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Genetic Algorithms 

Based on A.E. Eiben and J.E. Smith, 
Introduction to Evolutionary Computing,

Springer, 2003

GA: Overview
Developed: USA in the 1970’s
Early names: J. Holland, K. DeJong, D. Goldberg
Typically applied to:

– discrete optimization
Attributed features:

– not too fast
– good heuristic for combinatorial problems

Special features:
– Traditionally emphasizes combining information from fit 

parents (crossover)
– Many variants, e.g., operators

Genetic Algorithms

Holland’s original GA is now known as the 
simple genetic algorithm (SGA)
Other GAs use different:
– Representations
– Mutations
– Crossovers
– Selection mechanisms

SGA Summary Table

Emphasizes crossoverSpecial property

All children replace parentsSurvivor selection

Fitness-proportionateParent selection

Bitwise bit-flipping with fixed 
probability

Mutation

N-point or uniformRecombination

Binary stringsRepresentation

Genotype space = 
{0,1}L

Phenotype space

Encoding 
(Representation)

Decoding
(Inverse 
representation)

011101001

010001001

10010010

10010001

Representation SGA Reproduction Cycle

1. Select parents for the mating pool 
(size of mating pool = population size)

2. Shuffle the mating pool
3. For each consecutive pair apply crossover with 

probability pc, otherwise copy parents
4. For each offspring apply mutation (bit-flip with 

probability pm independently for each bit)
5. Replace the entire population with the resulting 

offspring
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SGA operators: 1-point crossover

Choose a random point on the two parents
Split parents at this crossover point
Create children by exchanging tails
Pc typically in the range (0.6, 0.9)

SGA Operators: Mutation

Alter each gene independently with a probability pm 
pm is called the mutation rate

– Typically between 1/pop_size and 1/ chromosome_length

Main idea: better individuals get higher chance
– Chances proportional to fitness
– Implementation: roulette wheel technique

Assign to each individual a part of the 
roulette wheel
Spin the wheel n times to select n       
individuals

SGA Operators: Selection

Fitness A) = 3

Fitness (B) = 1

Fitness (C) = 2

A C

1/6 = 17%

3/6 = 50%

B
2/6 = 33%

An Example after Goldberg ‘89 (1)

Simple problem: max x2 over {0,1,…,31}
GA approach:
– Representation: binary code, e.g., 01101 ↔ 13
– Population size: 4
– 1-point xover, bitwise mutation 
– Roulette wheel selection
– Random initialization

One generational cycle (iteration) will be shown 

x2 example: selection
x2 example: crossover

Before
xover

After
xover
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x2 example: mutation The Simple GA
Has been subject of many (early) studies
– often used as benchmark for novel GAs

Shows many shortcomings, e.g.:
– Representation is too restrictive
– Mutation & crossovers only applicable for bit-string & 

integer representations
– Selection mechanism sensitive for converging 

populations with close fitness values
– Generational population model (Step 5 in SGA 

reproduction cycle) can be improved with explicit 
survivor selection

Alternative Crossover Operators

Performance with 1 point crossover depends on the 
order that variables occur in the representation
– More likely to keep together genes that are close to 

each other
– Never keeps together genes from opposite ends of 

the string
– This is known as positional bias
– Can be exploited if the structure of the problem at 

hand is known, but usually this is not the case

n-Point Crossover

Choose n random crossover points
Split along those points
Glue parts, alternating between parents
Generalisation of 1 point (still some positional bias)

Uniform Crossover
Assign 'heads' to one parent, 'tails' to the other
Flip a coin for each gene of the first child
Make an inverse copy of the gene for the second child
Inheritance is independent of position

Crossover OR Mutation?

Decade long debate: which one is better / necessary / 
main-background 

Answer (at least widely agreed):
– it depends on the problem, but
– in general, it is good to have both
– both have different roles
– mutation-only-EA is possible, crossover-only-EA would not work
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Exploration: Discovering promising areas in the search 
space, i.e., gaining information about the problem

Exploitation: Optimizing within a promising area, i.e., using 
information
The two co-operate AND compete.

