
10

Using Pure Data

SECTION 10.1

Basic Objects and Principles of Operation

Now that we are familiar with the basics of Pd, let’s look at some essential
objects and rules for connecting them together. There are about 20 message
objects you should try to learn by heart because almost everything else is built
from them.

Hot and Cold Inlets

Most objects operating on messages have a “hot” inlet and (optionally) one or
more “cold” inlets. Messages received at the hot inlet, usually the leftmost one,
will cause computation to happen and output to be generated. Messages on a
cold inlet will update the internal value of an object but not cause it to output
the result yet. This seems strange at first, like a bug. The reason for it is so
that we can order evaluation. This means waiting for subparts of a program to
finish in the right order before proceeding to the next step. From maths you
know that brackets describe the order of a calculation. The result of 4× 10−3
is not the same as 4 × (10 −3), we need to calculate the parenthesised parts
first. A Pd program works the same way: you need to wait for the results from
certain parts before moving on.

Figure 10.1
Hot and cold inlets.

In figure 10.1 a new number box is added to right inlet
of . This new value represents a constant multiplier k
so we can compute y = kx + 3. It overrides the 5 given
as an initial parameter when changed. In figure 10.1 it’s
set to 3 so we have y = 3x + 3. Experiment setting it
to another value and then changing the left number box.
Notice that changes to the right number box don’t imme-
diately affect the output, because it connects to the cold
inlet of , but changes to the left number box cause the
output to change, because it is connected to the hot inlet
of .

Bad Evaluation Order

A problem arises when messages fan out from a single outlet into other oper-
ations. Look at the two patches in figure 10.2. Can you tell the difference? It
is impossible to tell just by looking that one is a working patch and the other
contains a nasty error. Each is an attempt to double the value of a number by
connecting it to both sides of a . When connections are made this way the



166 Using Pure Data

Figure 10.2
Bad ordering.

behaviour is undefined, but usually happens in the order the
connections were made. The first one works because the right
(cold) inlet was connected before the left (hot) one. In the sec-
ond patch the arriving number is added to the last number
received because the hot inlet is addressed first. Try making
these patches by connecting the inlets to in a different
order. If you accidentally create errors this way they are hard
to debug.

Trigger Objects

A trigger is an object that splits a message up into parts and sends them over
several outlets in order. It solves the evaluation order problem by making the
order explicit.

Figure 10.3
Ordering with trigger.

The order of output is right to left, so a
object outputs a float on the right outlet first, then a bang
on the left one. This can be abbreviated as . Proper
use of triggers ensures correct operation of units further
down the connection graph. The arguments to a trigger
may be s for symbol, f for float, b for bang, p for point-
ers, and a for any. The “any” type will pass lists and
pointers too. The patch in figure 10.3 always works cor-
rectly, whatever order you connect to the inlets. The

float from the right outlet of is always sent to the cold inlet of first,
and the left one to the hot inlet afterwards.

Making Cold Inlets Hot

Figure 10.4
Warming an inlet.

An immediate use for our new knowledge of triggers is to
make an arithmetic operator like respond to either of its
inlets immediately. Make the patch shown in figure 10.4 and
try changing the number boxes. When the left one is changed
it sends a float number message to the left (hot) inlet which
updates the output as usual. But now, when you change
the right number box it is split by into two messages, a
float which is sent to the cold (right) inlet of , and a bang,
which is sent to the hot inlet immediately afterwards. When

it receives a bang on its hot inlet, computes the sum of the two numbers
last seen on its inlets, which gives the right result.

Float Objects

The object is very common. A shorthand for , which you can also use
if you like to make things clearer, it holds the value of a single floating point
number. You might like to think of it as a variable, a temporary place to store a
number. There are two inlets on ; the rightmost one will set the value of the
object, and the leftmost one will both set the value and/or output it depending
on what message it receives. If it receives a bang message it will just output
whatever value is currently stored, but if the message is a float it will override



10.2 Working with Time and Events 167

the currently stored value with a new float and immediately output that. This
gives us a way to both set and query the object contents.

