
172 Using Pure Data

Figure 10.15
Special message broadcasts.

same time, but as a single list message. Lists and sequences can be mixed, so a
message box might contain a sequence of lists.

SECTION 10.4

List Objects and Operations

Lists can be quite an advanced topic and we could devote an entire chapter
to this subject. Pd has all the capabilities of a full programming language like
LISP, using only list operations, but like that language all the more complex
functions are defined in terms of just a few intrinsic operations and abstrac-
tions. The list-abs collection by Frank Barknecht and others is available in
pd-extended. It contains scores of advanced operations like sorting, reversing,
inserting, searching, and performing conditional operations on every element
of a list. Here we will look at a handful of very simple objects and leave it as
an exercise to the reader to research the more advanced capabilities of lists for
building sequencers and data analysis tools.

Packing and Unpacking Lists

The usual way to create and disassemble lists is to use and . Argu-
ments are given to each which are type identifiers, so is an object that
will wrap up four floats given on its inlets into a single list. They should be
presented in right-to-left order so that the hot inlet is filled last. You can also
give float values directly as arguments of a object where you want them
to be fixed; so is legal, the first and last list elements will be 1 and 4
unless overridden by the inlets, and the two middle ones will be variable.

Figure 10.16
List packing.

Start by changing the right number in figure 10.16,
then the one to its left, then click on the symbol boxes
and type a short string before hitting RETURN. When you
enter the last symbol connected to the hot inlet of ,
you will see the data received by figure 10.17 appear in
the display boxes after it is unpacked.

The will expect two symbols and two floats
and send them to its four outlets. Items are packed and
unpacked in the sequence given in the list, but in right-

to-left order. That means the floats from will appear first, starting

10.4 List Objects and Operations 173

Figure 10.17
List unpacking.

with the rightmost one, then the two symbols ending on
the leftmost one. Of course this happens so quickly you
cannot see the ordering, but it makes sense to happen
this way so that if you are unpacking data, changing it,
and repacking into a list, everything occurs in the right
order. Note that the types of data in the list must match
the arguments of each object. Unless you use the a (any)
type, Pd will complain if you try to pack or unpack a
mismatched type.

Substitutions

Figure 10.18
Dollar substitution.

A message box can also act as a template. When an
item in a message box is written $1, it behaves as an
empty slot that assumes the value of the first element of
a given list. Each of the dollar arguments $1, $2, and so on
are replaced by the corresponding item in the input list.
The message box then sends the new message with any
slots filled in. List elements can be substituted in multi-
ple positions as seen in figure 10.18. The list {5 10 15 }
becomes {15 5 10 } when put through the substitution

.

Persistence

You will often want to set up a patch so it’s in a certain state when loaded.
It’s possible to tell most GUI objects to output the last value they had when
the patch was saved. You can do this by setting the init checkbox in the
properties panel. But what if the data you want to keep comes from another
source, like an external MIDI fader board? A useful object is which
generates a bang message as soon as the patch loads.

Figure 10.19
Persistence using messages.

You can use this in combination with a message
box to initialise some values. The contents of message
boxes are saved and loaded with the patch. When you
need to stop working on a project but have it load the
last state next time around then list data can be saved
in the patch with a message box by using the special
set prefix. If a message box receives a list prefixed by
set it will be filled with the list, but will not imme-
diately ouput it. The arrangement in figure 10.19 is
used to keep a 3 element list for pd synthesiser in
a message box that will be saved with the patch, then

generate it to initialise the synthesiser again when the patch is reloaded.

List Distribution

An object with 2 or more message inlets will distribute a list of parameters to
all inlets using only the first inlet.

174 Using Pure Data

Figure 10.20
Distribution.

The number of elements in the list must match the number
of inlets and their types must be compatible. In figure 10.20 a
message box contains a list of two numbers, 9 and 7. When a
pair of values like this are sent to with its right inlet uncon-
nected they are spread over the two inlets, in the order they
appear, thus 9−7 = 2.

More Advanced List Operations

To concatenate two lists together we use . It takes two lists and creates
a new one, with the second list attached to the end of the first. If given an argu-
ment it will append this to every list it receives. It may be worth knowing that

is an alias for . You can choose to type in either in order to make
it clearer what you are doing. Very similar is which does almost the
same thing, but returns a new list with the argument or list at the second inlet
concatenated to the beginning. For disassembling lists we can use . This
takes a list on its left inlet and a number on the right inlet (or as an argument)
which indicates the position to split the list. It produces two new lists: one
containing elements below the split point appears on the left outlet, and the
remainder of the list appears on the right. If the supplied list is shorter than
the split number then the entire list is passed unchanged to the right outlet.
The object strips off any selector at the start, leaving the raw elements.

