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Technique 4
Modulation

SECTION 20.1

Amplitude Modulation

Remember that modulation means changing something in accordance with
something else. In this case we are changing the amplitude of one signal with
another. To do amplitude modulation (AM), we multiply the two signals, call
them A and B, to get a third signal C. That can be written simply in the time
domain as

C = A×B (20.1)

We looked at modulation with slowly moving signals earlier while study-
ing control envelopes. A familiar effect, often used with guitar, is tremolo, in
which the audio signal is amplitude modulated with a slowly moving periodic
wave of about 4Hz. In this section we consider what happens when modulating
one audio signal with another. Let’s begin by assuming that both are simple
sinusoidal signals in the lower audible range of a few hundred Hertz.

Traditionally one of the input signals is called the carrier (at frequency fc),
the thing that is being modulated, and we call the other one the modulator (at
frequency fm), the thing that is doing the modulating. For the trivial case of
amplitude modulation it doesn’t matter which is which, because multiplication
is commutative (symmetrical): A×B = B×A. Let’s look at a patch to do this
in figure 20.1, and the result in figure 20.2.

Figure 20.1
A× B.

The patch is simple. We take two signals from cosinusoidal
oscillators and combine them with a object. What will the
resulting amplitude be if both signals are normalised? If signal
A is in the range −1.0 to 1.0 and so is B, then the lowest the
amplitude can be is −1.0 × 1.0 = −1.0 and the highest it can
be is 1.0 × 1.0 or −1.0 × −1.0, both of which give 1.0, so we
get a normalised signal back out. But what frequencies will we
get? Figure 20.2 shows the answer, and maybe it isn’t what
you expect, since neither of the original frequencies is present.

We see fc + fm and fc −fm.
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Keypoint
AM gives sum and difference components.

time frequency

120 1.000
760 1.000

Figure 20.2
Multiplying two audio signals. The spectrum of the new signal is different from either of the
inputs.

We multiplied two signals at 320Hz and 440Hz, and we got two frequencies,
one at 760Hz and one at 120Hz. Multiplying two pure frequencies gives two new
ones which are their sum and difference. We call these sidebands of the original
frequencies. In this case the upper sideband or sum is 320Hz+ 440Hz = 760Hz,
and the lower sideband or difference is 440Hz−320Hz = 120Hz. This can be
seen mathematically from a trigonometric identity called the cosine product to
sum rule which explains simple modulation.

cos(a) cos(b) =
1

2
cos(a+ b) +

1

2
cos(a−b) (20.2)

The amplitude of each input signal was 1.0, but since the output amplitude is
1.0 and there are two frequencies present, each must contribute an amplitude of
0.5. This can also be seen to follow from the cosine product equation. Note that
the spectrograph in figure 20.2 shows the amplitudes as 1.0 because it performs
normalisation during analysis to display the relative amplitudes; in actual fact
these two frequencies are half the amplitude of the modulator input. So, what
are the practical applications of simple modulation? As described above, nei-
ther of the original frequencies is present in the output, so it’s a way of shifting
a spectrum.

When using slowly moving envelope signals to modulate a signal we take its
spectrum to be fixed and assume the amplitudes of all the frequencies rise and
fall together. Most of the time that’s true, but as is apparent from the previous
equations, changing the amplitude of a signal rapidly changes its spectrum.
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This seems a bit weird to begin with. But where have we seen this before? It
is implied by Gabor and Fourier . . .

Keypoint
As we make shorter and sharper changes to a signal it gains higher frequencies.

SECTION 20.2

Adding Sidebands

Above, we started with two oscillators producing two frequencies, and we ended
up with two new frequencies. It seems a long way round to get rather little
advantage. If we had wanted 760Hz and 120Hz, why not just set the oscillators
to those frequencies? But of course we still have the two original sine signals to
play with. We could add those in and end up with four frequencies in total. So,
one of the main uses of AM in synthesis is to construct new and more complex
spectra by adding sidebands.

