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A B S T R A C T

Affective computing is one of the most important research fields in modern human–computer interaction (HCI).
The goal of affective computing is to study and develop the theories, methods, and systems that can recognize,
explain, process, and simulate human emotions. As a branch of affective computing, emotion recognition aims
to enlighten the machine/computer automatically analyzing human emotions, which has received increasing
attention from researchers in various fields. Human beings generally observe and understand the emotional
states of one person by integrating the perceived information from his/her facial expressions, voice tone, speech
content, behavior, or physiological features. To imitate the emotion observation manner of humans, researchers
have been devoted to constructing multimodal emotion recognition models by fusing information from two
or more modalities. In this paper, we provide a comprehensive review of multimodal emotion recognition
from the perspectives of multimodal datasets, data preprocessing, unimodal feature extraction, and multimodal
information fusion methods in recent decades. Furthermore, challenges and future research directions of the
topic are specified and discussed. The main motivations of this review are to conclude the recent emergence
of abundant works on multimodal emotion recognition and to provide potential guidance to researchers in the
related field for understanding the pipeline and mainstream approaches to multimodal emotion recognition.
1. Introduction

Emotion is a significant component of human intelligence. Human
behavior not only depends on rational thinking and logical reasoning
but is heavily influenced by emotion. Since human society entered
the information age, there has been considerable increase in human–
computer interaction (HCI). In addition to adequate material, the pri-
mary needs of human beings also include satisfaction from the spiritual
level. In order to achieve emotional HCI, computers are expected
to possess the capacities of observing, understanding, and generating
various emotions. Accordingly, these requirements give birth to the
concept of affective computing [1].

Over the past two decades, researchers from psychology, neuro-
physiology, cognitive science, computer science, and other disciplines
have been devoted to studying affective computing, which has already
been applied to various fields. The applications can be roughly cat-
egorized into five classes: (1) Service industry. Robots in banking,
hospitals, catering, government services, and other industries provid-
ing customers with affect services can improve customers’ experience
during or even the entire service process. (2) Education. By monitoring
students’ emotional states or concentration in class, robots can help
improve the instructors’ and students’ teaching quality and learning
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efficiency, respectively. (3) Healthcare. Cognitive affective computing
is integrated into the medical robot to assist the doctor with treating
psychological diseases and provide emotional comfort for patients.
(4) Intelligent driving. Emotion analysis and fatigue detection tech-
nologies are integrated into intelligent driving, which contributes to
traffic accident prevention. (5) Entertainment industry. Adding emotion
recognition and interactive technology to computer games can build
more realistic virtual scenes, reduce player fatigue, and increase game
entertainment.

Emotion recognition has received considerable attention as a sig-
nificant component of affective computing. The aim is to discover
the mapping relationship between external emotional representation
and internal emotional state to identify the current type of human
emotion. The distribution of emotion recognition publications is illus-
trated in Fig. 1, which is searched from Web of Science, Scopus, and
Engineering Village. It is clear that an increasing number of emotion
recognition-related methods have been reported in ten years. Human
emotions can mainly be identified by facial expressions, speech, text,
and physiological signals. Facial expression is the most straightforward
way for human beings to convey emotions. Machines perceive facial
expressions through processing and analyzing facial images or videos
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Fig. 1. Distribution of emotion recognition publications sorted by year. (Search
string: (‘‘affective’’ AND ‘‘computing’’) OR (‘‘emotion*’’ AND ‘‘recognition’’) OR (‘‘emo-
tion*’’ AND ‘‘classification’’) OR (‘‘facial’’ AND ‘‘expression’’ AND ‘‘recognition’’) OR
(‘‘sentiment’’ AND ‘‘analysis’’)).

Fig. 2. Distribution of multimodal emotion recognition publications sorted by year.
(Search string: (‘‘multimodal’’ AND ‘‘affective’’ AND ‘‘computing’’) OR (‘‘multimodal’’
AND ‘‘emotion*’’ AND ‘‘recognition’’) OR (‘‘multimodal’’ AND ‘‘emotion’’ AND ‘‘clas-
sification’’) OR (‘‘audio*’’ AND ‘‘visual’’ AND ‘‘emotion’’) OR (‘‘bi-modal’’ AND
‘‘emotion’’ AND ‘‘recognition’’) OR (‘‘emotion*’’ AND ‘‘recognition’’ AND ‘‘fus*’’) OR
(‘‘physiological’’ AND ‘‘emotion’’ AND ‘‘recognitio’’)).

collected by cameras. Emotions delivered by speech signals contain
not only the explicit and concrete content but also the vocal infor-
mation of the speaker. Machines can capture emotional information
from speech signals by analyzing the prosodic, voice quality features,
and text information. Physiological signals, such as electroencephalo-
gram (EEG), Electromyogram (EMG), and Electrocardiogram (ECG), are
implicit emotional expressions. With the development of advanced non-
invasive devices, emotion recognition based on physiological signals
has received much research attention. Therefore, it is reasonable for
machines to explore the relationship between physiological data and
particular emotions.

Since emotions are expressed through multiple modalities, it is easy
for human beings to perceive other person’s emotions or intentions
by combining facial expressions, speech, or other information. To im-
prove the performance of emotion recognition for machines, in the
last two decades, much research in this field has been committed to
fusing multimodal information for comprehensive and accurate emo-
tion recognition. The distribution of multimodal emotion recognition
publications searched from Web of Science, Scopus, and Engineering
Village is illustrated in Fig. 2. It is apparent that there is an increasing
interest in research on multimodal emotion recognition. The fusion
of audio-visual, speech-text, audio-visual-text, visual-physiological, or
multiple physiological modalities is a popular research direction. In
this study, we review recent multimodal emotion recognition work
from the perspectives of multimodal emotion datasets, data preprocess-
ing, feature extraction of unimodality, and multimodal fusion emotion
recognition.
2

We compare our paper with the published surveys on multimodal
emotion recognition from five attributes in Table 1: (1) dataset, (2)
data preprocessing, (3) feature extraction from different modalities,
(4) fusion method, and (5) combinations of multiple modalities. It is
clear from the comparison shown that our paper is distinguishable.
Specifically, compared to most surveys on multimodal emotion recogni-
tion with wraparound or ignored introduction of data preprocessing, in
this review, the data preprocessing methods of different single modal-
ities are separately introduced. Furthermore, for the feature extraction
methods, some of the recent popular deep learning-based technologies
designed for emotional information extraction are represented. In ad-
dition, most existing reviews focus mainly on audio-visual multimodal
fusion and introducing multimodal emotion recognition according to
the fusion strategies. To make a clear presentation of the combinations
of various modalities, we comprehensively introduce multimodal fusion
from a new perspective of the fused modalities. Nine combinations of
different modalities are contained and discussed, which contributes to
learning the specific characteristics of individual modalities as well as
the complementary of various modalities.

The rest of the paper is organized as follows. Emotion model and
procedure are introduced in Section 2; Section 3 presents and lists sev-
eral available multimodal emotion datasets; Data preprocessing meth-
ods are described in Section 4; Section 5 discusses feature extraction
methods from unimodality; Section 6 provides the fusion methods
of different modalities for emotion recognition. Finally, conclusions,
challenges, and future work about multimodal emotion recognition are
discussed in Section 7.

2. Emotion model and procedure

2.1. Categorization of emotion models

Generally, the type of emotion model can be categorized into dis-
crete and dimensional representations. For the discrete emotion model,
emotions are described as six basic categories, i.e., anger, disgust,
fear, happiness, sadness, and surprise, which was defined by Ekman in
1971 [9]. These six basic emotions are universal across human ethnicity
and cultures and can be used to compound other emotions. The primary
emotions have the following characteristics: (i) emotions come from
instinct; (ii) different people produce the same emotions under the same
circumstances; (iii) different people express basic emotions similarly.
One of the significant advantages of discrete emotion representation is
that the categorical emotion scheme can describe people’s emotional
experiences in daily life. Another is that it is intuitive to describe
emotion based on the six emotion labels. Therefore, many efforts have
been devoted to discrete emotion recognition.

An alternative emotion description is dimensional emotion. Some
psychologists and experts in artificial intelligence consider that emo-
tions can be represented through continuous dimensions. In contrast
to discrete emotion, dimensional emotion theory defines different
emotions as points in the dimensional space. The Valence-Arousal
(VA) [10] and Pleasure-Arousal-Dominance (PAD) [11] are two typical
and widely accepted dimensional emotion models. For the VA model,
the valence dimension measures the positive and negative emotional
states, while the arousal dimension indicates the intensity of emotions.
PAD model adds the dominance dimension based on VA model, which
defines as a feeling of control and influence over the surroundings and
others. Two typical VA and PAD dimension emotion models are given in
Fig. 3. It is noted that discrete and dimensional emotion representations

can be transformed into each other to some extent.
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Table 1
Comparison of the proposed review with the existing reviews in multimodal emotion recognition.

Review paper Year Dataset Data
preprocessing

Feature extraction of different modalities Fusion
method

Combinations of multiple
modalities

Audio Video Text Physiological
signal

Zeng et al. [2] 2008 ! % ! ! % % ! A+V
Calvo and D’Mello
[3]

2010 % % ! ! ! ! ! A+V, MP

Wu et al. [4] 2014 ! % ! ! % % ! A+V
D’mello and Kory
[5]

2015 ! % ! ! ! ! ! A+V, A+V+T, V+P, MP

Zhao et al. [6] 2019 ! % ! ! ! ! ! A+V, A+V+T
Jiang et al. [7] 2020 ! % ! ! ! ! ! A+V, V+T, A+V+T, V+P
Shoumy et al. [8] 2020 ! ! ! ! ! ! ! A+V, A+V+T, V+P
This review ! ! ! ! ! ! ! A+V, V+T, A+T, V+P, V+B,

MP, A+V+T, A+V+P, A+V+B

Legenda: A = Audio; V = Video; T = Text; P = Physiology; B = Body movement; MP = Multiple physiological signals.
Fig. 3. Two typical dimension emotion models.
2.2. Procedures of emotion recognition

Both unimodal and multimodal signals can be involved in emotion
recognition-related tasks to realize the emotion classification. Since we
mainly focus on multimodal emotion recognition in this paper, the
general procedures of emotion recognition based on multimodalities
will be introduced. The pipeline of a typical multimodal emotion
recognition system is presented in Fig. 4. [12]

i. data collection: induce subjects to generate emotions with the
help of emotional stimuli, e.g., images, music, videos et al. collect and
process all related emotional data to obtain emotion datasets.

ii. data preprocessing: remove noise or other interference for data
in each modality. For example, detect and normalize the face in the
visual modality.

iii. emotional feature extraction: design appropriate feature descrip-
tors for learning representative features of different modalities.

iv. emotion recognition: design an effective fusion strategy to in-
tegrate features or classification scores of each modality for the final
emotion decision.

