Genetic Algorithms

Based on A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing, Springer, 2003

GA: Overview

- Developed: USA in the 1970's
- Early names: J. Holland, K. DeJong, D. Goldberg
- Typically applied to:
- discrete optimization
- Attributed features:
 not too fast
 - good heuristic for combinatorial problems
- Special features:
 - Traditionally emphasizes combining information from fit
 - parents (crossover) - Many variants, e.g., operators

Genetic Algorithms

- Holland's original GA is now known as the simple genetic algorithm (SGA)
- Other GAs use different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

SGA Summary Table

Representation	Binary strings
Recombination	N-point or uniform
Mutation	Bitwise bit-flipping with fixed probability
Parent selection	Fitness-proportionate
Survivor selection	All children replace parents
Special property	Emphasizes crossover

X ²	examp	le: se	electior	١			
String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual	
no.	population		$f(x) = x^2$		count	count	
1	01101	13	169	0.14	0.58	1 ~	Ь
2	11000	24	576	0.49	1.97	2 🗧	R
3	01000	8	64	0.06	0.22	0	2
4	10011	19	361	0.31	1.23	1	ſ
Sum			1170	1.00	4.00	4	
Average]		293	0.25	1.00	1	
Max	[576	0.49	1.97	2	

X ²	examp Before	le: cro	ssover After		
	xover		xover		
String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ \ 1$	4	01100	12	144
2	1 1 0 0 0	4	11001	25	625
2	11 000	2	11011	27	729
4	10011	2	10000	16	256
Sum					1754
Average					439
Max	1				729

mple: r	nutation		
Offensing	Offensing	a Value	Fitness
Chispring	Onspring	x value	r itness
after xover	after mutation		f(x) = x
01100	1 1 1 0 0	26	676
11001	11001	25	625
11011	11011	27	729
10000	10100	18	324
			2354
			588.5
			700
	Offspring after xover 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0	Offspring after xover Offspring after mutation 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0	Offspring after xover after mutation Value x 01100 11100 26 11001 1001 25 11011 1011 27 10000 10100 18

The Simple GA

- Has been subject of many (early) studies
 often used as benchmark for novel GAs
- Shows many shortcomings, e.g.:
 - Representation is too restrictive
 - Mutation & crossovers only applicable for bit-string & integer representations
 - Selection mechanism sensitive for converging populations with close fitness values
 - Generational population model (Step 5 in SGA reproduction cycle) can be improved with explicit survivor selection

Alternative Crossover Operators

- Performance with 1 point crossover depends on the order that variables occur in the representation
 - More likely to keep together genes that are close to each other
 - Never keeps together genes from opposite ends of the string
 - This is known as positional bias
 - Can be exploited if the structure of the problem at hand is known, but usually this is not the case

n-Point Crossover

- Choose n random crossover points
- Split along those points
- Glue parts, alternating between parents
- Generalisation of 1 point (still some positional bias)

Uniform Crossover

- Assign 'heads' to one parent, 'tails' to the other
- Flip a coin for each gene of the first child
- Make an inverse copy of the gene for the second child
- Inheritance is independent of position

children

 0
 1
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1

 1
 0
 1
 1
 0
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 1
 0
 1
 1
 0
 0
 1
 1
 0
 1
 0
 1
 1
 0
 1
 0
 1
 1
 0
 1
 0
 1
 1
 0
 1
 0
 1
 0
 1
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Crossover OR Mutation?

- Decade long debate: which one is better / necessary / main-background
- Answer (at least widely agreed):
 - it depends on the problem, but
 - in general, it is good to have both
 - both have different roles
 - mutation-only-EA is possible, crossover-only-EA would not work

Crossover OR Mutation? (cont'd)

Exploration: Discovering promising areas in the search space, i.e., gaining information about the problem Exploitation: Optimizing within a promising area, i.e., using information

The two co-operate AND compete.

