Chapterl

FUNDAMENTALS
OF VIBRATION

1.1 INTRODUCTION

Before beginning a discussion of acoustics, we should settle on a system of units.
Acoustics encompasses such a wide range of scientific and engineering disciplines
that the choice is not easy. A survey of the literature reveals a great lack of
uniformity: writers use units common to their particular fields of interest. Most
early work has been reported in the CGS (centimeter-gram-second) system, but

considerable engineering work has been reported in a mixture of metric and
English units. Work in electroacoustics and underwater acoustics has commonly
been reported in the MKS (meter-kilogram-second) system. A codification of the
MKS system, the SI (Le Systéme International d’Unités), has been established as
the standard. This is the system generally used in this book. CGS and SI units are
equated and compared in Appendix Al.

Throughout this text, “log” will represent logarithm to the base 10 and “In” (the
“natural logarithm™) will represent logarithm to the base e.

Acoustics as a science may be defined as the generation, transmission, and

reception of energy as vibrational waves in matter. When the molecules of a fluid
or solid are displaced from their normal configurations, an internal elastic restoring
force arises. It is this elastic restoring force, coupled with the inertia of the system,
that enables matter to participate in oscillatory vibrations and thereby generate
and transmit acoustic waves. Examples include the tensile force produced when a
spring is stretched, the increase in pressure produced when a fluid is compressed,
and the restoring force produced when a point on a stretched wire is displaced
transverse to its length.

The most familiar acoustic phenomenon is that associated with the sensation of
sound. For the average young person, a vibrational disturbance is interpreted as
sound if its frequency lies in the interval from about 20 Hz to 20,000 Hz (1 Hz =
1 hertz = 1 cycle per second). However, in a broader sense acoustics also includes
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the simple sinusoidal vibrations produced by a tuning fork, the complex vibrations

generated by a bowed violin string, and the nonperiodic motions associated with
an explosion, to mention but a few. In studying vibrations it is advisable to begin
with the simplest type, a one-dimensional sinusoidal vibration that has only a
single frequency component (a pure tone).

1.2 THE SIMPLE OSCILLATOR

If a mass m, fastened to a spring and constrained to move parallel to the spring,
is displaced slightly from its rest position and released, the mass will vibrate.
Measurement shows that the displacement of the mass from its rest position is
a sinusoidal function of time. Sinusoidal vibrations of this type are called simple

so that at low frequencies their masses move as units, are but two examples.
Even more complex vibrating systems have many of the characteristics of the
simple systems and may often be modeled, to a first approximation, by simple
oscillators.

The only physical restrictions placed on the equations for the motion of a simple
oscillator are that the restoring force be directly proportional to the displacement
(Hooke’s law), the mass be constant, and there be no losses to attenuate the
motion. When these restrictions apply, the frequency of vibration is independent
of amplitude and the motion is simple harmonic.

A similar restriction applies to more complex types of vibration, such as the
transmission of an acoustic wave through a fluid. If the acoustic pressures are so

large that they no longer are proportional to the displacements of the particles of
fluid, it becomes necessary to replace the normal acoustic equations with more
general equations that are much more complicated. With sounds of ordinary
intensity this is not necessary, for even the noise generated by a large crowd at a
football game rarely causes the amplitude of motion of the air molecules to exceed
one-tenth of a millimeter, which is within the limit given above. The amplitude of
the shock wave generated by a large explosion is, however, well above this limit,
and hence the normal acoustic equations are not applicable.

Returning to the simple oscillator shown in Fig. 1.2.1, let us assume that the

restoring force f in newtons (N) can be expressed by the equation

f= —sx (1.2.1)

f=-sx
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Figure 1.2.1 Schematic representation of a simple

oscillator consisting of a mass m attached to one
end of a spring of spring constant s. The other end
of the spring is fixed.
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where x is the displacement in meters (m) of the mass m in kilograms (kg) from
its rest position, s is the stiffness or spring constant in N/m, and the minus sign
indicates that the force is opposed to the displacement. Substituting this expression
for force into the general equation of linear motion

d%x
f=mZs (1.2.2)

where d?x/dt? is the acceleration of the mass, we obtain

—_— 4+ —x = 1.2.3
mx 0 ( )

w} =s/m (1.2.4)

which casts our equation into the form

?x

ﬁ + woX = 0 (1.2.5)

This is an important linear differential equation whose general solution is well
known and may be obtained by several methods.
One method is to assume a trial solution of the form

x = Ajcosyt (1.2.6)

Differentiation and substitution into (1.2.5) shows that this is a solution if ¥ = «y.
It may similarly be shown that

x = A,sinwyt (1.2.7)

is also a solution. The complete genéral solution is the sum of these two,

x = Aj coswyt + As sinwot (1.2.8)
where A; and A; are arbitrary constants and the parameter wy is the natural angular
frequency in radians per second (rad /s). Since there are 27 radians in one cycle, the
natural frequency fy in hertz (Hz) is related to the natural angular frequency by

fo = wo/2m (1.2.9)

Note that either decreasing the stiffness or increasing the mass lowers the fre-

—quency. The period T of one complete vibrationisgivenby ——

T =1/f, (1.2.10)
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1.3 INITIAL CONDITIONS

If at time ¢+ = 0 the mass has an initial displacement xy and an initial speed wuy,
then the arbitrary constants A; and A; are fixed by these initial conditions and
the subsequent motion of the mass is completely determined. Direct substitution
into (1.2.8) of x = xp at t = 0 will show that A; equals the initial displacement
xp. Differentiation of (1.2.8) and substitution of the initial speed at t = 0 gives
g = woAs, and (1.2.8) becomes

x = xgcoswot + (Ug/wp) sin wpt (1.3.1)

