
1

Genetic Algorithms

Based on A.E. Eiben and J.E. Smith,
Introduction to Evolutionary Computing,

Springer, 2003

GA: Overview
Developed: USA in the 1970’s
Early names: J. Holland, K. DeJong, D. Goldberg
Typically applied to:

– discrete optimization
Attributed features:

– not too fast
– good heuristic for combinatorial problems

Special features:
– Traditionally emphasizes combining information from fit

parents (crossover)
– Many variants, e.g., operators

Genetic Algorithms

Holland’s original GA is now known as the
simple genetic algorithm (SGA)
Other GAs use different:
– Representations
– Mutations
– Crossovers
– Selection mechanisms

SGA Summary Table

Emphasizes crossoverSpecial property

All children replace parentsSurvivor selection

Fitness-proportionateParent selection

Bitwise bit-flipping with fixed
probability

Mutation

N-point or uniformRecombination

Binary stringsRepresentation

Genotype space =
{0,1}L

Phenotype space

Encoding
(Representation)

Decoding
(Inverse
representation)

011101001

010001001

10010010

10010001

Representation SGA Reproduction Cycle

1. Select parents for the mating pool
(size of mating pool = population size)

2. Shuffle the mating pool
3. For each consecutive pair apply crossover with

probability pc, otherwise copy parents
4. For each offspring apply mutation (bit-flip with

probability pm independently for each bit)
5. Replace the entire population with the resulting

offspring

2

SGA operators: 1-point crossover

Choose a random point on the two parents
Split parents at this crossover point
Create children by exchanging tails
Pc typically in the range (0.6, 0.9)

SGA Operators: Mutation

Alter each gene independently with a probability pm
pm is called the mutation rate

– Typically between 1/pop_size and 1/ chromosome_length

Main idea: better individuals get higher chance
– Chances proportional to fitness
– Implementation: roulette wheel technique

Assign to each individual a part of the
roulette wheel
Spin the wheel n times to select n
individuals

SGA Operators: Selection

Fitness A) = 3

Fitness (B) = 1

Fitness (C) = 2

A C

1/6 = 17%

3/6 = 50%

B
2/6 = 33%

An Example after Goldberg ‘89 (1)

Simple problem: max x2 over {0,1,…,31}
GA approach:
– Representation: binary code, e.g., 01101 ↔ 13
– Population size: 4
– 1-point xover, bitwise mutation
– Roulette wheel selection
– Random initialization

One generational cycle (iteration) will be shown

x2 example: selection
x2 example: crossover

Before
xover

After
xover

3

x2 example: mutation The Simple GA
Has been subject of many (early) studies
– often used as benchmark for novel GAs

Shows many shortcomings, e.g.:
– Representation is too restrictive
– Mutation & crossovers only applicable for bit-string &

integer representations
– Selection mechanism sensitive for converging

populations with close fitness values
– Generational population model (Step 5 in SGA

reproduction cycle) can be improved with explicit
survivor selection

Alternative Crossover Operators

Performance with 1 point crossover depends on the
order that variables occur in the representation
– More likely to keep together genes that are close to

each other
– Never keeps together genes from opposite ends of

the string
– This is known as positional bias
– Can be exploited if the structure of the problem at

hand is known, but usually this is not the case

n-Point Crossover

Choose n random crossover points
Split along those points
Glue parts, alternating between parents
Generalisation of 1 point (still some positional bias)

Uniform Crossover
Assign 'heads' to one parent, 'tails' to the other
Flip a coin for each gene of the first child
Make an inverse copy of the gene for the second child
Inheritance is independent of position

Crossover OR Mutation?

Decade long debate: which one is better / necessary /
main-background

Answer (at least widely agreed):
– it depends on the problem, but
– in general, it is good to have both
– both have different roles
– mutation-only-EA is possible, crossover-only-EA would not work

4

Exploration: Discovering promising areas in the search
space, i.e., gaining information about the problem

Exploitation: Optimizing within a promising area, i.e., using
information
The two co-operate AND compete.