3. Multimodal emotion datasets

The performance of the emotion recognition model depends highly
on emotion data. Abundant labeled data are prerequisites for con-
structing an emotion recognition model with high performance and
generalization. Emotional datasets are generally collected in a lab-
controlled environment or in the wild. Emotions collected in the lab
can be divided into two categories: acted and spontaneous emotions.
3

The acted emotion datasets are recorded by asking participants to
express different emotions, which are usually exaggerated behavior and
beneficial for emotion classification. However, the acted emotions may
hide the actual relationship between explicit expressions and implicit
emotion states. Therefore, researchers have designed various environ-
ments and created emotion-induced materials to evoke and record the
external and inherent responses. There are three main approaches to
eliciting emotions: (1) Provide different videos, music, images, and
other materials to elicit different emotions from subjects, which is the
primary approach to collecting emotional data. (2) Design some simu-
lated scenarios to recall the memories of the unforgettable emotional
experience in the past life of the subjects. (3) Construct interaction
scenarios for subjects, where they can talk about anything like some
products, movies, songs, or their life experience to evoke emotions in
each other. Compared with the acted ones, the evoked emotions are
spontaneous, closer to the emotion expressed in the actual interaction,
and conducive to practical application.

Compared with the lab-controlled environment, the emotion
datasets collected in the wild are more natural and closer to real
emotional states. Those datasets are generally collected from movies or
websites. Specifically, the emotional states in video clips from movies
or TV series are acted by professional actors in the wild environment,
which can reflect real emotional states of individuals with different
characters under a specific event or environment. It is noticed that there
are various illumination variations, occlusions, face angle changes, and
environment noises for videos in the wild, resulting in difficulties and
challenges for high accuracy emotion recognition. Since numerous text
comments for products, movies or events are uploaded on websites
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Fig. 4. The pipeline of a typical multimodal emotion recognition system.
Table 2
Multimodal emotion datasets.

Dataset Subject Size Modality Type Emotion description Access Used in

eNTERFACE05
[13]

43 Available:
1290 audiovisual
recordings

Audio and video Acted
emotions in
labs

Six basic emotions,
boredom, contempt,
unsure, thinking,
concentrating and
bothered

http:
//www.enterface.
net/enterface05/

[14–22]

RML [23] 8 720 audiovisual
recordings

Audio and video Acted
emotions in
labs

Six basic emotions http://shachi.org/
resources/4965

[18,24–28]

BAUM-1 [29] 31 Available:
1184 audiovisual
recordings

Audio and video Spontaneous
emotions in
labs

Six basic emotions https://archive.ics.
uci.edu/ml/
datasets/BAUM-1

[24–26,30–32]

MELD [33] 304 13,000
utterances

Audio, video,
and text

Spontaneous
emotions in
the wild

Six basic emotions,
positive, negative
and neutral

https://affective-
meld.github.io/

[34–38]

IEMOCAP [39] 10 Approximately
12 h of data

Audio, video,
and text

Spontaneous
emotions in
labs

Happiness, anger,
sadness, frustration
and neutral state
categories;
activation, valence
and dominance
dimensions

https://sail.usc.edu/
iemocap/

[26,37,40–43]

SEMAINE [44] 150 959
conversations

Audio and video Spontaneous
emotions in
labs

Five affective
dimensions and 27
associated categories

https://semaine-
db.eu/

[40,41,45]

RECOLA [46] 46 Available:
27 audiovisual
recordings

Audio, video,
and
physiological
signal

Spontaneous
emotions in
labs

Arousal-valence
dimensions

http://diuf.unifr.ch/
diva/recola

[47–49]

MAHNOB-HCI
[50]

27 Available:
540 audiovisual
recordings, 532
physiological
and eye gaze
data

Audio, video,
physiological
signals, and eye
gaze

Spontaneous
emotions in
labs

Arousal, valence,
dominance,
predictability, and
emotional keywords

https://mahnob-
db.eu/

[51–53]

DEAP [54] 32 32 physiological
signals and 22
videos

Video and
physiological
signal

Spontaneous
emotions in
labs

Arousal, valence,
and dominance

http://www.eecs.
qmul.ac.uk/mmv/
datasets/deap/

[51,52,55–58]
such as YouTube and Facebook. It is available to collect those data
for emotion analysis. The emotion datasets recorded in the wild are
difficult to recognize but meaningful for real interaction and emotion-
related application. In the following, several noteworthy multimodal
emotion datasets listed in Table 2 are described in detail.

The eNTERFACE05 dataset. This is an audio-visual dataset con-
structed by Martin et al. [13] in 2006. The subjects were told to
4

listen to six successive short stories, each eliciting a particular emotion.
Then, subjects were asked to react to emotions of anger, disgust, fear,
happiness, sadness, and surprise. Five reactions were simulated for
each emotion. Two experts examined each recorded sample to decide
whether or not each sample expressed the requested emotion unam-
biguously, and 42 subjects from 14 different countries were retained.
The frame rate of each video sequence is equal to 25 frames per second,

http://www.enterface.net/enterface05/
http://www.enterface.net/enterface05/
http://www.enterface.net/enterface05/
http://shachi.org/resources/4965
http://shachi.org/resources/4965
https://archive.ics.uci.edu/ml/datasets/BAUM-1
https://archive.ics.uci.edu/ml/datasets/BAUM-1
https://archive.ics.uci.edu/ml/datasets/BAUM-1
https://affective-meld.github.io/
https://affective-meld.github.io/
https://sail.usc.edu/iemocap/
https://sail.usc.edu/iemocap/
https://semaine-db.eu/
https://semaine-db.eu/
http://diuf.unifr.ch/diva/recola
http://diuf.unifr.ch/diva/recola
https://mahnob-db.eu/
https://mahnob-db.eu/
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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and the sampling rate of each audio sample is 48 kHz with the mono
channel.

The RML datasets. This is an audio-visual dataset constructed by
ang et al. in 2008 [23]. Participants were asked to express their

motions as naturally as possible according to the provided emotional
entences, which were designed to recall the emotional incident that
hey had experienced. To enable the data to be used in a more general
pplication, subjects speaking six languages, i.e., English, Mandarin,
rdu, Punjabi, Persian, and Italian, were invited to the data collection.
o ensure that each subject expressed the expected emotions, at least
wo subjects who did not know the corresponding language were
elected to test emotions. In addition, a video sample was added to the
ataset while all subjects detected the intended emotion. Five hundred
ideo samples were collected with six basic emotions. Each clip was
ecorded at a sampling rate of 22 050 Hz with mono channel 16-bit
igitization.
The BAUM-1 dataset. This is an audio-visual dataset developed

y Zhalehpour et al. [29] in 2016. 31 subjects spoken in Turkish
ere asked to watch a sequence of still images and short video clips,
hich were devised to evoke various emotions and mental states. They

hen had to express their feelings and ideas about the stimuli they
atched on the screen without any guidance or scripts. The dataset

ontains six basic emotions, i.e., anger, disgust, fear, happiness, sad-
ess, and surprise. In addition, several mental states are also contained,
.e., boredom, contempt, confusion, thinking, concentrating, bothered,
nd neutral. Five annotators were invited to annotate and give scores
or each clip in the dataset. Finally, the majority voting over the five
nnotators gave each clip an emotion label.
The MELD dataset. This is a conversational dataset developed by

oria et al. [33] in 2018. It contains 13 000 utterances of 1433 dia-
ogues from the TV series Friends. Each utterance involves data of audio,
isual, and textual modalities. Three annotators were invited to look
t the available video clip of the utterances, and the majority-voting
pproach was employed to give the final emotion and sentiment label
f each utterance.
The IEMOCAP dataset. This is an audio-visual conversation dataset

constructed by Busso et al. [39] in 2007. They designed two different
approaches to induce and express emotions. One was based on a set
of scripts that ten actors were asked to memorize and rehearse. An-
other approach asked the subjects to improvise based on hypothetical
scenarios that were designed to elicit specific emotions. The corpus
contains approximately twelve hours of data recording actors’ face,
head, and hand movements during scripted and spontaneous spoken
communication scenarios. In the post-processing, the dialogs were man-
ually segmented at the dialog turn level. Six annotators were invited to
assess the emotional content of the dataset. Emotions of anger, disgust,
excitation, fear, frustration, happiness, sadness, surprise, and neutral
state were selected as annotations.

The SEMAINE dataset. This is an audio-visual dataset developed by
McKeown et al. [44] in 2011. A Sensitive Artificial Listener (SAL) agent
was built to engage a person in a sustained, emotionally colored conver-
sation. The interactions contain two parties, a ‘‘user’’ and an ‘‘operator’’
(either machine or a person simulating a machine). Participants in the
experiments interacted with two versions of SAL, one with the best
nonverbal skills and one with a degraded set. There are 150 participants
and 959 conversations recorded in the dataset. 6–8 annotators labeled
per clip with five dimensions and 27 associated categories.

The RECOLA dataset. This is a multimodal corpus of spontaneous
interactions in French constructed by Ringeval et al. [46] in 2013.
Since this corpus was based on a study focusing on emotion perception
during remote collaboration, 46 participants were equally separated
into two teams. Each team participant was asked to solve the survival
task individually in the separated rooms and received a questionnaire to
evaluate their initial emotional state. A mood induction technique was
5

used to balance the interaction context for the collaborative task. The
data of audio, video, electrocardiogram (ECG), and electrodermal activ-
ity (EDA) modalities were recorded continuously and synchronously. In
addition, six annotators measured the emotion on arousal and valence
dimensions and social behavior labels on five dimensions.

MAHNOB-HCI. This is a multimodal dataset developed by Soleymani
et al. [50] in 2012. Face videos, audio signals, eye gaze data, and
peripheral physiological signals of 27 participants were recorded. Two
experiments were conducted for data collection. In the first one, partici-
pants were asked to watch 20 inspirational videos and write down their
emotion states using emotion labels and arousal, valence, dominance,
and predictability. In the second one, they watched the short videos
and images without tags first and then with correct or incorrect tags.
Finally, participants assessed their agreement or disagreement with
different tags.

The DEAP dataset. This is a physiological signals based emotional
dataset developed by Koelstra et al. [54] in 2012. To elicit emotions,
40 one-minute-long excerpts of music videos were selected and played.
The electroencephalogram (EEG) and peripheral physiological signals
of 32 subjects were recorded while they were watching the inspirational
videos. Besides, the frontal face video of 22 subjects was also recorded.
Subjects valued each video regarding arousal, valence, like/dislike,
dominance, and familiarity.