• Crossover is explorative, it makes a *big* jump to an area somewhere "in between" two (parent) areas

• Mutation is exploitative, it creates random *small* diversions, thereby staying near (in the area of) the parent

Crossover OR Mutation? (cont'd)

- Only crossover can combine information from two parents
- Only mutation can introduce new information (alleles)
- Crossover does not change the allele frequency of the population
- To reach the optimum you often need a 'lucky' mutation

Integer Representations

- Some problems naturally have integer variables, e.g., image processing parameters
- Others take *categorical* values from a fixed set e.g., {blue, green, yellow, pink}
- N-point / uniform crossover operators work
- Extend bit-flipping mutation to make
 - "Creep" i.e., more likely to move to similar value
 - Random choice (especially for categorical variables)
 - For ordinal problems, it is difficult to know correct range for creep, so often use two mutation operators in tandem

Real Valued Problems

- Many problems occur as real valued problems, e.g. continuous parameter optimization f: 𝔐ⁿ → 𝔐
- Illustration: Ackley's function (often used in EC)

$$\begin{split} f(\overline{x}) &= -c_1 \cdot exp\left(-c_2 \cdot \sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}\right) \\ &- exp\left(\frac{1}{n} \cdot \sum_{i=1}^n \cos(c_3 \cdot x_i)\right) + c_1 + 1 \\ &c_1 &= 20, \ c_2 &= 0.2, \ c_3 &= 2\pi \end{split}$$

Mapping Real Values on Bit Strings

- $z \in [x,y] \sqsubseteq \mathscr{R} \text{ represented by } \{a_1,\ldots,a_L\} \in \{0,1\}^L$
- $[x,y] \rightarrow \{0,1\}^L$ must be invertible (one phenotype per genotype)
- $\Gamma: \{0,1\}^L \rightarrow [x,y]$ defines the representation

$$\Gamma(a_1,...,a_L) = x + \frac{y - x}{2^L - 1} \cdot (\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j) \in [x, y]$$

- Only 2^L values out of infinite are represented
- L determines possible maximum precision of solution
- High precision → long chromosomes (slow evolution)

Floating Point Mutation 1

General scheme of floating point mutations

$$\overline{x} = \langle x_1, ..., x_l \rangle \longrightarrow \overline{x}' = \langle x_1', ..., x_l' \rangle$$
$$x_i, x_i' \in [LB_i, UB_i]$$

- Uniform mutation: x'_i drawn randomly (uniform) from $[LB_i, UB_i]$
- Analogous to bit-flipping (binary) or random resetting (integers)

Floating Point Mutation 2

- Non-uniform mutations:
 - Many methods proposed, such as time-varying range of change, etc.
 - Most schemes are probabilistic but usually only make a small change to value
 - Most common method is to add random deviate to each variable separately, taken from N(0, σ) Gaussian distribution and then curtail to range
 - Standard deviation σ controls amount of change (2/3 of deviations will lie in range (- σ to + $\sigma)$

Crossover Operators for Real Valued GAs

• Discrete:

- each allele value in offspring *z* comes from one of its parents (*x*, *y*) with equal probability: $z_i = x_i$ or y_i
- Could use n-point or uniform
- Intermediate:
 - exploits idea of creating children "between" parents (hence a.k.a. arithmetic recombination)
 - $-z_i = \alpha x_i + (1 \alpha) y_i$ where $\alpha: 0 \le \alpha \le 1$.
 - The parameter α can be:

 - constant: uniform arithmetical crossover
 variable (e.g. depend on the age of the population)
 picked at random every time

Mutation Operators for Permutation

- Normal mutation operators lead to inadmissible solutions
 - e.g. bit-wise mutation : let gene *i* have value *j*
 - changing to some other value k would mean that k occurred twice and j no longer occurred
- Therefore must change at least two values
- Mutation parameter now reflects the probability that some operator is applied once to the whole string, rather than individually in each position

Order 1 Crossover

- · Idea is to preserve relative order that elements occur
- Informal procedure:
 - 1. Choose an arbitrary part from the first parent
 - 2. Copy this part to the first child
 - 3. Copy the numbers that are not in the first part, to the first child:
 - starting right from cut point of the copied part,
 - using the order of the second parent
 - and wrapping around at the end
 - 4. Analogous for the second child, with parent roles reversed

Partially Mapped Crossover (PMX)

Informal procedure for parents P1 and P2:

- 1. Choose random segment and copy it from P1
- 2. Starting from the first crossover point look for elements in that segment of P2 that have not been copied
- a. For each of these *i* look in the offspring to see what element *j* has been copied in its place from P1
- Place *i* into the position occupied *j* in P2, since we know that we will not be putting *j* there (as is already in offspring)
- If the place occupied by *j* in P2 has already been filled in the offspring *k*, put *i* in the position occupied by *k* in P2
- B. Having dealt with the elements from the crossover segment, the rest of the offspring can be filled from P2.