Crossover is explorative, it makes a big jump to an area 
somewhere “in between” two (parent) areas

Mutation is exploitative, it creates random small
diversions, thereby staying near (in the area of ) the parent

Crossover OR Mutation? (cont’d)

Only crossover can combine information from two 
parents

Only mutation can introduce new information (alleles)

Crossover does not change the allele frequency of 
the population 

To reach the optimum you often need a ‘lucky’
mutation

Crossover OR Mutation? (cont’d)

Integer Representations

Some problems naturally have integer variables, e.g., 
image processing parameters 
Others take categorical values from a fixed set e.g., 
{blue, green, yellow, pink}
N-point / uniform crossover operators work
Extend bit-flipping mutation to make

– “Creep” i.e., more likely to move to similar value
– Random choice (especially for categorical variables)
– For ordinal problems, it is difficult to know correct range for 

creep, so often  use two mutation operators in tandem 

Real Valued Problems

Many problems occur as real valued problems, e.g. 
continuous parameter optimization f : ℜ n ℜ
Illustration: Ackley’s function (often used in EC)

Mapping Real Values on Bit 
Strings

z ∈ [x,y] ⊆ ℜ represented by {a1,…,aL} ∈ {0,1}L

• [x,y] → {0,1}L must be invertible (one phenotype per 
genotype)

• Γ: {0,1}L → [x,y] defines the representation 

Only 2L values out of infinite are represented
L determines possible maximum precision of solution
High precision long chromosomes (slow evolution)
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Floating Point Mutation 1

General scheme of floating point mutations  

Uniform mutation: 

Analogous to bit-flipping (binary) or random resetting 
(integers)

ll xxxx xx ′′=′→=  ..., , ...,, 11

[ ]iiii UBLBxx ,, ∈′

[ ]iii UBLBx , from (uniform)randomly  drawn  ′
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Floating Point Mutation 2

Non-uniform mutations:
– Many methods proposed, such as time-varying 

range of change, etc.
– Most schemes are probabilistic but usually only 

make a small change to value
– Most common method is to add random deviate to 

each variable separately, taken from N(0, σ) 
Gaussian distribution and then curtail to range

– Standard deviation σ controls amount of change 
(2/3 of deviations will lie in range (- σ to + σ)

Crossover Operators for Real Valued GAs

Discrete:
– each allele value in offspring z comes from one of its 

parents (x,y) with equal probability: zi = xi or yi
– Could use n-point or uniform

Intermediate:
– exploits idea of creating children “between” parents 

(hence a.k.a. arithmetic recombination)
– zi = α xi + (1 - α) yi where α: 0 ≤ α ≤ 1.
– The parameter α can be:

• constant: uniform arithmetical crossover
• variable (e.g. depend on the age of the population) 
• picked at random every time

Single Arithmetic Crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉
• Pick a single gene (k) at random, 

• Child1 is:

• Reverse for other child, e.g., with α = 0.5

nkkk xxyxx  ..., ,)1( , ..., ,1 ⋅−+⋅ αα

Simple Arithmetic Crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉
• Pick random gene (k) after this point mix values
• Child1 is:

• Reverse for other child, e.g., with α = 0.5
nxkxkykxx ⋅−+⋅+⋅−++⋅ )1(ny ..., ,1)1(1 , ..., ,1 αααα

• Most commonly used
• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

• Child1 is:

• Reverse for other child, e.g., with α = 0.5

Whole Arithmetic Crossover

yaxa ⋅−+⋅ )1(

Permutation Representation

Ordering/sequencing problems form a special type
Task is (or can be solved by) arranging some objects in 
a certain order 
– Example: sort algorithm: important thing is which elements 

occur before others (order)
– Example: Travelling Salesman Problem (TSP) : important thing 

is which elements occur next to each other (adjacency)

These problems are generally expressed as a 
permutation:
– if there are n variables then the representation is as a list of n

integers, each of which occurs exactly once



6

Permutation Representation: TSP Example

Problem:
• Given n cities
• Find a complete tour with 

minimal length
Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one 

permutation (e.g. for n =4 
[1,2,3,4], [3,4,2,1] are OK)

Search space is LARGE: 
for 30 cities there are 30! ≈ 1032

possible tours

Mutation Operators for Permutation

Normal mutation operators lead to inadmissible 
solutions
– e.g. bit-wise mutation : let gene i have value j
– changing to some other value k  would mean that k 

occurred twice and j no longer occurred 
Therefore must change at least two values
Mutation parameter now reflects the probability 
that some operator is applied once to the 
whole string, rather than individually in each 
position

