
9

Starting with
Pure Data

SECTION 9.1

Pure Data

Pure Data is a visual signal programming language which makes it easy to
construct programs to operate on signals. We are going to use it extensively in
this textbook as a tool for sound design. The program is in active development
and improving all the time. It is a free alternative to Max/MSP that many see
as an improvement.

The primary application of Pure Data is processing sound, which is what it
was designed for. However, it has grown into a general-purpose signal-processing
environment with many other uses. Collections of video-processing externals
exist called Gem, PDP, and Gridflow, which can be used to create 3D scenes
and manipulate 2D images. It has a great collection of interfacing objects,
so you can easily attach joysticks, sensors, and motors to prototype robotics
or make interactive media installations. It is also a wonderful teaching tool
for audio signal processing. Its economy of visual expression is a blessing: it
doesn’t look too fancy, which makes looking at complex programs much eas-
ier on the eye. There is a very powerful idea behind “The diagram is the
program.” Each patch contains its complete state visually so you can repro-
duce any example just from the diagram. That makes it a visual description of
sound.

The question is often asked, “Is Pure Data a programming language?” The
answer is yes; in fact, it is a Turing complete language capable of doing any-
thing that can be expressed algorithmically, but there are tasks such as building
text applications or websites that Pure Data is ill suited to. It is a specialised
programming language that does the job it was designed for very well, namely
processing signals. It is like many other GUI frameworks or DSP environments
which operate inside a “canned loop”1 and are not truly open programming
languages. There is a limited concept of iteration, programmatic branching,
and conditional behaviour. At heart dataflow programming is very simple. If
you understand object oriented programming, think of the objects as having
methods which are called by data, and can only return data. Behind the scenes
Pure Data is quite sophisticated. To make signal programming simple it hides

1. A canned loop is used to refer to languages in which the real low-level programmatic flow
is handled by an interpreter that the user is unaware of.



150 Starting with Pure Data

away behaviour like deallocation of deleted objects and manages the execution
graph of a multirate DSP object interpreter and scheduler.

Installing and Running Pure Data

Grab the latest version for your computer platform by searching the Internet
for it. There are versions available for Mac, Windows and Linux systems. On
Debian-based Linux systems you can easily install it by typing:

$ apt-get install puredata

Ubuntu and RedHat users will find the appropriate installer in their package
management systems, and MacOSX or Windows users will find an installer
program online. Try to use the most up-to-date version with libraries. The
pd-extended build includes extra libraries so you don’t need to install them
separately. When you run it you should see a console window that looks some-
thing like figure 9.1.

Figure 9.1
Pure Data console.

Testing Pure Data

The first thing to do is turn on the audio and test it. Start by entering the
Media menu on the top bar and select Audio ON (or either check the compute
audio box in the console window, or press CTRL+/ on the keyboard.) From the
Media→Test-Audio-and-MIDI menu, turn on the test signal (fig. 9.2). You
should hear a clear tone through your speakers, quiet when set to –40.0dB and
much louder when set to –20.0dB. When you are satisfied that Pure Data is
making sound, close the test window and continue reading. If you don’t hear
a sound you may need to choose the correct audio settings for your machine.
The audio settings summary will look like that shown in figure 9.3. Choices
available might be Jack, ASIO, OSS, ALSA, or the name of a specific device
you have installed as a sound card. Most times the default settings will work. If



9.2 How Does Pure Data Work? 151

Figure 9.2
Test signal.

Figure 9.3
Audio settings pane.

you are using Jack (recommended), then check that Jack audio is running with
qjackctl on Linux or jack-pilot on MacOSX. Sample rate is automatically
taken from the sound card.

SECTION 9.2

How Does Pure Data Work?

Pure Data uses a kind of programming called dataflow, because the data flows
along connections and through objects which process it. The output of one pro-
cess feeds into the input of another, and there may be many steps in the flow.



152 Starting with Pure Data

Objects

Here is a box . A musical box, wound up and ready to play. We call these
boxes objects. Stuff goes in, stuff comes out. For it to pass into or out of them,
objects must have inlets or outlets. Inlets are at the top of an object box, out-
lets are at the bottom. Here is an object that has two inlets and one outlet:

. They are shown by small “tabs” on the edge of the object box. Objects
contain processes or procedures which change the things appearing at their
inlets and then send the results to one or more outlets. Each object performs
some simple function and has a name appearing in its box that identifies what
it does. There are two kinds of object, intrinsics which are part of the core
Pd program, and externals which are separate files containing add-ons to the
core functions. Collections of externals are called libraries and can be added to
extend the functionality of Pd. Most of the time you will neither know nor care
whether an object is intrinsic or external. In this book and elsewhere the words
process, function, and unit are all occasionally used to refer to the object boxes
in Pd.

