
A Genetic Algorithm Tutorial

Darrell Whitley

Computer Science Department, Colorado State University

Fort Collins, CO 80523 whitley@cs.colostate.edu

Abstract

This tutorial covers the canonical genetic algorithm as well as more experimental

forms of genetic algorithms, including parallel island models and parallel cellular genetic

algorithms. The tutorial also illustrates genetic search by hyperplane sampling. The

theoretical foundations of genetic algorithms are reviewed, include the schema theorem

as well as recently developed exact models of the canonical genetic algorithm.

Keywords: Genetic Algorithms, Search, Parallel Algorithms

1 Introduction

Genetic Algorithms are a family of computational models inspired by evolution. These

algorithms encode a potential solution to a speci�c problem on a simple chromosome-like

data structure and apply recombination operators to these structures so as to preserve critical

information. Genetic algorithms are often viewed as function optimizers, although the range

of problems to which genetic algorithms have been applied is quite broad.

An implementation of a genetic algorithm begins with a population of (typically random)

chromosomes. One then evaluates these structures and allocates reproductive opportunities

in such a way that those chromosomes which represent a better solution to the target problem

are given more chances to \reproduce" than those chromosomes which are poorer solutions.

The \goodness" of a solution is typically de�ned with respect to the current population.

This particular description of a genetic algorithm is intentionally abstract because in

some sense, the term genetic algorithm has two meanings. In a strict interpretation, the

genetic algorithm refers to a model introduced and investigated by John Holland (1975) and

by students of Holland (e.g., DeJong, 1975). It is still the case that most of the existing

theory for genetic algorithms applies either solely or primarily to the model introduced by

Holland, as well as variations on what will be referred to in this paper as the canonical

genetic algorithm. Recent theoretical advances in modeling genetic algorithms also apply

primarily to the canonical genetic algorithm (Vose, 1993).

In a broader usage of the term, a genetic algorithm is any population-based model that

uses selection and recombination operators to generate new sample points in a search space.

Many genetic algorithm models have been introduced by researchers largely working from

1

an experimental perspective. Many of these researchers are application oriented and are

typically interested in genetic algorithms as optimization tools.

The goal of this tutorial is to present genetic algorithms in such a way that students new

to this �eld can grasp the basic concepts behind genetic algorithms as they work through

the tutorial. It should allow the more sophisticated reader to absorb this material with

relative ease. The tutorial also covers topics, such as inversion, which have sometimes been

misunderstood and misused by researchers new to the �eld.

The tutorial begins with a very low level discussion of optimization to both introduce basic

ideas in optimization as well as basic concepts that relate to genetic algorithms. In section 2

a canonical genetic algorithm is reviewed. In section 3 the principle of hyperplane sampling

is explored and some basic crossover operators are introduced. In section 4 various versions

of the schema theorem are developed in a step by step fashion and other crossover operators

are discussed. In section 5 binary alphabets and their e�ects on hyperplane sampling are

considered. In section 6 a brief criticism of the schema theorem is considered and in section

7 an exact model of the genetic algorithm is developed. The last three sections of the

tutorial cover alternative forms of genetic algorithms and evolutionary computational models,

including specialized parallel implementations.

1.1 Encodings and Optimization Problems

Usually there are only two main components of most genetic algorithms that are problem

dependent: the problem encoding and the evaluation function.

Consider a parameter optimization problem where we must optimize a set of variables ei-

ther to maximize some target such as pro�t, or to minimize cost or somemeasure of error. We

might view such a problem as a black box with a series of control dials representing di�erent

parameters; the only output of the black box is a value returned by an evaluation function

indicating how well a particular combination of parameter settings solves the optimization

problem. The goal is to set the various parameters so as to optimize some output. In more

traditional terms, we wish to minimize (or maximize) some function F (X

1

;X

2

; :::;X

M

).

Most users of genetic algorithms typically are concerned with problems that are nonlinear.

This also often implies that it is not possible to treat each parameter as an independent

variable which can be solved in isolation from the other variables. There are interactions

such that the combined e�ects of the parameters must be considered in order to maximize or

minimize the output of the black box. In the genetic algorithm community, the interaction

between variables is sometimes referred to as epistasis.

The �rst assumption that is typically made is that the variables representing parameters

can be represented by bit strings. This means that the variables are discretized in an a

priori fashion, and that the range of the discretization corresponds to some power of 2. For

example, with 10 bits per parameter, we obtain a range with 1024 discrete values. If the

parameters are actually continuous then this discretization is not a particular problem. This

assumes, of course, that the discretization provides enough resolution to make it possible to

adjust the output with the desired level of precision. It also assumes that the discretization

is in some sense representative of the underlying function.

2

If some parameter can only take on an exact �nite set of values then the coding issue

becomes more di�cult. For example, what if there are exactly 1200 discrete values which

can be assigned to some variable X

i

. We need at least 11 bits to cover this range, but

this codes for a total of 2048 discrete values. The 848 unnecessary bit patterns may result

in no evaluation, a default worst possible evaluation, or some parameter settings may be

represented twice so that all binary strings result in a legal set of parameter values. Solving

such coding problems is usually considered to be part of the design of the evaluation function.

Aside from the coding issue, the evaluation function is usually given as part of the problem

description. On the other hand, developing an evaluation function can sometimes involve

developing a simulation. In other cases, the evaluation may be performance based and

may represent only an approximate or partial evaluation. For example, consider a control

application where the system can be in any one of an exponentially large number of possible

states. Assume a genetic algorithm is used to optimize some form of control strategy. In

such cases, the state space must be sampled in a limited fashion and the resulting evaluation

of control strategies is approximate and noisy (c.f., Fitzpatrick and Grefenstette, 1988).

The evaluation function must also be relatively fast. This is typically true for any opti-

mization method, but it may particularly pose an issue for genetic algorithms. Since a genetic

algorithm works with a population of potential solutions, it incurs the cost of evaluating this

population. Furthermore, the population is replaced (all or in part) on a generational basis.

The members of the population reproduce, and their o�spring must then be evaluated. If it

takes 1 hour to do an evaluation, then it takes over 1 year to do 10,000 evaluations. This

would be approximately 50 generations for a population of only 200 strings.

1.2 How Hard is Hard?

Assuming the interaction between parameters is nonlinear, the size of the search space is

related to the number of bits used in the problem encoding. For a bit string encoding of

length L; the size of the search space is 2

L

and forms a hypercube. The genetic algorithm

samples the corners of this L-dimensional hypercube.

Generally, most test functions are at least 30 bits in length and most researchers would

probably agree that larger test functions are needed. Anything much smaller represents a

space which can be enumerated. (Considering for a moment that the national debt of the

United States in 1993 is approximately 2

42

dollars, 2

30

does not sound quite so large.) Of

course, the expression 2

L

grows exponentially with respect to L. Consider a problem with

an encoding of 400 bits. How big is the associated search space? A classic introductory

textbook on Arti�cial Intelligence gives one characterization of a space of this size. Winston

(1992:102) points out that 2

400

is a good approximation of the e�ective size of the search space

of possible board con�gurations in chess. (This assumes the e�ective branching factor at each

possible move to be 16 and that a game is made up of 100 moves; 16

100

= (2

4

)

100

= 2

400

).

Winston states that this is \a ridiculously large number. In fact, if all the atoms in the

universe had been computing chess moves at picosecond rates since the big bang (if any),

the analysis would be just getting started."

The point is that as long as the number of \good solutions" to a problem are sparse with

respect to the size of the search space, then random search or search by enumeration of a large

3

search space is not a practical form of problem solving. On the other hand, any search other

than random search imposes some bias in terms of how it looks for better solutions and where

it looks in the search space. Genetic algorithms indeed introduce a particular bias in terms

of what new points in the space will be sampled. Nevertheless, a genetic algorithm belongs

to the class of methods known as \weak methods" in the Arti�cial Intelligence community

because it makes relatively few assumptions about the problem that is being solved.

Of course, there are many optimization methods that have been developed in mathe-

matics and operations research. What role do genetic algorithms play as an optimization

tool? Genetic algorithms are often described as a global search method that does not use

gradient information. Thus, nondi�erentiable functions as well as functions with multiple

local optima represent classes of problems to which genetic algorithms might be applied.

Genetic algorithms, as a weak method, are robust but very general. If there exists a good

specialized optimization method for a speci�c problem, then genetic algorithm may not be

the best optimization tool for that application. On the other hand, some researchers work

with hybrid algorithms that combine existing methods with genetic algorithms.

2 The Canonical Genetic Algorithm

The �rst step in the implementation of any genetic algorithm is to generate an initial pop-

ulation. In the canonical genetic algorithm each member of this population will be a binary

string of length L which corresponds to the problem encoding. Each string is sometimes

referred to as a \genotype" (Holland, 1975) or, alternatively, a \chromosome" (Scha�er,

1987). In most cases the initial population is generated randomly. After creating an initial

population, each string is then evaluated and assigned a �tness value.

The notion of evaluation and �tness are sometimes used interchangeably. However, it

is useful to distinguish between the evaluation function and the �tness function used by a

genetic algorithm. In this tutorial, the evaluation function, or objective function, provides a

measure of performance with respect to a particular set of parameters. The �tness function

transforms that measure of performance into an allocation of reproductive opportunities.

The evaluation of a string representing a set of parameters is independent of the evaluation

of any other string. The �tness of that string, however, is always de�ned with respect to

other members of the current population.

In the canonical genetic algorithm, �tness is de�ned by: f

i

=

�

f where f

i

is the evaluation

associated with string i and

�

f is the average evaluation of all the strings in the population.

Fitness can also be assigned based on a string's rank in the population (Baker, 1985; Whitley,

1989) or by sampling methods, such as tournament selection (Goldberg, 1990).

It is helpful to view the execution of the genetic algorithm as a two stage process. It

starts with the current population. Selection is applied to the current population to create an

intermediate population. Then recombination and mutation are applied to the intermediate

population to create the next population. The process of going from the current population

to the next population constitutes one generation in the execution of a genetic algorithm.

Goldberg (1989) refers to this basic implementation as a Simple Genetic Algorithm (SGA).

4

String 1

String 2

String 3

String 4

String 1

String 2

String 2

String 4

(Duplication) (Crossover)

Next
Generation t + 1

Intermediate
Generation tGeneration t

Current

Selection Recombination

Offspring-A (1 X 2)

Offspring-B (1 X 2)

Offspring-A (2 X 4)

Offspring-B (2 X 4)

Figure 1: One generation is broken down into a selection phase and recombination phase.

This �gure shows strings being assigned into adjacent slots during selection. In fact, they

can be assigned slots randomly in order to shu�e the intermediate population. Mutation (not

shown) can be applied after crossover.

We will �rst consider the construction of the intermediate population from the current

population. In the �rst generation the current population is also the initial population. After

calculating f

i

=

�

f for all the strings in the current population, selection is carried out. In the

canonical genetic algorithm the probability that strings in the current population are copied

(i.e., duplicated) and placed in the intermediate generation is proportion to their �tness.

There are a number of ways to do selection. We might view the population as mapping

onto a roulette wheel, where each individual is represented by a space that proportionally

corresponds to its �tness. By repeatedly spinning the roulette wheel, individuals are chosen

using \stochastic sampling with replacement" to �ll the intermediate population.

A selection process that will more closely match the expected �tness values is \remainder

stochastic sampling." For each string i where f

i

=

�

f is greater than 1.0, the integer portion of

this number indicates how many copies of that string are directly placed in the intermediate

population. All strings (including those with f

i

=

�

f less than 1.0) then place additional copies

in the intermediate population with a probability corresponding to the fractional portion of

f

i

=

�

f . For example, a string with f

i

=

�

f = 1:36 places 1 copy in the intermediate population,

and then receives a 0:36 chance of placing a second copy. A string with a �tness of f

i

=

�

f = 0:54

has a 0:54 chance of placing one string in the intermediate population.