Crossover is explorative, it makes a big jump to an area
somewhere “in between” two (parent) areas

Mutation is exploitative, it creates random small
diversions, thereby staying near (in the area of) the parent

Crossover OR Mutation? (cont’d)

Only crossover can combine information from two
parents

Only mutation can introduce new information (alleles)

Crossover does not change the allele frequency of
the population

To reach the optimum you often need a ‘lucky’
mutation

Crossover OR Mutation? (cont’d)

Integer Representations

Some problems naturally have integer variables, e.g.,
image processing parameters
Others take categorical values from a fixed set e.g.,
{blue, green, yellow, pink}
N-point / uniform crossover operators work
Extend bit-flipping mutation to make

– “Creep” i.e., more likely to move to similar value
– Random choice (especially for categorical variables)
– For ordinal problems, it is difficult to know correct range for

creep, so often use two mutation operators in tandem

Real Valued Problems

Many problems occur as real valued problems, e.g.
continuous parameter optimization f : ℜ n ℜ
Illustration: Ackley’s function (often used in EC)

Mapping Real Values on Bit
Strings

z ∈ [x,y] ⊆ ℜ represented by {a1,…,aL} ∈ {0,1}L

• [x,y] → {0,1}L must be invertible (one phenotype per
genotype)

• Γ: {0,1}L → [x,y] defines the representation

Only 2L values out of infinite are represented
L determines possible maximum precision of solution
High precision long chromosomes (slow evolution)

],[)2(
12

),...,(
1

0
1 yxaxyxaa j

L

j
jLLL ∈⋅⋅

−
−

+=Γ ∑
−

=
−

Floating Point Mutation 1

General scheme of floating point mutations

Uniform mutation:

Analogous to bit-flipping (binary) or random resetting
(integers)

ll xxxx xx ′′=′→= ..., , ...,, 11

[]iiii UBLBxx ,, ∈′

[]iii UBLBx , from (uniform)randomly drawn ′

5

Floating Point Mutation 2

Non-uniform mutations:
– Many methods proposed, such as time-varying

range of change, etc.
– Most schemes are probabilistic but usually only

make a small change to value
– Most common method is to add random deviate to

each variable separately, taken from N(0, σ)
Gaussian distribution and then curtail to range

– Standard deviation σ controls amount of change
(2/3 of deviations will lie in range (- σ to + σ)

Crossover Operators for Real Valued GAs

Discrete:
– each allele value in offspring z comes from one of its

parents (x,y) with equal probability: zi = xi or yi
– Could use n-point or uniform

Intermediate:
– exploits idea of creating children “between” parents

(hence a.k.a. arithmetic recombination)
– zi = α xi + (1 - α) yi where α: 0 ≤ α ≤ 1.
– The parameter α can be:

• constant: uniform arithmetical crossover
• variable (e.g. depend on the age of the population)
• picked at random every time

Single Arithmetic Crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉
• Pick a single gene (k) at random,

• Child1 is:

• Reverse for other child, e.g., with α = 0.5

nkkk xxyxx ..., ,)1(, ..., ,1 ⋅−+⋅ αα

Simple Arithmetic Crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉
• Pick random gene (k) after this point mix values
• Child1 is:

• Reverse for other child, e.g., with α = 0.5
nxkxkykxx ⋅−+⋅+⋅−++⋅)1(ny ..., ,1)1(1 , ..., ,1 αααα

• Most commonly used
• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

• Child1 is:

• Reverse for other child, e.g., with α = 0.5

Whole Arithmetic Crossover

yaxa ⋅−+⋅)1(

Permutation Representation

Ordering/sequencing problems form a special type
Task is (or can be solved by) arranging some objects in
a certain order
– Example: sort algorithm: important thing is which elements

occur before others (order)
– Example: Travelling Salesman Problem (TSP) : important thing

is which elements occur next to each other (adjacency)

These problems are generally expressed as a
permutation:
– if there are n variables then the representation is as a list of n

integers, each of which occurs exactly once

6

Permutation Representation: TSP Example

Problem:
• Given n cities
• Find a complete tour with

minimal length
Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one

permutation (e.g. for n =4
[1,2,3,4], [3,4,2,1] are OK)

Search space is LARGE:
for 30 cities there are 30! ≈ 1032

possible tours

Mutation Operators for Permutation

Normal mutation operators lead to inadmissible
solutions
– e.g. bit-wise mutation : let gene i have value j
– changing to some other value k would mean that k

occurred twice and j no longer occurred
Therefore must change at least two values
Mutation parameter now reflects the probability
that some operator is applied once to the
whole string, rather than individually in each
position