Figure 20.3
Ring modulator.

Figure 51.4 shows a patch called a ring modulator which is
a common idiom in synthesisers and effects. This time it mat-
ters which we call the carrier and modulator. The carrier is
the 320Hz signal connecting to the left of , and the modula-
tor is the 440Hz one connecting to the right side. Notice that
we add a constant DC offset to the modulator. This means
that some amount of the carrier signal will appear in the out-
put unaltered, but the modulator frequency will not appear
directly. Instead we will get two sidebands of carrier + 440Hz
and carrier −440Hz added to the original carrier.

time frequency

120 0.514
320 1.000
760 0.517

Figure 20.4
Ring modulator, showing the carrier plus two sidebands produced by modulation.
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In the spectrograph of figure 20.4 you can see the relative amplitudes of the
carrier and sidebands, with the sidebands having half the amplitude. No signal
is present at 440Hz.

Figure 20.5
All band modulator.

If we want to get as many components in the spectrum
as possible, the patch of figure 20.5 can be used. There are
four possible frequencies: the carrier, the modulator, and
two sidebands. The spectrum is shown on the right of fig-
ure 20.6 in which all bands have equal amplitude. Because
the amplitude sum of the carrier and modulator will be
twice that of the modulated signal we use half of it so
that all the harmonics are of equal amplitude. So far we
haven’t said anything about the phases of sidebands, but
you might notice that the time domain waveform is raised
by 0.5 because of the way the signals combine.

time frequency

120 1.000
320 1.000
440 1.000
760 1.000

Figure 20.6
All band amplitude modulation giving sum, difference, and both originals.

SECTION 20.3

Cascade AM, with Other Spectra

Figure 20.7
AM with two harmonics.

This process can be repeated two or more times to
add more harmonics. If a signal containing more
than one frequency, let’s call them fa and fb, is
modulated with a new signal of frequency fm, as
shown by the patch in figure 20.7, then we get side-
bands at fa + fm, fa −fm, fb + fm, fb −fm, which
can be seen in figure 20.8. Starting with one sig-
nal containing 300Hz and 400Hz, and modulating
with 900Hz we obtain 900Hz + 400Hz = 1300Hz,
900Hz−400Hz = 500Hz, 900Hz + 300Hz = 1200Hz,
and 900Hz −300Hz = 600Hz. We can chain ring
modulators or all sideband modulators to multiply
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harmonics and get ever denser spectra. Starting with two oscillators we can get
4 harmonics, then add another oscillator to get 8, and so on.

time frequency

501 1.000
601 1.000
1201 1.000
1301 1.000

Figure 20.8
Modulating a signal containing more than one harmonic.

SECTION 20.4

Single Sideband Modulation

Figure 20.9
Single sideband
modulation.

One of the problems with simple AM-like ring modulation is
that we often get more harmonics than are required, and
often they appear in places we don’t want. Sometimes it
would be nice if we could obtain only one extra sideband.
It would be useful to make a frequency shifter, a patch that
would move all the harmonics in a signal up or down by a
fixed interval like that shown in figure 20.9.

The Hilbert transform, sometimes called the singular inte-
gral, is an operation that shifts the phase of a signal by 90◦

or π
2 , and we can write it as H(f)(t) for a function of time, f .

So, H(sin(t)) = −cos(t). In Pure Data we have an abstrac-
tion that provides two outputs separated in phase by
π
2 , called a quadrature shift. What it enables us to do is can-

cel out one of the sidebands when doing modulation. In figure 20.9 we are
performing a normal multiplication to get two shifted version of the carrier, an
upper and lower sideband, but we also perform this on a quadrature version of
the signal. Because of phase shifting the lower sideband in the left branch of
the patch will be 180◦ or π out of phase with the one from the right branch.
When we combine the two by subtraction the lower sideband vanishes, leaving
only the upper one. The result is seen in figure 20.10, showing that we end
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up with a pure 550Hz sinusoidal wave after modulating 440Hz and 110Hz sig-
nals. Frequency shifting of this kind can be used to create harmony and chorus
effects.

time frequency

550 1.000

Figure 20.10
Using a Hilbert transform to obtain a single sideband.