5

\Remainder stochastic sampling" is most e�ciently implemented using a method known

as Stochastic Universal Sampling. Assume that the population is laid out in random order

as in a pie graph, where each individual is assigned space on the pie graph in proportion

to �tness. Next an outer roulette wheel is placed around the pie with N equally spaced

pointers. A single spin of the roulette wheel will now simultaneously pick all N members of

the intermediate population. The resulting selection is also unbiased (Baker, 1987).

After selection has been carried out the construction of the intermediate population is

complete and recombination can occur. This can be viewed as creating the next population

from the intermediate population. Crossover is applied to randomly paired strings with

a probability denoted p

c

. (The population should already be su�ciently shu�ed by the

random selection process.) Pick a pair of strings. With probability p

c

\recombine" these

strings to form two new strings that are inserted into the next population.

Consider the following binary string: 1101001100101101. The string would represent a

possible solution to some parameter optimization problem. New sample points in the space

are generated by recombining two parent strings. Consider the string 1101001100101101 and

another binary string, yxyyxyxxyyyxyxxy, in which the values 0 and 1 are denoted by x and

y. Using a single randomly chosen recombination point, 1-point crossover occurs as follows.

11010 \/ 01100101101

yxyyx /\ yxxyyyxyxxy

Swapping the fragments between the two parents produces the following o�spring.

11010yxxyyyxyxxy and yxyyx01100101101

After recombination, we can apply a mutation operator. For each bit in the population,

mutate with some low probability p

m

. Typically the mutation rate is applied with less than

1% probability. In some cases, mutation is interpreted as randomly generating a new bit,

in which case, only 50% of the time will the \mutation" actually change the bit value. In

other cases, mutation is interpreted to mean actually ipping the bit. The di�erence is no

more than an implementation detail as long as the user/reader is aware of the di�erence

and understands that the �rst form of mutation produces a change in bit values only half as

often as the second, and that one version of mutation is just a scaled version of the other.

After the process of selection, recombination and mutation is complete, the next popu-

lation can be evaluated. The process of evaluation, selection, recombination and mutation

forms one generation in the execution of a genetic algorithm.

2.1 Why does it work? Search Spaces as Hypercubes.

The question that most people who are new to the �eld of genetic algorithms ask at this

point is why such a process should do anything useful. Why should one believe that this is

going to result in an e�ective form of search or optimization?

The answer which is most widely given to explain the computational behavior of genetic

algorithms came out of John Holland's work. In his classic 1975 book, Adaptation in Nat-

ural and Arti�cial Systems, Holland develops several arguments designed to explain how a

6

\genetic plan" or \genetic algorithm" can result in complex and robust search by implicitly

sampling hyperplane partitions of a search space.

Perhaps the best way to understand how a genetic algorithm can sample hyperplane

partitions is to consider a simple 3-dimensional space (see Figure 2). Assume we have a

problem encoded with just 3 bits; this can be represented as a simple cube with the string

000 at the origin. The corners in this cube are numbered by bit strings and all adjacent

corners are labelled by bit strings that di�er by exactly 1-bit. An example is given in the

top of Figure 2. The front plane of the cube contains all the points that begin with 0.

If *" is used as a \don't care" or wild card match symbol, then this plane can also be

represented by the special string 0**. Strings that contain * are referred to as schemata;

each schema corresponds to a hyperplane in the search space. The \order" of a hyperplane

refers to the number of actual bit values that appear in its schema. Thus, 1** is order-1

while 1**1******0** would be of order-3.

The bottom of Figure 2 illustrates a 4-dimensional space represented by a cube \hanging"

inside another cube. The points can be labeled as follows. Label the points in the inner cube

and outer cube exactly as they are labeled in the top 3-dimensional space. Next, pre�x each

inner cube labeling with a 1 bit and each outer cube labeling with a 0 bit. This creates an

assignment to the points in hyperspace that gives the proper adjacency in the space between

strings that are 1 bit di�erent. The inner cube now corresponds to the hyperplane 1***

while the outer cube corresponds to 0***. It is also rather easy to see that *0** corresponds

to the subset of points that corresponds to the fronts of both cubes. The order-2 hyperplane

10** corresponds to the front of the inner cube.

A bit string matches a particular schemata if that bit string can be constructed from

the schemata by replacing the *" symbol with the appropriate bit value. In general, all

bit strings that match a particular schemata are contained in the hyperplane partition rep-

resented by that particular schemata. Every binary encoding is a \chromosome" which

corresponds to a corner in the hypercube and is a member of 2

L

� 1 di�erent hyperplanes,

where L is the length of the binary encoding. (The string of all * symbols corresponds to

the space itself and is not counted as a partition of the space (Holland 1975:72)). This can

be shown by taking a bit string and looking at all the possible ways that any subset of bits

can be replaced by *" symbols. In other words, there are L positions in the bit string and

each position can be either the bit value contained in the string or the *" symbol.

It is also relatively easy to see that 3

L

� 1 hyperplane partitions can be de�ned over the

entire search space. For each of the L positions in the bit string we can have either the value

*, 1 or 0 which results in 3

L

combinations.

Establishing that each string is a member of 2

L

�1 hyperplane partitions doesn't provide

very much information if each point in the search space is examined in isolation. This is

why the notion of a population based search is critical to genetic algorithms. A population

of sample points provides information about numerous hyperplanes; furthermore, low order

hyperplanes should be sampled by numerous points in the population. (This issue is reexam-

ined in more detail in subsequent sections of this paper.) A key part of a genetic algorithm's

intrinsic or implicit parallelism is derived from the fact that many hyperplanes are sampled

when a population of strings is evaluated (Holland 1975); in fact, it can be argued that far

more hyperplanes are sampled than the number of strings contained in the population. Many

7

010

000

110

001

011

100

111

101

0001

0101

0111

0000

0010

1000

1101

1010

1110

1001

0110

Figure 2: A 3-dimensional cube and a 4-dimensional hypercube. The corners of the inner

cube and outer cube in the bottom 4-D example are numbered in the same way as in the upper

3-D cube, except a 1 is added as a pre�x to the labels of inner cube and a 0 is added as a

pre�x to the labels of the outer cube. Only select points are labeled in the 4-D hypercube.

8

di�erent hyperplanes are evaluated in an implicitly parallel fashion each time a single string

is evaluated (Holland 1975:74); but it is the cumulative e�ects of evaluating a population of

points that provides statistical information about any particular subset of hyperplanes.

1

Implicit parallelism implies that many hyperplane competitions are simultaneously solved

in parallel. The theory suggests that through the process of reproduction and recombination,

the schemata of competing hyperplanes increase or decrease their representation in the pop-

ulation according to the relative �tness of the strings that lie in those hyperplane partitions.

Because genetic algorithms operate on populations of strings, one can track the proportional

representation of a single schema representing a particular hyperplane in a population and

indicate whether that hyperplane will increase or decrease its representation in the popula-

tion over time when �tness based selection is combined with crossover to produce o�spring

from existing strings in the population.

3 Two Views of Hyperplane Sampling

Another way of looking at hyperplane partitions is presented in Figure 3. A function over a

single variable is plotted as a one-dimensional space, with function maximization as a goal.

The hyperplane 0****...** spans the �rst half of the space and 1****...** spans the second

half of the space. Since the strings in the 0****...** partition are on average better than

those in the 1****...** partition, we would like the search to be proportionally biased toward

this partition. In the second graph the portion of the space corresponding to **1**...** is

shaded, which also highlights the intersection of 0****...** and **1**...**, namely, 0*1*...**.

Finally, in the third graph, 0*10**...** is highlighted.

One of the points of Figure 3 is that the sampling of hyperplane partitions is not really

e�ected by local optima. At the same time, increasing the sampling rate of partitions that

are above average compared to other competing partitions does not guarantee convergence

to a global optimum. The global optimum could be a relatively isolated peak, for example.

Nevertheless, good solutions that are globally competitive should be found.

It is also a useful exercise to look at an example of a simple genetic algorithm in action.

In Table 1, the �rst 3 bits of each string are given explicitly while the remainder of the bit

positions are unspeci�ed. The goal is to look at only those hyperplanes de�ned over the �rst

3 bit positions in order to see what actually happens during the selection phase when strings

are duplicated according to �tness. The theory behind genetic algorithms suggests that the

new distribution of points in each hyperplane should change according to the average �tness

of the strings in the population that are contained in the corresponding hyperplane partition.

Thus, even though a genetic algorithm never explicitly evaluates any particular hyperplane

partition, it should change the distribution of string copies as if it had.

1

Holland initially used the term intrinsic parallelism in his 1975 monograph, then decided to switch to

implicit parallelism to avoid confusion with terminology in parallel computing. Unfortunately, the term

implicit parallelism in the parallel computing community refers to parallelism which is extracted from code

written in functional languages that have no explicit parallel constructs. Implicit parallelism does not refer to

the potential for running genetic algorithms on parallel hardware, although genetic algorithms are generally

viewed as highly parallelizable algorithms.

9

F(X)

0 K/2 K

Variable X

 0

 1

0 K/8 K/4 K/2 K

Variable X

 0

 1

F(X)

0 K/8 K/4 K/2 K

Variable X

 0

 1

F(X)

0***...* **1*...* 0*10*...*

Figure 3: A function and various partitions of hyperspace. Fitness is scaled to a 0 to 1 range

in this diagram.

10

String Fitness Random Copies String Fitness Random Copies

001b

1;4

...b

1;L

2.0 { 2 011b

12;4

...b

12;L

0.9 0.28 1

101b

2;4

...b

2;L

1.9 0.93 2 000b

13;4

...b

13;L

0.8 0.13 0

111b

3;4

...b

3;L

1.8 0.65 2 110b

14;4

...b

14;L

0.7 0.70 1

010b

4;4

...b

4;L

1.7 0.02 1 110b

15;4

...b

15;L

0.6 0.80 1

111b

5;4

...b

5;L

1.6 0.51 2 100b

16;4

...b

16;L

0.5 0.51 1

101b

6;4

...b

6;L

1.5 0.20 1 011b

17;4

...b

17;L

0.4 0.76 1

011b

7;4

...b

7;L

1.4 0.93 2 000b

18;4

...b

18;L

0.3 0.45 0

001b

8;4

...b

8;L

1.3 0.20 1 001b

19;4

...b

19;L

0.2 0.61 0

000b

9;4

...b

9;L

1.2 0.37 1 100b

20;4

...b

20;L

0.1 0.07 0

100b

10;4

...b

10;L

1.1 0.79 1 010b

21;4

...b

21;L

0.0 { 0

010b

11;4

...b

11;L

1.0 { 1

Table 1: A population with �tness assigned to strings according to rank. Random is a

random number which determines whether or not a copy of a string is awarded for the

fractional remainder of the �tness.

The example population in Table 1 contains only 21 (partially speci�ed) strings. Since we

are not particularly concerned with the exact evaluation of these strings, the �tness values

will be assigned according to rank. (The notion of assigning �tness by rank rather than by

�tness proportional representation has not been discussed in detail, but the current example

relates to change in representation due to �tness and not how that �tness is assigned.)

The table includes information on the �tness of each string and the number of copies to

be placed in the intermediate population. In this example, the number of copies produced

during selection is determined by automatically assigning the integer part, then assigning

the fractional part by generating a random value between 0.0 and 1.0 (a form of remainder

stochastic sampling). If the random value is greater than (1�remainder); then an additional

copy is awarded to the corresponding individual.