Insert Mutation for Permutations

Pick two allele values at random
Move the second to follow the first, shifting the
rest along to accommodate
Note that this preserves most of the order and
the adjacency information

Swap Mutation for Permutations

Pick two alleles at random and swap their
positions
Preserves most of adjacency information (4
links broken), disrupts order more

Inversion Mutation for Permutations

Pick two alleles at random and then invert the
substring between them.
Preserves most adjacency information (only
breaks two links) but disruptive of order
information

Scramble Mutation for Permutations

Pick a subset of genes at random
Randomly rearrange the alleles in those
positions

(note subset does not have to be contiguous)

7

“Normal” crossover operators will often lead to
inadmissible solutions

Many specialised operators have been devised
which focus on combining order or adjacency
information from the two parents

Crossover Operators for Permutations

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Order 1 Crossover
Idea is to preserve relative order that elements occur
Informal procedure:
1. Choose an arbitrary part from the first parent
2. Copy this part to the first child
3. Copy the numbers that are not in the first part, to

the first child:
starting right from cut point of the copied part,
using the order of the second parent
and wrapping around at the end

4. Analogous for the second child, with parent roles
reversed

Order 1 Crossover Example

Copy randomly selected set from first parent

Copy rest from second parent in order 1,9,3,8,2

Informal procedure for parents P1 and P2:
1. Choose random segment and copy it from P1
2. Starting from the first crossover point look for elements in that

segment of P2 that have not been copied
3. For each of these i look in the offspring to see what element j has

been copied in its place from P1
4. Place i into the position occupied j in P2, since we know that we will

not be putting j there (as is already in offspring)
5. If the place occupied by j in P2 has already been filled in the

offspring k, put i in the position occupied by k in P2
6. Having dealt with the elements from the crossover segment, the rest

of the offspring can be filled from P2.
Second child is created analogously

Partially Mapped Crossover (PMX)

PMX Example

Step 1

Step 2

Step 3

Cycle Crossover
Basic idea:
Each allele comes from one parent together with its position.
Informal procedure:
1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1.
(b) Look at the allele at the same position in P2.
(c) Go to the position with the same allele in P1.
(d) Add this allele to the cycle.
(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions
they have in the first parent.

3. Take next cycle from second parent

8

Cycle Crossover Example
Step 1: identify cycles

Step 2: copy alternate cycles into offspring

Edge Recombination

Works by constructing a table listing which
edges are present in the two parents, if an
edge is common to both, mark with a +
e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Edge Recombination 2

Informal procedure once edge table is constructed

1. Pick an initial element at random and put it in the offspring
2. Set the variable current element = entry
3. Remove all references to current element from the table
4. Examine list for current element:

– If there is a common edge, pick that to be next element
– Otherwise pick the entry in the list which itself has the shortest list
– Ties are split at random

5. In the case of reaching an empty list:
– Examine the other end of the offspring is for extension
– Otherwise a new element is chosen at random

Edge Recombination Example

Multiparent Recombination
Recall that we are not constricted by the practicalities
of nature
Noting that mutation uses 1 parent, and “traditional”
crossover 2, the extension to a>2 is natural to examine
Been around since 1960s, still rare but studies indicate
useful
Three main types:
– Based on allele frequencies, e.g., p-sexual voting generalising

uniform crossover
– Based on segmentation and recombination of the parents, e.g.,

diagonal crossover generalising n-point crossover
– Based on numerical operations on real-valued alleles, e.g.,

center of mass crossover, generalising arithmetic
recombination operators

Population Models

SGA uses a Generational model:
– each individual survives for exactly one generation
– the entire set of parents is replaced by the offspring

At the other end of the scale are Steady-State
models:
– one offspring is generated per generation,
– one member of population replaced,

Generation Gap
– the proportion of the population replaced
– 1.0 for GGA, 1/pop_size for SSGA

9

Fitness Based Competition

Selection can occur in two places:
– Selection from current generation to take part in

mating (parent selection)
– Selection from parents + offspring to go into next

generation (survivor selection)
Selection operators work on whole individual
– i.e. they are representation-independent