Int Objects

Although we have noted that integers don’t really exist in Pd, not in a way that
a programmer would understand, whole numbers certainly do. stores a float
as if it were an integer in that it provides a rounding (truncation) function of
any extra decimal places. Thus 1.6789 becomes 1.0000, equal to 1, when passed
to .

Symbol and List Objects

As for numbers, there are likewise object boxes to store lists and symbols in
a temporary location. Both work just like their numerical counterparts. A list
can be given to the right inlet of and recalled by banging the left inlet.
Similarly can store a single symbol until it is needed.

Merging Message Connections

When several message connections are all connected to the same inlet that’s
fine. The object will process each of them as they arrive, though it’s up to you
to ensure that they arrive in the right order to do what you expect. Be aware
of race hazards when the sequence is important.

Figure 10.5
Messages to same inlet.

Messages arriving from different sources at the same
hot inlet have no effect on each another; they remain sep-
arate and are simply interleaved in the order they arrive,
each producing output. But be mindful that where sev-
eral connections are made to a cold inlet only the last
one to arrive will be relevant. Each of the number boxes
in figure 10.5 connects to the same cold inlet of the float
box and a bang button to the hot inlet. Whenever the
bang button is pressed the output will be whatever is cur-

rently stored in , which will be the last number box changed. Which number
box was updated last in figure 10.5? It was the middle one with a value of 11.

SECTION 10.2

Working with Time and Events

With our simple knowledge of objects we can now begin making patches that
work on functions of time, the basis of all sound and music.

Metronome

Figure 10.6
Metronome.

Perhaps the most important primitive operation is to get
a beat or timebase. To get a regular series of bang events

provides a clock. Tempo is given as a period in mil-
liseconds rather than beats per minute (as is usual with
most music programs).

The left inlet toggles the metronome on and off when
it receives a 1 or 0, while the right one allows you to set



168 Using Pure Data

the period. Periods that are fractions of a millisecond are allowed. The
emits a bang as soon as it is switched on and the following bang occurs after
the time period. In figure 10.6 the time period is 1000ms (equal to 1 second).
The bang button here is used as an indicator. As soon as you click the message
box to send 1 to it begins sending out bangs which make the bang button
flash once per second, until you send a 0 message to turn it off.

A Counter Timebase

We could use the metronome to trigger a sound repeatedly, like a steady drum
beat, but on their own a series of bang events aren’t much use. Although they
are separated in time we cannot keep track of time this way because bang
messages contain no information.

Figure 10.7
Counter.

In figure 10.7 we see the metronome again. This time
the messages to start and stop it have been conveniently
replaced by a toggle switch. I have also added two new
messages which can change the period and thus make the
metronome faster or slower. The interesting part is just
below the metronome. A float box receives bang messages
on its hot inlet. Its initial value is 0, so upon receiving the
first bang message it outputs a float number 0 which the
number box then displays. Were it not for the object

the patch would continue outputting 0 once per beat forever. However, look
closely at the wiring of these two objects: and are connected to form an
incrementor or counter. Each time recieves a bang it ouputs the number
currently stored to which adds 1 to it. This is fed back into the cold inlet
of which updates its value, now 1. The next time a bang arrives, 1 is out-
put, which goes round again through and becomes 2. This repeats as long
as bang messages arrive: each time the output increases by 1. If you start the
metronome in figure 10.7 you will see the number box slowly counting up, once
per second. Clicking the message boxes to change the period will make it count
up faster with a 500ms delay between beats (twice per second), or still faster
at 4 times per second (250ms period).

Time Objects

Three related objects help us manipulate time in the message domain.
accurately measures the interval between receiving two bang messages, the first

Figure 10.8
Time objects.

on its left inlet and the second on its right inlet.
It is shown on the left in figure 10.8.