Connections

The connections between objects are sometimes called cords or wires. They
are drawn in a straight line between the outlet of one object and the inlet of
another. It is okay for them to cross, but you should try to avoid this since it
makes the patch diagram harder to read. At present there are two degrees of
thickness for cords. Thin ones carry message data and fatter ones carry audio
signals.Max/MSP and probably future versions of Pd will offer different colours
to indicate the data types carried by wires.

Data

The “stuff” being processed comes in several flavours: video frames, sound sig-
nals, and messages. In this book we will only be concerned with sounds and
messages. Objects give clues about what kind of data they process by their
name. For example, an object that adds together two sound signals looks like

. The + means that this is an addition object, and the ∼ (tilde character)
means that its object operates on signals. Objects without the tilde are used to
process messages, which we shall concentrate on before studying audio signal
processing.

Patches

A collection of objects wired together is a program or patch. For historical rea-
sons program and patch2 are used to mean the same thing in sound synthesis.
Patches are an older way of describing a synthesiser built from modular units
connected together with patch cords. Because inlets and outlets are at the top
and bottom of objects, the data flow is generally down the patch. Some objects

2. A different meaning of patch from the one programmers use to describe changes made to
a program to remove bugs.



9.2 How Does Pure Data Work? 153

have more than one inlet or more than one outlet, so signals and messages can be
a function of many others and may in turn generate multiple new data streams.
To construct a program we place processing objects onto an empty area called a
canvas, then connect them together with wires representing pathways for data
to flow along. At each step of a Pure Data program any new input data is fed
into objects, triggering them to compute a result. This result is fed into the
next connected object and so on until the entire chain of objects, starting with
the first and ending with the last, have all been computed. The program then
proceeds to the next step, which is to do the same thing all over again, forever.
Each object maintains a state which persists throughout the execution of the
program but may change at each step. Message-processing objects sit idle until
they receive some data rather than constantly processing an empty stream,
so we say Pure Data is an event-driven system. Audio-processing objects are
always running, unless you explicitly tell them to switch off.

A Deeper Look at Pd

Before moving on to make some patches consider a quick aside about how Pd
actually interprets its patches and how it works in a wider context. A patch,
or dataflow graph, is navigated by the interpreter to decide when to compute
certain operations. This traversal is right to left and depth first, which is a
computer science way of saying it looks ahead and tries to go as deep as it
can before moving on to anything higher, and moves from right to left at any
branches. This is another way of saying it wants to know what depends on
what before deciding to calculate anything. Although we think of data flowing
down the graph, the nodes in figure 9.4 are numbered to show how Pd really
thinks about things. Most of the time this isn’t very important unless you have
to debug a subtle error.

Pure Data Software Architecture

Pure Data actually consists of more than one program. The main part called pd
performs all the real work and is the interpreter, scheduler, and audio engine.
A separate program is usually launched whenever you start the main engine,
which is called the pd-gui. This is the part you will interact with when building
Pure Data programs. It creates files to be read by pd and automatically passes
them to the engine. There is a third program called the pd-watchdog, which
runs as a completely separate process. The job of the watchdog is to keep an
eye on the execution of programs by the engine and to try to gracefully halt
the program if it runs into serious trouble or exceeds available CPU resources.
The context of the pd program is shown in figure 9.5 in terms of other files
and devices.

Your First Patch

Let’s now begin to create a Pd patch as an introductory exercise. We will create
some objects and wire them together as a way to explore the interface.



Figure 9.4
Dataflow computation.

display

keyboard

mouse

Interface

pd (main engine)

pd−watchdog

C compiler

pd−gui

Input/Output

audio I/O

parallel ports

serial ports

USB ports

MIDI

UDP/TCP network

OSC

MIDI keyboard

fader box

Wii controller

joystick

microphone/line

loudspeakers

remote machine

Devices Filesystem

sound.wav

source.c

intrinsic objects

abstraction.pd

external objects

textfile.txt

patch−file.pd

Figure 9.5
Pure Data software architecture.