Distinction between selection
– operators: define selection probabilities
– algorithms: define how probabilities are implemented

Implementation Example: SGA

Expected number of copies of an individual i
E(ni) = μ • f(i)/ 〈f〉

(μ = pop.size, f(i) = fitness of i, 〈f〉 avg. fitness in pop.)
Roulette wheel algorithm:
– Given a probability distribution, spin a 1-armed

wheel n times to make n selections
– No guarantees on actual value of ni

Baker’s SUS algorithm:
– n evenly spaced arms on wheel and spin once
– Guarantees floor(E(ni)) ≤ ni ≤ ceil(E(ni))

Problems include
– One highly fit member can rapidly take over if rest of

population is much less fit: Premature Convergence
– At end of runs when fitnesses are similar, lose

selection pressure
– Highly susceptible to function transposition

Scaling can fix last two problems
– Windowing: f’(i) = f(i) - β t

where β is worst fitness in this (last n) generations

– Sigma Scaling: f’(i) = max(f(i) – (〈 f 〉 - c • σf), 0.0)
where c is a constant, usually 2.0

Fitness-Proportionate Selection Function Transposition for FPS

Rank–Based Selection

Attempt to remove problems of FPS by basing
selection probabilities on relative rather than
absolute fitness
Rank population according to fitness and then
base selection probabilities on rank where
fittest has rank μ and worst rank 1
This imposes a sorting overhead on the
algorithm, but this is usually negligible
compared to the fitness evaluation time

Linear Ranking

Parameterised by factor s: 1.0 < s ≤ 2.0
– measures advantage of best individual
– in GGA this is the number of children allotted to it

Simple 3 member example

10

Exponential Ranking

Linear Ranking is limited to selection pressure
Exponential Ranking can allocate more than 2
copies to fittest individual
Normalise constant factor c according to
population size

Tournament Selection

All methods above rely on global population
statistics
– Could be a bottleneck esp. on parallel machines
– Relies on presence of external fitness function

which might not exist: e.g. evolving game players
Informal Procedure:
– Pick k members at random then select the best of

these
– Repeat to select more individuals

Tournament Selection 2

Probability of selecting i will depend on:
– Rank of i
– Size of sample k

higher k increases selection pressure
– Whether contestants are picked with replacement

Picking without replacement increases selection pressure
– Whether fittest contestant always wins

(deterministic) or this happens with probability p

For k = 2, time for fittest individual to take over

population is the same as linear ranking with s = 2 • p

Survivor Selection

Most of methods above used for parent
selection
Survivor selection can be divided into two
approaches:
– Age-Based Selection

e.g., SGA
In SSGA can implement as “delete-random” (not
recommended) or as first-in-first-out (a.k.a. delete-oldest)

– Fitness-Based Selection
Using one of the methods above or

Two Special Cases

Elitism
– Widely used in both population models (GGA,

SSGA)
– Always keep at least one copy of the fittest solution

so far
GENITOR: a.k.a. “delete-worst”
– From Whitley’s original Steady-State algorithm (he

also used linear ranking for parent selection)
– Rapid takeover : use with large populations or “no

duplicates” policy

Example Application of Order Based GAs:
JSSP

Precedence constrained job shop scheduling problem
J is a set of jobs.
O is a set of operations
M is a set of machines
Able ⊆ O × M defines which machines can perform which
operations
Pre ⊆ O × O defines which operation should precede which
Dur : ⊆ O × M → IR defines the duration of o ∈ O on m ∈ M

The goal is now to find a schedule that is:
Complete: all jobs are scheduled
Correct: all conditions defined by Able and Pre are satisfied
Optimal: the total duration of the schedule is minimal

11

Precedence Constrained Job Shop Scheduling
GA

Representation: individuals are permutations of operations
Permutations are decoded to schedules by a decoding procedure

– take the first (next) operation from the individual
– look up its machine (here we assume there is only one)
– assign the earliest possible starting time on this machine, subject to

machine occupation
precedence relations holding for this operation in the schedule created so far

Fitness of a permutation is the duration of the corresponding
schedule (to be minimized)
Use any suitable mutation and crossover
Use roulette wheel parent selection on inverse fitness
Generational GA model for survivor selection
Use random initialization

JSSP Example: Operator Comparison