SECTION 10.5

Input and Output

There are plenty of objects in Pd for reading keyboards, mice, system timers,
serial ports, and USBs. There’s not enough room in this book to do much
more than summarise them, so please refer to the Pd online documentation for
your platform. Many of these are available only as external objects, but several
are built into the Pd core. Some depend on the platform used; for example,

and are only available on Linux and MacOS. One of the most useful
externals available is , which is the “human interface device.” With this you
can connect joysticks, game controllers, dance mats, steering wheels, graphics
tablets, and all kinds of fun things. File IO is available using and
objects, objects are available to make database transactions to MySQL, and of
course audio file IO is simple using a range of objects like and .
MIDI files can be imported and written with similar objects. Network access is
available through and , which offer UDP or TCP services. Open
Sound Control is available using the external OSC library by Martin Peach
or and objects. You can even generate or open compressed audio
streams using (by Yves Degoyon) and similar externals, and you can run
code from other languages like python and lua. A popular hardware peripheral
for use in combination with Pd is the Arduino board, which gives a number of
buffered analog and digital lines, serial and parallel, for robotics and control
applications. Nearly all of this is quite beyond the scope of this book. The
way you set up your DAW and build your sound design studio is an individual

10.5 Input and Output 175

matter, but Pd should not disappoint you when it comes to I/O connectivity.
We will now look at a few common input and output channels.

The Print Object

Where would we be without a object? Not much use for making sound, but
vital for debugging patches. Message domain data is dumped to the console so
you can see what is going on. You can give it a nonnumerical argument which
will prefix any output and make it easier to find in a long printout.

MIDI

When working with musical keyboards there are objects to help integrate these
devices so you can build patches with traditional synthesiser and sampler
behaviours. For sound design, this is great for attaching MIDI fader boards
to control parameters, and of course musical interface devices like breath con-
trollers and MIDI guitars can be used. Hook up any MIDI source to Pd by
activating a MIDI device from the Media->MIDImenu (you can check that this
is working from Media->Test Audio and MIDI).

Notes in

You can create single events to trigger from individual keys, or have layers and
velocity fades by adding extra logic.

Figure 10.21
MIDI note in.

The object produces note number, velocity, and
channel values on its left, middle, and right outlets. You may
assign an object to listen to only one channel by giving it
an argument from 1 to 15. Remember that note-off messages
are equivalent to a note-on with zero velocity in many MIDI
implementations, and Pd follows this method. You therefore
need to add extra logic before connecting an oscillator or
sample player to so that zero-valued MIDI notes are
not played.

Notes out

Figure 10.22
MIDI note generation.

Another object sends MIDI to external devices.
The first, second, and third inlets set note number, veloc-
ity, and channel respectively. The channel is 1 by default.
Make sure you have something connected that can play
back MIDI and set the patch shown in figure 10.22 run-
ning with its toggle switch. Every 200ms it produces a C
on a random octave with a random velocity value between
0 and 127. Without further ado these could be sent to

, but it would cause each MIDI note to “hang,”
since we never send a note-off message. To properly con-
struct MIDI notes you need which takes a note
number and velocity, and a duration (in milliseconds) as
its third argument. After the duration has expired it auto-
matically adds a note-off. If more than one physical MIDI port is enabled then

sends channels 1 to 16 to port 1 and channels 17 to 32 to port 2, etc.

176 Using Pure Data

Continuous controllers

Two MIDI input/output objects are provided to receive and send continuous
controllers, and . Their three connections provide, or let you set, the
controller value, controller number, and MIDI channel. They can be instanti-
ated with arguments, so picks up controller 10 (pan position) on MIDI
channel 1.

MIDI to frequency

Two numerical conversion utilities are provided to convert between MIDI note
numbers and Hz. To get from MIDI to Hz use . To convert a frequency in
Hz to a MIDI note number use .

Other MIDI objects

For pitchbend, program changes, system exclusive, aftertouch, and other MIDI
functions you may use any of the objects summarised in figure 10.23. System
exclusive messages may be sent by hand crafting raw MIDI bytes and out-
putting via the object. Most follow the inlet and outlet template of
and having a channel as the last argument, except for and
which receive omni (all channels) data.

MIDI in object MIDI out object

Object Function Object Function

Get note data Send note data.

Get pitchbend data
−63 to +64

Send pitchbend data
−64 to +64.

Get program changes. Send program changes.

Get continuous
controller messages.

Send continuous
controller messages.

Get channel aftertouch
data.

Send channel
aftertouch data.

Polyphonic touch data
in

Polyphonic touch
output

Get unformatted raw
MIDI

Send raw MIDI to
device.

Get system exclusive
data

No output
counterpart

Use object

Figure 10.23
List of MIDI objects.