Genetic algorithms appear to process many hyperplanes implicitly in parallel when selec-

tion acts on the population. Table 2 enumerates the 27 hyperplanes (3

3

) that can be de�ned

over the �rst three bits of the strings in the population and explicitly calculates the �tness

associated with the corresponding hyperplane partition. The true �tness of the hyperplane

partition corresponds to the average �tness of all strings that lie in that hyperplane parti-

tion. The genetic algorithm uses the population as a sample for estimating the �tness of

that hyperplane partition. Of course, the only time the sample is random is during the �rst

generation. After this, the sample of new strings should be biased toward regions that have

previously contained strings that were above average with respect to previous populations.

If the genetic algorithm works as advertised, the number of copies of strings that actually

fall in a particular hyperplane partition after selection should approximate the expected

number of copies that should fall in that partition.

11

Schemata and Fitness Values

Schema Mean Count Expect Obs Schema Mean Count Expect Obs

101*...* 1.70 2 3.4 3 *0**...* 0.991 11 10.9 9

111*...* 1.70 2 3.4 4 00**...* 0.967 6 5.8 4

1*1*...* 1.70 4 6.8 7 0***...* 0.933 12 11.2 10

01...* 1.38 5 6.9 6 011*...* 0.900 3 2.7 4

**1*...* 1.30 10 13.0 14 010*...* 0.900 3 2.7 2

11...* 1.22 5 6.1 8 01**...* 0.900 6 5.4 6

11**...* 1.175 4 4.7 6 0*0*...* 0.833 6 5.0 3

001*...* 1.166 3 3.5 3 *10*...* 0.800 5 4.0 4

1***...* 1.089 9 9.8 11 000*...* 0.767 3 2.3 1

0*1*...* 1.033 6 6.2 7 **0*...* 0.727 11 8.0 7

10**...* 1.020 5 5.1 5 *00*...* 0.667 6 4.0 3

*1**...* 1.010 10 10.1 12 110*...* 0.650 2 1.3 2

****...* 1.000 21 21.0 21 1*0*...* 0.600 5 3.0 4

100*...* 0.566 3 1.70 2

Table 2: The average �tnesses (Mean) associated with the samples from the 27 hyperplanes

de�ned over the �rst three bit positions are explicitly calculated. The Expected representation

(Expect) and Observed representation (Obs) are shown. Count refers to the number of

strings in hyperplane H before selection.

In Table 2, the expected number of strings sampling a hyperplane partition after selection

can be calculated by multiplying the number of hyperplane samples in the current population

before selection by the average �tness of the strings in the population that fall in that

partition. The observed number of copies actually allocated by selection is also given. In

most cases the match between expected and observed sampling rate is fairly good: the error

is a result of sampling error due to the small population size.

It is useful to begin formalizing the idea of tracking the potential sampling rate of a

hyperplane, H. Let M(H; t) be the number of strings sampling H at the current generation t

in some population. Let (t+ intermediate) index the generation t after selection (but before

crossover and mutation), and f(H; t) be the average evaluation of the sample of strings in

partition H in the current population. Formally, the change in representation according to

�tness associated with the strings that are drawn from hyperplane H is expressed by:

M(H; t+ intermediate) = M(H; t)

f(H; t)

�

f

:

Of course, when strings are merely duplicated no new sampling of hyperplanes is actu-

ally occurring since no new samples are generated. Theoretically, we would like to have a

sample of new points with this same distribution. In practice, this is generally not possible.

Recombination and mutation, however, provides a means of generating new sample points

while partially preserving distribution of strings across hyperplanes that is observed in the

intermediate population.

12

3.1 Crossover Operators and Schemata

The observed representation of hyperplanes in Table 2 corresponds to the representation in

the intermediate population after selection but before recombination. What does recombi-

nation do to the observed string distributions? Clearly, order-1 hyperplane samples are not

a�ected by recombination, since the single critical bit is always inherited by one of the o�-

spring. However, the observed distribution of potential samples from hyperplane partitions

of order-2 and higher can be a�ected by crossover. Furthermore, all hyperplanes of the same

order are not necessarily a�ected with the same probability. Consider 1-point crossover. This

recombination operator is nice because it is relatively easy to quantify its e�ects on di�erent

schemata representing hyperplanes. To keep things simple, assume we are are working with

a string encoded with just 12 bits. Now consider the following two schemata.

11********** and 1**********1

The probability that the bits in the �rst schema will be separated during 1-point crossover

is only 1=L� 1, since in general there are L� 1 crossover points in a string of length L. The

probability that the bits in the second rightmost schema are disrupted by 1-point crossover

however is (L�1)=(L�1), or 1.0, since each of the L-1 crossover points separates the bits in

the schema. This leads to a general observation: when using 1-point crossover the positions

of the bits in the schema are important in determining the likelihood that those bits will

remain together during crossover.

3.1.1 2-point Crossover

What happens if a 2-point crossover operator is used? A 2-point crossover operator uses two

randomly chosen crossover points. Strings exchange the segment that falls between these two

points. Ken DeJong �rst observed (1975) that 2-point crossover treats strings and schemata

as if they form a ring, which can be illustrated as follows:

b7 b6 b5 * * *

b8 b4 * *

b9 b3 * *

b10 b2 * *

b11 b12 b1 * 1 1

where b1 to b12 represents bits 1 to 12. When viewed in this way, 1-point crossover

is a special case of 2-point crossover where one of the crossover points always occurs at

the wrap-around position between the �rst and last bit. Maximum disruptions for order-2

schemata now occur when the 2 bits are at complementary positions on this ring.

For 1-point and 2-point crossover it is clear that schemata which have bits that are

close together on the string encoding (or ring) are less likely to be disrupted by crossover.

More precisely, hyperplanes represented by schemata with more compact representations

should be sampled at rates that are closer to those potential sampling distribution targets

achieved under selection alone. For current purposes a compact representation with respect

13

to schemata is one that minimizes the probability of disruption during crossover. Note that

this de�nition is operator dependent, since both of the two order-2 schemata examined in

section 3.1 are equally and maximally compact with respect to 2-point crossover, but are

maximally di�erent with respect to 1-point crossover.

3.1.2 Linkage and De�ning Length

Linkage refers to the phenomenon whereby a set of bits act as \coadapted alleles" that tend

to be inherited together as a group. In this case an allele would correspond to a particular

bit value in a speci�c position on the chromosome. Of course, linkage can be seen as a

generalization of the notion of a compact representation with respect to schema. Linkage

is is sometimed de�ned by physical adjacency of bits in a string encoding; this implicitly

assumes that 1-point crossover is the operator being used. Linkage under 2-point crossover

is di�erent and must be de�ned with respect to distance on the chromosome when treated

as a ring. Nevertheless, linkage usually is equated with physical adjacency on a string, as

measured by de�ning length.

The de�ning length of a schemata is based on the distance between the �rst and last bits

in the schema with value either 0 or 1 (i.e., not a * symbol). Given that each position in

a schema can be 0, 1 or *, then scanning left to right, if I

x

is the index of the position of

the rightmost occurrence of either a 0 or 1 and I

y

is the index of the leftmost occurrence

of either a 0 or 1, then the de�ning length is merely I

x

� I

y

: Thus, the de�ning length of

****1**0**10** is 12 � 5 = 7. The de�ning length of a schema representing a hyperplane

H is denoted here by �(H). The de�ning length is a direct measure of how many possible

crossover points fall within the signi�cant portion of a schemata. If 1-point crossover is

used, then �(H)=L � 1 is also a direct measure of how likely crossover is to fall within the

signi�cant portion of a schemata during crossover.

3.1.3 Linkage and Inversion

Along with mutation and crossover, inversion is often considered to be a basic genetic oper-

ator. Inversion can change the linkage of bits on the chromosome such that bits with greater

nonlinear interactions can potentially be moved closer together on the chromosome.

Typically, inversion is implemented by reversing a random segment of the chromosome.

However, before one can start moving bits around on the chromosome to improve linkage,

the bits must have a position independent decoding. A common error that some researchers

make when �rst implementing inversion is to reverse bit segments of a directly encoded

chromosome. But just reversing some random segment of bits is nothing more than large

scale mutation if the mapping from bits to parameters is position dependent.

A position independent encoding requires that each bit be tagged in some way. For

example, consider the following encoding composed of pairs where the �rst number is a bit

tag which indexes the bit and the second represents the bit value.

((9 0) (6 0) (2 1) (7 1) (5 1) (8 1) (3 0) (1 0) (4 0))

14

The linkage can now be changed by moving around the tag-bit pairs, but the string

remains the same when decoded: 010010110. One must now also consider how recombination

is to be implemented. Goldberg and Bridges (1990), Whitley (1991) as well as Holland (1975)

discuss the problems of exploiting linkage and the recombination of tagged representations.

4 The Schema Theorem

A foundation has been laid to now develop the fundamental theorem of genetic algorithms.

The schema theorem (Holland, 1975) provides a lower bound on the change in the sampling

rate for a single hyperplane from generation t to generation t+ 1.

Consider again what happens to a particular hyperplane, H when only selection occurs.

M(H; t+ intermediate) = M(H; t)

f(H; t)

�

f

:

To calculate M(H,t+1) we must consider the e�ects of crossover as the next generation

is created from the intermediate generation. First we consider that crossover is applied

probabilistically to a portion of the population. For that part of the population that does

not undergo crossover, the representation due to selection is unchanged. When crossover

does occur, then we must calculate losses due to its disruptive e�ects.

M(H; t + 1) = (1� p

c

)M(H; t)

f(H; t)

�

f

+ p

c

"

M(H; t)

f(H; t)

�

f

(1 � losses) + gains

#

In the derivation of the schema theorem a conservative assumption is made at this point.

It is assumed that crossover within the de�ning length of the schema is always disruptive to

the schema representing H. In fact, this is not true and an exact calculation of the e�ects

of crossover is presented later in this paper. For example, assume we are interested in the

schema 11*****. If a string such as 1110101 were recombined between the �rst two bits with

a string such as 1000000 or 0100000, no disruption would occur in hyperplane 11***** since

one of the o�spring would still reside in this partition. Also, if 1000000 and 0100000 were

recombined exactly between the �rst and second bit, a new independent o�spring would

sample 11*****; this is the sources of gains that is referred to in the above calculation. To

simplify things, gains are ignored and the conservative assumption is made that crossover

falling in the signi�cant portion of a schema always leads to disruption. Thus,

M(H; t+ 1) � (1� p

c

)M(H; t)

f(H; t)

�

f

+ p

c

"

M(H; t)

f(H; t)

�

f

(1� disruptions)

#

where disruptions overestimates losses. We might wish to consider one exception: if two

strings that both sample H are recombined, then no disruption occurs. Let P (H; t) denote

the proportional represention of H obtained by dividing M(H; t) by the population size.

The probability that a randomly chosen mate samples H is just P (H; t). Recall that �(H)

is the de�ning length associated with 1-point crossover. Disruption is therefore given by:

�(H)

L� 1

(1 � P (H; t)):

15

At this point, the inequality can be simpli�ed. Both sides can be divided by the popula-

tion size to convert this into an expression for P (H; t + 1), the proportional representation

of H at generation t+ 1: Furthermore, the expression can be rearranged with respect to p

c

.

P (H; t + 1) � P (H; t)

f(H; t)

�

f

"

1� p

c

�(H)

L � 1

(1� P (H; t))

#

We now have a useful version of the schema theorem (although it does not yet consider

mutation); but it is not the only version in the literature. For example, both parents are

typically chosen based on �tness. This can be added to the schema theorem by merely

indicating the alternative parent is chosen from the intermediate population after selection.