Another form of (1.2.8) may be obtained by letting A; = Acos¢ and A, =
—Asin¢, where A and ¢ are two new arbitrary constants. Substitution and
simplification then gives :

x = Acos(wot + ¢) (1.3.2)

where A is the amplitude of the motion and ¢ is the initial phase angle of the motion.
The values of A and ¢ are determined by the initial conditions and are

A= [+ /o) ]?  and ¢ = tan (—ug/woxo) (1.3.3)
Successive differentiation of (1.3.2) shows that the speed of the mass is

u = —Usin(wgt + ¢) (1.3.4)

a = —woll cos(wpt + ) (1.3.5)

In these forms it is seen that the displacement lags 90° (/2 rad) behind the
speed and that the acceleration is 180° (7 rad) out of phase with the displacement,
as shown in Fig. 1.3.1.
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Figure 1.3.1 The speed u of a simple oscillator always leads to

the displacement x by 90°. Acceleration 4 and displacement x are
always 180°out of phase with each other. Plotted curves correspond
tod = 0°
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1.4 ENERGY OF VIBRATION

The mechanical energy E of a system is the sum of the system’s potential energy
E, and kinetic energy E;. The potential energy is the work done in distorting the
spring as the mass moves from its position of static equilibrium. Since the force
exerted by the mass on the spring is in the direction of the displacement and equals
+sx, the potential energy E, stored in the spring is

E, = J sxdx = 1sx? (1.4.1)
0

Expression of x by (1.3.2) gives

E, = 1sA?cos®(wot + ) (1.4.2)
The kinetic energy possessed by the mass is
Er = imu? (1.4.3)
Expression of u by (1.3.4) gives
Er = ImU®sin®(wot + ) (1.4.4)
The total energy of the system is

E = E, + B = tmowiA? (1.4.5)

where use has been made of s = mw%, U = wpA, and the identity sina +
cos?a = 1. The total energy can be rewritten in alternate forms,
E =

sA? = lmU? (1.4.6)

N =
N

The total energy is a constant (independent of time) and is equal either to the
maximum potential energy (when the mass is at its greatest displacement and is
instantaneously at rest) or to the maximum kinetic energy (when the mass passes

through 1ts equilibrium position with maximum speed). Since the system was
assumed to be free of external forces and not subject to any frictional forces, it is
not surprising that the total energy does not change with time.

If all other quantities in the above equations are expressed in MKS units, then
E,, Ex, and E will be in joules (J).

1.5 COMPLEX EXPONENTIAL
METHOD OF SOLUTION

Throughout this book, complex quantities will often, but not always, be repre-
sented by boldface type. One exception is the definition j = \/—1. We will use

i i i 1 i cillatory
functions by exp(jwt), rather than the physics convention of exp(—iwt), because
of the many close analogies between acoustics and engineering applications. In
many cases, consonance between apparently disparate sources can be resolved by
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making the transformation of j to —i. This may in some cases result in an exchange
of complex functions from one type to another, but the textual context will usually

resolve any ambiguities. Readers unacquainted with complex numbers should
refer to Appendixes A2 and A3.

A more general and flexible approach to solving linear differential equations of
the form (1.2.5) is to postulate

x = Ae™ (1.5.1)
Substitution gives ¥* = —wj or ¥ = *jwo. Thus, the general solution is
X = A 4 AyeTiwot (1.5.2)

where A; and A, are to be determined by 'initial conditions, x(0) = x, and
dx(0)/dt = ug. This results in two equations

A +A =x and A} — Ay = up/jwo = —jug/wo (15.3)
from which
Ay = Yo —juo/wg) and Ay = 3(xo + jup/wo) (1.5.4)

Note that A; and A, are complex conjugates, so there are really only two constants
a and b, where A; = a —jb and Ay = a + jb. This must be the case since the
differential equation is of second order with two independent solutions and,
therefore, with two arbitrary constants to be determined by two initial conditions.
Substitution of A; and A; into (1.5.2) yields

X = Xy coswot + (g / wo) sin wpt (1.5.5)

which is identical with (1.3.1). Satisfying the initial conditions, which are both real,
caused the imaginary part of x to vanish as an automatic consequence.

In practice it is unnecessary to go through the mathematical steps required to
make the imaginary part of the general solution vanish, for the real part of the
complex solution is by itself a complete general solution of the original real differential
equation. Thus, for example, if we express Ay = a; +jb; and Ay = a, +jb; in (1.5.2)
and, before applying initial conditions, take the real part, we have

Re{x} = (a1 + a) coswot — (b1 — ba) sin wpt (15.6)

Now, application of the initial conditions yields a; + a2 = xpand by — b2 = up/wo

so that Re{x} is identical with (1.3.1). Similarly, a complete solution is obtained if
the displacement is written in the complex form

x = Adv! (1.5.7)

Re{x} = acos wot — bsinwyt (1.5.8)
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From the form (1.5.7), which will be used frequently throughout this book, it
is particularly easy to obtain the complex speed u = dx/dt and the complex

acceleration a = du/dt of the mass. The complex speed is
u = jopAd™! = jugx (1.5.9)
and the complex acceleration is
a = —wlAd"! = —wix (1.5.10)
The expression exp(jwot) may be thought of as a phasor of unit length rotating

counterclockwise in the complex plane with an angular speed wg. Similarly, any
complex quantity A = a + jb may be represented by a phasor of length A =

Va? + b?, making an angle ¢ = tan~1(b/a) counterclockwise from the positive

real axis. Consequently, the product A exp(jwot) represents a phasor of length A
and initial phase angle ¢ rotating in the complex plane with angular speed w; (Fig.
1.5.1). The real part of this rotating phasor (its projection on the real axis) is

Acos(wot + ¢) (1.5.11)

and varies harmonically with time.

