13.2 Periodic Functions 211

length 120ms. At the same time all objects are triggered, so the graphs
are synchronised. All curves take the same amount of time to reach zero, but
as more squaring operations are added, raising the input to higher powers, the
faster the curve decays during its initial stage.

SECTION 13.2
(Periodic Functions

A periodic function is bounded in range for an infinite domain. In other words,
no matter how big the input value, it comes back to the place it started from
and repeats that range in a loop.

Wrapping Ranges E@l
The object provides just such a behaviour. It is like a /
signal version of 4. If the input a to exceeds 1.0 then

it returns a — 1.0. And if the input exceeds 2.0 it gives us [2
a — 2.0. Wrap is the “fractional” part of a number in rela- X"
tion to a division, in this case the unit 1, a — |a]. Let’s say

we have a normalised phasor which is cycling up once per
second. If we pass it through it will be unaffected. A
normalised phasor never exceeds 1.0 and so passes through
unchanged. But if we double the amplitude of the phasor

by multiplying by 2.0 and then wrap it, something else
happens, as seen in figure 13.12. Figure 13.12

Imagine the graph of a in a range of 0.0 to 2.0 is Wrapping.

drawn on tracing paper, and then the paper is cut into
two strips of height 1.0 which are placed on top of one
another. Each time the phasor passes 1.0 it is wrapped
back to the bottom. Consequently the frequency doubles
but its peak amplitude stays at 1.0. This way we can create
periodic functions from a steadily growing input, so a line
that rises at a constant rate can be turned into a phasor
with [ar]. Even more useful, we can obtain an exact num-
ber of phasor cycles in a certain time period by making
the line rise at a particular rate. The in figure 13.13
moves from 0.0 to 1.0 in 10ms. Multiplying by 3 means it
moves from 0.0 to 3.0 in 10ms, and wrapping it produces
three phasor cycles in a period of 10/3 = 3.333ms, giving Figure 13.13
a frequency of 1/3.333 x 1000 = 300Hz. Wrapping a line.

Cosine Function

The reason for saying that the phasor is the most primitive waveform is that
even a cosinusoidal oscillator can be derived from it. Notice in figure 13.14 that
although the phasor is always positive in the range 0.0 to 1.0 (unipolar), the

212

Shaping Sound

operation produces a bipolar waveform in the
range —1.0 to 1.0. One complete period of the
cosine corresponds to 27, 360°, or in rotation
normalised form, 1.0. When the phasor is at 0.0
the cosine is 1.0. When the phasor is at 0.25
the cosine crosses zero moving downwards. It
reaches the bottom of its cycle when the pha-
sor is 0.5. So there are two zero crossing points,
one when the phasor is 0.25 and another when
it is 0.75. When the phasor is 1.0 the cosine
has completed a full cycle and returned to its
original position.

phasor~ 100

cos~|

Figure 13.14
Cosine of a phasor.

" SECTION 13.3

Other Functions

From time to time we will use other functions like exponentiation, raising to a
variable power, or doing the opposite by taking the log of a value. In each case
we will examine the use in context. A very useful technique is that arbitrary

curve shapes can be formed from polynomials.

Polynomials

A polynomial is expressed as a sum of dif-
ferent power terms. The graph of 22? gives
a gently increasing slope and the graph of
1823 +2322 — 52 shows a simple hump weighted
towards the rear which could be useful for
certain kinds of sound control envelope. There
are some rules for making them. The number of
times the curve can change direction is deter-
mined by which powers are summed. Each of
these is called a term. A polynomial with some
factor of the a? term can turn around once, so
we say it has one turning point. Adding an a3
term gives us two turning points, and so on.
The multiplier of each term is called the coef-
ficient and sets the amount that term effects
the shape. Polynomials are tricky to work with

phasor~ 670
*m %~ -5

*~/23
phasor~ 670

*~ 2 e
e e
*~ 0.5 *~ 0.45

X * 2x -18x"3 + 23x"2 - 5x

Figure 13.15
Polynomials.

because it’s not easy to find the coefficients to get a desired curve. The usual
method is to start with a polynomial with a known shape and carefully tweak
the coefficients to get the new shape you want. We will encounter some later,

13.4 Time-Dependent Signal Shaping 213

like cubic polynomials, that can be used to make natural-sounding envelope
curves.

