
10.6 Working with Numbers 177

SECTION 10.6

Working with Numbers

Arithmetic Objects

Objects that operate on ordinary numbers to provide basic maths functions are
summarised in figure 10.24. All have hot left and cold right inlets and all take

Object Function

Add two floating point numbers

Subtract number on right inlet from number on left inlet

Divide lefthand number by number on right inlet

Multiply two floating point numbers

Integer divide, how many times the number on the right
inlet divides exactly into the number on the left inlet

Modulo, the smallest remainder of dividing the left num-
ber into any integer multiple of the right number

Figure 10.24
Table of message arithmetic operators.

Object Function

The cosine of a number given in radians. Domain: −π/2
to +π/2. Range: −1.0 to +1.0.

The sine of a number in radians, domain −π/2 to
+π/2, range −1.0 to +1.0

Tangent of number given in radians. Range: 0.0 to ∞
at ±π/2

Arctangent of any number in domain ±∞ Range: ±π/2

Arctangent of the quotient of two numbers in Carte-
sian plane. Domain: any floats representing X, Y pair.
Range: angle in radians ±π

Exponential function ex for any number. Range 0.0
to ∞
Natural log (base e) of any number. Domain: 0.0
to ∞. Range: ±∞ (−∞ is −1000.0)

Absolute value of any number. Domain ±∞. Range 0.0
to ∞
The square root of any positive number. Domain
0.0 to ∞
Exponentiate the left inlet to the power of the right
inlet. Domain: positive left values only.

Figure 10.25
Table of message trigonometric and higher math operators.



178 Using Pure Data

one argument that initialises the value otherwise received on the right inlet.
Note the difference between arithmetic division with and the object.
The modulo operator gives the remainder of dividing the left number by the
right.

Trigonometric Maths Objects

A summary of higher maths functions is given in figure 10.25.

Random Numbers

A useful ability is to make random numbers. The object gives integers
over the range given by its argument including zero, so gives 10 possible
values from 0 to 9.

Arithmetic Example

Figure 10.26
Mean of three random floats.

An example is given in figure 10.26 to show cor-
rect ordering in a patch to calculate the mean
of three random numbers. We don’t have to
make every inlet hot, just ensure that every-
thing arrives in the correct sequence by trig-
gering the objects properly. The first
(on the right) supplies the cold inlet of the lower

, the middle one to the cold inlet of the upper
. When the final (left) is generated it

passes to the hot inlet of the first , which
computes the sum and passes it to the second

hot inlet. Finally we divide by 3 to get the
mean value.

Comparative Objects

In figure 10.27 you can see a summary of comparative objects. Output is either
1 or 0 depending on whether the comparison is true or false. All have hot left
inlets and cold right inlets and can take an argument to initialise the righthand
value.

Boolean Logical Objects

There are a whole bunch of logical objects in Pd including bitwise operations
that work exactly like C code. Most of them aren’t of much interest to us in this
book, but we will mention the two important ones, and . The output of

, logical OR, is true if either of its inputs are true. The output of , logical
AND, is true only when both its inputs are true. In Pd any non-zero number
is “true,” so the logical inverter or “not” function is unnecessary because there
are many ways of achieving this using other objects. For example, you can make
a logical inverter by using with 1 as its argument.



10.7 Common Idioms 179

Object Function

True if the number at the left inlet is greater than the
right inlet.

True if the number at the left inlet is less than the right
inlet.

True if the number at the left inlet is greater than or
equal to the right inlet.

True if the number at the left inlet is less than or equal
to the right inlet.

True if the number at the left inlet is equal to the right
inlet.

True if the number at the left inlet is not equal to the
right inlet.

Figure 10.27
List of comparative operators.

SECTION 10.7

Common Idioms

There are design patterns that crop up frequently in all types of programming.
Later we will look at abstraction and how to encapsulate code into new objects
so you don’t find yourself writing the same thing again and again. Here I will
introduce a few very common patterns.

Constrained Counting

Figure 10.28
Constrained counter.

We have already seen how to make a counter by repeat-
edly incrementing the value stored in a float box. To
turn an increasing or decreasing counter into a cycle for
repeated sequences there is an easier way than resetting
the counter when it matches an upper limit: we wrap
the numbers using . By inserting into the feedback
path before the increment we can ensure the counter stays
bounded. Further units can be added to the number
stream to generate polyrhythmic sequences. You will fre-
quently see variations on the idiom shown in figure 10.28.
This is the way we produce multirate timebases for musi-
cal sequencers, rolling objects, or machine sounds that
have complex repetitive patterns.

Accumulator

A similar construct to a counter is the accumulator or integrator. This reverses
the positions of and to create an integrator that stores the sum of all
previous number messages sent to it. Such an arrangement is useful for turning



180 Using Pure Data

Figure 10.29
Accumulator.

“up and down” messages from an input controller into a posi-
tion. Whether to use a counter or accumulator is a subtle
choice. Although you can change the increment step of the
counter by placing a new value on the right inlet of it will
not take effect until the previous value in has been used.
An accumulator, on the other hand, can be made to jump dif-
ferent intervals immediately by the value sent to it. Note this
important difference: an accumulator takes floats as an input

while a counter takes bang messages.

Rounding

Figure 10.30
Rounding.

An integer function, , also abbreviated , gives the whole
part of a floating point number. This is a truncation, which
just throws away any decimal digits. For positive numbers
it gives the floor function, written ⌊x⌋, which is the integer
less than or equal to the input value. But take note of what
happens for negative values, applying to −3.4 will give
−3.0, an integer greater than or equal to the input. Trun-
cation is shown on the left in figure 10.30. To get a regular
rounding for positive numbers, to pick the closest integer, use

the method shown on the right in figure 10.30. This will return 1 for an input
of 0.5 or more and 0 for an input of 0.49999999 or less.

