
1

Genetic Programming

Based on A.E. Eiben and J.E. Smith,
Introduction to Evolutionary Computing,

Springer, 2003.

GP: Overview

Developed: USA in the 1990’s
Early names: J. Koza
Typically applied to:

– machine learning tasks (prediction, classification…)
Attributed features:

– competes with neural nets and alike
– needs huge populations (thousands)
– slow

Special:
– non-linear chromosomes: trees, graphs
– mutation possible but not necessary (disputed!)

GP Technical Summary Table

Generational replacementSurvivor selection

Fitness proportionalParent selection

Random change in treesMutation

Exchange of sub-treesRecombination

Tree structuresRepresentation

Introductory Example:
Credit Scoring

Bank wants to distinguish good from bad loan
applicants
Model needed that matches historical data

1Divorced 400001ID-3

…

1Single300000ID-2

0Married450002ID-1

OK?Marital
status

SalaryNo of
children

ID

Introductory Example:
Credit Scoring

A possible model:
IF (NOC = 2) AND (S > 80000) THEN good ELSE bad
In general:

IF formula THEN good ELSE bad
Only unknown is the right formula, hence
Our search space (phenotypes) is the set of formulas
Natural fitness of a formula: percentage of well
classified cases of the model it stands for
Natural representation of formulas (genotypes) is:
parse trees

Introductory Example:
Credit Scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad
can be represented by the following tree

AND

S2NOC 80000

>=

2

Tree Based Representation

Trees are a universal form, e.g. consider
Arithmetic formula

Logical formula

Program

⎟
⎠
⎞

⎜
⎝
⎛

+
−++⋅

15
)3(2 yxπ

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

i =1;
while (i < 20)
{

i = i +1
}

Tree Based Representation

⎟
⎠
⎞

⎜
⎝
⎛

+
−++⋅

15
)3(2 yxπ

Tree Based Representation

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

Tree Based Representation

i =1;
while (i < 20)
{

i = i +1
}

Tree Based Representation

In GA, ES, EP chromosomes are linear
structures (bit strings, integer string, real-
valued vectors, permutations)
Tree shaped chromosomes are non-linear
structures
In GA, ES, EP the size of the chromosomes is
fixed
Trees in GP may vary in depth and width

Tree Based Representation

Symbolic expressions can be defined by
– Terminal set T
– Function set F (with the arities of function symbols)
Adopting the following general recursive definition:
1. Every t ∈ T is a correct expression
2. f(e1, …, en) is a correct expression if f ∈ F, arity(f)=n and e1,

…, en are correct expressions
3. There are no other forms of correct expressions
In general, expressions in GP are not typed (closure
property: any f ∈ F can take any g ∈ F as argument)

3

Offspring Creation Scheme

Compare
GA scheme using crossover AND mutation
sequentially (be it probabilistically)
GP scheme using crossover OR mutation
(chosen probabilistically)

GP flowchartGA flowchart

Mutation

Most common mutation: replace randomly
chosen subtree by randomly generated tree

Mutation cont’d

Mutation has two parameters:
– Probability pm to choose mutation vs. recombination
– Probability to chose an internal point as the root of

the subtree to be replaced
Remarkably pm is advised to be 0 (Koza’92) or
very small, like 0.05 (Banzhaf et al. ’98)
The size of the child can exceed the size of the
parent

Recombination

Most common recombination: exchange two
randomly chosen subtrees among the parents
Recombination has two parameters:
– Probability pc to choose recombination vs. mutation
– Probability to chose an internal point within each

parent as crossover point
The size of offspring can exceed that of the
parents

Child 2

Parent 1 Parent 2

Child 1

4

Selection

Parent selection typically fitness proportionate
Over-selection in very large populations

– rank population by fitness and divide it into two groups:
– group 1: best x% of population, group 2 other (100-x)%
– 80% of selection operations chooses from group 1, 20% from group 2
– for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
– motivation: to increase efficiency, %’s come from rule of thumb

Survivor selection:
– Typical: generational scheme (thus none)
– Recently steady-state is becoming popular for its elitism

Initialization

Maximum initial depth of trees Dmax is set
Full method (each branch has depth = Dmax):

– nodes at depth d < Dmax randomly chosen from function set F
– nodes at depth d = Dmax randomly chosen from terminal set T

Grow method (each branch has depth ≤ Dmax):
– nodes at depth d < Dmax randomly chosen from F ∪ T
– nodes at depth d = Dmax randomly chosen from T

Common GP initialisation: ramped half-and-half, where
grow & full method each deliver half of initial population

Bloat

Bloat = “survival of the fattest”, i.e., the tree
sizes in the population are increasing over time
Ongoing research and debate about the
reasons
Needs countermeasures, e.g.:
– Prohibiting variation operators that would deliver

“too big” children
– Parsimony pressure: penalty for being oversized

Problems Involving “Physical”
Environments

Trees for data fitting vs. trees (programs) that are
“really” executable
Execution can change the environment the
calculation of fitness
Example: robot controller
Fitness calculations mostly by simulation, ranging from
expensive to extremely expensive (in time)
But evolved controllers are often to very good

Example Application:
Symbolic Regression

Given some points in R2, (x1, y1), … , (xn, yn)
Find function f(x) s.t. ∀i = 1, …, n : f(xi) = yi

Possible GP solution:
– Representation by F = {+, -, /, sin, cos}, T = R ∪ {x}
– Fitness is the error
– All operators standard
– pop.size = 1000, ramped half-half initialisation
– Termination: n “hits” or 50000 fitness evaluations reached

(where “hit” is if | f(xi) – yi | < 0.0001)

2

1
))(()(i

n

i
i yxfferr −=∑

=

Discussion

Is GP:

The art of evolving computer programs ?
Means to automated programming of computers?
GA with another representation?