P (H; t+ 1) � P (H; t)

f(H; t)

�

f

"

1� p

c

�(H)

L� 1

(1� P (H; t)

f(H; t)

�

f

)

#

Finally, mutation is included. Let o(H) be a function that returns the order of the

hyperplane H. The order of H exactly corresponds to a count of the number of bits in the

schema representing H that have value 0 or 1. Let the mutation probability be p

m

where

mutation always ips the bit. Thus the probability that mutation does a�ect the schema

representing H is (1�p

m

)

o(H)

. This leads to the following expression of the schema theorem.

P (H; t + 1) � P (H; t)

f(H; t)

�

f

"

1� p

c

�(H)

L � 1

(1� P (H; t)

f(H; t)

�

f

)

#

(1 � p

m

)

o(H)

4.1 Crossover, Mutation and Premature Convergence

Clearly the schema theorem places the greatest emphasis on the role of crossover and hy-

perplane sampling in genetic search. To maximize the preservation of hyperplane samples

after selection, the disruptive e�ects of crossover and mutation should be minimized. This

suggests that mutation should perhaps not be used at all, or at least used at very low levels.

The motivation for using mutation, then, is to prevent the permanent loss of any partic-

ular bit or allele. After several generations it is possible that selection will drive all the bits

in some position to a single value: either 0 or 1. If this happens without the genetic algo-

rithm converging to a satisfactory solution, then the algorithm has prematurely converged.

This may particularly be a problem if one is working with a small population. Without a

mutation operator, there is no possibility for reintroducing the missing bit value. Also, if the

target function is nonstationary and the �tness landscape changes over time (which is cer-

tainly the case in real biological systems), then there needs to be some source of continuing

genetic diversity. Mutation, therefore acts as a background operator, occasionally changing

bit values and allowing alternative alleles (and hyperplane partitions) to be retested.

This particular interpretation of mutation ignores its potential as a hill-climbing mech-

anism: from the strict hyperplane sampling point of view imposed by the schema theorem

mutation is a necessary evil. But this is perhaps a limited point of view. There are several

experimental researchers that point out that genetic search using mutation and no crossover

often produces a fairly robust search. And there is little or no theory that has addressed the

interactions of hyperplane sampling and hill-climbing in genetic search.

16

Another problem related to premature convergence is the need for scaling the population

�tness. As the average evaluation of the strings in the population increases, the variance

in �tness decreases in the population. There may be little di�erence between the best and

worst individual in the population after several generations, and the selective pressure based

on �tness is correspondingly reduced. This problem can partially be addressed by using

some form of �tness scaling (Grefenstette, 1986; Goldberg, 1989). In the simplest case, one

can subtract the evaluation of the worst string in the population from the evaluations of

all strings in the population. One can now compute the average string evaluation as well

as �tness values using this adjusted evaluation, which will increase the resulting selective

pressure. Alternatively, one can use a rank based form of selection.

4.2 How Recombination Moves Through a Hypercube

The nice thing about 1-point crossover is that it is easy to model analytically. But it is

also easy to show analytically that if one is interested in minimizing schema disruption, then

2-point crossover is better. But operators that use many crossover points should be avoided

because of extreme disruption to schemata. This is again a point of view imposed by a strict

interpretation of the schema theorem. On the other hand, disruption may not be the only

factor a�ecting the performance of a genetic algorithm.

4.2.1 Uniform Crossover

The operator that has received the most attention in recent years is uniform crossover.

Uniform crossover was studied in some detail by Ackley (1987) and popularized by Syswerda

(1989). Uniform crossover works as follows: for each bit position 1 to L, randomly pick each

bit from either of the two parent strings. This means that each bit is inherited independently

from any other bit and that there is, in fact, no linkage between bits. It also means that

uniform crossover is unbiased with respect to de�ning length. In general the probability of

disruption is 1 � (1=2)

o(H)�1

, where o(H) is the order of the schema we are interested in.

(It doesn't matter which o�spring inherits the �rst critical bit, but all other bits must be

inherited by that same o�spring. This is also a worst case probability of disruption which

assumes no alleles found in the schema of interest are shared by the parents.) Thus, for any

order-3 schemata the probability of uniform crossover separating the critical bits is always

1 � (1=2)

2

= 0:75. Consider for a moment a string of 9 bits. The de�ning length of a

schema must equal 6 before the disruptive probabilities of 1-point crossover match those

associated with uniform crossover (6/8 = .75). We can de�ne 84 di�erent order-3 schemata

over any particular string of 9 bits (i.e., 9 choose 3). Of these schemata, only 19 of the 84

order-2 schemata have a disruption rate higher than 0.75 under 1-point crossover. Another

15 have exactly the same disruption rate, and 50 of the 84 order-2 schemata have a lower

disruption rate. It is relative easy to show that, while uniform crossover is unbiased with

respect to de�ning length, it is also generally more disruptive than 1-point crossover. Spears

and DeJong (1991) have shown that uniform crossover is in every case more disruptive than

2-point crossover for order-3 schemata for all de�ning lengths.

17

0011 0101 0110 1001 1010 1100

0000

1111

0111 1011 1101 1110

1000010000100001

Figure 4: This graph illustrates paths though 4-D space. A 1-point crossover of 1111 and

0000 can only generate o�spring that reside along the dashed paths at the edges of this graph.

Despite these analytical results, several researchers have suggested that uniform crossover

is sometimes a better recombination operator. One can point to its lack of representational

bias with respect to schema disruption as a possible explanation, but this is unlikely since

uniform crossover is uniformly worse than 2-point crossover. Spears and DeJong (1991:314)

speculate that, \With small populations, more disruptive crossover operators such as uniform

or n-point (n � 2) may yield better results because they help overcome the limited infor-

mation capacity of smaller populations and the tendency for more homogeneity." Eshelman

(1991) has made similar arguments outlining the advantages of disruptive operators.

There is another sense in which uniform crossover is unbiased. Assume we wish to

recombine the bits string 0000 and 1111. We can conveniently lay out the 4-dimensional

hypercube as shown in Figure 4. We can also view these strings as being connected by a set

of minimal paths through the hypercube; pick one parent string as the origin and the other

as the destination. Now change a single bit in the binary representation corresponding to the

point of origin. Any such move will reach a point that is one move closer to the destination.

In Figure 4 it is easy to see that changing a single bit is a move up or down in the graph.

All of the points between 0000 and 1111 are reachable by some single application of

uniform crossover. However, 1-point crossover only generates strings that lie along two com-

plementary paths (in the �gure, the leftmost and rightmost paths) through this 4-dimensional

hypercube. In general, uniform crossover will draw a complementary pair of sample points

with equal probability from all points that lie along any complementary minimal paths in

the hypercube between the two parents, while 1-point crossover samples points from only

two speci�c complementary minimal paths between the two parent strings. It is also easy to

see that 2-point crossover is less restrictive than 1-point crossover. Note that the number of

bits that are di�erent between two strings is just the Hamming distance, H. Not including

the original parent strings, uniform crossover can generate 2

H

� 2 di�erent strings, while

1-point crossover can generate 2(H� 1) di�erent strings since there are H crossover points

that produce unique o�spring (see the discussion in the next section) and each crossover

produces 2 o�spring. The 2-point crossover operator can generate 2

�

H

2

�

= H

2

�H di�erent

18

o�spring since there are H choose 2 di�erent crossover points that will result in o�spring

that are not copies of the parents and each pair of crossover points generates 2 strings.

4.3 Reduced Surrogates

Consider crossing the following two strings and a \reduced" version of the same strings,

where the bits the strings share in common have been removed.

0001111011010011 ----11---1-----1

0001001010010010 ----00---0-----0

Both strings lie in the hyperplane 0001**101*01001*. The ip side of this observation

is that crossover is really restricted to a subcube de�ned over the bit positions that are

di�erent. We can isolate this subcube by removing all of the bits that are equivalent in

the two parent structures. Booker (1987) refers to strings such as ----11---1-----1 and

----00---0-----0 as the \reduced surrogates" of the original parent chromosomes.

When viewed in this way, it is clear that recombination of these particular strings occurs in

a 4-dimensional subcube, more or less identical to the one examined in the previous example.

Uniform crossover is unbiased with respect to this subcube in the sense that uniform crossover

will still sample in an unbiased, uniform fashion from all of the pairs of points that lie

along complementary minimal paths in the subcube de�ned between the two original parent

strings. On the other hand, simple 1-point or 2-point crossover will not. To help illustrate

this idea, we recombine the original strings, but examine the o�spring in their \reduced"

forms. For example, simple 1-point crossover will generate o�spring ----11---1-----0

and ----00---0-----1 with a probability of 6/15 since there are 6 crossover points in the

original parent strings between the third and fourth bits in the reduced subcube and L-1

= 15. On the other hand, ----10---0-----0 and ----01---1-----1 are sampled with a

probability of only 1/15 since there is only a single crossover point in the original parent

structures that falls between the �rst and second bits that de�ne the subcube.

One can remove this particular bias, however. We apply crossover on the reduced surro-

gates. Crossover can now exploit the fact that there is really only 1 crossover point between

any signi�cant bits that appear in the reduced surrogate forms. There is also another bene�t.

If at least 1 crossover point falls between the �rst and last signi�cant bits in the reduced

surrogates, the o�spring are guaranteed not to be duplicates of the parents. (This assumes

the parents di�er by at least two bits). Thus, new sample points in hyperspace are generated.

The debate on the merits of uniform crossover and operators such as 2-point reduced sur-

rogate crossover is not a closed issue. To fully understand the interaction between hyperplane

sampling, population size, premature convergence, crossover operators, genetic diversity and

the role of hill-climbing by mutation requires better analytical methods.

5 The Case for Binary Alphabets

The motivation behind the use of a minimal binary alphabet is based on relatively simple

counting arguments. A minimal alphabet maximizes the number of hyperplane partitions di-

19

rectly available in the encoding for schema processing. These low order hyperplane partitions

are also sampled at a higher rate than would occur with an alphabet of higher cardinality.

Any set of order-1 schemata such as 1*** and 0*** cuts the search space in half. Clearly,

there are L pairs of order-1 schemata. For order-2 schemata, there are

�

L

2

�

ways to pick

locations in which to place the 2 critical bits positions, and there are 2

2

possible ways to

assign values to those bits. In general, if we wish to count how many schemata representing

hyperplanes exist at some order i, this value is given by 2

i

�

L

i

�

where

�

L

i

�

counts the number

of ways to pick i positions that will have signi�cant bit values in a string of length L and 2

i

is the number of ways to assign values to those positions. This ideal can be illustrated for

order-1 and order-2 schemata as follows:

Order 1 Schemata Order 2 Schemata

0*** *0** **0* ***0 00** 0*0* 0**0 *00* *0*0 **00

1*** *1** **1* ***1 01** 0*1* 0**1 *01* *0*1 **01

10** 1*0* 1**0 *10* *1*0 **10

11** 1*1* 1**1 *11* *1*1 **11

These counting arguments naturally lead to questions about the relationship between

population size and the number of hyperplanes that are sampled by a genetic algorithm.

One can take a very simple view of this question and ask how many schemata of order-1

are sampled and how well are they represented in a population of size N. These numbers

are based on the assumption that we are interested in hyperplane representations associated

with the initial random population, since selection changes the distributions over time. In

a population of size N there should be N/2 samples of each of the 2L order-1 hyperplane

partitions. Therefore 50% of the population falls in any particular order-1 partition. Each

order-2 partition is sampled by 25% of the population. In general then, each hyperplane of

order i is sampled by (1=2)

i

of the population.

