12
Abstraction

Subpatches

" SECTION 12.1

Any patch canvas can contain subpatches which have their own canvas but
reside within the same file as the main patch, called the parent. They have
inlets and outlets, which you define, so they behave very much like regular
objects. When you save a canvas all subpatches that belong to it are automati-
cally saved. A subpatch is just a neat way to hide code, it does not automatically
offer the benefit of local scope.!

Any object that you create with a name beginning
with pd will be a subpatch. If we create a subpatch
called as seen in figure 12.1 a new canvas will
appear, and we can make and objects inside
it as shown in figure 12.2. These appear as connections
on the outside of the subpatch box in the same order
they appear left to right inside the subpatch. I've given

Figure 12.1 extra (optional) name parameters to the subpatch inlets
Using an envelope and outlets. These are unnecessary, but when you have a
subpatch. subpatch with several inlets or outlets it’s good to give

them names to keep track of things and remind yourself of their function.

I_inlet trigqerl I_inlet attackl I_inlet decayl

outlet~ envelope

Figure 12.2
Inside the envelope subpatch.

To use we supply a bang on the first inlet to trigger it, and two val-
ues for attack and decay. In figure 12.1 it modulates the output of an oscillator

1. As an advanced topic subpatches can be used as target name for dynamic patching com-
mands or to hold data structures.

194 Abstraction

running at 440Hz before the signal is sent to [@<]. The envelope has a trigger
inlet for a message to bang two floats stored from the remaining inlets, one
for the attack time in milliseconds and one for the decay time in milliseconds.
The attack time also sets the period of a delay so that the decay portion of the
envelope is not triggered until the attack part has finished. These values are
substituted into the time parameter of a 2-element list for [Eze].

Copying Subpatches

So long as we haven’t used any objects requiring unique names any subpatch
can be copied. Select and hit CTRL+D to duplicate it. Having made
one envelope generator it’s a few simple steps to turn it into a MIDI mono
synthesiser (shown in figure 12.3) based on an earlier example by replacing the
with a and adding a filter controlled by the second envelope in the
range 0 to 2000Hz. Try duplicating the envelope again to add a pitch sweep to
the synthesiser.

notein

trigger bang bang

pd envelope—l pd envelop;l

Figure 12.3
Simple mono MIDI synth made using two copies of the same envelope subpatch.

Deep Subpatches

Consider an object giving us the vector magnitude of two numbers. This is the
same as the hypotenuse ¢ of a right triangle with opposite and adjacent sides a
and b and has the formula ¢ = v/a2 + b2. There is no intrinsic object to compute
this, so let’s make our own subpatch to do the job as an exercise.

We begin by creating a new object box and typing

) . pd magnitude into it. A new blank canvas will immedi-
ately open for us to define the internals. Inside this new
E canvas, create two new object boxes at the top by typing

the word inlet into each. Create one more object box at
the bottom as an outlet. Two input numbers a and b will

Figure 12.4 come in through these inlets and the result ¢ will go to the
Vector magnitude. outlet.

12.1 Subpatches 195

When turning a formula into a dataflow patch it some-
times helps to think in reverse, from the bottom up
towards the top. In words, ¢ is the square root of the
sum of two other terms, the square of a and the square
of b. Begin by creating a object and connecting it to
the outlet. Now create and connect a [F] object to the
inlet of the [==q. All we need to complete the example is
an object that gives us the square of a number. We will
define our own as a way to show that subpatches can con- Figure 12.5
tain other subpatches. And in fact this can go as deep as 5\;/“%1 calculates

. . L . a? + b2,
you like. It is one of the principles of abstraction that we
can define new objects, build bigger objects from those, and still bigger objects
in turn. Make a new object pd squared, and when the canvas opens add the
parts shown in figure 12.6.

To square a number you multiply it by itself.
Remember why we use a trigger to split the input before
sending it to each inlet of the multiply. We must respect
evaluation order, so the trigger here distributes both
copies of its input from right to left; the “cold” right
inlet of F] is filled first, then the “hot” left inlet. Close
this canvas and connect up your new subpatch.

Figure 12.6 Notice it now has an inlet and outlet on its box. Since

Subpatch to compute 2. we need two of them, duplicate it by selecting then hit-

ting CTRL+D on the keyboard. Your complete subpatch

to calculate magnitude should look like figure 12.5. Close this canvas to return

to the original topmost level and see now defined with two inlets

and one outlet. Connect some number boxes to these as in figure 12.4 and test
it out.

outlet x-squared

Abstractions

An abstraction is something that distances an idea from an object; it captures
the essence and generalises it. It makes it useful in other contexts. Superfi-
cially an abstraction is a subpatch that exists in a separate file, but there is
more to it. Subpatches add modularity and make patches easier to understand,
which is one good reason to use them. However, although a subpatch seems
like a separate object it is still part of a larger thing. Abstractions are reusable
components written in plain Pd, but with two important properties. They can
be loaded many times by many patches, and although the same code defines
all instances each instance can have a separate internal namespace. They can
also take creation arguments, so you can create multiple instances each with a
different behaviour by typing different creation arguments in the object box.
Basically, they behave like regular programming functions that can be called
by many other parts of the program in different ways.