From (1.5.9) we see that differentiation of x with respect to time gives u = jwox,
and hence the phasor representing speed leads that representing displacement by
a phase angle of 90°. The projection of this phasor onto the real axis gives the
instantaneous speed, the speed amplitude being wyA. Equation (1.5.10) shows that
the phasor a representing the acceleration is out of phase with the displacement

phasor by 7 rad, or 180°. The projection of this phasor onto the real axis gives the
instantaneous acceleration, the acceleration amplitude being w3A.

It will be the general practice in this textbook to analyze problems by the complex
exponential method. The chief advantages of the procedure, as compared with the
trigonometric method of solution, are its greater mathematical simplicity and the
relative ease with which the phase relationships among the various mechanical
and acoustic variables can be determined. However, care must be taken to obtain
the real part of the complex solution to arrive at the correct physical equation.
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Figure 1.5.1 Physical representation of a
phasor A exp[j(wot + ¢)].
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1.6 DAMPED OSCILLATIONS

Whenever a real body is set into oscillation, dissipative (frictional) forces arise.
These forces are of many types, depending on the particular oscillating system, but
they will always result in a damping of the oscillations—a decrease in the amplitude
of the free oscillations with time. Let us first consider the effect of a viscous frictional
force f, on a simple oscillator. Such a force is assumed proportional to the speed of
the mass and directed to oppose the motion. It can be expressed as

dx

fr= ~Ru (1.6.1)

where R, is a positive constant called the mechanical resistance of the system. It
is evident that mechanical resistance has the units of newton-second per meter
(Ns/m) or kilogram per second (kg/s).

A device that generates such a frictional force can be represented by a dashpot
(shock absorber). This system is suggested in Fig. 1.6.1a. A simple harmonic
oscillator subject to such a frictional force is usually diagrammed as in Fig. 1.6.1b.

If the effect of resistance is included, the equation of motion of an oscillator
constrained by a stiffness force —sx becomes

d%x dx
— 4+ = .0.
mon + Ry, T sx =0 (1.6.2)

Dividing through by m and recalling that wg = /s/m we have

d?x R, dx
W + Wmﬁ + w%x =0 (163)
/
A=
a7 >
4 - ) s U
MNEa
A el Ryt
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Figure 1.6.1 (a) Representative sketch of a
dashpot with mechanical resistance R;,.
. (b)Schematic representation of a damped, free
oscillator consisting of a mass m attached to a
spring of spring constant s and a dashpot with
mechanical resistance R.,.
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This equation may be solved by the complex exponential method. Assume a
solution of the form

x = AelY (1.6.4)

and substitute into (1.6.3) to obtain
[v2 + (Rp/m)y + wl]AeY = 0 (1.6.5)

Since this must be true for all time,
v+ Rpu/m)y + @3 = 0 (1.6.6)
Y= —B £ (B> —wj)? (16.7)
B = Ryn/2m (1.6.8)

In most cases of importance in acoustics, the mechanical resistance R,, is small
enough so that wy > B and vy is complex. Also, notice that if R,, = 0 then
v = =(—wd? = *jwy (1.6.9)

and the problem has been reduced to that of the undamped oscillator. This suggests

defining a new constant w,; by
wg = (w§ — BV (1.6.10)
Now, v is given by
v = =B * ju (1.6.11)

and w; is seen to be the natural angular frequency of the damped oscillator. Note

that w, is always less than the natural angular frequency w, of the same oscillator
without damping.
The complete solution is the sum of the two solutions obtained above,

x = e PH(A el + AjeTo) (1.6.12)
As in the nondissipative case, the constants A; and A, are in general complex.
As noted earlier, the real part of this complex solution is the complete general

solution. One convenient form of this general solution is

x = Ae P cos(wt + ) (1.6.13)

where A and ¢ are real constants determined by the initial conditions. Figure 1.6.2
displays the time history of the displacement of a damped harmonic oscillator for
various values of 8.
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Figure 1.6.2 Decay of an underdamped, free oscillator.
Initial conditions: xy, = landuy = 0. (1) B/wy =
0.L (b)) B/wo = 02. (c) B/wy = 0.3.

The amplitude of the damped oscillator, defined as A exp(—Bt), is no longer
constant but decreases exponentially with time. As with the undamped oscillator,
the frequency is independent of the amplitude of oscillation.

One measure of the rapidity with which the oscillations are damped by friction
is the time required for the amplitude to decrease to 1/e¢ of its initial value. This
time 7 is the relaxation time (other names include decay modulus, decay time, time
constant, and characteristic time) and is given by

The quantity B is the temporal absorption coefficient. (As with 7 there are a variety of
names for 3; we mention only one.) The smaller R,,, the larger 7 is and the longer
it takes for the oscillations to damp out.

If the mechanical resistance R,, is large enough, then wy = B and the system is
no longer oscillatory; a displaced mass returns asymptotically to its rest position.
If B = wo, the system is known as critically damped.

