicated instructions

§4.13 Fallacies and P
itfalls

Chapter 4 — The Processor — 64

Pitfalls
  Poor ISA design can make pipelining

harder
  e.g., complex instruction sets (VAX, IA-32)

  Significant overhead to make pipelining work
  IA-32 micro-op approach

  e.g., complex addressing modes
  Register update side effects, memory indirection

Chapter 4 — The Processor — 65

Concluding Remarks
  ISA influences design of datapath and control
  Datapath and control influence design of ISA
  Pipelining improves instruction throughput

using parallelism
  More instructions completed per second
  Latency for each instruction not reduced

  Hazards: structural, data, control
  Multiple issue and dynamic scheduling (ILP)

  Dependencies limit achievable parallelism
  Complexity leads to the power wall

§4.14 C
oncluding R

em
arks