Clicking the first bang button will reset and
start and then hitting the second one will
output the time elapsed (in ms). Notice that
is unusual; it’s one of the few objects where the
right inlet behaves as the hot control. shown
in the middle of figure 10.8 will output a single
bang message a certain time period after receiv-
ing a bang on its left inlet. This interval is set



10.3 Data Flow Control 169

by its first argument or right inlet, or by the value of a float arriving at its left
inlet, so there are three ways of setting the time delay. If a new bang arrives,
any pending one is cancelled and a new delay is initiated. If a stop message
arrives, then is reset and all pending events are cancelled. Sometimes we
want to delay a stream of number messages by a fixed amount, which is where

comes in. This allocates a memory buffer that moves messages from its
inlet to its outlet, taking a time set by its first argument or second inlet. If you
change the top number box of the right patch in figure 10.8 you will see the
lower number box follow it, but lagging behind by 300ms.

Select

This object outputs a bang on one of its outlets matching something in its
argument list. For example, will output a bang on its second outlet if
it receives a number 4, or on its third outlet when a number 6 arrives. Messages
that do not match any argument are passed through to the rightmost outlet.

Figure 10.9
Simple sequencer.

This makes it rather easy to begin making sim-
ple sequences. The patch in figure 10.9 cycles around
four steps, blinking each bang button in turn. It is a
metronome running with a 300ms period and a counter.
On the first step the counter holds 0, and when this is
output to it sends a bang to its first outlet which
matches 0. As the counter increments, successive outlets
of produce a bang, until the fourth one is reached.
When this happens a message containing 0 is triggered
which feeds into the cold inlet of resetting the counter
to 0.

SECTION 10.3

Data Flow Control

In this section are a few common objects used to control the flow of data around
patches. As you have just seen, can send bang messages along a choice of
connections, so it gives us a kind of selective flow.

Route

Figure 10.10
Routing values.

Route behaves in a similar fashion to select, only it oper-
ates on lists. If the first element of a list matches an
argument, the remainder of the list is passed to the cor-
responding outlet.
So, will send 20.0 to its third outlet

when it receives the message {snake 20 }. Nonmatching
lists are passed unchanged to the rightmost outlet.
Arguments can be numbers or symbols, but we tend to
use symbols because a combination of with lists is a

great way to give parameters names so we don’t forget what they are for.



170 Using Pure Data

We have a few named values in figure 10.10 for synthesiser controls. Each mes-
sage box contains a two-element list, a name-value pair. When encounters
one that matches one of its arguments it sends it to the correct number box.

Moses

This is a “stream splitter” which sends numbers below a threshold to its left
outlet, and numbers greater than or equal to the threshold to the right outlet.
The threshold is set by the first argument or a value appearing on the right
inlet. splits any incoming numbers at 20.0.

Spigot

This is a switch that can control any stream of messages including lists and
symbols. A zero on the right inlet of stops any messages on the left inlet
passing to the outlet. Any non-zero number turns the spigot on.

Swap

Figure 10.11
Swapping values.

It might look like a very trivial thing to do, and you
may ask—why not just cross two wires? In fact is
a really useful object. It just exchanges the two values
on its inlets and passes them to its outlets, but it can
take an argument, so it always exchanges a number with
a constant. It’s useful when this constant is 1 as shown
later for calculating complement 1−x and inverse 1/x of
a number, or where it is 100 for calculating values as a
percent.

Change

Figure 10.12
Pass values that change.

This is useful if we have a stream of numbers, perhaps
from a physical controller like a joystick that is polled
at regular intervals, but we only want to know values
when they change. It is frequently seen preceded by

to denoise a jittery signal or when dividing time-
bases. In figure 10.12 we see a counter that has been
stopped after reaching 3. The components below it are
designed to divide the timebase in half. That is to say,
for a sequence {1, 2, 3, 4, 5, 6 ...} we will get
{1, 2, 3 ...}. There should be half as many num-
bers in the output during the same time interval. In
other words, the output changes half as often as the

input. Since the counter has just passed 3 the output of is 1.5 and trun-
cates this to 1. But this is the second time we have seen 1 appear, since the
same number was sent when the input was 2. Without using we would
get {1, 1, 2, 2, 3, 3 ...} as output.