I'he solution (1.6.13) 1s the real part of the complex solution
x = Ae Pleus! (1.6.15)
where A = A exp(j¢). If we rearrange the exponents,
x = Agl@tip) (1.6.16)
we can define a complex angular frequency

oy = wg + B (1.6.17)

whose real part is the angular frequency w; of the damped motion and whose
imaginary part is the temporal absorption coefficient 8. This convention of assimi-
lating the angular frequency and the absorption coefficient into a single complex
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quantity often proves useful in investigating damped vibrations, as we will see in
subsequent chapters.

1.7 FORCED OSCILLATIONS

A simple oscillator, or some equivalent system, is often driven by an externally
applied force f(t). The differential equation for the motion becomes

d%x dx
mos + Rmf_i? + sx = f(t) (1.7.1)

Such a system is suggested in Fig 1.7.1.
For the case of a sinusoidal driving force f(f) = F cos wt applied to the oscillator

at some initial time, the solution of (1.7.1) is the sum of two parts—a transient
term containing two arbitrary constants and a steady-state term that depends on F
and w but does not contain any arbitrary constants. The transient (homogeneous)
term is obtained by setting F equal to zero. Since the resulting equation is identical
with (1.6.3), the transient term is given by (1.6.13). Its angular frequency is w;. The
arbitrary constants are determined by applying the initial conditions to the total
solution. After a sufficient time interval t > 1/8, the damping term exp(—t)
makes this portion of the solution negligible, leaving only the steady-state term
whose angular frequency w is that of the driving force.

To obtain the steady-state (particular) solution, it will be advantageous to
replace the real driving force Fcoswt by its equivalent complex driving force
f = Fexp(jwt). The equation then becomes

2 d .
d—t;‘ + RuX 4 sx = Fel®! (1.7.2)

" it

The solution of this equation gives the complex displacement x. Since the real part
of the complex driving force f represents the actual driving force F cos wt, the real
part of the complex displacement will represent the actual displacement.

Because f = F exp(jwt) is periodic with angular frequency w, it is plausible to

assume that x must be also. Then, x = A exp(jwt), where A is in general complex.
Equation (1.7.2) becomes

(—Aw?m + jAwR,, + As)d*! = Fe*! 1.7.3
]
Z s
7
T NWN—
% m > f(t)
g:B
A1 R U —

Figure 1.7.1 Schematic representation of a
d . o

m driven by a force f(t) attached to a spring of
spring constant s and a dashpot with mechanical
resistance R,,.
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Solving for A yields the complex displacement

- L Fe! (174
X7 jo Ry + jlwm — 5/w) 74)

and differentiation gives the complex speed

Pejwt
"7 R+ jlom —s/w)

(1.7.5)

These last two equations can be cast into somewhat simpler form if we define the
complex mechanical input impedance Z,, of the system

Zy = Ry + jXo (1.7.6)

where the mechanical reactance X, is
Xp = wm—s/w (1.7.7)
The mechanical impedance Z,, = Z,, exp(jO) has magnitude
Zm = [R% + (0m — s/w)*]V/? (1.7.8)
and phase angle

O = tan Y (Xn/Ry) = tan"(wm — s/w)/R,,] (1.7.9)

The dimensions of mechanical impedance are the same as those of mechanical
resistance and are expressed in the same units, N - s/m, often defined as mechanical
ohms. It is to be emphasized that, although the mechanical ohm is analogous to
the electrical ohm, these two quantities do not have the same units. The electrical
ohm has the dimensions of voltage divided by current; the mechanical ohm has
the dimensions of force divided by speed.

Using the definition of Z,, we may write (1.7.5) in the simplified form

Z, = f/u (1.7.10)

which gives a most important physical meaning to the complex mechanical
impedance: Z,, is the ratio of the complex driving force f = F exp(jwt) to the resultant
complex speed u of the system at the point where the force is applied. If, for the
driving frequency of interest, the complex impedance Z,, is known, then we can
immediately obtain the complex speed

= {/Z,, (1.7.11)

and make use of u = jwx to obtain the complex displacement

X = f/jwZ, (1.7.12)

Thus, knowledge of Z,, is equivalent to solving the differential equation.
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The actual displacement is given by the real part of (1.7.4),

x = (F/wZy)sin(wt — ©) (1.7.13)
and the actual speed is given by the real part of (1.7.5),
= (F/Z,) cos(wt — ) (1.7.14)

[both with the help of (1.7.8) and (1.7.9)]. The ratio F/ Z,, gives the maximum speed
of the driven oscillator and is the speed amplitude. Equation (1.7.14) shows that
® is the phase angle between the speed and the driving force. When this angle is
positive, it indicates that the speed lags the driving force by ®. When this angle is
negative, it indicates that the speed leads the driving force.

1.8 TRANSIENT RESPONSE OF AN OSCILLATOR

Before continuing the discussion of the simple oscillator it will be well to consider
the effect of superimposing the transient response on the steady-state condition.
The complete general solution of (1.7.2) is

x = Ae Pl cos(wgt + @) + (F/wZy)sin(wt — ©) (1.8.1)

where A and ¢ are two arbitrary constants whose values are determined by the
initial conditions.

As a special case, 1 = = i =
driving force is first applied, and that B is small compared to wy. Application of
these conditions to (1.8.1) gives

A = (F/Z2)(Xn/w) + R/ wq)*]/?
tang = (w/wi)(Rn/Xm)

(1.8.2)

Representative curves showing the relative importance of the steady-state and
transient terms in producing a combined motion are plotted in Fig. 1.8.1. The effect

of the transient is apparent in the Ieft portion of these curves, but near the right
end the transient has been so damped that the final steady state is nearly reached.
Curves for other initial conditions are analogous, in that the wave form is always
somewhat irregular immediately after the application of the driving force, but
soon settles into the steady state.