Insert Mutation for Permutations

Pick two allele values at random
Move the second to follow the first,  shifting the 
rest along to accommodate
Note that this preserves most of the order and 
the adjacency information

Swap Mutation for Permutations

Pick two alleles at random and swap their 
positions
Preserves most of adjacency information (4 
links broken), disrupts order more

Inversion Mutation for Permutations

Pick two alleles at random and then invert the 
substring between them.
Preserves most adjacency information (only 
breaks two links) but disruptive of order 
information

Scramble Mutation for Permutations

Pick a subset of genes at random
Randomly rearrange the alleles in those 
positions

(note subset does not have to be contiguous)
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“Normal” crossover operators will often lead to 
inadmissible solutions

Many specialised operators have been devised 
which focus on combining order or adjacency 
information from the two parents

Crossover Operators for Permutations

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Order 1 Crossover
Idea is to preserve relative order that elements occur
Informal procedure:
1. Choose an arbitrary part from the first parent
2. Copy this part to the first child
3. Copy the numbers that are not in the first part, to 

the first child:
starting right from cut point of the copied part, 
using the order of the second parent 
and wrapping around at the end

4. Analogous for the second child, with parent roles 
reversed

Order 1 Crossover Example

Copy randomly selected set from first parent

Copy rest from second parent in order 1,9,3,8,2

Informal procedure for parents P1 and P2:
1. Choose random segment and copy it from P1 
2. Starting from the first crossover point look for elements in that 

segment of P2 that have not been copied
3. For each of these i look in the offspring to see what element j has 

been copied in its place from P1
4. Place i into the position occupied j in P2, since we know that we will 

not be putting j there (as is already in offspring)
5. If the place occupied by j in P2 has already been filled in the 

offspring k, put i in the position occupied by k in P2
6. Having dealt with the elements from the crossover segment, the rest 

of the offspring can be filled from P2. 
Second child is created analogously

Partially Mapped Crossover (PMX)

PMX  Example

Step 1

Step 2

Step 3

Cycle Crossover
Basic idea: 
Each allele comes from one parent together with its position.
Informal procedure:
1. Make a cycle of alleles from P1 in the following way. 

(a) Start with the first allele of P1. 
(b) Look at the allele at the same position in P2.
(c) Go to the position with the same allele in P1. 
(d) Add this allele to the cycle.
(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions 
they have in the first parent.

3. Take next cycle from second parent
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Cycle Crossover Example
Step 1: identify cycles

Step 2: copy alternate cycles into offspring

Edge Recombination

Works by constructing a table listing which 
edges are present in the two parents, if an 
edge is common to both, mark with a +
e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Edge Recombination 2

Informal procedure once edge table is constructed

1. Pick an initial element at random and put it in the offspring
2. Set the variable current element = entry
3. Remove all references to current element from the table
4. Examine list for current element:

– If there is a common edge, pick that to be next element
– Otherwise pick the entry in the list which itself has the shortest list
– Ties are split at random

5. In the case of reaching an empty list:
– Examine the other end of the offspring is for extension
– Otherwise a new element is chosen at random

Edge Recombination Example

Multiparent Recombination
Recall that we are not constricted by the practicalities 
of nature
Noting that mutation uses 1 parent, and “traditional”
crossover 2, the extension to a>2 is natural to examine
Been around since 1960s, still rare but studies indicate 
useful
Three main types:
– Based on allele frequencies, e.g., p-sexual voting generalising 

uniform crossover
– Based on segmentation and recombination of the parents, e.g., 

diagonal crossover generalising n-point crossover
– Based on numerical operations on real-valued alleles, e.g.,  

center of mass crossover, generalising arithmetic 
recombination operators

Population Models

SGA uses a Generational model:
– each individual survives for exactly one generation
– the entire set of  parents is replaced by the offspring

At the other end of the scale are Steady-State 
models:
– one offspring is generated per generation,
– one member of population replaced,

Generation Gap 
– the proportion of the population replaced
– 1.0 for GGA,  1/pop_size for SSGA
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Fitness Based Competition

Selection can occur in two places:
– Selection from current generation to take part in 

mating (parent selection) 
– Selection from parents + offspring to go into next 

generation (survivor selection)
Selection operators work on whole individual
– i.e. they are representation-independent