4. Data preprocessing

Data preprocessing is a fundamental step for multimodal emotion
recognition. The primary purpose of data preprocessing is to eliminate
irrelevant information, simplify data to the maximum extent possible,
enhance the detectability of emotion-related features, and improve
the reliability of feature extraction and recognition. For the multi-
modal dataset, data preprocessing is performed separately according
to different modalities’ data characteristics. Therefore, in the following
sections, data preprocessing methods of the face image, speech signal,
and physiological signal are separately introduced.

4.1. Face image preprocessing

Face detection, alignment, and normalization are three major tasks
in face image preprocessing. Face detection is to locate the faces in the
image and segment faces from the image according to the bounding
box [59]. One of the classical and most used face detection methods
is the boosted cascade of weak classifiers, proposed by Viola and
Jones [60]. Deep learning-based methods are also developed for face
detection, such as the cascaded convolution neural network (CNN) [61]
and the discriminative complete feature-based CNN [62]. Face align-
ment is to rotate and frontal the detected faces to promise the in-plane
consistency of different faces. The coordinates of facial landmarks are
straightforward and effective for face alignment. Therefore, various
landmark detectors, such as Active Appearance Models (AAM) [63]
and multitask cascade CNN (MTCNN) [64], have been designed for
accurate detection. Face normalization focuses on eliminating illumi-
nation variation, head pose, and other influences on facial expression
recognition [65]. Histogram equalization, gamma intensity correction
(GIC) [66], and homomorphic filter [67] are typical algorithms for
image normalization. For pose normalization, it can be well solved by
the generative adversarial network (GAN) [68].

4.2. Speech signal preprocessing

The original speech signals are non-stationary but can be seen as
invariant in a short duration. Therefore, in the first phrase of prepro-
cessing, the speech signal is framed into several segments with a length
of 20 to 30 ms. Then, a window function is applied to each frame to
reduce the energy leakage and obtain a signal closer to the natural spec-
trum. Hamming windows, rectangular windows, and Hanning windows

are used in speech windowing. An utterance contains the voiced speech,



Neurocomputing 561 (2023) 126866B. Pan et al.
unvoiced speech, and silence. The voiced speech reflects the speech
activity during utterance and contains emotion-related information.
It is necessary to detect the voiced signals and remove the unvoiced
and silence frames [25]. In voice activity detection, zero-crossing rate,
short-time energy, and auto-correlation are three general methods.
The last step for speech signal preprocessing is noise elimination or
reduction. For removal of background noise, spectral subtraction, min-
imum mean square error (MMSE), and log-spectral amplitude MMSE
are commonly used methods [69].

4.3. Text preprocessing

One of the major tasks of text preprocessing is to separate a stream
of characters into a set of word-like elements [70]. Characters like
punctuation, white spaces, and emoticons should be careful attention
during preprocessing. Specifically, it is common to remove punctuation
characters before feature learning, which is crucial for the improvement
of analysis speed and model performance. In emotion analysis, space
is considered the boundary between words without having any mean-
ing. Therefore, unnecessary spaces are usually removed in most cases.
Emoticons are keyboard characters that depict some facial expressions,
such as smile and frown. These characters are facilitate to distinguish
emotion polarity and generally translated into corresponding words in
an utterance. Other text preprocessing components such as conversion
of capital letters, acronym expansion, spelling correction, and short-
word removal are also important for the high performance emotion
recognition.

4.4. Physiological signal preprocessing

The collected physiological data usually involve noise, interrupting
the signal and hindering effective emotion-related feature extraction.
Therefore, it is necessary to reduce noise for physiological signals be-
fore feature learning. High-frequency filter, low-frequency filter, notch
filter, and Butterworth bandpass filter are commonly used for noise
reduction [71]. Delta (0.5–4 Hz), theta (4–8 Hz), alpha(8–13 Hz),
beta(13–30 Hz), and gamma(30–43 Hz) bands that contain emotional
activity in the brain are filtered from different physiological signals,
respectively, by adopting Butterworth filters. In addition, common
methods such as principal component analysis (PCA), independent
component analysis (ICA), and common spatial patterns (CSP) are
employed to remove artifacts and noise for physiological signals.

5. Emotion feature extraction

Emotion recognition can be roughly categorized into two types
according to the use of modality, i.e., unimodal and multimodal emo-
tion recognition. Unimodal emotion recognition methods generally
employ single channels, such as face images, speech signals, text, and
physiological signals, to classify different emotional states. Multimodal
emotion recognition uses two or more emotion channels to analyze
emotion comprehensively. Emotion feature extraction is a significant
part of both unimodal and multimodal emotion recognition because
distinct features can facilitate precise results. The feature learning
method for unimodal emotion recognition can be used for multimodal
emotion recognition. Features are separately extracted according to the
characteristics of single modalities in multimodal emotion recognition.
Therefore, in the following subsections, feature extraction methods of
6

different modalities are introduced and discussed in detail.
5.1. Facial expression features

The facial expression conveys essential information about the emo-
tions, feelings, intentions, and physical states of others. Aiming to
detect, analyze, and understand facial expressions of humans, auto-
matic facial emotion recognition (FER) is a vital focus of basic research.
Exhaustive surveys of facial expressions are published in [72–77]. In
most multimodal emotion recognition studies, the facial expression is
an essential component and plays a vital role in providing appear-
ance information. One of the most critical tasks for FER and facial
expression-related multimodal emotion recognition is to extract facial
expression features for emotion classification. Feature extraction aims
to learn and extract discriminative emotional information from images.
The methods of facial expression feature extraction are separated as
shallow learning-based and deep learning-based methods. Therefore,
literature about various facial expression feature extraction will be
briefly introduced according to the categories.

Shallow learning-based or handcrafted facial expression feature has
been widely used for FER. Generally, handcrafted features can be sep-
arated into three categories: geometry, appearance, and motion [78].
Geometric features refer to the track of facial landmarks, which can
be presented as fiducial points, face mesh, active shape model changes
in displacement between points around the eyes and mouth [79–82].
Appearance feature represents changes in skin texture and representa-
tive appearance feature descriptors are local binary pattern (LBP) [83],
histogram of gradients (HOG) [84], Gabor wavelets [85,86], et al.
Motion feature includes optical flow [87] and motion history images
(MHI) [88].

The above-mentioned feature descriptors are designed to extract
static features from a single image, while the dynamic information
along the temporal domain is lost. Several dynamic feature extrac-
tors were developed to better understand the perception of dynamic
changes in facial expression to capture spatial–temporal features from
image sequences with ordered frames. For instance, the volume lo-
cal binary patterns (VLBP) that combine the motion and appearance,
the local binary pattern on three orthogonal planes (LBP-TOP) [89],
and the histogram of oriented gradient from three orthogonal planes
(HOG-TOP) [90]. As an extension of the static texture descriptor,
dynamic events on the face are well tracked and calculated through
these spatial–temporal texture descriptors. In [91], dynamic infor-
mation from geometric and texture features is exploited through a
landmark tracking framework and a parametric space. Their experi-
ments have verified that, compared with the static features, dynamic
features improve facial expression recognition and are more robust to
some uncontrolled variations in video sequences.

Considering that in real scenarios, various disturbances are attached
to the collected video sequences, such as pose variation, subject dif-
ference, and dynamic background. Efforts have been made to learn
robust and generalized facial expression representations. Sariyanidi
et al. [92] designed a dynamic feature extraction framework that rep-
resents facial expression variations as a linear combination of localized
basis functions. The designed facial expression representation can not
only recognize expressions with different intensities but deal with the
temporal inconsistencies that existed in varying datasets. In [93], au-
thors proposed a dynamic kernel-based representation that assimilates
facial movements captured using local spatio-temporal representations
in a large universal Gaussian mixture model (uGMM). With dynamic
kernels, local representations from various parts of the face are ac-
quired, and dynamic changes of different expressions are distinct for
classification.

With the advancement of deep learning (DL) [94,95], it has been
widely used for deep facial feature extraction because of the strong
feature learning ability [96–100]. By using hierarchical architectures,
DL-based facial expression feature descriptors can extract high-level
emotional information from images [101]. In facial expression feature

learning, CNN is often used to extract local facial features by using
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a set of filters to identify important patterns or features. Generally,
the performance of DL-based methods relies heavily on the scale of
the dataset. To obtain high-level discriminative features, abundant and
diverse facial expression training data is required. However, most of
the datasets used for FER have small scales, which is hard for efficient
DL model training. To solve this issue, transfer learning is applied to
FER by fine-tuning parameters in the pre-trained deep CNN model,
such as AlexNet, ResNet, and VGG, which are trained on the large-scale
datasets [102,103]. Fine-tuning some of the layers of the pre-trained
model can not only decrease the computation cost but obtain distinct
facial expression features.

In recent years, GAN has been widely used in facial expression
recognition tasks for data augmentation and reducing the negative
influences of emotion-unrelated variables. In [104], the GAN-based
framework was designed to expand the training dataset and disen-
tangle the expression, identity, and pose from an image to facilitate
discriminative feature extraction. Similarly, in [105], a GAN-based
structure guided by geometry information was proposed to produce
identity-preserving face images with different poses and expressions.
The training dataset is enlarged by generating labeled facial expression
images, enabling the model to learn features of different emotions
efficiently.

With the capability of finding salient regions in the image, attention
mechanisms have been embedded in DL models to weight features ac-
cording to their significance in facial expression recognition task [106].
To reduce the influences of head pose variation, occlusion, and low im-
age resolution, Liu et al. [107] used the ‘‘visual attention’’ mechanisms
to learn deep distinctive expression features based on saliency-guided
facial patches from images in an unconstrained environment. Attention-
based methods focus on learning salient features from images collected
in the wild, which can suppress the influences of unrelated variables
and increase the discrimination of facial expression features.

To model the dynamical evolution of facial expressions, recur-
rent neural network (RNN), long short-term memory (LSTM), gated
recurrent unit (GRU) and 3-dimensional CNN (3D-CNN) have been
applied to learn temporal relationships for the ordered image se-
quences [108,109]. Furthermore, numerous spatial–temporal feature
extraction frameworks have been constructed to learn spatial features
from single images and capture dynamic changes of frames [110,111].
Considering that not all frames are equally crucial for spatial–temporal
feature extraction, in [112], a frame attention network was proposed
to adaptively assemble the frame features to form a single distinct
representation. For single-frame features, self-attention weight is firstly
learned by a fully connected layer and softmax function. Then, it is
refined by modeling the relation between two frames.

It is a challenging problem that most facial expression features are
extracted and evaluated on the same distribution database, which may
make it difficult to classify the features distributed on different do-
mains. To solve the cross-domain problem, Zong et al. [113] proposed
a transductive transfer regression model (TTRM) to bridge the feature
distribution gap between the source and target domains. TTRM can
obtain the discriminative expression features with the capability of
quantifying contributions of different facial local regions. By analyzing
the influence of learning complexity, Xia et al. [114] proposed a
recurrent convolutional network (RCN) to explore the shallower archi-
tecture and lower-resolution input data. Chen et al. [115] constructed
an adversarial graph representation adaptation (AGRA) framework to
accomplish effective cross-domain local–global feature co-adaptation.
As a result, domain-invariant features and more detailed content are
obtained for distinguishing different expressions.