SECTION 20.5

Frequency Modulation

Frequency modulation is another way of synthesising complex spectra. When
we modulate the frequency of a signal very slowly it’s called vibrato. As the
modulating frequency increases into the audio range it causes new sidebands
to appear, a bit like AM. In some ways it is more flexible than AM, in some
ways less so. Let’s look at a few configurations and spectra to see how it differs
and learn where it might be useful for sound design.

Figure 20.11
FM.

Figure 20.11 shows the simplest form of the FM idea. This
time we are not multiplying a signal by the modulator, but
changing the frequency of another oscillator. The output of
the top oscillator connects to the frequency inlet of the bot-
tom one, so the top oscillator is modulating the frequency of
the bottom one. As it stands this is a useless patch, but it
shows the essential principle.

A more realistic demonstration of FM is shown in figure 20.12. The mod-
ulator and carrier are output to left and right channels so we can see their
relationship in figure 20.13. This time we provide an offset which sets the car-
rier frequency to 100Hz, and add another signal on top of this. The signal we
add is the modulator scaled by a new number which we call the frequency devi-
ation. In this case the deviation is 30, so the carrier will wobble around between
70Hz and 130Hz. I’ve added a number to control the modulator frequency too,
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Figure 20.12
Real FM patch.

so we have three parameters to play with in a basic
FM patch: the carrier frequency (fc), the modula-
tion frequency (fm), and the deviation, which is some-
times called the FM amount. The FM index is often
given as a small number, which is the ratio of the fre-
quency deviation (∆f) to the modulation frequency,
so i = ∆f/fm, but it is sometimes given in percent.
Strictly it should not be measured in Hertz, but in
some of our discussion we will talk about the index as
a frequency deviation, which isn’t really correct, since
the unit amplitude of the modulator is 1Hz. Notice in
figure 20.13 that the modulator is always positive. The

carrier gets squashed and stretched in frequency. Where the modulator is at a
maximum or minimum the carrier frequency is a maximum or minimum.

time
-1.0

1.0

0.0 0.2

time
-1.0

1.0

0.0 0.2

Modulator amplitude minimum

Modulator amplitude maximum

Carrier frequency maximum Carrier frequency minimum

Figure 20.13
FM with a carrier of 100Hz, modulator of 10Hz, and an index of 30Hz.

If you listen to the patch above you will hear an effect more like a fast
vibrato. As the modulator frequency increases the wobbling starts to fuse into
the carrier frequency, creating a richer timbre. Increasing the index will make
the sound brighter. So what is happening to the spectrum?

In figure 20.14 we see the first patch that demonstrates the sidebands intro-
duced by FM. The modulator is 200Hz and the carrier is 600Hz, but the index
is zero. On the right in figure 20.14 the only harmonic is the sinusoidal carrier,
and the spectrum has a single component at 600Hz.

Keypoint
If the FM index is zero we only get the carrier.
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time frequency

600 1.000

Figure 20.14
FM with a carrier of 600Hz, modulator of 200Hz, and an index of 0Hz.

time frequency

0.0

400 0.130
600 1.000
800 0.129

Figure 20.15
FM with a carrier of 600Hz, modulator of 200Hz, and an index of 50Hz.

Now we start to increase the index, adding a 50Hz excursion to either side
of the carrier. You can see in figure 20.15 that two sidebands have emerged at
400Hz and 800Hz. At the moment this looks rather like AM with sidebands at
fc + fm and fc −fm.

Keypoint
In FM, the sidebands spread out on either side of the carrier at integer multiples
of the modulator frequency.