Another important transient is the decay transient, which results when the
driving force is abruptly removed. The equation of this motion is that of the
damped oscillator, (1.6.13), and its angular frequency of oscillation is w,; not
w. The constants giving the amplitude and phase angle of this motion depend
on the part of its cycle in which the driving force is removed. It is impossi-
ble to remove the driving force without the appearance of a decay transient,
although the effect will be neghglble 1f the amphtude of the dr1v1ng force is

characteristics of mechanical vibrator elements are of partlcular importance when
considering the fidelity of response of sound reproduction components such as
loudspeakers and microphones. An example of an overly slow decay is a noticeable
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Figure 1.8.1 Transient response of a damped,
forced oscillator with 8/w; = 0.1, xop = 0,
anduy = 0. @ o/ = % () o/wg = 1.

(€) w/wg =

“hangover” at the natural frequency produced by some poorly designed loud-
speaker systems.

1.9 POWER RELATIONS

The instantaneous power I1; in watts (W) supplied to the system is equal to the
product of the instantaneous driving force and the resulting instantaneous speed.
Substituting the appropriate real expressions for the steady-state force and speed,

II; = (F?/Zy)cos wt cos(wt — @) (1.9.1)

It should be noted that the instantaneous power II; is not equal to the real part of
the product of the complex driving force f and the complex speed u.
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In most situations the average power Il being supplied to the system is of more
significance than the instantaneous power. This average power is equal to the total

work done per complete vibration divided by the time of one vibration,

T
m= 21 J [, dt = () (1.9.2)
T Jo

Substitution of I1; in this equation gives

1:2 T
II = m JO Ccos (UtCOS((()t - @) dt
2 T
=z (cos? wtcos ® + cos wt sin wt sin ®) dt (1.9.3)

T
~—mi JO

1:2

= ﬁcos(ﬂ

This average power supplied to the system by the driving force is not permanently
stored in the system but is dissipated in the work expended in moving the system
against the frictional force R,,u. Since cos® = R,,/Z,,, then (1.9.3) may be written
as

chanrcal reactance X vanishes, whlch frorn (1 7 7) occurs when w = wy. At this
frequency cos ® has its maximum value of unity (® = 0) and Z,, its minimum
value R,,.

1.10 MECHANICAL RESONANCE

The resonance angular frequency Wy 1s deflned as that at which the mechanlcal

value, Zn = Ry As has just been noted at this angular frequency a driving force
will supply maximum power to the oscillator. In Section 1.2, wy was found to
be the natural angular frequency of a similar undamped oscillator and also the
angular frequency of maximum speed amplitude. At @ = wy, (1.7.14) reduces to

Ues = (F/Ry) coswot (1.10.1)
and the displacement (1.7.13) reduces to

Xres = (F/woRy,)sinwgt (1.10.2)

at the angular frequency mlnlmlzlng the product wZy. It can be shown that thlS

occurs when w = Jw3 — 2B2.)
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Figure 1.10.1 Response of a simple driven mechanical oscillator. (4) Input power
relative to its value at resonance. (b} Phase angle ©. Solid lines correspond to Q = 2.
Dashed lines correspond to 0 = 1.

If the average power (1.9.4) is plotted as a function of the frequency of a driving

force of constant amplitude, a curve similar to Fig. 1.10.14 is obtained. It has a
maximum value of F?/2R,, at the resonance frequency and falls at lower and
higher frequencies. The sharpness of the peak of the power curve is primarily
determined by R,,/m. If this ratio is small, the curve falls off very rapidly—a sharp
resonance. If, on the other hand, R,,/m is large, the curve falls off more slowly and
the system has a broad resonance. A more precise definition of the sharpness of
resonance can be given in terms of the quality factor Q of the system, defined by

Q = wo/(w, — wy) (1.10.3)

where w, and w) are the two angular frequencies, above and below resonance,

re

spectively, at which the average power has dropped to one-half its resonance

value.
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It is also possible to express Q in terms of the mechanical constants of the
system. From (1.9.4) it is evident that the average power will be one-half of its

resonance value whenever Z2, = 2R2 This corresponds to
RZ + X% =2R% or X, = *R, (1.10.4)
Since X,, = wm — s/w, the two values of w that satisfy this requirement are
w,m—s/w, =R, and wm—s/w; = —R,, (1.10.5)
The elimination of s between these equations yields

w, —w; = R, /m (1.10.6)

so that
Q = wom/Ry, = wo/2P (1.10.7)

with the help of (1.6.8). Use of (1.6.14) for the relaxation time 7 of this oscillator
gives

Q = lwor (1.10.8)

The sharpness of the resonance of the driven oscillator is directly related to the
length of time it takes for the free oscillator to decay to 1/e of its initial amplitude.
Furthermore, the number of oscillations taken for this decay is (w;/wo)Q/ or

about Q/ for weak damping. Thus, if an oscillator has a Q of 100 and a natural
frequency 1000 Hz, it will take (100/ ) cycles or 32 ms to decay to 1/e of its initial
amplitude. It should also be noted that /27 is the ratio of the mechanical energy
of the oscillator driven at its resonance frequency to the energy dissipated per
cycle of vibration. Proof of this is left as an exercise (Problem 1.10.3).