5.1 The N

3

Argument

These counting arguments set the stage for the claim that a genetic algorithm processes on

the order of N

3

hyperplanes when the population size is N. The derivation used here is based

on work found in the appendix of Fitzpatrick and Grefenstette (1988).

Let � be the highest order of hyperplane which is represented in a population of size N by

at least � copies; � is given by log(N=�). We wish to have at least � samples of a hyperplane

before claiming that we are statistically sampling that hyperplane.

Recall that the number of di�erent hyperplane partitions of order-� is given by 2

�

�

L

�

�

which is just the number of di�erent ways to pick � di�erent positions and to assign all

possible binary values to each subset of the � positions. Thus, we now need to show

2

�

L

�

!

� N

3

which implies 2

�

L

�

!

� (2

�

�)

3

20

since � = log(N=�) and N = 2

�

�. Fitzpatrick and Grefenstette now make the following

arguments. Assume L � 64 and 2

6

� N � 2

20

. Pick � = 8, which implies 3 � � � 17: By

inspection the number of schemata processed is greater than N

3

.

This argument does not hold in general for any population of size N. Given a string of

length L, the number of hyperplanes in the space is �nite. However, the population size can

be chosen arbitrarily. The total number of schemata associated with a string of length L

is 3

L

. Thus if we pick a population size where N = 3

L

then at most N hyperplanes can

be processed (Michael Vose, personal communication). Therefore, N must be chosen with

respect to L to make the N

3

argument reasonable. At the same time, the range of values

2

6

� N � 2

20

does represent a wide range of practical population sizes.

Still, the argument that N

3

hyperplanes are usefully processed assumes that all of these

hyperplanes are processed with some degree of independence. Notice that the current deriva-

tion counts only those schemata that are exactly of order-�. The sum of all schemata from

order-1 to order-� that should be well represented in a random initial population is given

by:

P

�

x=1

2

x

�

L

x

�

. By only counting schemata that are exactly of order-� we might hope to

avoid arguments about interactions with lower order schemata. However, all the N

3

argu-

ment really shows is that there may be as many as N

3

hyperplanes that are well represented

given an appropriate population size. But a simple static count of the number of schemata

available for processing fails to consider the dynamic behavior of the genetic algorithm.

As discussed later in this tutorial, dynamic models of the genetic algorithm now exist

(Vose and Liepins, 1991; Whitley, Das and Crabb 1992). There has not yet, however, been

any real attempt to use these models to look at complex interactions between large numbers of

hyperplane competitions. It is obvious in some vacuous sense that knowing the distribution

of the initial population as well as the �tnesses of these strings (and the strings that are

subsequently generated by the genetic algorithm) is su�cient information for modeling the

dynamic behavior of the genetic algorithm (Vose 1993). This suggests that we only need

information about those strings sampled by the genetic algorithm. However, this micro-level

view of the genetic algorithm does not seems to explain its macro-level processing power.

5.2 The Case for Nonbinary Alphabets

There are two basic arguments against using higher cardinality alphabets. First, there

will be fewer explicit hyperplane partitions. Second, the alphabetic characters (and the

corresponding hyperplane partitions) associated with a higher cardinality alphabet will not

be as well represented in a �nite population. This either forces the use of larger population

sizes or the e�ectiveness of statistical sampling is diminished.

The arguments for using binary alphabets assume that the schemata representing hyper-

planes must be explicitly and directly manipulated by recombination. Antonisse (1989) has

argued that this need not be the case and that higher order alphabets o�er as much richness

in terms of hyperplane samples as lower order alphabets. For example, using an alphabet of

the four characters A, B, C, D one can de�ne all the same hyperplane partitions in a binary

alphabet by de�ning partitions such as (A and B), (C and D), etc. In general, Antonisse

argues that one can look at the all subsets of the power set of schemata as also de�ning hy-

perplanes. Viewed in this way, higher cardinality alphabets yield more hyperplane partitions

21

than binary alphabets. Antonisse's arguments fail to show however, that the hyperplanes

that corresponds to the subsets de�ned in this scheme actually provide new independent

sources of information which can be processed in a meaningful way by a genetic algorithm.

This does not disprove Antonisse's claims, but does suggest that there are unresolved issues

associated with this hypothesis.

There are other arguments for nonbinary encodings. Davis (1991) argues that the dis-

advantages of nonbinary encodings can be o�set by the larger range of operators that can

be applied to problems, and that more problem dependent aspects of the coding can be

exploited. Scha�er and Eshelman (1992) as well as Wright (1991) present interesting argu-

ments for real-valued encodings. Goldberg (1991) suggests that virtual minimal alphabets

that facilitate hyperplane sampling can emerge from higher cardinality alphabets.

6 Criticisms of the Schema Theorem

There are some obvious limitations of the schema theorem which restrict its usefulness.

First, it is an inequality. By ignoring string gains and undercounting string losses, a great

deal of information is lost. The inexactness of the inequality is such that if one were to

try to use the schema theorem to predict the representation of a particular hyperplane over

multiple generations, the resulting predictions would in many cases be useless or misleading

(e.g. Grefenstette 1993; Vose, personal communication, 1993). Second, the observed �tness

of a hyperplane H at time t can change dramatically as the population concentrates its

new samples in more specialized subpartitions of hyperspace. Thus, looking at the average

�tness of all the strings in a particular hyperplane (or using a random sample to estimate

this �tness) is only relevant to the �rst generation or two (Grefenstette and Baker, 1989).

After this, the sampling of strings is biased and the inexactness of the schema theorem makes

it impossible to predict computational behavior.

In general, the schema theorem provides a lower bound that holds for only one gener-

ation into the future. Therefore, one cannot predict the representation of a hyperplane H

over multiple generations without considering what is simultaneous happening to the other

hyperplanes being processed by the genetic algorithm.

These criticisms imply that the views of hyperplane sampling presented in section 3 of

this tutorial may be good rhetorical tools for explaining hyperplane sampling, but they fail to

capture the full complexity of the genetic algorithm. This is partly because the discussion in

section 3 focuses on the impact of selection without considering the disruptive and generative

e�ects of crossover. The schema theorem does not provide an exact picture of the genetic

algorithms behavior and cannot predict how a speci�c hyperplane is processed over time. In

the next section, a introduction is to an exact version of the schema theorem.

7 An Executable Model of the Genetic Algorithm

Consider the complete version of the schema theorem before dropping the gains term and

simplifying the losses calculation.

22

P (Z; t+ 1) = P (Z; t)

f(Z; t)

�

f

(1� fp

c

lossesg) + fp

c

gains.g

In the current formulation, Z will refer to a string. Assume we apply this equation to

each string in the search space. The result is an exact model of the computational behavior

of a genetic algorithm. Since modeling strings models the highest order schemata, the model

implicitly includes all lower order schemata. Also, the �tnesses of strings are constants in

the canonical genetic algorithm using �tness proportional reproduction and one need not

worry about changes in the observed �tness of a hyperplane as represented by the current

population. Given a speci�cation of Z, one can exactly calculate losses and gains. Losses

occur when a string crosses with another string and the resulting o�spring fails to preserve

the original string. Gains occur when two di�erent strings cross and independently create

a new copy of some string. For example, if Z = 000 then recombining 100 and 001 will

always produce a new copy of 000. Assuming 1-point crossover is used as an operator, the

probability of \losses" and \gains" for the string Z = 000 are calculated as follows:

losses = P

I0

f(111)

�

f

P (111; t)+ P

I0

f(101)

�

f

P (101; t)

+P

I1

f(110)

�

f

P (110; t)+ P

I2

f(011)

�

f

P (011; t):

gains = P

I0

f(001)

�

f

P (001; t)

f(100)

�

f

P (100; t) + P

I1

f(010)

�

f

P (010; t)

f(100)

�

f

P (100; t)

+P

I1

f(011)

�

f

P (011; t)

f(100)

�

f

P (100; t) + P

I2

f(001)

�

f

P (001; t)

f(110)

�

f

P (110; t)

+P

I2

f(001)

�

f

P (001; t)

f(010)

�

f

P (010; t):

The use of P

I0

in the preceding equations represents the probability of crossover in any

position on the corresponding string or string pair. Since Z is a string, it follows that P

I0

=

1.0 and crossover in the relevant cases will always produce either a loss or a gain (depending

on the expression in which the term appears). The probability that one-point crossover will

fall between the �rst and second bit will be denoted by P

I1

. In this case, crossover must

fall in exactly this position with respect to the corresponding strings to result in a loss or

a gain. Likewise, P

I2

will denote the probability that one-point crossover will fall between

the second and third bit and the use of P

I2

in the computation implies that crossover must

fall in this position for a particular string or string pair to e�ect the calculation of losses or

gains. In the above illustration, P

I1

= P

I2

= 0:5.

The equations can be generalized to cover the remaining 7 strings in the space. This trans-

lation is accomplished using bitwise addition modulo 2 (i.e., a bitwise exclusive-or denoted

by �. See Figure 4 and section 6.4). The function (S

i

� Z) is applied to each bit string, S

i

,

contained in the equation presented in this section to produce the appropriate corresponding

strings for generating an expression for computing all terms of the form P(Z,t+1).

23

7.1 A Generalized Form Based on Equation Generators

The 3 bit equations are similar to the 2 bit equations developed by Goldberg (1987). The

development of a general form for these equations is illustrated by generating the loss and

gain terms in a systematic fashion (Whitley, Das and Crabb, 1992). Because the number of

terms in the equations is greater than the number of strings in the search space, it is only

practical to develop equations for encodings of approximately 15 bits. The equations need

only be de�ned once for one string in the space; the standard form of the equation is always

de�ned for the string composed of all zero bits. Let S represent the set of binary strings of

length L, indexed by i. In general, the string composed of all zero bits is denoted S

0

.

7.2 Generating String Losses for 1-point crossover

Consider two strings 00000000000 and 00010000100. Using 1-point crossover, if the crossover

occurs before the �rst \1" bit or after the last \1" bit, no disruption will occur. Any crossover

between the 1 bits, however, will produce disruption: neither parent will survive crossover.

Also note that recombining 00000000000 with any string of the form 0001####100 will

produce the same pattern of disruption. We will refer to this string as a generator: it is

like a schema, but # is used instead of * to better distinguish between a generator and the

corresponding hyperplane. Bridges and Goldberg (1987) formalize the notion of a generator

as follows. Consider strings B and B

0

where the �rst x bits are equal, the middle (�+1) bits

have the pattern b##:::#b for B and

�

b##:::#

�

b for B

0

. Given that the strings are of length

L, the last (L � � � x � 1) bits are equivalent. The

�

b bits are referred to as \sentry bits"

and they are used to de�ne the probability of disruption. In standard form, B = S

0

and

the sentry bits must be 1. The following directed acyclic graph illustrates all generators for

\string losses" for the standard form of a 5 bit equation for S

0

.

1###1

/ \

/ \

01##1 1##10

/ \ / \

/ \ / \

001#1 01#10 1#100

/ \ / \ / \

/ \ / \ / \

00011 00110 01100 11000

The graph structure allows one to visualize the set of all generators for string losses. In

general, the root of this graph is de�ned by a string with a sentry bit in the �rst and last bit

positions, and the generator token \#" in all other intermediate positions. A move down

and to the left in the graph causes the leftmost sentry bit to be shifted right; a move down

and to the right causes the rightmost sentry bit to be shifted left. All bits outside the sentry

positions are \0" bits. Summing over the graph, one can see that there are

P

L�1

j=1

j � 2

L�j�1

or (2

L

� L� 1) strings generated as potential sources of string losses.

24

For each string S

i

produced by one of the \middle" generators in the above graph struc-

ture, a term of the following form is added to the losses equations:

�(S

i

)

L� 1

f(S

i

)

�

f

P (S

i

; t)

where �(S

i

) is a function that counts the number of crossover points between sentry bits in

string S

i

.