9.2 How Does Pure Data Work? 155

Creating a Canvas

A canvas is the name for the sheet or window on which you place objects. You
can resize a canvas to make it as big as you like. When it is smaller than the
patch it contains, horizontal and vertical scrollbars will allow you to change the
area displayed. When you save a canvas, its size and position on the desktop
are stored. From the console menu select File→New or type CTRL+n at the
keyboard. A new blank canvas will appear on your desktop.

New Object Placement

To place an object on the canvas, select Put→Object from the menu or use
CTRL+1 on the keyboard. An active, dotted box will appear. Move it some-
where on the canvas using the mouse and click to fix it in place. You can
now type the name of the new object, so type the multiplication charac-
ter * into the box. When you have finished typing, click anywhere on the
blank canvas to complete the operation. When Pure Data recognises the object
name you give, it immediately changes the object box boundary to a solid
line and adds a number of inlets and outlets. You should see a on the
canvas now.

Figure 9.6
Objects on a canvas.

Pure Data searches the paths it knows for objects,
which includes the current working directory. If it doesn’t
recognise an object because it can’t find a definition any-
where, the boundary of the object box remains dotted. Try
creating another object and typing some nonsense into it;
the boundary will stay dotted and no inlets or outlets will
be assigned. To delete the object, place the mouse cursor
close to it, click and hold in order to draw a selection box

around it, then hit delete on the keyboard. Create another object beneath the
last one with an addition symbol so that your canvas looks like figure 9.6.

Edit Mode and Wiring

When you create a new object from the menu, Pd automatically enters edit
mode, so if you just completed the instructions above you should currently be
in edit mode. In this mode you can make connections between objects or delete
objects and connections.

Figure 9.7
Wiring objects.

Hovering over an outlet will change the mouse cursor to
a new “wiring tool.” If you click and hold the mouse when
the tool is active you will be able to drag a connection away
from the object. Hovering over a compatible inlet while in
this state will allow you to release the mouse and make
a new connection. Connect together the two objects you
made so that your canvas looks like figure 9.7. If you want
to delete a connection, it’s easy; click on the connection to



156 Starting with Pure Data

select it and then hit the delete key. When in edit mode you can move any
object to another place by clicking over it and dragging with the mouse. Any
connections already made to the object will follow along. You can pick up and
move more than one object if you draw a selection box around them first.

Initial Parameters

Most objects can take some initial parameters or arguments, but these aren’t
always required. Objects can be created without these if you are going to pass
data via the inlets as the patch is running. The object can be written as

to create an object which always adds 3 to its input. Uninitialised values
generally resort to zero, so the default behaviour of would be to add 0 to
its input, which is the same as doing nothing. Contrast this with the default
behaviour of , which always gives zero.

Modifying Objects

You can also change the contents of any object box to alter the name and
function, or to add parameters.

Figure 9.8
Changing objects.

In figure 9.8 the objects have been changed to give them
initial parameters. The multiply object is given a parame-
ter of 5, which means it multiplies its input by 5 no matter
what comes in. If the input is 4 then the output will be
20. To change the contents of an object click on the mid-
dle of the box where the name is and type the new text.
Alternatively, click once, and then again at the end of the
text to append new stuff, such as adding 5 and 3 to the

objects shown in figure 9.8.

Number Input and Output

Figure 9.9
Number boxes.

One of the easiest ways to create and view numerical data
is to use number boxes. These can act as input devices to
generate numbers, or as displays to show you the data on a
wire. Create one by choosing Put→Number from the canvas
menu, or use CTRL+3, and place it above the object. Wire
it to the left inlet. Place another below the object and
wire the object outlet to the top of the number box as shown
in figure 9.9.

Toggling Edit Mode

Pressing CTRL+e on the keyboard will also enter edit mode. This key combina-
tion toggles modes, so hitting CTRL+e again exits edit mode. Exit edit mode
now by hitting CTRL+e or selecting Edit→Edit mode from the canvas menu.
The mouse cursor will change and you will no longer be able to move or modify
object boxes. However, in this mode you can operate the patch components
such as buttons and sliders normally. Place the mouse in the top number box,
click and hold, and move it upwards. This input number value will change, and
it will send messages to the objects below it. You will see the second number



9.3 Message Data and GUI Boxes 157

box change too as the patch computes the equation y = 5x+3. To reenter edit
mode hit CTRL+E again or place a new object.

More Edit Operations

Other familiar editing operations are available while in edit mode. You can cut
or copy objects to a buffer or paste them back into the canvas, or to another
canvas opened with the same instance of Pd. Take care with pasting objects in
the buffer because they will appear directly on top of the last object copied.
To select a group of objects you can drag a box around them with the mouse.
Holding SHIFT while selecting allows multiple separate objects to be added to
the buffer.