5.2. Speech emotion features

Speech is a natural and effective medium to express emotional
states. Various studies have been conducted to extract emotional in-
formation and predict and analyze human emotion from speech sig-
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nals [116–118]. It is worth noticing that speech signal, often coupled
with facial expression or text, is a vital component in multimodal
emotion recognition. Acoustic feature extraction is a significant and
challenging task in speech emotion recognition (SER) and speech-
related multimodal emotion recognition. Prosodic, voice quality, and
spectral features, called handcrafted acoustic features, have been in-
tensively explored and used for SER. In addition, with the advantages
of strong learning ability, DL has been applied for exploring discrim-
inative deep speech emotion features [119,120]. For example, CNNs
are often employed to extract local acoustic features, such as variations
in frequency content over time, from speech signals by analyzing the
spectrogram of the signal.

In general, emotional speech data expressed by different speak-
ers demonstrated large variations in acoustic characteristics, even if
they intend to express the same emotion. Therefore, it is significant
to extract discriminative and speaker-independent features that do
not rely on speakers [121–124]. In [125], a two-layer fuzzy multiple
random forests was proposed to extract speech emotion features. Non-
personalized features are obtained through the derivation of basic
acoustics features and fused with personalized features. In [126], a
subject-independent method was developed using voice features from
OpenSmile toolbox and higher-order spectral features. A particle swarm
optimization-assisted biogeography-based optimization (PSOBBO) al-
gorithm was designed to remove irrelevant and redundant features.
Such a feature selection strategy can facilitate acquiring salient speech
emotion features.

Similar to image frames in a video clip, dynamic information among
speech segments in an utterance is vital for distinguishing emotions.
Therefore, to better classify speech emotions, it is significant to model
the temporal dependency among segments and obtain dynamic speech
representations. With the capability of capturing context information,
LSTM, often combined with CNN, is explored in various studies. Gen-
erally, CNN is used to extract features from segments, and the LSTM
network is employed to capture temporal dynamic dependency of the
segment features [127,128]. According to the experimental results,
these studies showed that the cooperation of CNN and LSTM can
increase the discrimination of speech features compared with using
CNN alone. Recently, attention mechanism-based networks have been
developed for speech feature learning [129,130]. In [131], a self-
attention mechanism was added to bi-directional LSTM (BLSTM) to
calculate the similarity between two frames and automatically assign
weights to frames. The introduction of the attention mechanism fa-
cilitates the network in finding the salient emotion components and
learning representative features.

In most cases, SER achieves well performance when the distribution
of the testing set is close to the training set. However, unsatisfied
recognition results may be obtained if training and testing sets have
different distributions. To solve this issue, several researchers have
been devoted to investigating the cross-corpus, and cross-language
learning capable of taking multiple datasets at once and constructing
a more robust SER model [132–135]. Domain adaptive representation
learning [136] and domain adversarial neural networks [137,138] are
popular in cross-corpus and cross-language SER. The former attempts
to minimize the difference between the source and target domains.
The latter focuses on learning common feature representations. Song
and Zheng [139] proposed a framework called feature selection-based
transfer subspace learning (FSTSL) to learn a robust low-dimensional
corpus-invariant feature representation and improve the generaliza-
tion of the cross-corpus SER model. Further, Song [140] developed a
transfer linear subspace learning (TLSL) framework to learn a common
feature subspace for source and target corpora. In these studies, robust
corpus-invariant feature representations are obtained that improve the

discrimination of cross-corpus speech emotions.
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5.3. Text features

Textual information coupled with acoustic features in speech plays a
vital role in multimodal emotion recognition. Grammatical analysis and
semantic analysis are two important contents for textual feature extrac-
tion. Similar to facial expression and speech modalities, textual feature
representation methods can be roughly categorized into traditional
and DL-based methods. Bag of Words (BOW), rule-based technique,
and statistical methods are typical traditional textual feature extraction
methods [141]. Based on the emotion lexicons, Jin et al. [142] designed
a textual emotion representation called eVector, which is combined
with BOW to obtain lexical feature representations.

Due to the strong capability for feature learning, DL has been widely
employed to learn emotional representations of text. Su et al. [143]
proposed to extract emotional word vectors from the word2vec model
and adopted an autoencoder to acquire the bottleneck features. The
final textual features were obtained by concatenating the features in
the semantic word vector and the bottleneck features together. Liu
et al. [144] proposed a CBOW method that combines BOW and CNN for
learning textual emotion features. Specifically, a CBOW model based on
a feedforward neural network was first designed for vector representa-
tion of text, and then a CNN was trained for semantic features learning.
LSTM is widely used for distinct emotion feature extraction from textual
information to learn the contextual dependency in an utterance. Wang
et al. [145] proposed a tree-structured CNN-LSTM model that extracted
both local and global information from sentences. They trained the CNN
model to learn the conducive emotion information from the divided
text regions instead of a whole text. Then, the regional information was
sequentially integrated by LSTM to learn long-distance dependencies
among the whole sentence. Huang et al. [146] designed an emotion-
enhanced LSTM (ELSTM) to improve the feature learning ability of
LSTM by introducing emotional intelligence and attention mechanism.

5.4. Physiological signal emotion features

The above-mentioned explicit emotion signals are subjective in
emotion expression. Compared with facial expression, speech, and
text, physiological signals are implicit and objective, which are diffi-
cult to conceal deliberately. Therefore, much attention has been paid
to physiological signals-based emotion recognition [12]. The com-
mon physiological signals [147] in emotion recognition are listed in
Table 3. Among these signals, EEG is the most frequently used in
physiological signals-related emotion recognition [71]. Conventional
EEG features are categorized into time-domain, frequency-domain, and
time-frequency domain [148,149]. Hjorth feature, fractal dimension
feature, and higher order crossing feature are representative time-
domain features. Frequency-domain features are usually extracted from
five frequency bands, i.e., delta, theta, alpha, beta, and gamma, like
power spectral density (PSD), differential entropy (DE), and higher
order spectra (HOS). Time-frequency features exploit both temporal
information and frequency domain information and help to explore
the dynamical changes. The frequently-used time-frequency domain
approaches contain wavelet transform, Hilbert Huang transform (HHT),
and wavelet packet transform.

It is noted that the conventional features extracted from different
domains have been independently used or integrated for EEG emo-
tion analysis according to the specific task or data. In recent studies,
DL-based methods have been gradually introduced into EEG feature
extraction. For instance, CNN is commonly used to extract relevant
spatial and temporal features from the EEG signals. Generally, raw EEG
signals or conventional features are fed into various deep neural net-
works, such as deep belief network (DBN), CNN, RNN, and graph neural
network (GNN) for high-level EEG representations learning [150,151].
As EEG signals are collected from different electrodes that record the
energy changes over the scalp, the position of each electrode provides
8

extra spatial information. To achieve a comprehensive analysis of brain
activities during emotion generation, in most cases, electrode positions
are projected into 2-D plain and treated as spatial information for
spatial–temporal feature extraction [110,152]. Considering the bio-
logical topology of the human brain, there are internal connections
among EEG channels and it is necessary to exploit the inter-channel
relations to reveal the emotion-related functional connectivity. With
the advantages of topological structure, GNN and its variants have been
developed to capture the intrinsic relationship among EEG channels for
discriminative emotion feature extraction [153,154].

EEG signals collected from various electrodes on the scalp comprise
a variety of brain activity information, while not all information is
necessary or equally important for EEG emotion recognition. Hence,
it is important to investigate the correlation of different channels or
frequency bands to emotional brain activities. Approaches such as
group sparse canonical correlation analysis [155], time-frequency and
weight distributions analysis [156], and attention mechanism [157]
have been used for importance analysis of channels and frequency
bands. Researchers have found that the frontal, parietal, and occipital
regions are mostly related to emotion processing in the brain. Be-
sides, higher frequency bands i.e., delta and gamma, are discriminative
for emotion recognition. In [158], visualized activation maps were
shown to prove these findings. Except for the discoveries of emotional-
related brain regions and frequency bands, they also identified the
global inter-channel relations between the left and right hemispheres
can provide helpful information for emotion recognition. Taking these
discoveries into consideration during feature learning helps to de-
crease computation costs and increase feature extraction efficiency.
EEG signals are sensitive to subjects, meaning that a large difference
in EEG exists among individuals. To solve the performance degradation
under the cross-domain situation, multisource transfer learning [159],
domain-invariant feature extraction [157], and transferable attention
neural network [160] have been developed and are facilitate recognize
emotions from new subjects.

5.5. Discussion

In this section, the popular methods of feature extraction for dif-
ferent modalities are discussed. Although the data types of different
modalities are various, it can be concluded that there is similar feature
extraction mechanism for these modalities. Firstly, handcrafted (or
shallow) and DL-based (or deep) features are common categories in
these modalities. Researchers designed varieties of handcrafted feature
descriptors for each modality according to the characteristics of data
and emotion expression. The handcrafted feature extraction methods
possess the advantages of easy understanding, simple computation,
and low memory consumption. Although more and more powerful
DL-based methods have been proposed and applied in deep emotion
feature extraction. For some modalities, such as speech and EEG signals,
handcrafted features are still fundamental and play a vital role in
DL-based high-level semantic feature learning.

Recently, deep neural networks, such as CNN and RNN, have been
successfully utilized for discriminative emotion feature extraction in
all modalities. For high-level representative feature learning, speech
and EEG signals are displayed as images and fed into a deep model to
take advantage of CNN’s hierarchical learning. Except for learning spa-
tial features using CNN, in different modalities, 3D-CNN, CNN-LSTM,
and graph convolutional network are developed for spatial–temporal
features learning from sequential data. Due to its ability to focus on
key parts, attention mechanisms are used to identify emotional regions
and channels during the feature extraction process. It is also possible
to transfer certain attention modules from one modality to another.
Additionally, the feature variation cross-domain has been taken into
account when extracting features from different modalities. There have
been a number of domain adaptation strategies developed to handle the

variations between the source domain and the target domain.
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Table 3
Physiological signals for emotion recognition.

Name Description

Electroencephalogram (EEG) A direct reflection of brain activity and contains meaningful psychophysiological information for emotion recognition.

Electromyogram (EMG) It reflects the functional status of facial muscles, where Corrugator muscles and Zygomaticus muscles are separately
sensitive to positive and negative emotions.

Electrooculogram (EOG) It can be used to measure the vertical and horizontal movement of eyes that provide useful information for valence
recognition.

Electrocardiogram (ECG) A measurement of beat-to-beat temporal changes of the heart rate, which gives deep insight to the emotional system of
the human body.