Expressions

Expressions are objects with which you can write a single line of arbitrary
processing code in a programmatic way. Each of many possible signal inlets
x,y, z correspond to variables $v(x,y, z) in the expression, and the result is
returned at the outlet. This example shows how we generate a mix of two sine
waves, one 5 times the frequency of the other. The available functions are very
like those found in C and follow the maths syntax of most programming lan-
guages. Although expressions are very versatile they should only be used as a
last resort, when you cannot build from more primitive objects. They are less
efficient than inbuilt objects and more difficult to read. The expression shown
in figure 13.16 implements Asin(27w) + Bsin(10ww) for a periodic phasor w
and two mix coefficients where B = 1 — A. The equivalent patch made from
primitives is shown at the bottom of figure 13.16.

graphl graph2

phasor~ 646

tabsend~ graphl

expr~ $v2* (sin(6.283 * $vl)) + (1 - $v2) * ((sin(5 *
6.283 * $vl)))

tabsend~ graph2

graph3

tabsend~ graph3

Figure 13.16
Using an expression to create an audio signal function.

Time-Dependent Signal Shaping

" SECTION 13.4

So far we have considered ways to change the amplitude of a signal as a func-
tion of one or more other variables. These are all instantaneous changes which
depend only on the current value of the input sample. If we want a signal to
change its behaviour based on its previous features then we need to use time
shaping.

214

Shaping Sound

Delay

To shift a signal in time we use a delay. Delays
are at the heart of many important procedures
like reverb, filters, and chorusing. Unlike most
other Pd operations, delays are used as two sep-
arate objects. The first is a write unit that works
like but sends the signal to an invisible area
of memory. The second object is for reading from
the same memory area after a certain time. So
you always use [elwrite-] and [delread-] 35 pairs. The
first argument to is a unique name for
the delay and the second is the maximum mem-
ory (as time in milliseconds) to allocate. On its
own a delay just produces a perfect copy of an
input signal a fixed number of milliseconds later.
Here we see a 0.5bms pulse created by taking the
square of a fast line from one to zero. The second
graph shows the same waveform as the first but
it happens 10ms later.

Phase Cancellation

Assuming that two adjacent cycles of a periodic
waveform are largely the same, then if we delay
that periodic signal by time equal to half its period
we have changed its phase by 180°. In the patch
shown here the two signals are out of phase. Mix-
ing the original signal back with a copy that is
antiphase annihilates both signals, leaving noth-
ing. In figure 13.18 a sinusoidal signal at 312Hz
is sent to a delay d1. Since the input frequency
is 312Hz its period is 3.2051ms, and half that
is 1.60256ms. The delayed signal will be out of
phase by half of the input signal period. What
would happen if the delay were set so that the
two signals were perfectly in phase? In that case
instead of being zero the output would be a wave-
form with twice the input amplitude. For delay
times between these two cases the output ampli-
tude varies between 0.0 and 2.0. We can say for a
given frequency component the output amplitude
depends on the delay time. However, let’s assume
the delay is fixed and put it another way—for a

101, 0151

vline~

delwrite~ dl 100 N

delread~ dl 10

Figure 13.17
Delay.

delwrite~ dl 200

Figure 13.18
Antiphase.

given delay time the output amplitude depends on the input frequency. What

we have created is a simple filter.

13.4 Time-Dependent Signal Shaping 215

Filters

When delay time and period coincide we call the loud part (twice the input
amplitude) created by reinforcement a pole, and when the delay time equals
half the period we call the quiet part where the waves cancel out a zero. Very
basic but flexible filters are provided in Pd called and [rzero]. They are
tricky to set up unless you learn a little more about DSP filter theory, because
the frequencies of the poles or zeros are determined by a normalised number
that represents the range of 0Hz to SR/2Hz, where SR is the sampling rate
of the patch. Simple filters can be understood by an equation governing how
the output samples are computed as a function of the current or past samples.
There are two kinds: those whose output depends only on past values of the
input, which are called finite impulse response filters (FIR), and those whose
output depends on past input values and on past output values. In other words,
this kind has a feedback loop around the delay elements. Because the effect of
a signal value could theoretically circulate forever we call this kind recursive or
infinite impulse response filters (IIR).