What happens as we increase the index further? In figure 20.16 we have
a modulation index of 200Hz, and you can see four sidebands. As well as the
previous two at 400Hz and 800Hz, we now have two more at 200Hz and 1000Hz
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time frequency

200
400
600
801
1001

0.157
0.592
1.000
0.587
0.154

Figure 20.16
FM with a carrier of 600Hz, modulator of 200Hz, and an index of 200Hz.

(ignoring the small FFT error in the plot). Notice the distance between these
sidebands.

We can express this result by noting the sidebands are at fc + fm, fc −fm,
fc+2fm, and fc−2fm. Is this a general rule that can be extrapolated? Yes, in
fact, the formula for FM gives the sidebands as being at integer ratios of the
modulator above and below the carrier. As for amplitude modulation, we can
see how this arises if we look at some slightly scary-looking equations. Starting
with something we already know, a sinusoidal or cosinusoidal wave is a periodic
function of time given by

f(t) = cos(ωt) (20.3)

or by
f(t) = sin(ωt) (20.4)

in which ω is the angular frequency and t is time. The value of t is the phasor
or increment in our oscillator, and in Pure Data we can basically ignore ω or
its expansion to 2πf because of rotation normalised ranges. We can express the
FM process as another similar equation for a new function of time where an
extra value is added to the phasor.

f(t) = cos(ωct+ f(ωmt)) (20.5)

The new thing is another function of time. In other words, a new oscillator with
angular frequency ωm. So, let’s make that explicit by filling out the new time
variant function to get

f(t) = cos(ωct+ i sin(ωmt)) (20.6)

The value i is the FM index since it scales how much the sin(ωt) part affects
the outer cosine term. If it is used as a rate of change of increment, then we
call the process FM; if it is a change that is merely added to the phase (which
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is done by rearranging the formula) then we call it PM, meaning phase mod-
ulation. The two are essentially equivalent, but I will show an example of PM
later for completeness. Now, to see what spectrum this gives, a few tricks using
trigonometric identities are applied. We use the sum to product (opposite of
the previously seen product to sum rule)

cos(a+ b) = cos(a) cos(b)−sin(a) sin(b) (20.7)

with

cos(a) cos(b) =
1

2
(cos(a−b) + cos(a+ b)) (20.8)

and

sin(a) sin(b) =
1

2
(cos(a−b)−cos(a+ b)) (20.9)

and by substitution and expansion obtain the full FM formula

cos(ωct+ i sinωmt)

= J0(i) cos(ωct) (20.10)

− J1(i)(cos((ωc −ωm)t)−cos((ωc + ωm)t)) (20.11)

+ J2(i)(cos((ωc −2ωm)t) + cos((ωc + 2ωm)t)) (20.12)

− J3(i)(cos((ωc −3ωm)t)−cos((ωc + 3ωm)t)) (20.13)

+ . . . (20.14)

So, you can see where the series of components fc ± nfm comes from, and
also note that components are alternately in different phases. But what are
the functions J0 . . . Jn all about? They are called Bessel functions of the first
kind. Their appearance is a bit too complicated to explain in this context,
but each is a continuous function defined for an integer that looks a bit like a
damped oscillation (see fig. 20.17) and each has a different phase relationship
from its neighbours. In practice they scale the sideband amplitude according
to the modulation index, so as we increase the index the sidebands wobble up
and down in a fairly complex way.

Keypoint
The amplitude of the nth FM sideband is determined by the n+1th Bessel func-
tion of the the modulation index.

For small index values, FM provides a regular double sided, symmetrical
spectrum much like AM, but instead of only producing the sum and difference
it yields a series of new partials that decay away on either side of the carrier.
When we say they decay away, what does this mean? Well, in fact there are
really more partials than we can see. Those at fc ± 3fm are also present, but
are too small to be detected. As the index increases they will start to appear
much stronger, along with others at fc ± 4fm, fc ± 5fm, fc ± 6fm, and so on.
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Figure 20.17
The first five Bessel functions of the first kind.