Heart Rate Variability (HRV) The most natural choice for arousal detection using comparison of sympathetic and parasympathetic frequency bands
of the time series.

Galvanic Skin Response (GSR) Measure the skin conductivity that decreases during relax states and increases when exposed to effort.

Skin Temperature (ST) It can be used to identify if a person is relaxed or not.

Respiratory Rate (RES) It can reflect multiple emotion states. For example, deep and fast breathing can indicate happiness or anger, irregular
respiration patterns are a sign of negative valence and arousal.

Blood Volume Pressure (BVP) It is described by the pulse-wave of the heart and the volume of the blood flowing through a vessel.
6. Multimodal emotion recognition

Multimodal emotion recognition has attracted increasing attention
in affective computing [161]. To better understand human emotions
for computers, it is necessary to imitate the way humans observe
emotions. Humans judge other person’s emotions by synthetically an-
alyzing the information presented from facial expressions, voice, the
content of utterances, and gestures during an interaction. Therefore,
collecting emotion expression-related information and fusing different
modalities help computers comprehensively recognize emotions. It is
noticed that although the data forms of different modalities are hetero-
geneous, the inner consistency of semantic enables the collaboration of
multiple modalities to acquire a more convinced emotion recognition
model [162]. Specially, in [163], authors discussed when and why
multimodal outperforms unimodal jointly through a theoretical treat-
ment. In the previous sections, we have discussed the emotional feature
extraction methods of individual modalities. In this section, state-of-
the-art methods for multimodal emotion recognition will be discussed
in detail.

Video, audio, text, and physiological signals are frequently used
modalities in multimodal emotion recognition. In addition, various
combinations of individual modalities have been put forward in the last
decade, such as audio and video, speech and text, and multiple phys-
iological signals fusion for emotion recognition. The fusion methods
are generally categorized into feature-level, decision-level, and hybrid
fusions. Feature-level fusion firstly concatenates features from differ-
ent modalities and then trains a classifier for emotion classification.
In decision-level fusion, classifiers of different modalities are trained
separately, and the classification results are fused for the final decision.
The hybrid fusion integrates the feature- and decision-level fusion. An
illustration of multimodal fusion methods for emotion recognition is
shown in Fig. 5, where the audio, video, and text modalities are chosen
as an example.

6.1. Classifier

The classifier that decides the underlying emotion plays an essential
role in multimodal emotion recognition. Various classifiers have been
implemented for emotion recognition, such as support vector machine
(SVM), random forest (RF), artificial neural networks (ANN), and many
others. Due to the fact that each classifier has its own advantages and
limitations, it is difficult to decide which is the most appropriate for
emotion classification. Therefore, researchers usually choose or design
emotion classifiers according to the specific task or characteristics of
emotion features. Generally, a classifier’s feature separation ability
dramatically influences emotion recognition performance. As the most
9

used classifier in emotion recognition, SVM aims to locate hyperplanes
that accurately separate various feature groups. As most emotional
features cannot be separated linearly, SVM involves kernel functions,
such as linear, polynomial, and Gaussian, to convert features into
a high-dimensional space for linear separation. In DL-based emotion
recognition, high-level features are separated through a loss layer at
the end of the network. The loss function greatly influences the classi-
fication accuracy. The softmax loss that minimizes the cross-entropy of
the predicted probability and the truth ground distribution is the most
used function in CNN models [75,164].

6.2. Audio-visual emotion recognition

Audio and visual modalities are the two most commonly used
modalities in the multimodal emotion recognition research community.
Audio modality possesses important information relevant to the inten-
sity of emotions. In comparison, visual modality depicts the expressions
of an image sequence, which contains rich appearance information.
These two modalities contain almost 90% explicit emotional infor-
mation and complement each other. Therefore, it is beneficial for
performance improvement of emotion recognition through the integra-
tion of these two modalities. Numerous studies have focused on fusing
emotional information of audio and visual modalities. This section
introduces the representative audio-visual emotion recognition meth-
ods in recent years according to three fusion strategies. Comparisons
of different methods fusing audio and visual information for emotion
recognition are list in Table 4.

6.2.1. Feature-level fusion
Since a deep belief network (DBN) is able to learn the high-level

relationship of input data effectively, it has been used to fuse the audio
and visual features and learn feature representation. In [25], voice
activity detection (VAD) was executed to distinguish whether an audio
frame is salient and assigned weights of 0 or 1 for the salient and
voice frames of the corresponding facial expression frames. Emotional
features of facial and voice were extracted from the pre-processed
data by CNN models and then fused by the DBN. While the average
accuracy of single modalities was 69.8% on eNTERFACE dataset, the
proposed fusion method produced a significantly higher accuracy of
85.69%. Zhang et al. [24] proposed a deep hybrid model to bridge
the emotional gap between emotions and audio-visual features. The
audio and video signals were first segmented into fixed frames, and
then the CNN and 3D-CNN were employed to learn audio and visual
segment features, respectively. Finally, the output features were con-
catenated and put into a DBN for learning a discriminative audio-visual
segment feature representation. Pini et al. [15] proposed a multimodal
DL architecture composed of three sub-networks. The 2-dimensional

(2D) and 3D networks were developed for static facial features and
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Fig. 5. Multimodal fusion methods for emotion recognition.
dynamic patterns. LSTM was applied for the audio branch to capture
the temporal evolution of the audio features. The features trained from
three networks were concatenated and sent into a fully connected layer
for the final classification.

Similarly, in [17], audio and visual features were separately learned
through the 2D and 3D CNN models. A non-linearity fusion approach
with an extreme learning machine (ELM) was employed for fusing fea-
tures obtained from two CNN models. They designed the two-stage ELM
containing two ELM models. The first ELM was trained for gender sep-
aration, and the last layer was removed after training. The hidden layer
of the first ELM was fed into the second ELM for emotion classification.
In such a manner, emotions were recognized based on gender, which in-
herently eliminates the influence of gender and increases accuracy. To
exploit the dependencies and relations of different modalities, Ghaleb
et al. [14] put forward a metric learning method to jointly obtain a
discriminative score and a robust representation in a latent space. The
developed framework was scalable because it learns modality-specific
metrics without imposing any constraints. Additionally, the rationale
of the proposed distance was intuitive, which is beneficial for model
explanation according to the importance of a single modality. Kansi-
zoglou et al. [26] proposed an online autonomous emotion recognition
paradigm to exploit both facial and voice emotional information. To
distinguish different emotion states under time variations, the fused
features were proceeded to an LSTM layer, which was monitored by
a reinforcement learning agent. Audio and visual features were fused
by a deep neural network (DNN). The unimodal features produced an
average accuracy of around 44%, while the fused features achieved
around 58% on the BAUM dataset.

Nguyen et al. [20] developed a generic framework that cascades
3-dimensional CNN (C3Ds) and DBN to extract spatio-temporal fea-
tures from audio and visual modalities. They adopted the multimodal
compact bilinear pooling (MCB) to capture the complex and intrinsic
associations between the two modalities. The unimodal feature set
produced an average accuracy of 83.09%, while the fusion of audio
and visual achieved an increase of around 7%. Additionally, accuracy
increased from 89.39% to 90.85% when MCB was applied, which
further supported the efficacy of the fusion strategy. Huang et al. [165]
used the transformer model to fuse the audio and visual modalities. In
the framework, multi-head attention was employed to produce inter-
mediate representations of multimodalities from a common semantic
feature space. They found that the order of audio and visual features
impacts recognition accuracy. Results showed that audio on the left
and video on the right improve performance because visual features
are captured as principle parts. This observation further indicates that
visual feature is superior to audio feature in emotion recognition.

These methods focus on fusing audio-visual features with neural
network-based approaches. High-level discriminative fused representa-
tions are generated, but the specific characteristics of single modalities
are lost. In [47], a cross-attentional fusion approach was introduced to
10
encode the inter-modal information and preserve the intra-modal char-
acteristics. This fusion strategy explored the inter-modal relationships
by computing cross-attention weights of audio-visual modalities. The
salient feature representations from two modalities were combined and
fed to the fully connected layers for the valence and arousal predictions.
The average accuracies of valence and arousal of single modalities
were 55.25% and 70.2% on the RECOLA dataset, while the proposed
model achieved significantly higher accuracies of 69% and 83.8%,
respectively.

6.2.2. Decision-level fusion
In [167], genetic algorithms (GA) was implemented to learn the

most suitable HMM structure for the speech system. For the vision
system, PCA was employed for dimensionality reduction and emo-
tion identification. GA was also designed to optimize ANN’s structure,
improving the vision system’s performance. A weighted sum of recog-
nition probabilities of speech and vision systems produced the final
recognition results. Noroozi et al. [18] proposed to define a set of
key-frames of each video by k-means cluster. Visual features were de-
scribed using geometry deformation and a CNN-based model from the
selected key-frames. An 88-dimensional feature vector was computed
with the set of audio features of pitch, intensity, and Mel-frequency
cepstral coefficient (MFCC) et al. SVM classifiers were trained for each
modality, and the obtained confidence outputs were used to define a
new feature space for the final prediction. Fan et al. [168] developed a
hybrid network combining CNN-RNN and C3D to simultaneously model
appearance and motion features. SVM model was trained for audio
modality, and the prediction results of the three models were combined
through a weighted summation.

In [169], three networks were separately designed to learn the emo-
tional features from visual and audio modalities. The spatio-temporal
texture features and dynamic geometric features were separately ex-
tracted from the C3D and CNN-LSTM networks. The acoustic features
that could complement the limitations of image-based networks were
extracted from an audio-based network. Further, they proposed an
emotion adaptive fusion strategy by measuring the recognition accu-
racy per emotion through a given validation dataset. As a powerful
tool to improve classification performance, ensemble learning has been
applied in decision-level fusion emotion recognition [170]. Conven-
tional ensemble rules include max, min, sum, average, and product,
which are used for combining several classifiers. In [171], with sim-
ple weighted averages, authors presented a new way of aggregating
models based on random hyperparameter searches. In [16], both man-
ual and deep features were learned separately from audio and visual
modalities. They designed the blending ensemble algorithm to fuse
the classification results from SVM and multi-task CNN classifiers for
the final emotion decision. This fusion method has achieved a sig-
nificantly higher accuracy of 81.36% than both audio (56.33%) and

visual (66.93%) modalities. From these methods, it is concluded that
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Table 4
Recent work on audio-visual fusion emotion recognition.

