13
Shaping Sound

The signal generators we’'ve seen so far are the phasor, cosinusoidal oscillator,
and noise source. While these alone seem limited they may be combined using
shaping operations to produce a great many new signals. We are going to make
transformations on waveforms, pushing them a little this way or that, moulding
them into new things. This subject is dealt with in two sections: amplitude-
dependent shaping where the output depends only on current input values, and
time-dependent signal shaping where the output is a function of current and
past signal values.

" SECTION 13.1

Amplitude-Dependent Signal Shaping

Simple Signal Arithmetic

Arithmetic is at the foundation of signal processing. Examine many patches
and you will find, on average, the most common object is the humble multiply,
followed closely by addition. Just as all mathematics builds on a few simple
arithmetic axioms, complex DSP operations can be reduced to adds and multi-
plies. Though it’s rarely of practical use, it’s worth noting that multiplication
can be seen as repeated addition, so to multiply a signal by two we can connect
it to both inlets of k-] and it will be added to itself. The opposite of addition is
subtraction. If you are subtracting a constant value from a signal it’s okay to
use [, but express the subtracted amount as a negative number, as with [~ -0-3],
though of course there is a =] unit too. Addition and multiplication are com-
mutative (symmetrical) operators, so it doesn’t matter which way round you
connect two signals to a unit. On the other hand, subtraction and division have
ordered arguments: the right value is subtracted from, or is the divisor of, the
left one. It is common to divide by a constant, so =] is generally used with an
argument that’s the reciprocal of the required divisor. For example, instead of
dividing by two, multiply by half. There are two reasons for this. First, divides
were traditionally more expensive so many programmers are entrenched in the
habit of avoiding divides where a multiply will do. Second, an accidental divide
by zero traditionally causes problems, even crashing the program. Neither of
these things are actually true of Pd running on a modern processor, but because
of such legacies you’ll find many algorithms written accordingly. Reserve divides
for when you need to divide by a variable signal, and multiply by decimal frac-
tions everywhere else unless you need rational numbers with good accuracy.

206

Shaping Sound

This habit highlights the importance of the function and makes your patches
easier to understand. Arithmetic operations are used to scale, shift, and invert

signals, as the following examples illustrate.

A signal is scaled simply by multiplying
it by a fixed amount, which changes the dif-
ference between the lowest and highest val-
ues and thus the peak to peak amplitude.
This is seen in figure 13.1 where the signal
from the oscillator is halved in amplitude.

Shifting involves moving a signal up or
down in level by a constant. This affects
the absolute amplitude in one direction only,
so it is possible to distort a signal by push-
ing it outside the limits of the system, but
it does not affect its peak to peak amplitude
or apparent loudness since we cannot hear
a constant (DC) offset. Shifting is normally
used to place signals into the correct range
for a subsequent operation, or, if the result
of an operation yields a signal that isn’t cen-
tered properly to correct it, shifting swings
it about zero again. In figure 13.2 the cosine
signal is shifted upwards by adding 0.5.

In figure 13.3 a signal is inverted, reflect-
ing it around the zero line, by multiplying
by —1.0. It still crosses zero at the same
places, but its direction and magnitude is
the opposite everywhere. Inverting a signal
changes its phase by 7, 180° or 0.5 in rota-
tion normalised form, but that has no effect
on how it sounds since we cannot hear abso-
lute phase.

The complement of a signal a in the
range 0.0 to 1.0 is defined as 1 — a. As
the phasor in figure 13.4 moves upwards
the complement moves downwards, mirror-
ing its movement. This is different from the
inverse; it has the same direction as the
inverse but retains the sign and is only
defined for the positive range between 0.0
and 1.0. It is used frequently to obtain a
control signal for amplitude or filter cutoff

osc~

640!

VAV

Figure 13.1
Scaling a signal.

VAV

VAY

Figure 13.2
Shifting a signal.

Figure 13.3
Inverting a signal.

A

640 /

Figure 13.4
Signal complement.

that moves in the opposite direction to another control signal.