Second child is created analogously

Edge Recombination

- Works by constructing a table listing which edges are present in the two parents, if an edge is common to both, mark with a +
- e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Element	Edges	Element	Edges
1	2,5,4,9	6	2,5+,7
2	1,3,6,8	7	3,6,8+
3	2,4,7,9	8	2,7+,9
4	1,3,5,9	9	1,3,4,8
5	1,4,6+		

Edge Recombination Example

Edge Recombination 2

Informal procedure once edge table is constructed

- 1. Pick an initial element at random and put it in the offspring
- 2. Set the variable current element = entry
- 3. Remove all references to current element from the table
- 4. Examine list for current element:
- If there is a common edge, pick that to be next element
 Otherwise pick the entry in the list which itself has the shortest list
- Ties are split at random
- 5. In the case of reaching an empty list:
 - Examine the other end of the offspring is for extension
 Otherwise a new element is chosen at random

		Element	Edges	Element	Edges			
		1	2,5,4,9	6	2,5+,7			
		2	1,3,6,8	7	3,6,8+			
		3	2,4,7,9	8	2,7+,9			
		4	1, 3, 5, 9	9	1,3,4,8			
		5	1,4,6+	1				
Choices	Element	Reason					Partial	
	selected						result	
All	1	Random	Random					
2,5,4,9	5	Shortest list					1 5	
4,6	6	Common edge					156	
2,7	2	Random choi	Random choice (both have two items in list)					
3,8	8	Shortest list				- 1	15628	
7,9	7	Common edg	Common edge					
3	3	Only item in list					1562873	
4,9	9	Random choi	Random choice					
4	4	Last element					156287394	

Multiparent Recombination

- Recall that we are not constricted by the practicalities
 of nature
- Noting that mutation uses 1 parent, and "traditional"
- crossover 2, the extension to a>2 is natural to examine
 Been around since 1960s, still rare but studies indicate useful
- Three main types:
- Based on allele frequencies, e.g., p-sexual voting generalising uniform crossover
- Based on segmentation and recombination of the parents, e.g., diagonal crossover generalising n-point crossover
- Based on numerical operations on real-valued alleles, e.g., center of mass crossover, generalising arithmetic recombination operators

Population Models

- SGA uses a Generational model:
 - each individual survives for exactly one generation
 - the entire set of parents is replaced by the offspring
- At the other end of the scale are Steady-State models:
 - one offspring is generated per generation,
 - one member of population replaced,
- Generation Gap
 - the proportion of the population replaced
 - 1.0 for GGA, 1/pop_size for SSGA

Fitness Based Competition

- Selection can occur in two places:
 - Selection from current generation to take part in mating (parent selection)
 - Selection from parents + offspring to go into next generation (survivor selection)
- Selection operators work on whole individual - i.e. they are representation-independent
- Distinction between selection
 - operators: define selection probabilities
 - algorithms: define how probabilities are implemented

Implementation Example: SGA

• Expected number of copies of an individual *i*

 $E(n_i) = \mu \cdot f(i)/\langle f \rangle$

- (μ = pop.size, f(i) = fitness of i, $\langle f \rangle$ avg. fitness in pop.)
- Roulette wheel algorithm:
 - Given a probability distribution, spin a 1-armed wheel *n* times to make *n* selections
 - No guarantees on actual value of n_i
- Baker's SUS algorithm:
 - n evenly spaced arms on wheel and spin once
 - Guarantees floor($E(n_i)$) $\leq n_i \leq ceil(E(n_i))$