Reference Preprocessing Feature extraction Fusion strategy Classifier Dataset Experimental
condition

Accuracy

[21] Audio signal
processing; face
detection and
alignment

Prosodic, MFCC, formants
features of audio modality,
QIM and ITMI of visual
modality

Hybrid-level:
weighted averaging
and stacked
generalization

MLP
RBF

eNTERFACE05 LOSO 77.78%

[24] Overlapped data
segment

CNN for segment audio
features extraction, 3D
CNN for segment visual
features extraction

Feature-level:
DBN

SVM RML
BAUM-1s
eNTERFACE05

CV LOSO
CV LOSO
CV LOSGO

80.36%
54.57%
85.97%

[15] Audio signal
sampling, face
detection and
alignment, data
augmentation

Temporal audio features
extracted by LSTM, static
and dynamic visual
features extracted by 2D
and 3D CNN

Feature-level:
concatenation

ANN AFEW 𝑉𝑡𝑟𝑎𝑖𝑛 = 774,
𝑉𝑣𝑎𝑙 = 383,
𝑉𝑡𝑒𝑠𝑡 = 653

49.92%

[18] Key frame selection 88-dimensional audio
features, geometric and
CNN-based visual features

Decision-level:
stacking fusion

SVM
RF

SAVEE
eNTERFACE05
RML

CV 10F 100%
99.72%
98.73%

[166] Face detection,
facial landmark
annotation, data
augmentation

CNN for audio features
extraction, CNN-BRNN for
facial texture extraction,
SVM and CNN for facial
landmark action features
extraction

Hybrid-level:
concatenation,
weighted summation

SVM AFEW6.0 CV 3F 56.66%

[20] Face detection 3D CNN for
spatio-temporal audio and
visual feature extractions

Feature-level:
multimodal compact
bilinear pooling

DBN eNTERFACE FABO CV LOSO
CV LOSO

90.85%
92.24%

[14] Face detection and
alignment

openSMILE for audio
features extraction, CNN
for visual features
extraction

Feature-level:
metric learning

SVM eNTERFACE05
CREMA-D

CV 10F
CV 10F

66.5%
91.5%

[26] Speaking time
detection, face
detection, data
augmentation

VGGish models for audio
and visual features
extraction

Feature-level:
DNN

ANN RML
BAUM-1s

CV LOSO
CV LOSGO

82.97%
56.01%

(continued on next page)
compared with feature-level fusion, the decision-level fusion strat-
egy preserves the characteristics of single modalities but ignores the
inter-modality relationship.

6.2.3. Hybrid fusion
Hybrid fusion combines the advantages of feature- and decision-

level. The unique attributes of different modalities are retained, and the
correlations among modalities are explored. However, the limitation
is that the model complexity may increase. Bejani et al. [21] simu-
lated human emotion states by combining facial expression and speech
emotional information. Prosody feature, MFCC, and formant frequen-
cies were extracted as vocal features. Integrated time motion image
(ITMI) and quantized image matrix (QIM) images were used for facial
expression feature extraction. Then, audio- and visual-based emotion
classifiers were trained separately for unimodal emotion recognition.
To realize feature fusion, all features extracted from two modalities
were cascaded and then selected through analysis of variations. Final
recognition results were obtained by combining the benefit of feature-
and decision-level fusions. This hybrid fusion method produced an
accuracy of 77.78% on the eNTERFACE dataset, which is a significant
improvement compared with using audio (54.99%) or visual (39.27%)
modalities alone. In [166], three complementary cues, i.e., facial land-
mark action, facial texture, and audio signal, were explored and fused
for emotion recognition from video clips collected in the wild. The
hybrid fusion was applied in the multi-cue fusion framework, where
dynamic facial features were concatenated for feature-level fusion,
and classification results from visual and audio were integrated for
decision-level fusion. Their results showed that emotion recognition
performance in the wild is improved by integrating multiple cues from
audio-visual modalities.
11
6.3. Audio, visual and text modalities fusion

In [172], Deep Boltzmann Machine (DBM) was applied to learn
a joint density model over the input of visual, audio, and textual
modalities. The deep architecture of DBM enlightened the possibility
of discovering the highly non-linearity between low-level features and
the complex relationship of different modalities. In [173], Poria et al.
developed a multimodal information extraction agent, which adopted
an ensemble feature extraction approach by exploiting the joint use of
audio, visual, and text modalities information. A feature-level fusion
strategy was utilized by concatenating the tri-modal features together.
In their further work [19], CNN was integrated with a low-dimensional
RNN to capture spatial structure information in static images and tem-
poral patterns inherent in a video sequence. Besides, multiple kernel
learning was developed to adaptively combine emotion features in
audio, video, and text. For single modalities, the best accuracy of
94.5% was achieved on visual modality. For bimodality, combining
visual and textual modalities produced the best accuracy of 96.21%.
The integration of visual, audio, and textual modalities achieved an
accuracy of 96.55%.

To learn the intra- and inter-modality dynamics in an end-to-end
way, Zadeh et al. [174] proposed a tensor fusion network (TFN).
In their network, inter-modality dynamics were modeled by tensor
fusion that explicitly aggregates unimodal, bimodal, and trimodal in-
teractions. While intra-modality dynamics were modeled through three
modality embedding subnetworks for language, visual and acoustic
modalities. In [175], both feature- and decision-level fusion methods
were developed to merge emotional information extracted from three
modalities. The visual feature set achieved a better precision of 68.1%
than the other two modalities. The feature-level fusion of audio and
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Table 4 (continued).
[25] Voice active

detection, data
segment

Audio features extracted
by CNN, visual features
extracted by 3D CNN

Feature-level:
DBN

ANN
SVM

RML
eNTERFACE05
BAUM-1s

CV LOSO
CV LOSGO
CV LOSGO

82.38%
85.69%
59.17%

[17] Key frame selection,
data augmentation

Audio features extracted
by CNN, visual features
extracted by 3D CNN

Feature-level:
ELM

ANN
SVM

Big data

eNTERFACE05

Train:Val:Test =
70:5:25
CV 5F

99.9%

86.4%

[165] Data augmentation Multi-head attention
modules for audio and
visual features

Feature-level:
Transformer fusion

ANN AVEC (2017) 𝑆𝑡𝑟𝑎𝑖𝑛 = 36,
𝑆𝑑𝑒𝑣 = 14,
𝑆𝑡𝑒𝑠𝑡 = 16

V-A:
65.4–70.8%

[167] Image graying HMM for emotion-specific
vowels in audio modality
and PCA+ANN+GA for
visual modality

Decision-level:
Weighted
summation

GA based
ANN

Own Unknown 97%

[168] Face detection and
alignment

openSMILE for audio
features, CNN-RNN and
C3D for visual features

Decision-level:
weighted summation

SVM
ANN

AFEW 6.0 𝑉𝑡𝑟𝑎𝑖𝑛 = 774,
𝑉𝑣𝑎𝑙 = 383,
𝑉𝑡𝑒𝑠𝑡 = 593

59.02%

[169] Face detection and
alignment

CNN-LSTM for audio
features, Semi-supervised
Learning with 3D
Autoencoder,
Convolutional 3D with
Auxiliary Network, and
CNN-LSTM for visual
features

Decision-level:
Emotion adaptive
fusion

ANN MMI
CASME II

CV LOSO
CV LOSO

78.61%
60.98%

[16] Face detection and
alignment, data
augmentation

Multitask CNN and
openSMILE for audio
features extraction,
Multitask CNN and LBP for
visual features extraction

Decision-level:
blending algorithm

SVM eNTERFACE05 𝑆𝑡𝑟𝑎𝑖𝑛 = 30,
𝑆𝑡𝑒𝑠𝑡 = 12

81.36%

[47] Face detection and
alignment, data
augmentation

CNN for audio features
extraction, 3D CNN for
spatio-temporal facial
expression features
extraction

Feature-level:
cross-attentional
fusion

ANN RECOLA

fatigue data

𝑆𝑡𝑟𝑎𝑖𝑛 = 16,
𝑆𝑣𝑎𝑙 = 15,
𝑆𝑡𝑒𝑠𝑡 = 15
Train:Val = 80:20

V-A:
69–83.8%

42.1%

Legenda: V-A: Valence-Arousal; CV: Cross Validation; LOSO: Leave-One-Subject-Out; LOSGO: Leave-One-Speaker-Group-Out;
(N) F: (N) Fold Cross Validation; Train: Training set; Val: Validation set; Test: Testing set; Dev: Development set;
𝑆∗: the number of subjects in different subsets; 𝑉∗: the number of videos in different subsets.
visual obtained the best precision of 73.21%. Furthermore, the feature-
level fusion of three modalities achieved better precision of 78.2% than
decision-level fusion (75.2%). Additionally, through the experiment re-
sults, it was found that gaze- and smile-based facial expression features
are useful for emotion classification.

To detect and track emotions in conversations, Majumder et al. [41]
presented an RNN-based neural architecture named conversational
memory networks (CMN). In CMN, textual, audio, and visual features
were extracted using CNN, 3D-CNN, and openSMILE. They assumed
that the emotion in an utterance is related to three factors: (i) the
speaker, (ii) the context given by the preceding utterances, and (iii)
the emotion behind the preceding utterances. A party state was used to
model each party, and a global state was used to model the context of
an utterance. The final emotion classification was realized by emotion
representation, which was inferred from the party state of the speaker
along with the preceding speakers’ states. Jiang et al. [99] proposed a
new probability and integrated learning (PIL) based classification algo-
rithm. They presented the topology of integrated learning by simulating
the mode and construction of human thinking. Sixteen and fourteen
handcrafted visual and audio emotional related features were extracted.
Specifically, they extracted lyrics features and split them into positive
and negative lyrics. Visual, audio, and lyrics classifiers were trained
for emotion recognition. Results from these classifiers were combined
through an integration learning technology. The emotion tube can be
generated by PIL, which describes the emotional fluctuation.

6.4. Multiple physiological signals fusion

As described in Section 5.4, physiological signals reflect the actual
emotional states of human beings because they are rarely controlled
subconsciously. Thus, the results of emotion recognition based on
12
physiological signals are more convincing and robust than those based
on facial expression, voice, and text. In recent years, multimodal phys-
iological signals fusion methods have been proposed to improve the
recognition accuracy further and explore the correlations between EEG
and other peripheral physiological signals. For feature-level fusion,
Hassan et al. [176] proposed to learn the high-level physiological
features from EDA, EMG, and photoplethysmogram (PPG) signals using
DBN. Then, the statistical and deep features were fused and fed into
the fine Gaussian support vector machine (FGSVM) for emotion recog-
nition. Their method achieved an accuracy of 89.53% on the DEAP
dataset.

Zhang et al. [12] proposed a regularized deep fusion framework
to fuse representations of various physiological signals. They adopted
ensemble deep kernel machine optimization to learn feature repre-
sentations of different physiological signals. Then, intermediate fusion
representations between any two signals were obtained by a one-layer
fully connected network. A final representation was generated in a
global fusion layer using all representations. Through this operation,
the correlation and diversity between different feature representations
were well explored, which contributes to improving the quality of
global fusion representation. They compared the emotion prediction ac-
curacies of different combinations of physiological signals. Combining
all signals, such as EEG, EMG, GSR, and RES, on the DEAP dataset was
observed to achieve the best accuracies (64.5% at valence and 63.1%
at arousal).