Distinction between selection
– operators: define selection probabilities  
– algorithms: define how probabilities are implemented  

Implementation Example: SGA

Expected number of copies of an individual i
E( ni ) = μ • f(i)/ 〈f〉

(μ = pop.size, f(i) = fitness of i, 〈f〉 avg. fitness in pop.)
Roulette wheel algorithm:
– Given a probability distribution, spin a 1-armed 

wheel n times to make n selections
– No guarantees on actual value of ni

Baker’s SUS algorithm:
– n evenly spaced arms on wheel and spin once
– Guarantees  floor(E( ni ) ) ≤ ni ≤ ceil(E( ni ) )

Problems include
– One highly fit member can rapidly take over if rest of 

population is much less fit: Premature Convergence
– At end of runs when fitnesses are similar, lose 

selection pressure 
– Highly susceptible to function transposition

Scaling can fix last two problems
– Windowing: f’(i) = f(i) - β t 

where β is worst fitness in this (last n) generations

– Sigma Scaling: f’(i) = max( f(i) – (〈 f 〉 - c • σf ), 0.0)
where c is a constant, usually 2.0

Fitness-Proportionate Selection Function Transposition for FPS

Rank–Based Selection

Attempt to remove problems of FPS by basing 
selection probabilities on relative rather than 
absolute fitness
Rank population according to fitness and then 
base selection probabilities on rank where 
fittest has rank μ and worst rank 1
This imposes a sorting overhead on the 
algorithm, but this is usually negligible 
compared to the fitness evaluation time

Linear Ranking

Parameterised by factor s: 1.0 < s ≤ 2.0
– measures advantage of best individual
– in GGA this is the number of children allotted to it

Simple 3 member example
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Exponential Ranking

Linear Ranking is limited to selection pressure
Exponential Ranking can allocate more than 2 
copies to fittest individual
Normalise constant factor c according to 
population size

Tournament Selection

All methods above rely on global population 
statistics
– Could be a bottleneck esp. on parallel machines
– Relies on presence of external fitness function 

which might not exist: e.g. evolving game players
Informal Procedure:
– Pick k members  at random then select the best of 

these
– Repeat to select more individuals

Tournament Selection 2

Probability of selecting i will depend on:
– Rank of i
– Size of sample k 

higher k increases selection pressure
– Whether contestants are picked with replacement

Picking without replacement increases selection pressure
– Whether fittest contestant always wins 

(deterministic) or this happens with probability p

For k = 2, time for fittest individual to take over 

population is the same as linear ranking with s = 2 • p

Survivor Selection

Most of methods above used for parent 
selection
Survivor selection can be divided into two 
approaches:
– Age-Based Selection

e.g., SGA
In SSGA can implement as “delete-random” (not 
recommended) or as first-in-first-out (a.k.a. delete-oldest) 

– Fitness-Based Selection
Using one of the methods above or

Two Special Cases

Elitism
– Widely used in both population models (GGA, 

SSGA)
– Always keep at least one copy of the fittest solution 

so far
GENITOR: a.k.a. “delete-worst”
– From Whitley’s original Steady-State algorithm (he 

also used linear ranking for parent selection)
– Rapid takeover : use with large populations or “no 

duplicates” policy

Example Application of Order Based GAs: 
JSSP 

Precedence constrained job shop scheduling problem
J is a set of jobs.
O is a set of operations
M is a set of machines 
Able ⊆ O × M defines which machines can perform which 
operations  
Pre ⊆ O × O defines which operation should precede which 
Dur : ⊆ O × M → IR defines the duration of o ∈ O on m ∈ M 

The goal is now to find a schedule that is:
Complete: all jobs are scheduled
Correct: all conditions defined by Able and Pre are satisfied
Optimal: the total duration of the schedule is minimal
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Precedence Constrained Job Shop Scheduling 
GA

Representation: individuals are permutations of operations
Permutations are decoded to schedules by a decoding procedure

– take the first (next) operation from the individual
– look up its machine (here we assume there is only one)
– assign the earliest possible starting time on this machine, subject to

machine occupation
precedence relations holding for this operation in the schedule created so far

Fitness of a permutation is the duration of the corresponding 
schedule (to be minimized)
Use any suitable mutation and crossover
Use roulette wheel parent selection on inverse fitness
Generational GA model for survivor selection
Use random initialization

JSSP Example: Operator Comparison