7.3 Generating String Gains for 1-point crossover

Bridges and Goldberg (1987) note that string gains for a string B are produced from two

strings Q and R which have the following relationship to B.

Region -> beginning middle end

Length -> a r w

Q Characteristics ##:::#

�

b = =

R Characteristics = =

�

b#:::#

The \=" symbol denotes regions where the bits in Q and R match those in B; again B =

S

0

for the standard form of the equations. Sentry bits are located such that 1-point crossover

between sentry bits produces a new copy of B, while crossover of Q and R outside the sentry

bits will not produce a new copy of B.

Bridges and Goldberg de�ne a beginning function A[B,�] and ending function
 [B;!],

assuming L� ! > �� 1, where for the standard form of the equations:

A [S

0

; �] = ##:::##1

��1

0

�

:::0

L�1

and
 [S

0

; !] = 0

0

:::0

L�!�1

1

L�!

##:::##:

These generators can again be presented as a directed acyclic graph structure composed

of paired templates which will be referred to as the upper A-generator and lower
-generator.

The following are the generators in a 5 bit problem.

10000

00001

/ \

/ \

#1000 10000

00001 0001#

/ \ / \

/ \ / \

##100 #1000 10000

00001 0001# 001##

/ \ / \ / \

/ \ / \ / \

###10 ##100 #1000 10000

00001 0001# 001## 01###

25

In this case, the root of the directed acyclic graph is de�ned by starting with the most

speci�c generator pair. The A-generator of the root has a \1" bit as the sentry bit in the

�rst position, and all other bits are \0." The
-generator of the root has a \1" bit as the

sentry bit in the last position, and all other bits are \0." A move down and left in the graph

is produced by shifting the left sentry bit of the current upper A-generator to the right.

A move down and right is produced by shifting the right sentry bit of the current lower

-generator to the left. Each vacant bit position outside of the sentry bits which results

from a shift operation is �lled using the # symbol.

For any level k of the directed graph there are k generators and the number of string pairs

generated at that level is 2

k�1

for each pair of generators (the root is level 1). Therefore, the

total number of string pairs that must be included in the equations to calculate string gains

for S

0

of length L is

P

L�1

k=1

k � 2

k�1

:

Let S

�+x

and S

!+y

be two strings produced by a generator pair, such that S

�+x

was

produced by the A-generator and has a sentry bit at location ��1 and S

!+y

was produced by

the
-generator with a sentry bit at L�!. (The x and y terms are correction factors added to

� and ! in order to uniquely index a string in S.) Let the critical crossover region associated

with S

�+x

and S

!+y

be computed by the function �(S

�+x

; S

!+y

) = L�!� (�� 1): For each

string pair S

�+x

and S

!+y

a term of the following form is added to the gains equations:

�(S

�+x

; S

!+y

)

L� 1

f(S

�+x

)

�

f

P (S

�+x

; t)

f(S

!+y

)

�

f

P (S

!+y

; t)

where �(S

�+x

; S

!+y

) counts the number of crossover points that fall in the critical region

de�ned by the sentry bits located at � � 1 and L� !.

The generators are used as part of a two stage computation where the generators are

�rst used to create an exact equation in standard form. A simple transformation function

maps the equations to all other strings in the space.

7.4 The Vose and Liepins Models

The executable equations developed by Whitley (1993a) represent a special case of the model

of a simple genetic algorithm introduced by Vose and Liepins (1991). In the Vose and Liepins

model, the vector s

t

� < represents the t th generation of the genetic algorithm and the i

th component of s

t

is the probability that the string i is selected for the gene pool. Using

i to refer to a string in s can sometimes be confusing. The symbol S has already been

used to denote the set of binary strings, also indexed by i: This notation will be used

where appropriate to avoid confusion. Note that s

t

corresponds to the expected distribution

of strings in the intermediate population in the generational reproduction process (after

selection has occurred, but before recombination).

In the Vose and Liepins formulation,

s

t

i

� P (S

i

; t)f(S

i

)

where � is the equivalence relation such that x � y if and only if 9 > 0 j x = y: In this

formulation, the term 1=

�

f , which would represent the average population �tness normally

associated with �tness proportional reproduction, can be absorbed by the term.

26

Let V = 2

L

, the number of strings in the search space. The vector p

t

� <

V

is de�ned

such that the k th component of the vector is equal to the proportional representation of

string k at generation t before selection occurs. The k component of p

t

would be the same

as P (S

k

; t) in the notation more commonly associated with the schema theorem. Finally

let r

i;j

(k) be the probability that string k results from the recombination of strings i and j:

Now, using E to denote expectation,

E p

t+1

k

=

X

i;j

s

t

i

s

t

j

r

i;j

(k):

To further generalize this model, the function r

i;j

(k) is used to construct a mixing matrix

M where the i; jth entry m

i;j

= r

i;j

(0). Note that this matrix gives the probabilities that

crossing strings i and j will produce the string S

0

: Technically, the de�nition of r

i;j

(k) assumes

that exactly one o�spring is produced. But note that M has two entries for each string pair

i; j where i 6= j, which is equivalent to producing two o�spring. For current purposes, assume

no mutation is used and 1-point crossover is used as the recombination operator. The matrix

M is symmetric and is zero everywhere on the diagonal except for entry m

0;0

which is 1.0.

Note thatM is expressed entirely in terms of string gain information. Therefore, the �rst row

and column of the matrix has entries inversely related to the string losses probabilities, each

entry is given by 1� (0:5 �(S

i

)=L� 1), where each string in the set S is crossed with S

0

. For

completeness, �(S

i

) for strings not produced by the string loss generators is 0 and, thus, the

probability of obtaining S

0

during reproduction is 1.0. The remainder of the matrix entries

are given by 0:5

�(S

�+x

;S

!+y

)

L�1

: For each pair of strings produced by the string gains generators

determine their index and enter the value returned by the function into the corresponding

location in M: For completeness, �(S

j

; S

k

) = 0 for all pairs of strings not generated by the

string gains generators (i.e., m

j;k

= 0).

Once de�ned M does not change since it is not a�ected by variations in �tness or pro-

portional representation in the population. Thus, given the assumption of no mutations,

that s is updated each generation to correct for changes in the population average, and that

1-point crossover is used, then the standard form of the executable equations corresponds to

the following portion of the Liepins and Vose model (T denotes transpose):

s

T

Ms:

An alternative form of M denoted M

0

can be de�ned by having only a single entry for

each string pair i; j where i 6= j. This is done by doubling the value of the enties in the lower

triangle and setting the entries in the upper triangle of the matrix to 0.0. Assuming each

component of s is given by s

i

= P (S

i

; t)(f(S

i

)=

�

f)), this has the rhetorical advantage that

s

T

M

0

(:; 1)s

0

= P (S

0

; t)(f(S

0

)=

�

f)(1� losses):

where M

0

(:; 1) is the �rst column of M

0

and s

0

is the �rst component of s. Not including the

above subcomputation, the remainder of the computation of s

T

M

0

s calculates string gains.

Vose and Liepins formalize the notion that bitwise exclusive-or can be used to remap all

the strings in the search space, in this case represented by the vector s. They show that if

27

A Transform Function to Rede�ne Equations

000 � 010) 010 100 � 010) 110

001 � 010) 011 101 � 010) 111

010 � 010) 000 110 � 010) 100

011 � 010) 001 111 � 010) 101

Figure 5: The operator � is bit-wise exclusive-or. Let r

i;j

(k) be the probability that k results

from the recombination of strings i and j. If recombination is a combination of crossover

and mutation then r

i;j

(k � 0) = r

i�k;j�k

(0). The strings are reordered with respect to 010.

recombination is a combination of crossover and mutation then

r

i;j

(k � q) = r

i�k;j�k

(q) and speci�cally r

i;j

(k) = r

i;j

(k � 0) = r

i�k;j�k

(0):

This allows one to reorder the elements in s with respect to any particular point in the

space. This reordering is equivalent to remapping the variables in the executable equations

(See Figure 4). A permutation function, �, is de�ned as follows:

�

j

< s

0

; :::; s

V�1

>

T

= < s

j�0

; :::; s

j�(V�1)

>

T

where the vectors are treated as columns and V = 2

L

, the size of the search space. A general

operator M can be de�ned over s which remaps s

T

Ms to cover all strings in the space.

M(s) = < (�

0

s)

T

M�

0

s; :::; (�

V�1

s)

T

M�

V�1

s >

T

Recall that s denoted the representation of strings in the population during the inter-

mediate phase as the genetic algorithm goes from generation t to t+ 1 (after selection, but

before recombination). To complete the cycle and reach a point at which the Vose and

Liepins models can be executed in an iterative fashion, �tness information is now explicitly

introduced to transform the population at the beginning of iteration t + 1 to the next in-

termediate population. A �tness matrix F is de�ned such that �tness information is stored

along the diagonal; the i; i th element is given by f(i) where f is the evaluation function.

The transformation from the vector p

t+1

to the next intermediate population represented

by s

t+1

is given as follows:

s

t+1

� FM(s

t

):

Vose and Liepins give equations for calculating the mixing matrix M which not only

includes probabilities for 1-point crossover, but also mutation. More complex extension of

the Vose and Liepins model include �nite population models using Markov chains (Nix and

Vose, 1992). Vose (1993) surveys the current state of this research.

28

8 Other Models of Evolutionary Computation

There are several population based algorithms that are either spin-o�s of Holland's genetic

algorithm, or which were developed independently. Evolution Strategies and Evolutionary

Programming refer to two computational paradigms that use a population based search.

Evolutionary Programming is based on the early book by L. Fogel, Owens and Walsh

(1966) entitled, Arti�cial Intelligence Through Simulated Evolution. The individuals, or

\organisms," in this study were �nite state machines. Organisms that best solved some

target function obtained the opportunity to reproduce. Parents were mutated to create

o�spring. There has been renewed interest in Evolution Programming as reected by the

1992 First Annual Conference on Evolutionary Programming (Fogel and Atmar 1992).

Evolution Strategies are based on the work of Rechenberg (1973) and Schwefel (1975;

1981) and are discussed in a survey by B�ack, Ho�meister and Schwefel (1991). Two examples

of Evolution Strategies (ES) are the (�+�)-ES and (�; �)-ES. In (�+�)-ES � parents produce

� o�spring; the population is then reduced again to � parents by selecting the best solutions

from among both the parents and o�spring. Thus, parents survive until they are replaced

by better solutions. The (�; �)-ES is closer to the generational model used in canonical

genetic algorithms; o�spring replace parents and then undergo selection. Recombination

operators for evolutionary strategies also tend to di�er from Holland-style crossover, allowing

operations such as averaging parameters, for example, to create an o�spring.

8.1 Genitor

Genitor (Whitley 1988; 1989) was the �rst of what Syswerda (1989) has termed \steady

state" genetic algorithms. The name \steady state" is somewhat misleading, since these

algorithms show more variance than canonical genetic algorithms in the terms of hyperplane

sampling behavior (Syswerda, 1991) and are therefore more susceptible to sample error and

genetic drift. The advantage is that the best points found in the search are maintained in the

population. This results in a more aggressive search that in practice is often quite e�ective.

There are three di�erences between Genitor-style algorithms and canonical genetic algo-

rithms. First, reproduction produces one o�spring at a time. Two parents are selected for

reproduction and produce an o�spring that is immediately placed back into the population.