For a signal a in the range 0.0 to x the reciprocal is defined as 1/a. When
a is very large then 1/a is close to zero, and when a is close to zero then 1/a
is very large. Usually, since we are dealing with normalised signals, the largest

13.1 Amplitude-Dependent Signal Shaping 207

/LN\

input is @ = 1.0, so because 1/1.0 = 1.0 the
reciprocal is also 1.0. The graph of 1/a for a
between 0.0 and 1.0 is a curve, so a typical
use of the reciprocal is shown in figure 13.5.
A curve is produced according to 1/(1+ a).
Since the maximum amplitude of the divi-
sor is 2.0 the minimum of the output signal
is 0.5.

Figure 13.5
Signal reciprocal.

Limits

Sometimes we want to constrain a signal within a certain range. The unit
outputs the minimum of its two inlets or arguments. Thus is the minimum
of one and whatever signal is on the left inlet; in other words, it clamps the
signal to a maximum value of one if it exceeds it. Conversely, returns the
maximum of zero and its signal, which means that signals going below zero are
clamped there forming a lower bound. You can see the effect of this on a cosine
signal in figure 13.6.

Think about this carefully; the terminology
seems to be reversed but it is correct. You use ? ‘;“'j’: o

to create a minimum possible value and to cre-
ate a maximum possible value. There is a slightly J \

less confusing alternative for situations where

you don’t want to adjust the limit using another / \

signal. The left inlet of is a signal and the

remaining two inlets or arguments are the values of

upper and lower limits; so, for example,

will limit any signal to a range of one centered Figure 13.6
about zero. Min and max of a signal.

Wave Shaping

Using these principles we can start with one waveform and apply operations
to create others like square, triangle, pulse, or any other shape. The choice of
starting waveform is usually a phasor, since anything can be derived from it.
Sometimes it’s best to minimise the number of operations, so a cosine wave is
the best starting point.

One method of making a square wave is shown in figure 13.7. An ordinary
cosine oscillator is multiplied by a large number and then clipped. If you pic-
ture a graph of a greatly magnified cosine waveform, its slope will have become
extremely steep, crossing through the area between —1.0 and 1.0 almost ver-
tically. Once clipped to a normalised range what remains is a square wave,
limited to between 1.0 and —1.0 and crossing suddenly halfway through. This
method produces a waveform that isn’t band-limited, so when used in synthesis
you should keep it to a fairly low-frequency range to avoid aliasing.

A triangle wave moves up in a linear fashion just like a phasor, but when
it reaches the peak it changes direction and returns to its lowest value at the

208 Shaping Sound

Figure 13.7
Square wave.

same rate instead of jumping instantly back to zero. It is a little more compli-
cated to understand than the square wave. We can make a signal travel more
or less in a given time interval by multiplying it by a constant amount. If a
signal is multiplied by 2.0 it will travel twice as far in the same time as it did
before, so multiplication affects the slope of signals. Also, as we have just seen,
multiplying a signal by —1.0 inverts it. That’s another way of saying it reverses
the slope, so the waveform now moves in the opposite direction. One way of
making a triangle wave employs these two principles.

Figure 13.8
Triangle.

Starting with a phasor (graph A) at the top of figure 13.8, and shifting it
down by 0.5 (graph B), the first half of it, from 0.0 to 0.5, is doing what we
want. If we take half and isolate it with we can then multiply by —1.0
to change the slope, and by 2.0 to double the amplitude, which is the same
as multiplying by —2.0. During the first half of the source phasor, between 0.5
and 1.0, the right branch produces a falling waveform (graph C). When we add

13.1 Amplitude-Dependent Signal Shaping 209

phasor~ 1290

Figure 13.9
Another way to make a triangle wave.

that back to the other half, which is shifted down by 0.5 the sum is a triangle
wave once normalised (graph D).

An alternative formula for a triangle wave, which may be slightly easier to
understand, uses and is shown in figure 13.9. Starting with a phasor again,
(graph A) and adding one to the inverse produces a negative moving phasor
with the same sign but opposite phase (graph B). Taking the minima of these
two signals gives us a triangle wave, positive with amplitude 0.5 (graph C').
This is recentered and normalised (graph D).