Most fusion methods usually choose the particular classification
method, which ignores the different distribution of multiple signals.
Zhang et al. [177] proposed to combine EEG, EOG, and EMG signals
for emotion prediction. They constructed K-nearest neighbor (KNN),
random forest (RF), and CART as base classifiers and ensemble those
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classifiers by bagging strategy. This method achieved an average ac-
curacy of 94.22% and 90.74% for the two- and four-class tasks. The
experimental results also indicated that EEG is the most important
signal for emotion prediction. EOG and EMG have a similar distribu-
tion. Besides, the ensemble strategy is more effective than using only
one classifier because it affects the recognition performance, and it is
difficult to select the best classifier.

In [178], a brain-computer music interface system (BCMI) was
designed to provide a tool that allows the interaction between an
individual undergoing therapy and ongoing music generation. It was
concluded that music-induced emotions prove more significant inter-
participant differences than emotions aroused by images or videos.
They conducted experiments on their collected data. Accuracies of
62.9% and 52.5% were obtained from EEG and peripheral signals,
respectively. Furthermore, a consistent result was obtained that EEG
performs better than peripheral signals. After fusing these two fea-
tures, 68.8% accuracy was achieved. The integration of EEG and other
physiological features can significantly improve emotion recognition
performance, demonstrating that it is crucial to observe brain sig-
nals and analyze the peripheral physiological signals associated with
emotional responses for emotion understanding.

For decision-level fusion, in [179], EEG, EOG, and GSR signals were
combined for multimodal emotion recognition. First, they extracted
EEG and peripheral physiological signals (EOG and GSR) features by
separately using High Scale and Low Scale CNN models. Emotion
classification probabilities of each modality were also calculated. Be-
sides, they calculated the classification score reliability between var-
ious labels by Euclidean distance. Finally, emotion recognition results
were obtained by combining classification probability and classification
score. They compared the accuracy of different EEG frequency bands
and peripheral signals on the DEAP dataset. For EEG frequency bands,
beta achieved the best accuracy of around 89.7%, and the combination
of these bands produced an accuracy of around 95.8%. For peripheral
physiological signals, EOG achieved the best accuracy of 85.73%, and
the fusion of multiple signals produced an accuracy of around 97.3%.
Finally, an accuracy of around 99.17% was obtained by the combina-
tion of EEG and peripheral signals. Results indicated that multimodal
fusion is better than using EEG or peripheral physiological signals
alone.

6.5. Other multimodal fusion

As an effective complement to facial expression, EEG can be de-
tected and exploited to provide implicit emotion states [180]. In [181],
facial expression and EEG were combined for emotion recognition.
Facial expressions were detected as four basic emotional states (hap-
piness, neutral, sadness, and fear) by a neural network. The EEG
signals were detected as four basic emotions as facial expressions and
three emotion intensity levels (strong, ordinary, and weak) by two
SVMs. Final classification results were obtained by decision-level fusion
strategy. In [182], EEG and eye movement were combined to integrate
the internal emotional states and external behaviors to enhance the
performance of single modalities. The shallow features of EEG and eye
movements were fed to a bimodal deep auto-encoder (BDAE) to extract
the shared representations. Their experimental results indicated that
EEG and eye movement are complementary, and combining these two
modalities facilitates the performance improvement of emotion recog-
nition. Specifically, different from the conventional use of 62 electrodes
in EEG analysis, they adopted only six symmetrical temporal electrodes
to collect EEG signals, which is beneficial for real applications. Some
of the recent multimodal emotion recognition methods are listed in
Table 5.

Huang et al. [183] developed a deep multimodal attentive fusion
(DMAF) model to extract the discriminative features and exploit the
complex relationship between visual and text modalities. Feature-level
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fusion was designed to learn the internal correlation between image
and text. The final emotion prediction was obtained through a late
fusion scheme combining three attention models. The comprehensive
and non-redundant information was exploited from different modal-
ities, and enhanced emotion prediction results were obtained. Many
multimodal emotion recognition methods only consider information
about the individual who expressed emotions, neglecting contextual
information that provides crucial supplementary information. Thus,
considering the context information contributes to improving the recog-
nition precision. In [185], the multi-task CNN approach was used to
learn body and scene features for context-based emotion recognition
simultaneously. Body and scene features were separately extracted by
the Xception network and VGG16. Then, the obtained features were
concatenated and sent to a fully connected layer for emotional decision.
With the fusion of body-related features and context information, the
precision of multiple emotions has been improved.

Compared with the emotion recognition of individual utterances,
conversational speech emotion analysis has attracted increasing atten-
tion due to the vast application in human–computer interaction [189,
190]. Lian et al. [36] proposed a multimodal learning framework
using relation and dependencies among utterances for conversational
emotion recognition. They proposed an audio-text-speaker fusion com-
ponent to fuse features from different modalities. The fused segment
features were fed into the self-attention based GRU to learn the long-
term dependence and contextual information. With the speaker con-
sidered, the accuracy improved from 76.4% to 78.02% compared to
fusions of audio and text modalities. In their further work [184], a
dialogical emotion correction network (DECN) was developed to model
human conversation interactions by employing a graphical network. In
their work, to automatically correct some errors generated by emo-
tion recognition and further enhance recognition performance, the
contextual information and human interactions in conversations were
considered.

While the works mentioned above focused on bimodality, the work
in [186] proposed a multi-fusion residual memory network to combine
facial expression, voice, and text information. They utilized a view-
specific learning module (VSL) to explore the intra-modality dynamic
of single modalities and used a bidirectional gated recurrent unit
network to extract context-dependent representations. A multi-stage
fusion module was designed to fuse features of all modalities with
a hierarchical fusion strategy to explore time-dependent interactions
between modalities. In the first stage, emotion intensity attention was
used to capture the critical time steps from acoustic information. In the
second stage, time-step level fusion was used to model time-restricted
interactions of different modalities and generate fused features for
each time step. They used a cross-view learning model to explore
inter-modality interactions and fuse features to model the long-term
dependency of all time steps in an utterance. Finally, intra-modality
and inter-modality information were fused for emotion inference. They
compared the performance of single modalities, bimodality, and triple
modalities. Results showed that triple modalities fusion facilitates per-
formance improvement because confidential information in different
modalities can be integrated.

Ranganathan et al. [51] proposed a convolutional DBN (CDBN) to
learn and fuse vocal, facial expression, body gestures, and physiolog-
ical signal features for the task of multimodal emotion recognition.
The complex non-linear feature relationships between the different
modalities were explored in an unsupervised manner. The robust mul-
timodal features were generated in an unsupervised manner by the
designed DBN model. Besides, CDBN coupled with region of interest
extraction learned salient multimodal features, which can enhance the
performance of subtle expression recognition. In [188], visual and
aural modalities were integrated for enhanced emotion recognition. For
visual modality, face, body, and context features were extracted by
the pre-trained ResNet50. These features were concatenated and fed
into LSTM to learn the temporal dependency of frames in a sequence

and produce emotion predictions. For aural modality, Mel-spectrogram
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Table 5
Overview of multimodal fusion methods for emotion recognition.

Reference Modality Feature extraction Classifier Fusion
strategy

Dataset Experimental
condition

Accuracy

[183] V+T Visual features extracted
by CNN, text sentiment
features extracted by LSTM

Visual attention
model, semantic
attention model

Decision-
level:
weighted
combination

Getty Image
Twitter
Flickr-w
Flickr-m

Train:Val:Test =
70:10:20

86.9%
76.3%
85.9%
88%

[180] V+P Facial landmark features,
EEG, ECG, and GSR
features

SVM, Naïve Bayes
(NB)

Decision-
level:
weighted
combination

Private data CV LOSO V-A-L:
60–59%–58%

[181] V+P AdaBoost algorithm for
face feature extraction and
PSD feature from EEG
signal

SVM Decision-
level:
sum strategy
decision-
making
strategy

Own CV 81.25%
82.75%

[182] V+P 33 eye movement features,
and PSD and DE features
from EEG

SVM Feature-level:
concatenation

Own Cross session 72.39%

[36] A+T openSMILE for audio
feature extraction, deep
model for text feature
extraction

ANN Feature-level:
GRU

IEMOCAP 𝑆𝑡𝑟𝑎𝑖𝑛 = 8, 𝑆𝑡𝑒𝑠𝑡 = 2 78.02%

[184] A+T openSMILE and CNN for
audio and text feature
extractions, graphical
network for context
information extraction

SVM, ANN Feature-level:
multi-head
attention
based GRU

IEMOCAP
MELD

𝑆𝑡𝑟𝑎𝑖𝑛 = 8, 𝑆𝑡𝑒𝑠𝑡 = 2
𝑆𝑡𝑟𝑎𝑖𝑛 = 260,
𝑆𝑣𝑎𝑙 = 47, 𝑆𝑡𝑒𝑠𝑡 =
100

78.08%
56.67%

[185] V+B Xception network for body
feature extraction and
VGG16 for scene feature
extraction

ANN Feature-level:
concatenation

EMOTIC 𝐼𝑡𝑟𝑎𝑖𝑛 = 12 957,
𝐼𝑣𝑎𝑙 = 3334,
𝐼𝑡𝑒𝑠𝑡 = 7280

28.33%
Macro-
precision

[178] MP EEG, GSR, BVP, and ECG
features

SVM with
polynomial kernel

Feature-level:
concatenation

Private data Cross session V-A:
68.8–68.6%

[176] MP 9 statistical features of
EDA, PPG and zEMG
signals, 9 PSD features of
EDA, PPG and zEMG
signals

Fine Gaussian SVM
(FGSVM)

Feature-level:
DBN

DEAP CV 10F 89.53%

[12] MP Representation learning
layer for EEG, EMG, GSR,
RES, MEG, ECG, and EOG
feature extractions

ANN Feature-level:
a regularized
deep fusion
of kernel
machines
(RDFKMs)

DEAP

DECAF

CV LOSO

CV LOSO

V-A:
69.6–70.1%
V-A:
71.9–60.5%

[177] MP Activity, mobility, and
complexity features from
EEG, EOG, and EMG

KNN, RF, and CART
based bagging

Decision-
level:
ensemble

DEAP Unknown V-A:
94.02–
94.22%

[179] MP Multiscale CNN for EEG,
EOG, EMG, and GSR
feature extractions

ANN Decision-
level:
biologically
inspired
fusion

DEAP
AMIGOS

CV 10F
CV 10F

98.52%
99.89%

[172] A+V+T Gaussian RBM model used
to extract visual and audio
features, Replicated
Softmax used for textual
feature mining