The second major di�erence is in how that o�spring is placed back in the population. O�-

spring do not replace parents, but rather the least �t (or some relatively less �t) member of

the population. In Genitor, the worst individual in the population is replaced. The third

di�erence between Genitor and most other forms of genetic algorithms is that �tness is as-

signed according to rank rather than by �tness proportionate reproduction. Ranking helps

to maintain a more constant selective pressure over the course of search.

Goldberg and Deb (1991) have shown replacing the worst member of the population

generates much higher selective pressure than random replacement. But higher selective

pressure is not the only di�erence between Genitor and the canonical genetic algorithm.

To borrow terminology used by the Evolution Strategy community (as suggested by Larry

Eshelman), Genitor is a (� + �) strategy while the canonical genetic algorithm is a (�; �)

strategy. Thus, the accumulation of improved strings in the population is monotonic.

29

8.2 CHC

Another genetic algorithm that monotonically collects the best strings found so far is the

CHC algorithm developed by Larry Eshelman (1991). CHC stands for Cross generational eli-

tist selection, Heterogeneous recombination (by incest prevention) and Cataclysmic mutation,

which is used to restart the search when the population starts to converge.

CHC explicitly borrows from the (� + �) strategy of Evolution Strategies. After recom-

bination, the N best unique individuals are drawn from the parent population and o�spring

population to create the next generation. Duplicates are removed from the population. As

Goldberg has shown with respect to Genitor, this kind of \survival of the �ttest" replace-

ment method already imposes considerable selective pressure, so that there is no real need

to use any other selection mechanisms. Thus CHC uses random selection, except restrictions

are imposed on which strings are allowed to mate. Strings with binary encodings must be

a certain Hamming distance away from one another before they are allowed to reproduce.

This form of \incest prevention" is designed to promote diversity. Eshelman also uses a form

of uniform crossover called HUX where exactly half of the di�ering bits are swapped during

crossover. CHC is typically run using small population sizes (e.g. 50); thus using uniform

crossover in this context is consistent with DeJong and Spears (1991) conjecture that uniform

crossover can provide better sampling coverage in the context of small populations.

The rationale behind CHC is to have a very aggressive search (by using monotonic se-

lection through survival of the best strings) and to o�set the aggressiveness of the search

by using highly disruptive operators such as uniform crossover. With such small population

sizes, however, the population converges to the point that it begins to more or less repro-

duce many of the same strings. At this point the CHC algorithm uses cataclysmic mutation.

All strings undergo heavy mutation, except that the best string is preserved intact. After

mutation, genetic search is restarted using only crossover.

8.3 Hybrid Algorithms

L. \Dave" Davis states in the Handbook of Genetic Algorithms, \Traditional genetic algo-

rithms, although robust, are generally not the most successful optimization algorithm on

any particular domain" (1991:59). Davis argues that hybridizing genetic algorithms with

the most successful optimization methods for particular problems gives one the best of both

worlds: correctly implemented, these algorithms should do no worst than the (usually more

traditional) method with which the hybridizing is done. Of course, it also introduces the

additional computational overhead of a population based search.

Davis often uses real valued encodings instead of binary encodings, and employs \recom-

bination operators" that may be domain speci�c. Other researchers, such as Michalewicz

(1992) also use nonbinary encodings and specialized operations in combination with a genetic

based model of search. M�uhlenbein takes a similar opportunistic view of hybridization. In

a description of a parallel genetic algorithm M�uhlenbein (1991:320) states, after the initial

population is created, \Each individual does local hill-climbing." Furthermore, after each

o�spring is created, \The o�spring does local hill-climbing."

30

Experimental researchers and theoreticians are particularly divided on the issue of hy-

bridization. By adding hill-climbing or hybridizing with some other optimization methods,

learning is being added to the evolution process. Coding the learned information back onto

the chromosome means that the search utilizes a form of Lamarckian evolution. The chromo-

somes improved by local hill-climbing or other methods are placed in the genetic population

and allowed to compete for reproductive opportunities.

The main criticism is that if we wish to preserve the schema processing capabilities of

the genetic algorithm, then Lamarckian learning should not be used. Changing information

in the o�spring inherited from the parents results in a loss of inherited schemata. This alters

the statistical information about hyperplane partitions that is implicitly contained in the

population. Therefore using local optimization to improve each o�spring undermines the

genetic algorithm's ability to search via hyperplane sampling.

Despite the theoretical objections, hybrid genetic algorithms typically do well at opti-

mization tasks. There may be several reasons for this. First, the hybrid genetic algorithm

is hill-climbing from multiple points in the search space. Unless the objective function is

severely multimodal it may be likely that some strings (o�spring) will be in the basin of

attraction of the global solution, in which case hill-climbing is a fast and e�ective form of

search. Second, a hybrid strategy impairs hyperplane sampling, but does not disrupt it

entirely. For example, using local optimization to improve the initial population of strings

only biases the initial hyperplane samples, but does not interfere with subsequent hyperplane

sampling. Third, in general hill-climbing may �nd a small number of signi�cant improve-

ments, but may not dramatically change the o�spring. In this case, the e�ects on schemata

and hyperplane sampling may be minimal.

9 Hill-climbers or Hyperplane Samplers?

In a recent paper entitled, \How genetic algorithms really work: I. Mutation and Hill-

climbing," M�uhlenbein shows that an Evolution Strategy algorithm using only mutation

works quite well on a relatively simple test suite. M�uhlenbein states that for many prob-

lems \many nonstandard genetic algorithms work well and the standard genetic algorithm

performs poorly." (1992:24).

This raises a very interesting issue. When is a genetic algorithm a hyperplane sampler

and when it is a hill-climber? This is a nontrivial question since it is the hyperplane sampling

abilities of genetic algorithms that are usually touted as the source of global sampling. On

the other hand, some researchers argue that crossover is unnecessary and that mutation is

su�cient for robust and e�ective search. All the theory concerning hyperplane sampling has

been developed with respect to the canonical genetic algorithm. Alternative forms of genetic

algorithms often use mechanisms such as monotonic selection of the best strings which could

easily lead to increased hill-climbing. Vose's work (personal communication, June 1993) with

exact models of the canonical genetic algorithm indicates that even low levels of mutation

can have a signi�cant impact on convergence and change the number of �xed points in the

space. (For the functions Vose has examined so far mutation always reduces the number of

�xed points.)

31

In practice there may be clues as to when hill-climbing is a dominant factor in a search.

Hyperplane sampling requires larger populations. Small populations are much more likely

to rely on hill-climbing. A population of 20 individuals just doesn't provide very much

information about hyperplane partitions, except perhaps very low order hyperplanes (there

are only 5 samples of each order-2 hyperplane in a population of 20). Second, very high

selective pressure suggests hill-climbing may dominate the search. If the 5 best individuals

in a population of 100 strings reproduce 95% of the time, then the e�ective population size

may not be large enough to support hyperplane sampling.

10 Parallel Genetic Algorithms

Part of the biological metaphor used to motivate genetic search is that it is inherently paral-

lel. In natural populations, thousands or even millions of individuals exist in parallel. This

suggests a degree of parallelism that is directly proportional to the population size used in

genetic search. In this paper, three di�erent ways of exploiting parallelism in genetic algo-

rithms will be reviewed. First, a parallel genetic algorithm similar to the canonical genetic

algorithm will be reviewed; next an Island Model using distinct subpopulations will be pre-

sented. Finally, a �ne grain massively parallel implementation that assumes one individual

resides at each processor will be explored. It can be shown that the �ne grain models are a

subclass of cellular automata (Whitley 1993b). Therefore, while these algorithms have been

referred to by a number of somewhat awkward names (e.g., �ne grain genetic algorithms,

or massively parallel genetic algorithms) the name cellular genetic algorithm is used in this

tutorial.

In each of the following models, strings are mapped to processors in a particular way.

Usually this is done in a way that maximizes parallelismwhile avoiding unnecessary processor

communication. However, any of these models could be implemented in massively parallel

fashion. What tends to be di�erent is the role of local versus global communication.

10.1 Global Populations with Parallelism

The most direct way to implement a parallel genetic algorithm is to implement something

close to a canonical genetic algorithm. The only change that will be made is that selection

will be done by Tournament Selection (Goldberg, 1990; Goldberg and Deb, 1991).

Tournament selection implements a noisy form of ranking. Recall that the implementa-

tion of one generation in a canonical genetic algorithm can be seen as a two step process.

First, selection is used to create an intermediate population of duplicate strings selected

according to �tness. Second, crossover and mutation are applied to produce the next gen-

eration. Instead of using �tness proportionate reproduction or directly using ranking, tour-

naments are held to �ll the intermediate population. Assume two strings are selected out

of the current population after evaluation. The best of the two strings is then placed in

the intermediate population. This process of randomly selecting two strings from the cur-

rent population and placing the best in the intermediate population is repeated until the

intermediate population is full. Goldberg and Deb (1991) show analytically that this form

32

of tournament selection is the same in expectation as ranking using a linear 2.0 bias. If a

winner is chosen probabilistically from a tournament of 2, then the ranking is linear and the

bias is proportional to the probability with which the best string is chosen.

With the addition of tournament selection, a parallel form of the canonical genetic al-

gorithm can now be implemented in a fairly direct fashion. Assume the processors are

numbered 1 to N/2 and the population size, N, is even; 2 strings reside at each processor.

Each processor holds two independent tournaments by randomly sampling strings in the

population and each processor then keeps the winners of the two tournaments. The new

strings that now reside in the processors represent the intermediate generation. Crossover

and evaluation can now occur in parallel.

10.2 Island Models

One motivation for using Island Models is to exploit a more coarse grain parallel model.

Assume we wish to use 16 processors and have a population of 1,600 strings; or we might

wish to use 64 processors and 6,400 strings. One way to do this is to break the total

population down into subpopulations of 100 strings each. Each one of these subpopulations

could then execute as a normal genetic algorithm. It could be a canonical genetic algorithm,

or Genitor, or CHC. Occasionally, perhaps every �ve generations or so, the subpopulations

would swap a few strings. This migration allows subpopulations to share genetic material

(Whitley and Starkweather, 1990; Gorges-Schleuter, 1991; Tanese 1989; Starkweather et al.,

1991.)

Assume for a moment that one executes 16 separate genetic algorithms, each using a

population of 100 strings without migration. In this case, 16 independent searches occur.

Each search will be somewhat di�erent since the initial populations will impose a certain

sampling bias; also, genetic drift will tend to drive these populations in di�erent directions.

Sampling error and genetic drift are particularly signi�cant factors in small populations and,

as previous noted, are even more pronounced in genetic algorithms such as Genitor and CHC

when compared to the canonical genetic algorithm.

By introducing migration, the Island Model is able to exploit di�erences in the various

subpopulations; this variation in fact represents a source of genetic diversity. Each subpop-

ulation is an island, and there is some designated way in which genetic material is moved

from one island to another. If a large number of strings migrate each generation, then global

mixing occurs and local di�erences between islands will be driven out. If migration is too

infrequent, it may not be enough to prevent each small subpopulation from prematurely

converging.

10.3 Cellular Genetic Algorithms

Assume we have 2,500 simple processors laid out on a 50x50 2-dimensional grid. Processors

communicate only with their immediate neighbors (e.g. north, south, east and west: NSEW).

Processors on the edge of the grid wrap around to form a torus. How should one implement

a genetic algorithm on such an architecture?

33

An Island Model Genetic Algorithm A Cellular Genetic Algorithm

Figure 6: An example of both an island model and a cellular genetic algorithm. The coloring

of the cells in the cellular genetic algorithm represents genetically similar material that forms

virtual islands isolated by distance. The arrows in the cellular model indicate that the grid

wraps around to form a torus.