Scaling

Figure 10.31
Scaling.

This is such a common idiom you will see it almost
everywhere. Given some input values such as 0 to 127,
we may wish to map them to another set of values,
such as 1 to 10. This is the same as changing the slope
and zero intersect of a line following y = mx + c. To
work out the values you first obtain the bottom value
or offset, in this case +1. Then a multiplier value is
needed to scale for the upper value, which given an
input of 127 would satisfy 10 = 1 + 127x, so moving
the offset we get 9 = 127x, and dividing by 127 we

get x = 9/127 or x = 0.070866. You can make a subpatch or an abstraction
for this as shown in figure 13.1, but since only two objects are used it’s more
sensible to do scaling and offset as you need it.

Looping with Until

Unfortunately, because it must be designed this way, has the potential to
cause a complete system lockup. Be very careful to understand what you are
doing with this. A bang message on the left inlet of will set it producing
bang messages as fast as the system can handle! These do not stop until a bang
message is received on the right inlet. Its purpose is to behave as a fast loop
construct performing message domain computation quickly. This way you can
fill an entire wavetable or calculate a complex formula in the time it takes to



10.7 Common Idioms 181

Figure 10.32
Using until.

process a single audio block. Always make sure the right inlet is connected to a
valid terminating condition. In figure 10.32 you can see an example that com-
putes the second Chebyshev polynomial according to y = 2x2−1 for the range
−1.0 to +1.0 and fills a 256-step table with the result. As soon as the bang
button is pressed a counter is reset to zero, and then begins sending out
bangs. These cause the counter to rapidly increment until matches 256,
whereupon a bang is sent to the right inlet of , stopping the process. All
this will happen in a fraction of a millisecond. Meanwhile we use the counter
output to calculate a Chebyshev curve and put it into the table.

Figure 10.33
For 256.

A safer way to use is shown in figure 10.33. If
you know in advance that you want to perform a fixed
number of operations, then use it like a for loop. In this
case you pass a non-zero float to the left inlet. There is no
terminating condition; it stops when the specified num-
ber of bangs has been sent—256 bangs in the example
shown.

Message Complement and Inverse

Figure 10.34
Message reciprocal and
inverse.

Here is how we obtain the number that is 1−x for any x.
The complement of x is useful when you want to balance
two numbers so they add up to a constant value, such
as in panning. The object exchanges its inlet values,
or any left inlet value with its first argument. Therefore,
what happens with the lefthand example of figure 10.34
is the calculates 1−x, which for an input of 0.25 gives
0.75. Similarly, the inverse of a float message 1/x can be
calculated by replacing the with a .



182 Using Pure Data

Random Selection

Figure 10.35
Random select.

To choose one of several events at random, a combination
of and will generate a bang message on the
select outlet corresponding to one of its arguments. With
an initial argument of 4 produces a range of 4 ran-
dom integer numbers starting at 0, so we use
to select amongst them. Each has an equal probabil-
ity, so every outlet will be triggered 25% of the time on
average.

Weighted Random Selection

Figure 10.36
Weighted random select.

A simple way to get a bunch of events with a cer-
tain probability distribution is to generate uniformly
distributed numbers and stream them with . For
example, sends integers greater than 9.0 to its
right outlet. A cascade of objects will distribute
them in a ratio over the combined outlets when the
sum of all ratios equals the range of random numbers.
The outlets of distribute the numbers in the
ratio 1 : 9. When the right outlet is further split by

as in figure 10.36, numbers in the range 0.0 to
100.0 are split in the ratio 10 : 40 : 50, and since the

distribution of input numbers is uniform they are sent to one of three outlets
with 10%, 40%, and 50% probability.

Delay Cascade

Figure 10.37
Delay cascade.

Sometimes we want a quick succession of bangs in
a certain fixed timing pattern. An easy way to do
this is to cascade objects. Each in fig-
ure 10.37 adds a delay of 100 milliseconds. Notice
the abbreviated form of the object name is used.

Last Float and Averages

Figure 10.38
Last value and averaging.

If you have a stream of float values and want to keep
the previous value to compare to the current one then
the idiom shown on the left in figure 10.38 will do the
job. Notice how a trigger is employed to first bang the
last value stored in the float box and then update it
with the current value via the right inlet. This can be
turned into a simple “low pass” or averaging filter for
float messages as shown on the right in figure 10.38.
If you add the previous value to the current one and
divide by two you obtain the average. In the example
shown the values were 10 followed by 15, resulting in
(10 + 15)/2 = 12.5.



10.7 Common Idioms 183

Running Maximum (or Minimum)

Figure 10.39
Biggest so far.

Giving a very small argument and connecting whatever
passes through it back to its right inlet gives us a way to
keep track of the largest value. In figure 10.39 the great-
est past value in the stream has been 35. Giving a very
large argument to provides the opposite behaviour for
tracking a lowest value. If you need to reset the maximum
or minimum tracker just send a very large or small float
value to the cold inlet to start again.

Float Low Pass

Figure 10.40
Low pass for floats.

Using only and as shown in figure 10.40 we can
low pass filter a stream of float values. This is useful
to smooth data from an external controller where values
are occasionally anomalous. It follows the filter equation
yn = Axn +Bxn−1. The strength of the filter is set by the
ratio A : B. Both A and B should be between 0.0 and 1.0
and add up to 1.0. Note that this method will not converge
on the exact input value, so you might like to follow it with

if you need numbers rounded to integer values.