• CTRL+a Select all objects on canvas.
• CTRL+d Duplicate the selection.
• CTRL+c Copy the selection.
• CTRL+v Paste the selection.
• CTRL+x Cut the selection.
• SHIFT Select multiple objects.

Duplicating a group of objects will also duplicate any connections between
them. You may modify an object once created and wired up without having it
disconnect so long as the new one is compatible the existing inlets and outlets,
for example replacing with . Clicking on the object text will allow you
to retype the name and, if valid, the old object is deleted and its replacement
remains connected as before.

Patch Files

Pd files are regular text files in which patches are stored. Their names always
end with a .pd file extension. Each consists of a netlist, which is a collection of
object definitions and connections between them. The file format is terse and
difficult to understand, which is why we use the GUI for editing. Often there
is a one-to-one correspondence between a patch, a single canvas, and a file, but
you can work using multiple files if you like because all canvases opened by the
same instance of Pd can communicate via global variables or through and

objects. Patch files shouldn’t really be modified in a text editor unless
you are an expert Pure Data user, though a plaintext format is useful because
you can do things like search for and replace all occurrences of an object. To
save the current canvas into a file select File→Save from the menu or use the
keyboard shortcut CTRL+s. If you have not saved the file previously a dialogue
panel will open to let you choose a location and file name. This would be a good
time to create a folder for your Pd patches somewhere convenient. Loading a
patch, as you would expect, is achieved with File→Open or CTRL+o.

SECTION 9.3

Message Data and GUI Boxes

We will briefly tour the basic data types that Pd uses along with GUI objects
that can display or generate that data for us. The message data itself should



158 Starting with Pure Data

not be confused with the objects that can be used to display or input it, so we
distinguish messages from boxes. A message is an event, or a piece of data that
gets sent between two objects. It is invisible as it travels down the wires, unless
we print it or view it in some other way like with the number boxes above. A
message can be very short, only one number or character, or very long, perhaps
holding an entire musical score or synthesiser parameter set. Messages can be
floating point numbers, lists, symbols, or pointers which are references to other
types like datastructures. Messages happen in logical time, which means that
they aren’t synchronised to any real timebase. Pd processes them as fast as
it can, so when you change the input number box, the output number box
changes instantly. Let’s look at some other message types we’ll encounter while
building patches to create sound. All GUI objects can be placed on a canvas
using the Put menu or using keyboard shortcuts CTRL+1 through CTRL+8, and
all have properties which you can access by right-clicking them while in edit
mode and selecting the properties pop-up menu item. Properties include
things like colour, ranges, labels, and size and are set per instance.

Selectors

With the exception of a bang message, all other message types carry an invis-
ible selector, which is a symbol at the head of the message. This describes
the “type” of the remaining message, whether it represents a symbol, number,
pointer, or list. Object boxes and GUI components are only able to handle
appropriate messages. When a message arrives at an inlet the object looks at
the selector and searches to see if it knows of an appropriate method to deal
with it. An error results when an incompatible data type arrives at an inlet,
so for example, if you supply a symbol type message to a object it will
complain:

error: delay: no method for ’symbol’

Bang Message

This is the most fundamental and smallest message. It just means “compute
something.” Bangs cause most objects to output their current value or advance
to their next state. Other messages have an implicit bang so they don’t need
to be followed with a bang to make them work. A bang has no value; it is just
a bang.

Bang Box

A bang box looks like this and sends and receives a bang message. It briefly
changes colour, like this , whenever it is clicked or upon receipt of a bang mes-
sage to show you one has been sent or received. These may be used as buttons
to initiate actions or as indicators to show events.

Float Messages

“Floats” is another name for numbers. As well as regular (integer) numbers like
1, 2, 3 and negative numbers like −10 we need numbers with decimal points like



9.3 Message Data and GUI Boxes 159

−198753.2 or 10.576 to accurately represent numerical data. These are called
floating point numbers, because of the way computers represent the decimal
point position. If you understand some computer science then it’s worth noting
that there are no integers in Pd; everything is a float, even if it appears to be
an integer, so 1 is really 1.0000000. Current versions of Pd use a 32-bit float
representation, so they are between −8388608 and 8388608.