The ones that are loud enough to be considered part of the spectrum, say above
−40dB, can be described as the bandwidth of the spectrum. As an estimate of
the bandwidth you can use Carson’s rule, which says the sidebands will extend
outwards to twice the sum of the frequency deviation and the modulation fre-
quency, B = 2(∆f + fm).

Another thing to take note of is the amplitude of the time domain wave-
form. It remains at a steady level. If we had composed this same spectrum
additively there would be bumps in the amplitude due to the relative phases
of the components, but with FM we get a uniformly “loud” signal that always
retains the amplitude of the carrier signal. This is useful to remember for when
FM is used in a hybrid method, such as in combination with waveshaping or
granular synthesis.

Looking at figure 20.18, we are ready to take a deeper look at FM in order to
explain what is happening to the spectrum. It no longer appears to be symmet-
rical around the carrier, and the regular double-sided decay of the sidebands
seems to have changed. For an index greater than 1.0 (when ∆f ≥ fm) we see
a new behaviour.

Negative Frequencies

Let’s break it down again and look at a simplified FM patch in which the
modulation can produce negative frequencies.

What do we mean by a negative frequency? To answer that let’s plug some
numbers into the patch, setting the first modulating oscillator to 10Hz and
making the sweep carrier be 100Hz. In figure 20.19 I have sent the modulator
to one output channel and the modulated carrier to the other. Take a look
at figure 20.20 where these are shown together. When the amplitude of the
10Hz modulator is 1.0, the frequency of the carrier is 100Hz. This is true at the
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time frequency

400
600
800
1000
1200
1401
1601

0
200

0.228
0.628
0.109
0.579
06.85
0.445
0.209

1.000
0.785

Figure 20.18
FM with a carrier of 600Hz, modulator of 200Hz, and an index of 800Hz.

point where the top waveform hits a maximum, which corresponds to the mid-
dle cycle of the first group of three in the bottom trace. When the modulator
amplitude is somewhere about halfway the carrier is oscillating at about 50Hz.

Figure 20.19
Basic FM patch.

It’s not easy to pick any point on the lower waveform and
say that the oscillator has a precise frequency there, because
the modulator is continuously changing its frequency. The
result is that carrier becomes distorted, squashed, and then
stretched in frequency. You can see what happens as the
modulator reaches zero, the carrier reaches a frequency of
0Hz and comes to a halt. But look what happens as the mod-
ulator swings negative towards −1.0. The carrier changes
direction. It still reaches a frequency of 100Hz when the mod-

ulator amplitude hits −1.0, but its phase has flipped.

time
-1.0

1.0

0.0 0.1

time
-1.0

1.0

0.0 0.1

Modulator crosses zero amplitude

Change of phase "Negative frequency" Positive frequency

Figure 20.20
Negative frequencies cause a change of phase.
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Negative frequencies are folded back into the spectrum with their phase
inverted. Much like aliasing caused by frequencies that fold-over above the
Nyquist point we say ones that get reflected at the bottom fold-under. If they
combine with real, positive phase components, they cancel out, so we start to
get holes in the spectrum.

Phase Modulation

If you compare figure 20.21 to figure 20.12 the similarities should be obvious.
But ponder the subtle difference for a moment and think about the FM formula.

Figure 20.21
Phase modulation.

Instead of supplying a steady signal via to a oscilla-
tor that already contains a phase increment we have a sep-
arate which indexes a function. This does exactly
the same thing as the combined oscillator. But instead of
changing the carrier frequency we are adding a new time
variant signal to the phase. Since a change in the rate of
change of phase is the same as a change in frequency, we
are doing the same thing as FM. However, we have the
advantage that the phase accumulator is available sepa-
rately. This means we can derive other time variant func-
tions from it which will maintain the same overall phase
coherence. The upshot is to greatly simplify the design of
complex FM patches in which we have more than one mod-

ulator signal combined.

Keypoint
“Negative frequencies” produce harmonics inverted in phase.
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