Fitness-Proportionate Selection

- Problems include
 - One highly fit member can rapidly take over if rest of population is much less fit: Premature Convergence
 - At end of runs when fitnesses are similar, lose selection pressure
 - Highly susceptible to function transposition
- · Scaling can fix last two problems
 - Windowing: $f'(i) = f(i) \beta^{t}$
 - where β is worst fitness in this (last n) generations
 - Sigma Scaling: $f'(i) = max(f(i) (\langle f \rangle c \cdot \sigma_f), 0.0)$
 - where c is a constant, usually 2.0

Rank–Based Selection

- Attempt to remove problems of FPS by basing selection probabilities on *relative* rather than *absolute* fitness
- Rank population according to fitness and then base selection probabilities on rank where fittest has rank μ and worst rank 1
- This imposes a sorting overhead on the algorithm, but this is usually negligible compared to the fitness evaluation time

Linear Ranking

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

- Parameterised by factor s: $1.0 < s \le 2.0$
 - measures advantage of best individual
 in GGA this is the number of children allotted to it
 - In GGA this is the number of children a
- Simple 3 member example

	Fitness	Rank	P_{selFP}	P_{selLR} (s = 2)	P_{selLR} (s = 1.5)
Α	1	1	0.1	0	0.167
В	5	2	0.5	0.67	0.5
С	4	2	0.4	0.33	0.33
Sum	10		1.0	1.0	1.0

Exponential Ranking

$$P_{exp-rank}(i) = \frac{1 - e^{-i}}{c}$$

- Linear Ranking is limited to selection pressure
- Exponential Ranking can allocate more than 2 copies to fittest individual
- Normalise constant factor c according to population size

Tournament Selection

- All methods above rely on global population statistics
 - Could be a bottleneck esp. on parallel machines
 - Relies on presence of external fitness function
- which might not exist: e.g. evolving game players • Informal Procedure:
 - Pick k members at random then select the best of these
 - Repeat to select more individuals

Tournament Selection 2

- Probability of selecting *i* will depend on: - Rank of i
 - Size of sample k
 - higher k increases selection pressure
 - Whether contestants are picked with replacement · Picking without replacement increases selection pressure
 - Whether fittest contestant always wins
 - (deterministic) or this happens with probability p
- For k = 2, time for fittest individual to take over

population is the same as linear ranking with $s = 2 \cdot p$

Survivor Selection

- · Most of methods above used for parent selection
- · Survivor selection can be divided into two approaches:
 - Age-Based Selection
 - e.g., SGA
 - In SSGA can implement as "delete-random" (not recommended) or as first-in-first-out (a.k.a. delete-oldest)
 - Fitness-Based Selection
 - Using one of the methods above or

Two Special Cases

- Elitism
 - Widely used in both population models (GGA, SSGA)
 - Always keep at least one copy of the fittest solution so far
- GENITOR: a.k.a. "delete-worst"
 - From Whitley's original Steady-State algorithm (he also used linear ranking for parent selection)
 - Rapid takeover : use with large populations or "no duplicates" policy

Example Application of Order Based GAs: JSSP

Precedence constrained job shop scheduling problem

- J is a set of iobs.
- O is a set of operations
- M is a set of machines
- Able C O × M defines which machines can perform which operations
- $Pre \subseteq O \times O$ defines which operation should precede which • Dur : \subseteq O × M \rightarrow IR defines the duration of o \in O on m \in M
- The goal is now to find a schedule that is:

Complete: all jobs are scheduled

- Correct: all conditions defined by Able and Pre are satisfied
- Optimal: the total duration of the schedule is minimal

Precedence Constrained Job Shop Scheduling GA

- Representation: individuals are permutations of operations
- Permutations are decoded to schedules by a decoding procedure
 take the first (next) operation from the individual
 - look up its machine (here we assume there is only one)
 - assign the earliest possible starting time on this machine, subject to
 machine occupation
- precedence relations holding for this operation in the schedule created so far
 Fitness of a permutation is the duration of the corresponding
- schedule (to be minimized)
- Use any suitable mutation and crossover
- Use roulette wheel parent selection on inverse fitness
- Generational GA model for survivor selection
- Use random initialization

JSSP Example: Operator Comparison