Number Box

For float numbers we have already met the number box, which is a dual-purpose
GUI element. Its function is to either display a number or allow you to input
one. A bevelled top right corner like this denotes that this object is a
number box. Numbers received on the inlet are displayed and passed directly
to the outlet. To input a number click and hold the mouse over the value field
and move the mouse up or down. You can also type in numbers. Click on a
number box, type the number and hit RETURN. Number boxes are a compact
replacement for faders. By default it will display up to five digits including a
sign if negative, –9999 to 99999, but you can change this by editing its proper-
ties. Holding SHIFT while moving the mouse allows a finer degree of control. It
is also possible to set an upper and lower limit from the properties dialogue.

Toggle Box

Another object that works with floats is a toggle box. Like a checkbox on any
standard GUI or web form, this has only two states, on or off. When clicked a
cross appears in the box like this and it sends out a number 1; clicking again
causes it to send out a number 0 and removes the cross so that it looks like
this . It also has an inlet which sets the value, so it can be used to display
a binary state. Sending a bang to the inlet of a toggle box does not cause the
current value to be output; instead it flips the toggle to the opposite state and
outputs this value. Editing properties also allows you to send numbers other
than 1 for the active state.

Sliders and Other Numerical GUI Elements

GUI elements for horizontal and vertical sliders can be used as input and dis-
play elements. Their default range is 0 to 127, nice for MIDI controllers, but like
all other GUI objects this can be changed in their properties window. Unlike
those found in some other GUI systems, Pd sliders do not have a step value.
Shown in figure 9.10 are some GUI objects at their standard sizes. They can
be ornamented with labels or created in any colour. Resizing the slider to make
it bigger will increase the step resolution. A radio box provides a set of mutually
exclusive buttons which output a number starting at zero. Again, they work
equally well as indicators or input elements. A better way to visually display
an audio level is to use a VU meter. This is set up to indicate decibels, so it
has a rather strange scale from −99.0 to +12.0. Audio signals that range from
−1.0 to +1.0 must first be scaled using the appropriate object. The VU is one
of the few GUI elements that acts only as a display.



160 Starting with Pure Data

Figure 9.10
GUI Objects A: Horizontal slider. B: Horizontal radio box. C: Vertical radio box. D: Vertical
slider. E: VU meter.

General Messages

Floats and bangs are types of message, but messages can be more general.
Other message types can be created by prepending a selector that gives them
special meanings. For example, to construct lists we can prepend a list selector
to a set of other types.

Message Box

These are visual containers for user-definable messages. They can be used to
input or store a message. The right edge of a message box is curved inwards
like this , and it always has only one inlet and one outlet. They behave as
GUI elements, so when you click a message box it sends its contents to the
outlet. This action can also be triggered if the message box receives a bang
message on its inlet. Message boxes do some clever thinking for us. If we store
something like it knows that is a float and outputs a float type, but if we
create then it will send out a list of symbols; so it is type aware,
which saves us having to say things like “float 1.0” as we would in C programs.
It can also abbreviate floating point numbers like 1.0 to 1, which saves time
when inputting integer values, but it knows that they are really floats.

Symbolic Messages

A symbol generally is a word or some text. A symbol can represent anything;
it is the most basic textual message in Pure Data. Technically a symbol in Pd
can contain any printable or nonprintable character. But most of the time you
will only encounter symbols made out of letters, numbers, and some interpunc-
tuation characters like a dash, dot, or underscore. The Pd editor does some
automatic conversions: words that can also be interpreted as a number (like
3.141 or 1e + 20) are converted to a float internally (but + 20 still is a sym-
bol!). Whitespace is used by the editor to separate symbols from each other,
so you cannot type a symbol including a space character into a message box.
To generate symbols with backslash-escaped whitespace or other special char-
acters inside, use the symbol maker object. The file dialogue
object preserves and escapes spaces and other special characters in filenames,



9.3 Message Data and GUI Boxes 161

too. Valid symbols are badger, sound 2, or all your base, but not hello there
(which is two symbols) or 20 (which will be interpreted as a float, 20.0).

Symbol Box

For displaying or inputting text you may use a box. Click on the dis-
play field and type any text that is a valid symbol and then hit ENTER/RETURN.
This will send a symbol message to the outlet of the box. Likewise, if a symbol
message is received at the inlet it will be displayed as text. Sending a bang
message to a symbol box makes it output any symbol it already contains.