Squaring and Roots

One common function of a signal a is a?, another way of writing a x a. A mul-

tiplier is the easiest way to perform squaring. If you connect a signal to both
inlets of a multiplier it is multiplied by itself. The effect of squaring a signal is
twofold. Its amplitude is scaled as a function of its own amplitude. Amplitude
values that are already high are increased more, while values closer to zero are
increased less. Another result is that the output signal is only positive. Since a
minus times a minus gives a plus, there are no squares that are negative. The
reverse of this procedure is to determine a value r which if multiplied by itself
gives the input a. We say r is the square root of a. Because finding square roots
is a common DSP operation that requires a number of steps, there’s a built-in
object in Pd. Without creating complex (imaginary) numbers there are no
square roots to negative numbers, so the output of is zero for these values.
The effect of making the straight phasor line between 0.0 and 1.0 into a curve
is clear in figure 13.10, graph A; likewise the curve bends the other way for
the square root in graph B. Remembering that a minus times a minus gives a
plus you can see that whatever the sign of a signal appearing at both inlets of
the multiplier, a positive signal is output in graph C. Making either sign of the
cosine wave positive like this doubles the frequency. In graph D an absence of
negative square roots produces a broken sequence of positive pulses, and the

210 Shaping Sound

[phasor- 1200] [phasor- 1290] [osc~ 1290 osc~ 1290

S S

i
o = =
A B C D

VI

Figure 13.10
Square roots.

effect of the square root operation is to change the cosine curve to a parabolic
(circular) curve (notice it is more rounded).

Curved Envelopes

We frequently wish to create a curve from a rising or falling control signal in
the range 0.0 to 1.0. Taking the square, third, fourth, or higher powers produces
increasingly steep curves, the class of parabolic curves. The quartic envelope is
frequently used as a cheap approximation to natural decay curves. Similarly,
taking successive square roots of a normalised signal will bend the curve the
other way.! In figure 13.11 three identical line segments are generated each of

linear envelope quartic envelope

receive makegraph receive makegraph receive makegraph
tabwrite~ a tabwrite~ b

Figure 13.11
Linear, squared, and quartic decays.

1. See McCartney 1997 for other identities useful in making efficient natural envelopes.

13.2 Periodic Functions 211

length 120ms. At the same time all objects are triggered, so the graphs
are synchronised. All curves take the same amount of time to reach zero, but
as more squaring operations are added, raising the input to higher powers, the
faster the curve decays during its initial stage.

SECTION 13.2
(Periodic Functions

A periodic function is bounded in range for an infinite domain. In other words,
no matter how big the input value, it comes back to the place it started from
and repeats that range in a loop.

Wrapping Ranges E@l
The object provides just such a behaviour. It is like a /
signal version of 4. If the input a to exceeds 1.0 then

it returns a — 1.0. And if the input exceeds 2.0 it gives us [2
a — 2.0. Wrap is the “fractional” part of a number in rela- X"
tion to a division, in this case the unit 1, a — |a]. Let’s say

we have a normalised phasor which is cycling up once per
second. If we pass it through it will be unaffected. A
normalised phasor never exceeds 1.0 and so passes through
unchanged. But if we double the amplitude of the phasor

by multiplying by 2.0 and then wrap it, something else
happens, as seen in figure 13.12. Figure 13.12

Imagine the graph of a in a range of 0.0 to 2.0 is Wrapping.

drawn on tracing paper, and then the paper is cut into
two strips of height 1.0 which are placed on top of one
another. Each time the phasor passes 1.0 it is wrapped
back to the bottom. Consequently the frequency doubles
but its peak amplitude stays at 1.0. This way we can create
periodic functions from a steadily growing input, so a line
that rises at a constant rate can be turned into a phasor
with [ar]. Even more useful, we can obtain an exact num-
ber of phasor cycles in a certain time period by making
the line rise at a particular rate. The in figure 13.13
moves from 0.0 to 1.0 in 10ms. Multiplying by 3 means it
moves from 0.0 to 3.0 in 10ms, and wrapping it produces
three phasor cycles in a period of 10/3 = 3.333ms, giving Figure 13.13
a frequency of 1/3.333 x 1000 = 300Hz. Wrapping a line.

Cosine Function

The reason for saying that the phasor is the most primitive waveform is that
even a cosinusoidal oscillator can be derived from it. Notice in figure 13.14 that
although the phasor is always positive in the range 0.0 to 1.0 (unipolar), the