User-Friendly Filters

Filters may have many poles and zeros, but instead of calculating these from
delay times, sampling rates, and wave periods, we prefer to use filters designed
with preset behaviours. The behaviour of a filter is determined by a built-in
calculator that works out the coefficients to set poles, zeros, and feedback levels
for one or more internal delays. Instead of poles and zeros we use a different
terminology and talk about bands which are passed or stopped. A band has
a center frequency, specified in Hz, the middle of the range where it has the
most effect, and also a bandwidth which is the range of frequencies it operates
over. Narrow bands affect fewer frequencies than wider bands. In many filter
designs you can change the bandwidth and the frequency independently. Four
commonly encountered filters are the low pass, high pass, band pass, and band
cut or notch filter, shown in figure 13.19. The graphs show the spectrum of
white noise after it’s been passed through each of the filters. The noise would
normally fill up the graph evenly, so you can see how each of the filters cuts
away at a different part of the spectrum. The high pass allows more signals
above its centre frequency through than ones below. It is the opposite of the
low pass, which prefers low frequencies. The notch filter carves out a swathe of
frequencies in the middle of the spectrum, which is the opposite of the band
pass, which allows a group of frequencies in the middle through but rejects
those on either side.

Integration

Another way of looking at the behaviour of filters is to consider their effect on
the slope or phase of moving signals. One of the ways that recursive (IIR) filters
can be used is like an accumulator. If the feedback is very high the current input
is added to all previous ones. Integration is used to compute the area under a

216 Shaping Sound

Common filter spectrums

band pass low pass
$0-spectruml $0-spectrum2
bp~ 5000 9 lop~ 1000
bbb

band reject high pass

o $0-spectrum3 $0-spectrumd
noise~| (")

notch 5000 456
.aiquad~
pd spectrum3
;,

Figure 13.19
Common user-friendly filter shapes.

curve, so it can be useful for us to work out the total energy contained in a
signal. It can also be used to shape waveforms; see Roberts 2009.
Integrating a square wave gives us a triangle wave. If

a constant signal value is given to an integrator its output
will move up or down at a constant rate. In fact this is the *~ 10000

clip~ -0.9 0.9

basis of a phasor, so a filter can be seen as the most fun-
damental signal generator as well as a way to shape sig-
nals. Thus we have come full circle and can see the words
of the great master, “It’s all the same thing.” A square
wave is produced by the method shown in figure 13.7,
first amplifying a cosinusoidal wave by a large value and rpole~ 0.999
then clipping it. As the square wave alternates between 0%
+1.0 and —1.0 the integrator output first slopes up at a
constant rate, and then slopes down at a constant rate.
A scaling factor is added to place the resulting triangle
wave within the bounds of the graph. Experiment with
integrating a cosinusoidal wave. What happens? The inte-
gral of cos(x) is sin(z), or in other words we have shifted
cos(z) by 90°. If the same operation is applied again, to a
sine wave, we get back to a cosine wave out of phase with
the first one, a shift of 180°. In other words, the integral
of sin(z) is — cos(z). This can be more properly written
as a definite integral

Figure 13.20
Integration.

/cos(x) dx = sin(x) (13.1)

or as

13.4 Time-Dependent Signal Shaping 217

/sin(a:) dx = — cos(x) (13.2)

Differentiation

rzero~ 0.999

*~ 11

Figure 13.21
Differentiation.

The opposite of integrating a signal is differentiation. This gives us the instan-
taneous slope of a signal, or in other words the gradient of a line tangential to
the signal. What do you suppose will be the effect of differentiating a cosine
wave? The scaling factors in figure 13.21 are given for the benefit of the graphs.
Perhaps you can see from the first graph that

d .
e cos(x) = —sin(z) (13.3)
and
d .
% Sll’l(l’) = COS(:L’) (134)

More useful, perhaps, is the result of differentiating a sawtooth wave. While
the sawtooth moves slowly its gradient is a small constant, but at the moment
it suddenly returns the gradient is very high. So, differentiating a sawtooth is
a way for us to obtain a brief impulse spike.

References

McCartney, J. (1997). “Synthesis without Lookup Tables.” Comp. Music J.
21(3).
Roberts, R. (2009). “A child’s garden of waveforms.” Unpublished ms.