When the oscillator is driven at resonance the phase angle ® is zero and the
speed u is in phase with the driving force f. When w is greater than wq the
phase angle is positive, and when w approaches infinity # lags f by an angle that
approaches 90°. When w is less than w; the phase angle is negative, and as w

approaches zero u leads f by 90°. Figure 1.10.1b shows the dependence of ® on
frequency for a typical oscillator. In systems having relatively small mechanical
resistance, the phase angles of both speed and displacement vary rapidly in the
vicinity of resonance.

1.11 MECHANICAL RESONANCE
AND FREQUENCY

Mechanical systems driven by periodic forces can be grouped into three different
classes. (1) Sometimes it is desired that the system respond strongly to only
one particular frequency. If the mechanical resistance of a simple oscillator is

small, its impedance will be relatively large at all frequencies except those in
the immediate vicinity of resonance, and such an oscillator will consequently
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respond strongly only in the vicinity of resonance. Some common examples are

tuning forks, the resonators below the bars of a xylophone, and magnetostrictive
sonar transducers. (2) In other applications it is desired that the system respond
strongly to a series of discrete frequencies. The simple oscillator does not have
this property, but mechanical systems that do behave in this manner can be
designed. These will be considered in subsequent chapters. (3) A third type of
use requires that the system respond more or less uniformly to a wide range of
frequencies. Examples include the vibrator elements of many electroacoustic and
mechanoacoustic transducers: microphones, loudspeakers, hydrophones, many
sonar transducers, and the sounding board of a piano.

In different applications, the quantity whose amplitude is supposed to be
independent of frequency may be different. In some cases the displacement
amplitude is to be independent of frequency; in others it is the speed amplitude
or the amplitude of the acceleration that is to be invariant. By a suitable choice
of the stiffness, mass, and mechanical resistance, a simple oscillator can be made
to satisfy any of these requirements over a limited frequency range. These three
special cases of frequency-independent driven oscillators are known as stiffness-,
resistance-, and mass-controlled systems, respectively.

A stiffness-controlled system is characterized by a large value of s/w for the
frequency range over which the response is to be flat. In this range both wm and
R, are negligible in comparison with s/m and Z,, is very nearly equal to —js/w,
so that

x =~ (F/s)coswt (1.11.1)

It should be noted that, although the displacement amplitude is independent of
frequency, the speed amplitude is not, nor is the acceleration amplitude.

A resistance-controlled system is one for which R,, is large in comparison with
X This will be true when an oscillator of relatively high mechanical resistance is
operated in the vicinity of resonance. Then

u = (F/R,;)cos wt (1.11.2)

so that the speed amplitude is essentially independent of frequency, although both
the displacement amplitude and the acceleration are not.

A mass-controlled system is characterized by a large value of @#1 over the desired
frequency range. Then s/w and R,, are negligible and Z,, is approximately equal
to jwm. Neither displacement nor speed amplitudes are independent of frequency,
but

a = (F/m)cos wt (1.11.3)

so the acceleration amplitude is independent of frequency.

All driven mechanical vibrator elements are resistance-controlled for frequen-
cies nearly equal to their resonant frequency, but for vibrators of low mechanical
resistance the range of relatively flat response is extremely narrow. Similarly, all
driven vibrators are stiffness-controlled for frequencies well below fp, and mass-

—controlled for frequencies well above f;. A suitable choice of mechanical constants
will place any of these systems in the desired part of the frequency range, but the
computed values are sometimes very difficult to attain in practice.
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Many vibrating systems are mathematically equivalent to corresponding electrical systems.
For example, consider a simple series electrical circuit containing inductance L, resistance
R, and capacitance C, driven by an impressed sinusoidal voltage V cos wt, as suggested in
Fig. 1.12.1a. The differential equation for the current I = dq/dt, where q is the complex

charge, is
dl q
L—+RI+ 2 = 1121
dt C ( )
with V = Vexp(jwt). This equation may be written
LA BAPLL I T (12.2)
e dt T C e
which has the same form as (1.7.2). Thus, the steady-state solution for q is
1 v
= — 1.12.3
17 R +jwl — 1/wC) (1.12.3)
L
LN
A R
C
T
1
(a)
7, s
A—INI
f m - f
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1
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Figure 1.12.1 Equivalent series systems.

(a) Series electrical circuit driven with voltage V.
All elements experience the same current L.

(b) Mechanical system with mass m driven by force
f and attached to a spring of spring constant s and

dashpot of mechanical resistance R,,. All elements
move with the same speed u. (¢) The electrical
equivalent of the mechanical system in (b).
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and the currentis I = V/Z, where

Z = R+ j(wL — 1/wC) (1.12.4)

We see that the electrical circuit of Fig. 1.12.1a is the mathematical analog of the damped
harmonic oscillator of Fig. 1.12.1b. The current I in the electrical system is equivalent to the
speed u in the mechanical system, the charge q is equivalent to the displacement x, and
the applied voltage V is equivalent to the applied force f. Furthermore, the impedances
for these two systems have similar forms, with the mechanical resistance R,, analogous
to the electrical resistance R, the mass m analogous to the electrical inductance L, and the
mechanical stiffness s analogous to the reciprocal of the electrical capacitance C. By direct
comparison of (1.12.1) with (1.7.1), it can be seen that the resonance angular frequency of
the electrical circuit is

wy =1/JLC (1.12.5)
and the average power dissipated is
1 = (V?/2Z)cos® (1.12.6)

The elements in the electrical system (Fig. 1.12.1a) are said to be in series because they
experience the same current. Similarly the elements in the mechanical system (Fig. 1.12.1b)
can be represented by the series circuit of Fig. 1.12.1c: they experience the same displacement
and, therefore, the same speed.