One can obviously assign one string per processor or cell. But global random mating

would now seem inappropriate given the communication restrictions. Instead, it is much

more practical to have each string (i.e., processor) seek a mate close to home. Each processor

can pick the best string in its local neighborhood to mate with, or alternatively, some form

of local probabilistic selection could be used. In either case, only one o�spring is produced.

and becomes the new resident at that processor. Several people have proposed this type

of computational model (Manderick and Spiessens, 1989; Collins and Je�erson, 1991; Hillis,

1990; Davidor, 1991). The common theme in cellular genetic algorithms is that selection

and mating are typically restricted to a local neighborhood.

There are no explicit islands in the model, but there is the potential for similar e�ects.

Assuming that mating is restricted to adjacent processors, if one neighborhood of strings is

20 or 25 moves away from another neighborhood of strings, these neighborhoods are just as

isolated as two subpopulations on separate islands. This kind of separation is referred to as

isolation by distance (Wright, 1932; M�uhlenbein, 1991; Gorges-Schleuter, 1991). Of course,

neighbors that are only 4 or 5 moves away have a greater potential for interaction.

After the �rst random population is evaluated, the pattern of strings over the set of

processors should also be random. After a few generations, however, there emerge many

small local pockets of similar strings with similar �tness values. Local mating and selection

creates local evolutionary trends, again due to sampling e�ects in the initial population and

genetic drift. After several generations, competition between local groups will result in fewer

and larger neighborhoods.

34

11 Conclusions

One thing that is striking about genetic algorithms and the various parallel models is the

richness of this form of computation. What may seem like simple changes in the algorithm

often result in surprising kinds of emergent behavior. Recent theoretical advances have also

improved our understanding of genetic algorithms and have opened to the door to using

more advanced analytical methods.

Many other timely issues have not been covered in this tutorial. In particular, the issue

of deception has not been discussed. The notion of deception, in simplistic terms, deals with

conicting hyperplane competitions that have the potential to either mislead the genetic

algorithm, or to simply confound the search because the conicting hyperplane competitions

interfere with the search process. For an introduction to the notion of deception see Goldberg

(1987) and Whitley (1991); for a criticism of the work on deception see Grefenstette (1993).

Acknowledgements: This tutorial not only represents information transmitted through scholarly

works, but also through conference presentations, personal discussions, debates and even disagree-

ments. My thanks to the people in the genetic algorithm community who have educated me over

the years. Any errors or errant interpretations of other works are my own. Work presented in the

tutorial was supported by NSF grant IRI-9010546 and the Colorado Advanced Software Institute.

References

Ackley, D. (1987) A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers.

Antonisse, H.J. (1989) A New Interpretation of the Schema Notation that Overturns the Binary

Encoding Constraint. Proc 3rd International Conf on Genetic Algorithms, Morgan-Kaufmann.

B�ack, T., Ho�meister, F. and Schwefel, H.P. (1991) A Survey of Evolution Strategies. Proc. 4th

International Conf. on Genetic Algorithms, Morgan-Kaufmann.

Baker, J. (1985) Adaptive selection methods for genetic algorithms. Proc. International Conf. on

Genetic Algorithms and Their Applications. J. Grefenstette, ed. Lawrence Erlbaum.

Baker, J. (1987) Reducing Bias and Ine�ciency in the Selection Algorithm. Genetic Algorithms

and Their Applications: Proc. Second International Conf. J. Grefenstette, ed. Lawrence Erlbaum.

Booker, L. (1987) Improving Search in Genetic Algorithms. In, Genetic Algorithms and Simulating

Annealing, L. Davis, ed. Morgan Kaufman, pp. 61-73.

Bridges, C. and Goldberg, D. (1987) An analysis of reproduction and crossover in a binary-coded

genetic Algorithm. Proc. 2nd International Conf. on Genetic Algorithms and Their Applications.

J. Grefenstette, ed. Lawrence Erlbaum.

Collins, R. and Je�erson, D. (1991) Selection in Massively Parallel Genetic Algorithms. Proc. 4th

International Conf. on Genetic Algorithms, Morgan-Kaufmann, pp 249-256.

Davidor, Y. (1991) A Naturally Occurring Niche & Species Phenomenon: The Model and First

Results. Proc 4th International Conf on Genetic Algorithms, Morgan-Kaufmann, pp 257-263.

Davis, L.D. (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold.

DeJong, K. (1975) An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD

Dissertation. Dept. of Computer and Communication Sciences, Univ. of Michigan, Ann Arbor.

35

Eshelman, L. (1991) The CHC Adaptive Search Algorithm. Foundations of Genetic Algorithms,

G. Rawlins, ed. Morgan-Kaufmann. pp 256-283.

Fitzpatrick, J.M. and Grefenstette, J.J. (1988) Genetic Algorithms in Noisy Environments. Ma-

chine Learning, 3(2/3): 101-120.

Fogel, L.J., Owens, A.J., and Walsh, M.J. (1966) Arti�cial Intelligence Through Simulated Evolu-

tion. John Wiley.

Fogel, D., and Atmar, J.W., eds. (1992) First Annual Conference on Evolutionary Programming.

Goldberg, D. and Bridges, C. (1990) An Analysis of a Reordering Operator on a GA-Hard Problem.

Biological Cybernetics, 62:397-405.

Goldberg, D. (1987) Simple Genetic Algorithms and the Minimal, Deceptive Problem. In, Genetic

Algorithms and Simulated Annealing, L. Davis, ed., Pitman.

Goldberg, D. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Reading,

MA: Addison-Wesley.

Goldberg, D. (1990) A Note on Boltzmann Tournament Selection for Genetic Algorithms and

Population-oriented Simulated Annealing. TCGA 90003, Engineering Mechanics, Univ. Alabama.

Goldberg, D. (1991) The Theory of Virtual Alphabets. Parallel Problem Solving from Nature,

Springer Verlag.

Goldberg, D., and Deb, K. (1991) A Comparative Analysis of Selection Schemes Used in Genetic

Algorithms. Foundations of Genetic Algorithms, G. Rawlins, ed. Morgan-Kaufmann. pp 69-93.

Gorges-Schleuter, M. (1991) Explicit Parallelism of Genetic Algorithms through Population Struc-

tures. Parallel Problem Solving from Nature, Springer Verlag, pp 150-159.

Grefenstette, J.J. (1986) Optimization of Control Parameters for Genetic Algorithms. IEEE Trans.

Systems, Man, and Cybernetics, 16(1): 122-128.

Grefenstette, J.J. and Baker, J. (1989) How Genetic Algorithms Work: A Critical Look at Implicit

Parallelism. Proc 3rd International Conf on Genetic Algorithms, Morgan-Kaufmann.

Grefenstette, J.J. (1993) Deception Considered Harmful. Foundations of Genetic Algorithms -2-,

D. Whitley, ed., Morgan Kaufmann. pp: 75-91.

Hillis, D. (1990) Co-Evolving Parasites Improve Simulated Evolution as an Optimizing Procedure.

Physica D 42, pp 228-234.

Holland, J. (1975) Adaptation In Natural and Arti�cial Systems. University of Michigan Press.

Liepins, G. and Vose, M. (1990) Representation Issues in Genetic Algorithms. Journal of Experi-

mental and Theoretical Arti�cial Intelligence, 2:101-115.

Manderick, B. and Spiessens P. (1989) Fine Grained Parallel Genetic Algorithms. Proc 3rd Inter-

national Conf on Genetic Algorithms, Morgan-Kaufmann, pp 428-433.

Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolutionary Programs. Springer-

Verlag, AI Series, New York.

M�uhlenbein, H. (1991) Evolution in Time and Space - The Parallel Genetic Algorithm. Foundations

of Genetic Algorithms, G. Rawlins, ed. Morgan-Kaufmann. pp 316-337.

M�uhlenbein, H. (1992) How genetic algorithms really work: I. Mutation and Hillclimbing, Parallel

Problem Solving from Nature -2-, R. M�anner and B. Manderick, eds. North Holland.

Nix, A. and Vose, M. (1992) Modeling Genetic Algorithms with Markov Chains. Annals of Math-

ematics and Arti�cial Intelligence. 5:79-88.

36

Rechenberg, I. (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. Frommann-Holzboog Verland, Stuttgart.

Scha�er, J.D. (1987) Some E�ects of Selection Procedures on Hyperplane Sampling by Genetic

Algorithms. In, Genetic Algorithms and Simulated Annealing, L. Davis, ed. Pitman.

Scha�er, J.D., and Eshelman, L. (1993) Real-Coded Genetic Algorithms and Interval Schemata.

Foundations of Genetic Algorithms -2-, D. Whitley, ed. Morgan-Kaufmann.

Schwefel, H.P. (1975) Evolutionsstrategie und numerische Optimierung. Dissertation, Technische

Universit�at Berlin.

Schwefel, H.P. (1981) Numerical Optimization of Computer Models. Wiley.

Spears, W. and DeJong, K. (1991) An Analysis of Multi-Point Crossover. Foundations of Genetic

Algorithms, G. Rawlins, ed. Morgan-Kaufmann.

Syswerda, G. (1989) Uniform Crossover in Genetic Algorithms. Proc 3rd International Conf on

Genetic Algorithms, Morgan-Kaufmann, pp 2-9.

Syswerda, G. (1991) A Study of Reproduction in Generational and Steady-State Genetic Algo-

rithms. Foundations of Genetic Algorithms, G. Rawlins, ed. Morgan-Kaufmann. pp 94-101.

Starkweather, T., Whitley, D., and Mathias, K. (1991) Optimization Using Distributed Genetic

Algorithms. Parallel Problem Solving from Nature, Springer Verlag.

Tanese, R. (1989) Distributed Genetic Algorithms. Proc 3rd International Conf on Genetic Algo-

rithms, Morgan-Kaufmann, pp 434-439.

Vose, M. (1993) Modeling Simple Genetic Algorithms. Foundations of Genetic Algorithms -2-, D.

Whitley, ed., Morgan Kaufmann. pp: 63-73.

Vose, M. and Liepins, G. (1991) Punctuated Equilibria in Genetic Search. Complex Systems 5:31-

44.

Whitley, D. (1989) The GENITOR Algorithm and Selective Pressure. Proc 3rd International Conf

on Genetic Algorithms, Morgan-Kaufmann, pp 116-121.

Whitley, D. (1991) Fundamental Principles of Deception in Genetic Search. Foundations of Genetic

Algorithms. G. Rawlins, ed. Morgan Kaufmann.

Whitley, D. (1993a) An Executable Model of a Simple Genetic Algorithm. Foundations of Genetic

Algorithms -2-. D. Whitley, ed. Morgan Kaufmann.

Whitley, D. (1993b) Cellular Genetic Algorithms. Proc. 5th International Conference on Genetic

Algorithms. Morgan Kaufmann.

Whitley, D., and Kauth, J. (1988) GENITOR: a Di�erent Genetic Algorithm. Proceedings of the

Rocky Mountain Conference on Arti�cial Intelligence, Denver, CO. pp 118-130.

Whitley, D. and Starkweather, T. (1990) Genitor II: a Distributed Genetic Algorithm. Journal

Expt. Theor. Artif. Intell., 2:189-214

Whitley, D., Das, R., and Crabb, C. (1992) Tracking Primary Hyperplane Competitors During

Genetic Search. Annals of Mathematics and Arti�cial Intelligence. 6:367-388.

Winston, P. (1992) Arti�cial Intelligence, Third Edition. Addison-Wesley.

Wright, A. (1991) Genetic Algorithms for Real Parameter Optimization. Foundations of Genetic

Algorithms. G. Rawlins, ed. Morgan Kaufmann.

Wright, S. (1932) The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution.

Proc. 6th Int. Congr. on Genetics, pp 356-366.

37