10.3 Data Flow Control 171

Send and Receive Objects

Figure 10.13
Sends.

These are very useful when patches get too visually
dense, or when you are working with patches spread
across many canvases. and objects, abbre-
viated as and , work as named pairs. Anything
that goes into the send unit is transmitted by an invis-
ible wire and appears immediately on the receiver, so
whatever goes into reappears at .

Figure 10.14
Receives.

Matching sends and receives have global names
by default and can exist in different canvases
loaded at the same time. So if the objects
in figure 10.14 are in a different patch they will
still pick up the send values from figure 10.13. The
relationship is one to many, so only one send can
have a particular name but can be picked up by
multiple objects with the same name. In the
latest versions of Pd the destination is dynamic and can be changed by a mes-
sage on the right inlet.

Broadcast Messages

As we have just seen, there is an “invisible” environment through which mes-
sages may travel as well as through wires. A message box containing a mes-
sage that begins with a semicolon is broadcast, and Pd will route it to any
destination that matches the first symbol. This way, activating the message
box is the same as sending a float message with a value of 20 to the
object .

Special Message Destinations

This method can be used to address arrays with special commands, to talk to
GUI elements that have a defined receive symbol or as an alternative way to
talk to objects. If you want to change the size of arrays dynamically they
recognise a special resize message. There is also a special destination (which
always exists) called pd which is the audio engine. It can act on broadcast
messages like to turn on the audio computation from a patch. Some
examples are shown in figure 10.15.

Message Sequences

Several messages can be stored in the same message box as a sequence if sep-
arated by commas, so is a message box that will send four values one
after another when clicked or banged. This happens instantly (in logical time).
This is often confusing to beginners when comparing sequences to lists. When
you send the contents of a message box containing a sequence all the elements
are sent in one go, but as separate messages in a stream. Lists, on the other
hand, which are not separated by commas, also send all the elements at the



172 Using Pure Data

Figure 10.15
Special message broadcasts.

same time, but as a single list message. Lists and sequences can be mixed, so a
message box might contain a sequence of lists.

SECTION 10.4

List Objects and Operations

Lists can be quite an advanced topic and we could devote an entire chapter
to this subject. Pd has all the capabilities of a full programming language like
LISP, using only list operations, but like that language all the more complex
functions are defined in terms of just a few intrinsic operations and abstrac-
tions. The list-abs collection by Frank Barknecht and others is available in
pd-extended. It contains scores of advanced operations like sorting, reversing,
inserting, searching, and performing conditional operations on every element
of a list. Here we will look at a handful of very simple objects and leave it as
an exercise to the reader to research the more advanced capabilities of lists for
building sequencers and data analysis tools.

Packing and Unpacking Lists

The usual way to create and disassemble lists is to use and . Argu-
ments are given to each which are type identifiers, so is an object that
will wrap up four floats given on its inlets into a single list. They should be
presented in right-to-left order so that the hot inlet is filled last. You can also
give float values directly as arguments of a object where you want them
to be fixed; so is legal, the first and last list elements will be 1 and 4
unless overridden by the inlets, and the two middle ones will be variable.

Figure 10.16
List packing.

Start by changing the right number in figure 10.16,
then the one to its left, then click on the symbol boxes
and type a short string before hitting RETURN. When you
enter the last symbol connected to the hot inlet of ,
you will see the data received by figure 10.17 appear in
the display boxes after it is unpacked.

The will expect two symbols and two floats
and send them to its four outlets. Items are packed and
unpacked in the sequence given in the list, but in right-

to-left order. That means the floats from will appear first, starting