If a simple mechanical oscillator is driven by a sinusoidal force applied to the normally
fixed end of the spring as suggested by Fig. 1.12.2a, then the mass and the spring experience
the same force and this combination is represented by a parallel circuit, as shown in Fig.
1.12.2b. The speed of the driven end of the spring is equivalent to the current entering the

D) Ciit, o

the inductor.
Other equivalent systems are shown in Figs. 1.12.3 and 1.12.4.

s

m fmmeeed A NN e strsmmipe €

—— — U
(a)

B J— -
u Uy,
| _I_”s é m
(b)

Figure 1.12.2  Equivalent parallel systems.

(#) Mechanical system with mass attached to a
spring and with the other end of the spring driven
by a force f. The elements feel the same force but
have different speeds. (b)) The equivalent electrical
circuit with inductance m and capacitance 1/s. All

elements experience the same voltage but carry
different currents.
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(b}
Figure 1.12.3 Equivalent series—parallel systems.

— (@) Mechanical system withmassattachedto ————
a combination of spring and dashpot with the
other end of the spring/dashpot driven. The
dashpot and spring both move with the same
speed. They experience different forces, but the
sum of forces is equal to the force on the mass.
(b)The equivalent electrical circuit with inductance,
resistance, and capacitance. The capacitance and
the resistance share the same current and the sum
of the voltages across them equals the voltage
across the inductance.

Vs
s
—ANN— m II ' o —> f
Rm
—>u, —>u
(a)
—> —
T u u,, 1/s

(b

Figure 1.12.4 Equivalent series—parallel
systems. () Mechanical system with mass
attached between a spring and a dashpot. One
end of the spring is fixed and the dashpot is
driven. The mass and spring share the same
speed while the sum of forces on them equals
the force on the dashpot. (b) The equivalent
mechanical circuit. The capacitance and the
inductance carry the same current and the sum
of the voltages across them equals the voltage
across the resistance.
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1.13 LINEAR COMBINATIONS OF SIMPLE
HARMONIC VIBRATIONS

In many important situations that arise in acoustics, the motion of a body is a
linear combination of the vibrations induced separately by two or more simple
harmonic excitations. It is easy to show that the displacement of the body is then
the sum of the individual displacements resulting from each of the harmonic
excitations. Combining the effects of individual vibrations by linear addition is
valid for the majority of cases encountered in acoustics. In general, the presence of
one vibration does not alter the medium to such an extent that the characteristics
of other vibrations are disturbed. Consequently, the total vibration is obtained by
a linear superposition of the individual vibrations.

Orne case is the combination of two excitations that have the same angular
frequency w. If the two individual displacements are given by

x; = A1 @) and  x, = Ap@ite (1.13.1)
their linear combination x = X; + X; results in a motion A explj(wt + ¢)], where
Ad@TE) = (A e+ Ajeltr)d! (1.13.2)

Solution for A and ¢ can be accomplished easily if the addition of the phasors
Ay exp(jwt) and A; exp(jwt) is represented graphically, as in Fig. 1.13.1. From the
projections of each phasor on the real and imaginary axes,

A = [(A; cosdy + Az oS )2 + (Ay sindy + Az sin d)?]H/2

A sindy + Ay sindy (1.13.3)

t =
an ¢ Aycos 1 + Az cosgy

¢1

le—————— A COS P + Ay COS q)z————)‘

Figure 1.13.1 Phasor combination A exp(j¢) =
Arexp(jor) + Azexp(jdz) of two simple harmonic
motions having identical frequencies.

|<——A1 sin ¢; + A, sin ¢)2——)l
=

|
|
’ |
|
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The real displacement is

x = x1 +x2 = Acos(wt + ¢) (1.13.4)

where A and ¢ are given by (1.13.3). The linear combination of two simple harmonic
vibrations of identical frequency yields another simple harmonic vibration of this
same frequency, having a different phase angle and an amplitude in the range
|A; — Az| = A = (A1 + A).

With the help of Fig. 1.13.1, it is clear that the addition of more than two phasors
can be accomplished by drawing them in a chain, head to tail, and then taking
their components on the real and imaginary axes. Thus, it may readily be shown
that the vibration resulting from the addition of any number n of simple harmonic
vibrations of identical frequency has amplitude A and phase angle ¢ given by

A= [(ZA,, cos q.’;,,)z + (ZA,, sinqb,,)z]

tang = ZA,, sinqbn/ZAn COS ¢y,

1/2

(1.13.5)

Thus, any linear combination of simple harmonic vibrations of identical frequency
produces a new simple harmonic vibration of this same frequency. For example,
when two or more sound waves overlap in a fluid medium, at each point in the
fluid the periodic sound pressures of the individual waves combine as described
above.

The expression for the linear combination of two simple harmonic vibrations of

i e £ : L
X = At 4 Ayt (1.13.6)

The resulting motion is not simple harmonic, so that it cannot be represented
by a simple sine or cosine function. However, if the ratio of the larger to the
smaller frequency is a rational number (commensurate), the motion is periodic
with angular frequency given by the greatest common divisor of w; and w,.
Otherwise, the resulting motion is a nonperiodic oscillation that never repeats

Q [ 'he a omb OO h1ree o NOore M le b Mon h ats

have different frequencies has characteristics similar to those discussed for two.
The linear combination of two simple harmonic vibrations of nearly the same
frequency is easy to interpret. If the angular frequency w; is written as
wy; = W + Aw (1.13.7)
then the combination is

X = Atte) o g4, plortthetre) (1.13.8)

This can be reexpressed as

X = (Ajd® + Apel®rthetygiont (1.13.9)
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and then cast into the form

x = Ael@i+é) (1.13.10)

where

A = [A? + A2 + 2A,A; cos(¢1 — ¢y — Awt)]'/?