Lists

A list is an ordered collection of any things, floats, symbols, or pointers that
are treated as one. Lists of floats might be used for building melody sequences
or setting the time values for an envelope generator. Lists of symbols can be
used to represent text data from a file or keyboard input. Most of the time
we will be interested in lists of numbers. A list like {2 127 3.14159 12 } has
four elements; the first element is 2.0 and the last is 12.0. Internally, Pure Data
recognises a list because it has a list selector at the start, so it treats all fol-
lowing parts of the message as ordered list elements. When a list is sent as
a message all its elements are sent at once. A list selector is attached to the
beginning of the message to determine its type. The selector is the word “list,”
which has a special meaning to Pd. Lists may be of mixed types like {5 6 pick
up sticks}, which has two floats and three symbols. When a list message con-
tains only one item which is a float it is automatically changed (cast) back to a
float. Lists can be created in several ways, by using a message box, or by using

, which we will meet later, to pack data elements into a list.

Pointers

As in other programming languages, a pointer is the address of some other
piece of data. We can use them to build more complex data structures, such
as a pointer to a list of pointers to lists of floats and symbols. Special objects
exist for creating and dereferencing pointers, but since they are an advanced
topic we will not explore them further in this book.

Tables, Arrays, and Graphs

Figure 9.11
An array.

A table is sometimes used interchangeably with an array
to mean a two-dimensional data structure. An array is
one of the few invisible objects. Once declared it just
exists in memory. To see it, a separate graph like that
shown in figure 9.11 allows us to view its contents.

Graphs have the wonderful property that they are
also GUI elements. You can draw data directly into a
graph using the mouse and it will modify the array it
is attached to. You can see a graph of array1 in fig-
ure 9.11 that has been drawn by hand. Similarly, if the
data in an array changes and it’s attached to a visible



162 Starting with Pure Data

graph then the graph will show the data as it updates. This is perfect for draw-
ing detailed envelopes or making an oscilloscope display of rapidly changing
signals.

Figure 9.12
Create array.

To create a new array select Put→Array
from the menu and complete the dialogue box
to set up its name, size, and display characteris-
tics. On the canvas a graph will appear showing
an array with all its values initialised to zero.
The Y-axis range is −1.0 to +1.0 by default, so
the data line will be in the centre. If the save
contents box is checked then the array data
will be saved along with the patch file. Be aware
that long sound files stored in arrays will make
large patch files when saved this way. Three draw
styles are available: points, polygon, and Bezier,
to show the data with varying degrees of smooth-
ing. It is possible to use the same graph to dis-
play more than one array, which is very useful
when you wish to see the relationship between
two or more sets of data. To get this behaviour
use the in last graph option when creating an
array.

Figure 9.13
Accessing an array.

Data is written into or read from a table by an
index number which refers to a position within it.
The index is a whole number. To read and write
arrays, several kinds of accessor object are avail-
able. The and objects allow you to
communicate with arrays using messages. Later we
will meet and objects that can read
and write audio signals. The array a1 shown in fig-
ure 9.13 is written by the object above it,
which specifies the target array name as a param-
eter. The right inlet sets the index and the left one
sets the value. Below it a object takes the
index on its inlet and returns the current value.

SECTION 9.4

Getting Help with Pure Data

At <http://puredata.hurleur.com/> there is an active, friendly forum, and
the mailing list can be subscribed to at pd-list@iem.at.



9.4 Getting Help with Pure Data 163

Exercises

Exercise 1

On Linux, type pd --help at the console to see the available startup options.
On Windows or MacOSX read the help documentation that comes with your
downloaded distribution.

Exercise 2

Use the Help menu, select browse help, and read through some built-in docu-
mentation pages. Be familiar with the control examples and audio examples
sections.

Exercise 3

Visit the online pdwiki at <http://puredata.org> to look at the enormous
range of objects available in pd-extended.

References

Arduino I/O boards: http://www.arduino.cc/.
Puckette, M. (1996). “Pure Data.” Proceedings, International Computer Music
Conference. San Francisco: International Computer Music Association, pp. 269–
272.
Puckette, M. (1996). “Pure Data: Another integrated computer music environ-
ment.” Proceedings, Second Intercollege Computer Music Concerts, Tachikawa,
Japan, pp. 37–41.
Puckette, M. (1997). “Pure Data: Recent progress.” Proceedings, Third Inter-
college Computer Music Festival. Tokyo, Japan, pp. 1–4.
Puckette, M. (2007). The Theory and Technique of Electronic Music. World
Scientific Press.
Winkler, T. (1998). Composing Interactive Music: Techniques and Ideas Using
Max. MIT Press.
Zimmer, F. (editor) (2006). Bang—A Pure Data Book. Wolke-Verlag.