SVM with Gaussian
RBF kernel

Feature-level:
DBM

YouTube Unknown 49.9%

[173] A+V+T JAudio toolkit for audio
feature extraction, Luxand
software for facial
characteristic points
detection, and Bag of
concept, sentic, and
negation features for text

SVM, ELM Feature-level:
concatenation

eNTERFACE CV 10F 87.95%

(continued on next page)
i
t
i

epresentations were fed into ResNet18 model to extract high-level
eatures, which were sent to LSTM for segment-level predictions. Final
motion recognition results were obtained by fusing the results of single
odalities at the decision-level fusion. In their study, pose and context
14

I

nformation as supplementary streams for face contributes to boosting
he performance of visual modality. Results demonstrated the superior-
ty of multimodal fusion to single modalities for emotion recognition.
n [187], the context information in images and the interactions among
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Table 5 (continued).
[19] A+V+T openSMILE toolkit for

audio feature extraction,
convolutional RNN for
facial feature learning, and
CNN for textual feature

SVM, ANN Feature-level:
concatenation

MOUD
IEMOCAP

CV 10F
𝑆𝑡𝑟𝑎𝑖𝑛 = 8, 𝑆𝑡𝑒𝑠𝑡 = 2

96.55%
79.35%

[174] A+V+T COVAREP acoustic analysis
framework for audio
feature extraction, DNN for
facial feature learning, and
LSTM for textual feature
learning

ANN Feature-level:
Tensor fusion

CMU-MOSI CV 5F Binary:
77.1%

[175] A+V+T OpenEAR for audio feature
extraction, Luxand
software for facial feature
extraction, and concepts
extraction for text

SVM, ANN, and
ELM

Feature-level:
concatenation
Decision-
level:
weighted
summation

YouTube CV 10F 78.2%

75.2%

[41] A+V+T openSMILE and 3D-CNN
for audio and visual
feature extractions, CNN
for textual feature
extraction, GRU for context
information

ANN Feature-level:
concatenation

IEMOCAP 𝑆𝑡𝑟𝑎𝑖𝑛 = 8, 𝑆𝑡𝑒𝑠𝑡 = 2 63.4%

[99] A+V+T 14 audio features, 16
visual features, positive
and negative lyrics features

ANN, KNN Decision-
level:
linear trans-
formation

Own Train:Test=3:1 84.3%

[186] A+V+T VS-GRU for audio, visual,
and textual feature
extractions

ANN Feature-level:
Multi-fusion
residual
memory
network

CMU-MOSI

CMU-MOSEI

IEMOCAP
IMDB

𝑈𝑡𝑟𝑎𝑖𝑛 = 1284,
𝑈𝑡𝑒𝑠𝑡 = 686
𝑈𝑡𝑟𝑎𝑖𝑛 = 16 265,
𝑈𝑡𝑒𝑠𝑡 = 4643
𝑆𝑡𝑟𝑎𝑖𝑛 = 8,
𝑆𝑡𝑒𝑠𝑡 = 2
𝑅𝑡𝑟𝑎𝑖𝑛: 𝑅𝑡𝑒𝑠𝑡 = 1:1

82.3%

82.4%

83.45%
88.19%

[187] A+V+T Self-attention-based CNN
for audio, facial, text, and
pose feature extraction,
context information
extraction

ANN Hybrid
fusion:
multiplicative
fusion

IEMOCAP
CMU-MOSEI

Standard training,
validation, and
testing sets

78.2%

[51] A+V+P 180 vocal features, 540
facial expression features,
540 body gesture features,
and 120 physiological
signal features

SVM with radial
basis function
(RBF) kernels

Feature-level:
DBN

emoFBVP
CK
Mind Reading
DEAP
MAHNOB-HCI

CV LOSO 83.18%
97.3%
93.4%
79.5%
58.5%

[188] A+V+B ResNet50 for face, body,
and context feature
extractions, ResNet18 for
audio feature extraction

ANN Feature-level:
concatenation

Aff-Wild2 Standard training
and validation sets

66.8%

Legenda: A: Audio; V: Video; T: Text; P: Physiology; B: Body movement; MP: Multiple physiological signals; V-A-L: Valence-Arousal-Liking;
V-A: Valence-Arousal; Train: Training set; Val: Validation set; Test: Testing set; CV: Cross Validation; LOSO: Leave-One-Speaker-Out;
(N) F: (N) Fold cross-validation; 𝑆∗: the number of subjects in different subsets; 𝐼∗: the number of images in different subsets;
𝑈∗: the number of utterances in different subsets; 𝑅∗: the number of reviews in different subsets.
people were taken as two context channels. With the combination of
different modalities (face, audio, text, and pose) and context channels,
78.2% accuracy was achieved on the IEMOCAP dataset.

6.6. Discussion

From all the investigated literature on multimodal emotion recog-
nition, it can be concluded that with the proper fusion strategy, the
accuracy of multimodal emotion recognition is outperformed by its
unimodal counterparts. Since there are multiple differences among the
listed studies, it is improper to directly compare the accuracies across
studies. To promise justification, the study-level factors should be held
constant [5]. Therefore, the accuracy comparisons of multimodal emo-
tion recognition to single modality emotion recognition are conducted
in the same study, instead of across studies. It is calculated that from
unimodal to multimodal fusion, the accuracy increases from 2.35% to
19.73%, where the unimodal accuracy is the average of all used modal-
ities. This result indicates that by properly fusing different modalities,
15
emotional recognition performance can be enhanced because different
modalities complement each other.

All the proposed methods of multimodal emotion recognition make
efforts to improve the performance from different perspectives, for
instance, distinct feature representations considering the characteristics
of individual modalities, well-designed fusion strategy exploiting the
complementarity of multiple modalities, and classifier with the strong
capability to distinguish between categories. The advantages of these
methods have been highlighted while their own respective limitations
in terms of reliability, robustness, and efficiency should not be ignored.
For instance, in feature-level fusion, the heterogeneity of different
signals is neglected and the reliability of features concatenation needs
further discussion. Besides, cross-domain emotion recognition has at-
tracted some attention, while how to deeply explore the potentials of
multimodal fusion to simultaneously solve cross-subject, cross-session,
and cross-culture still needs much effort.
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7. Conclusions and future work

7.1. Conclusions

Multimodal emotion recognition has attracted increasing attention
among the emotion recognition community. This paper reviews the
recent promising research on multimodal emotion recognition from
aspects of multimodal emotion datasets, data preprocessing, unimodal
feature extraction, and multimodal information fusion. It can be con-
cluded that, for emotion feature extraction, classical and advanced
handcrafted descriptors are still used and developed to extract dis-
criminant emotional features. These feature extraction approaches are
essential for the development of emotion recognition since they com-
bine prior knowledge and enable the model with the ability to explain.
With the development of DL technology, it has been widely adopted to
extract high-level emotion features from different modalities, especially
facial images and text.

In addition, fusion strategy plays a crucial role in high-performance
multimodal emotion recognition. DL-based algorithms have been de-
veloped to fuse features and learn discriminative representation. There
have recently been a number of new concepts and strategies aimed
at exploring the relationship and complementarity between different
modalities and maintaining the unique characteristics of individual
modalities. For emotion recognition, traditional machine learning-
based classifiers are still the mainstream in different fusion frameworks,
such as SVM, RF, ELM, and many others. Also, DL based end-to-end
framework has continuously emerged for emotion recognition, which
can directly output the classification results to the given input.

Multimodal emotion recognition methods have a wide range of
potential applications across various fields, including human–computer
interaction (HCI), education, psychology, and neuroscience. In HCI
systems, it has the potential to create more natural and effective
human–computer interfaces that can understand and respond to users’
emotional states, and enhance the emotional expressiveness of virtual
agents. In education, multimodal emotion recognition can be used to
develop intelligent tutoring systems that can adapt to the emotional
states of teachers and students, providing personalized feedback. In psy-
chology and neuroscience, multimodal emotion recognition can provide
insights into the neural mechanisms underlying emotional processing
and help in the diagnosis and treatment of psychological disorders,
such as identifying subtle changes in emotion regulation in patients
with mood disorders. By enabling the recognition of emotions across
multiple modalities, it has the potential to transform our understanding
of how humans communicate and interact.

7.2. Challenging and future work

Although many contributions have been made to endow the devel-
opment of multimodal emotion recognition, there are still some key
issues need to be solved, which are summarized as follows:

∙ Basic theoretical research. Emotion recognition-related
techniques that focus on exploring representative features for
accurate emotion classification or prediction have been well de-
veloped. In contrast, the relationship between explicit expression
and implicit information in affective computing needs further
study. Exploring the relationship is significant for understanding
various emotional states represented by different signals. Emo-
tion recognition techniques should be integrated with cognitive
techniques to bridge the distance between objective emotion
recognition and subjective affect cognition of humans.

∙ Multimodal emotion datasets regarding the spontaneous emotion
in the wild. The present multimodal datasets consist mainly of
the acted or spontaneous emotions collected in the controlled
labs. However, the constraint environment has less noise, and
the real implicit emotions may be suppressed. Consequently, the
16
performance is limited when applying the models trained on the
desirable datasets to recognize emotions in real scenarios. There-
fore, to facilitate the multimodal emotion recognition system used
in real situations, more spontaneous emotion data approximate to
real life should be collected.

∙ Feature extraction methods. Various external or internal fac-
tors may impede the emotion-related feature extraction. External
factors include environmental noises, sensor noises, shooting an-
gles, and cultural differences. Personal character differences are
major internal factors. While, current multimodal emotion recog-
nition research barely considers external and internal factors
when designing feature extractors. How to eliminate these irrel-
evant elements and extract essential emotion-related features are
still unresolved. It is significant for improving emotion recogni-
tion performance to remove these irrelevant variables and find
the intrinsic emotion features.

∙ Multimodal fusion strategy. Recent research shows a definite
trend in using deep learning-based technologies for feature-level
fusion. However, the specific characteristics of single modalities
are ignored in those methods. Both the inter-relationship among
modalities and the specific characteristic of a single modality
are vital for recognizing emotion. Therefore, how to explore
the relationship of different modalities and retain the particular
property of a single modality is waiting to be settled. Addition-
ally, exploiting and analyzing the correlation and characteristics
of various modalities contributes to the design effective fusion
strategy for multimodal emotion recognition.

∙ Multimodal emotion recognition in conversation. The conversa-
tion takes up most of our lives and work. However, few re-
searchers drew attention to recognizing emotions in conversa-
tions. Emotions expressed by one person are often caused or
affected by the content or other persons in a conversation, which
is difficult to analyze quantitatively. It is challenging to recognize
emotions in the conversation because various elements should be
considered, such as individual emotion, context, and the influence
of others. If the emotion recognition in conversations is well
solved, that will facilitate the advancement and application of
multimodal emotion recognition.
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