Ajp sin d)l + A2 Sin(d)z + Awt) (1.13.11)

Ajcosdy + Az cos(dy + Awt)

tan¢ =

The resulting vibration may be regarded as approximately simple harmonic, with
angular frequency wi, but with both amplitude A and phase ¢ varying slowly
at a frequency of Aw/2m. It can be shown that the amplitude of the vibration
waxes and wanes between the limits (A; + Az) and |A; — A;|. The effect of the
variation in phase angle is somewhat more complicated. It modifies the vibration
in such a manner that its frequency is not strictly constant, but the average angular
frequency may be shown to lie somewhere between w; and w2, depending on the
relative magnitudes of A; and A,. In the sounding of two pure tones of slightly
different frequencies, this variation in amplitude results in a rhythmic pulsing of
the loudness of the sound known as beating. As an example let us consider the
special case A; = Az and ¢ = ¢, = 0. The equations (1.13.11) become

A = A2 + 2cos(Awt)]'/?

sin(Awt (1.13.12)

T + cos(Awl)

tan¢ =

The amplitude ranges between 24; and zero, and the beating is very pronounced.
Audible beats and other associated phenomena will be discussed in more detail in
Chapter 11.

1.14 ANALYSIS OF COMPLEX VIBRATIONS
BY FOURIER’S THEOREM

In the preceding section we noted that the linear combination of two or more simple
harmonic vibrations with commensurate frequencies leads to a complex vibration
that has a frequency determined by the greatest common divisor. Conversely, by
means of a powerful mathematical theorem originated by Fourier, it is possible
to analyze any complex periodic vibration into a harmonic array of component
frequencies.

Stated briefly, this theorem asserts that any single-valued periodic function
may be expressed as a summation of simple harmonic terms whose frequencies
are integral multiples of the repetition rate of the given function. Since the above
restrictions are normally satisfied in the case of the vibrations of material bodies,
the theorem is widely used in acoustics.

If acertain vibrationof period T is represented by the functionf(t), thenFourier’s——

theorem states that f(f) may be represented by the harmonic series
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= YA, + A; coswt + Ay cos2wt + -+ + A, cosnwt + -+
f() 3410 1 2 n (1141)

+ Bysinwt + By sin2wt + -+ + B, sinnwf + -

where w = 27/T and the A’s and B’s are constants to be determined.
The formulas for evaluating these constants (derived in standard mathematical

texts) are
2 T
Ay = TJ f(t) cos nwt dt
0 (1.14.2)
2 T
B, = —J f(#) sinnwt dt
T Jo

Whether or not these integrations are feasible will depend on the nature and
complexity of the function f(t). If this function exactly represents the combination
of a finite number of pure sine and cosine vibrations, the series obtained by
computing the above constants will contain only these terms. Analysis, for instance,
of simple beats will yield only the two frequencies present. Similarly, the complex
vibration constituting the sum of three pure musical tones will analyze into those
frequencies alone. On the other hand, if the vibration is characterized by abrupt
changes in slope, like sawtooth waves or square waves, then the entire infinite
series must be considered for a complete equivalence of motion. If f(t) and df /dt
are piecewise continuous over the interval 0 = t = T, it is possible to show that
the harmonic series is always convergent. However, jagged functions will require
the inclusion of a large number of terms merely to achieve a reasonably good
imation—tot] ioinal functionand t be difficulties ol
discontinuities. Fortunately, the majority of vibrations encountered in acoustics
are relatively smooth functions of time. In such cases, the convergence is rather
rapid and only a few terms must be computed.

Depending on the nature of the function being expanded, some terms in the
series may be absent. If the function f(t) is symmetrical with respect to f = 0, the
constant term Ay will be absent. If the function is even, f(t) = f(—t), then all sine
terms will be missing. An odd function, f(t) = —f(—t), will cause all cosine terms
to be absent.
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of higher frequency terms to be computed is that the subjective interpretation of a
complex sound vibration is often only slightly altered if the higher frequencies are
removed or ignored.

Let us apply the above analysis to a square wave of unit amplitude and period
T, defined as

0=t<T/2

fm=|"" (1143)
-1 T2=t<T o

and repeating every period. Substitution into (1.14.2) yields all A, = 0, B, = 0 for
n even, and

B, = 4/nmw n=135,... (1.14.4)
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0 1 0 1 0 1
Figure 1.14.1 The Fourier series representation of a square wave vibration of unit
amplitude and period T showing the results of including the lowest nonzero harmonics

one at a time.

Note that A is zero because of the symmetry of the motion about f = 0. All A, are
zero since the function is odd. The B, are zero for even n because of the symmetry
of f(t) within each half-period. The complete harmonic series equivalent to the
square wave vibration is

1

/ 1 1 \
f(y) = (smwt t3 sin 3wt + 5 sin 5wt + +++ + " sin nwt + ) (1.14.5)

Plotted in Fig. 1.14.1 are results obtained by retaining various numbers of
terms of the series. Differences among the plots are quite apparent. Because of the
discontinuities, the Fourier series develops visible overshoot near these times if a
large enough number of terms are retained.

*]1.15 THE FOURIER TRANSFORM

Two fundamental methods are available for the analy51s of pulses and other 51gnals of finite

is a common approach the underlying physms is somewhat hldden and there must be no



