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Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a

• swarm-intelligence-based
• approximate
• nondeterministic

optimization technique.
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Optimization Techniques

Optimization techniques find the parameters that
provide the maximum (or minimum) value of a
target function.
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Uses of Optimization

In the field of machine learning, optimization
techniques can be used to find the parameters
for classification algorithms such as:

• Artificial Neural Networks
• Support Vector Machines

These classification algorithms often require the
user to supply certain coefficients, which often
have to be found by trial and error or exhaustive
search.
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Origins of PSO

PSO was first described by James Kennedy and
Russell Eberhart in 1995.

Derived from two concepts:

• The observation of swarming habits of
animals such as birds or fish

• The field of evolutionary computation (such
as genetic algorithms)
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PSO Concepts

• The PSO algorithm maintains multiple
potential solutions at one time

• During each iteration of the algorithm, each
solution is evaluated by an objective function
to determine its fitness

• Each solution is represented by a particle in
the fitness landscape (search space)

• The particles “fly” or “swarm” through the
search space to find the maximum value
returned by the objective function
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Fitness Landscape
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Maintained Information

Each particle maintains:

• Position in the search space (solution and
fitness)

• Velocity
• Individual best position

In addition, the swarm maintains its global best
position.
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Canonical PSO Algorithm

The PSO algorithm consists of just three steps:

1. Evaluate fitness of each particle

2. Update individual and global bests

3. Update velocity and position of each particle

These steps are repeated until some stopping
condition is met.
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Velocity Update

Each particle’s velocity is updated using this
equation:

vi(t+1) = wvi(t)+c1r1[x̂i(t)−xi(t)]+c2r2[g(t)−xi(t)]

• i is the particle index
• w is the inertial coefficient
• c1, c2 are acceleration coefficients,

0 ≤ c1, c2 ≤ 2

• r1, r2 are random values (0 ≤ r1, r2 ≤ 1)
regenerated every velocity update
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Velocity Update

Each particle’s velocity is updated using this
equation:

vi(t+1) = wvi(t)+c1r1[x̂i(t)−xi(t)]+c2r2[g(t)−xi(t)]

• vi(t) is the particle’s velocity at time t

• xi(t) is the particle’s position at time t

• x̂i(t) is the particle’s individual best solution
as of time t

• g(t) is the swarm’s best solution as of time t
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Velocity Update – Inertia Component

vi(t+1) = wvi(t)+c1r1[x̂i(t)−xi(t)]+c2r2[g(t)−xi(t)]

• Keeps the particle moving in the same
direction it was originally heading

• Inertia coefficient w usually between 0.8 and
1.2

• Lower values speed up convergence, higher
values encourage exploring the search space
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Velocity Update – Cognitive Component

vi(t+1) = wvi(t)+c1r1[x̂i(t) − xi(t)]+c2r2[g(t)−xi(t)]

• Acts as the particle’s memory, causing it to
return to its individual best regions of the
search space

• Cognitive coefficient c1 usually close to 2
• Coefficient limits the size of the step the

particle takes toward its individual best x̂i
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Velocity Update – Social Component

vi(t+1) = wvi(t)+c1r1[x̂i(t)−xi(t)]+c2r2[g(t) − xi(t)]

• Causes the particle to move to the best
regions the swarm has found so far

• Social coefficient c2 usually close to 2
• Coefficient limits the size of the step the

particle takes toward the global best g
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Position Update

Each particle’s position is updated using this
equation:

xi(t + 1) = xi(t) + vi(t + 1)
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PSO Algorithm Example
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PSO Algorithm Redux

Repeat until stopping condition is met:

1. Evaluate fitness of each particle

2. Update individual and global bests

3. Update velocity and position of each particle
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Fitness Evaluation (t=1)
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Update Individual / Global Bests (t=1)
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Update Velocity and Position (t=1)

vi(t+1) = wvi(t)+c1r1[x̂i(t)−xi(t)]+c2r2[g(t)−xi(t)]
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Fitness Evaluation (t=2)
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Update Individual / Global Bests (t=2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

Particle Swarm Optimization – p. 24



Update Velocity and Position (t=2)

vi(t+1) = wvi(t)+c1r1[x̂i(t)−xi(t)]+c2r2[g(t)−xi(t)]
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Classifier Optimization
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Support Vector Machines

Support Vector Machines (SVMs) are a group of
machine learning techniques used to classify
data.

• Effective at classifying even non-linear
datasets

• Slow to train
• When being trained, they require the

specification of parameters which can greatly
enhance or impede the SVM’s effectiveness
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Support Vector Machine Parameters

One specific type of SVM, a Cost-based Support
Vector Classifier (C-SVC), requires two
parameters:

• Cost parameter (C), which is typically
anywhere between 2−5 and 220

• Gamma parameter (γ), which is typically
anywhere between 2−20 and 23

Particle Swarm Optimization – p. 28



Supper Vector Machine Parameters

For different datasets, the optimal values for
these parameters can be very different, even on
the same type of C-SVC.

To find the optimal parameters, two approaches
are often used:

• Random selection
• Grid search
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Financial Data
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DNA Splicing Data

Particle Swarm Optimization – p. 31



Grid Search Problems

While effective, grid search has some problems:

• Computationally intensive
• Financial Data – 144 SVM training runs,

approximately 9 minutes
• DNA Splicing Data - 110 SVM training

runs, approximately 48 minutes
• Only as exact as the spacing of the grid

(coarseness of search), although once a peak
has been identified, it can be searched more
closely

Particle Swarm Optimization – p. 32



Applying PSO to SVM Parameters

Alternatively, PSO can be used to parameterize
SVMs, using the SVM training run as the
objective function.

Implementation considerations:
• Finding maximum among two dimensions (as

opposed to just one, as in the example)
• Parameters less than zero are invalid, so

position updates should not move parameter
below zero
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PSO Parameters

Parameters used for PSO algorithm:

• Number of particles: 8
• Inertia coefficient (w): .75
• Cognitive coefficient(c1): 1.8
• Social coefficient(c2): 2
• Number of iterations: 10 (or no improvement

for 4 consecutive iterations)
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Preliminary Results

Dataset
DNA Splicing Financial

Grid search
Num. Training Runs 110 144
Max. Accuracy 95.7% 77.8%

PSO
Num. Training Runs 56 72
Max. Accuracy 96.1% 77.7%
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Analysis of Results

• Results are still preliminary, but encouraging
• Due to randomized aspects of PSO

algorithm, the optimization process would
need to be run several times to determine if
results are consistent

• Alternative PSO parameters can be
attempted, and their effectiveness measured
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Conclusion

• Introduction
• Canonical PSO Algorithm
• PSO Algorithm Example
• Classifier Optimization
• Conclusion

Particle Swarm Optimization – p. 37



Conclusions and Future Work

Conclusions:
• Significant speedup using PSO over

exhaustive search
• Additional testing needed

Future Work:
• Other PSO variants can be tried
• Need to find optimal parameters for PSO itself
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Questions

Questions?
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