196 Abstraction

Scope and $0

Some objects like arrays and send objects must have a unique identifier, oth-
erwise the interpreter cannot be sure which one we are referring to. In pro-
gramming we have the idea of scope, which is like a frame of reference. If I am
talking to Simon in the same room as Kate I don’t need to use Kate’s surname
every time I speak. Simon assumes, from context, that the Kate I am referring
to is the most immediate one. We say that Kate has local scope. If we create
an array within a patch and call it array1, then that’s fine so long as only one
copy of it exists.

Consider the table oscillator patch in figure 12.7,
which uses an array to hold a sine wave. There are
three significant parts, a running at 110Hz, a
table to hold one cycle of the waveform, and an ini-
tialisation message to fill the table with a waveform.
What if we want to make a multi-oscillator synthe-
siser using this method, but with a square wave in
one table and a triangle wave in another? We could
make a subpatch of this arrangement and copy it, or
just copy everything shown here within the main can-
vas. But if we do that without changing the array name, Pd will say:

rrayl

Figure 12.7
Table oscillator patch.

warning: arrayl: multiply defined
warning: arrayl: multiply defined

The warning message is given twice because while checking the first array it
notices another one with the same name, then later, while checking the dupli-
cate array, it notices the first one has the same name. This is a serious warning,
and if we ignore it erratic, ill-defined behaviour will result. We could rename
each array we create as arrayl, array?2, array3, etc, but that becomes tedious.
What we can to do is make the table oscillator an abstraction and give the array
a special name that will give it local scope. To do this, select everything with
CTRL+E, CTRL+A, and make a new file from the file menu (or you can use CTRL+N
as a shortcut to make a new canvas). Paste the objects into the new canvas with
CTRL+V and save it as my-tabosc.pd in a directory called tableoscillator.
The name of the directory isn’t important, but it is important that we know
where this abstraction lives so that other patches that will use it can find it.
Now create another new blank file and save it as wavetablesynth in the same
directory as the abstraction. This is a patch that will use the abstraction. By
default a patch can find any abstraction that lives in the same directory as itself.

SECTION 12.2
(Instantiation

Create a new object in the empty patch and type my-tabosc in the object box.
Now you have an instance of the abstraction. Open it just as you would edit a
normal subpatch and make the changes as shown in figure 12.8.

12.3 Editing 197

[Entet piton] [Toadbang| First we have replaced the number box with
[tabosca~ s0-arrayi] [sinesun 64 1(an inlet so that pitch data can come from out-
side the abstraction. Instead of a the audio

$0-arrayl

signal appears on an outlet we’ve provided. The
most important change is the name of the array.
Changing it to $0-arrayl gives it a special prop-
erty. Adding the $0- prefix makes it local to the
abstraction because at run time, $0- is replaced
by a unique per-instance number. Of course we
have renamed the array referenced by too.
Notice another slight change in the table initiali-
sation code: the message to create a sine wave is sent explicitly through a
because $0- inside a message box is treated in a different way.

Figure 12.8
Table oscillator abstraction.

Editing

" SECTION 12.3

Now that we have an abstracted table oscillator let’s
instantiate a few copies. In figure 12.9 there are three
copies. Notice that no error messages appear at the
console, as far as Pd is concerned each table is now
unique. There is something important to note here,
though. If you open one of the abstraction instances
Figure 12.9 and begin to edit it the changes you make will imme-
Three harmonics using the qjately take effect as with a subpatch, but they will
table oscillator abstraction. only affect that instance. Not until you save an edited
abstraction do the changes take place in all instances of the abstraction. Unlike
subpatches, abstractions will not automatically be saved along with their par-
ent patch and must be saved explicitly. Always be extra careful when editing
abstractions to consider what the effects will be on all patches that use them.
As you begin to build a library of reusable abstractions you may sometimes
make a change for the benefit of one project that breaks another. How do you
get around this problem? The answer is to develop a disciplined use of names-
paces, prefixing each abstraction with something unique until you are sure you
have a finished, general version that can used in all patches and will not change
any more. It is also good practice to write help files for your abstractions. A
file in the same directory as an abstraction, with the same name but ending
~help.pd, will be displayed when using the object help facility.

SECTION 12.4
(Parameters

Making local data and variables is only one of the benefits of abstraction. A
far more powerful property is that an abstraction passes any parameters given
as creation arguments through local variables $1, $2, $3.... In traditional
programming terms this behaviour is more like a function than a code block.
Each instance of an abstraction can be created with completely different initial

198 Abstraction

tet picen] [o7)[£ 57

[faboscd~ $0-arrayi|[sidesym 64 1 0 0.333 0 0.2 0 0.143 0 0.111 0 0.0909 (

[sinfesum 64 0.5 0.25 0.125 0.062 0.031 0.015 0.007 (

sinesum 64 1

$0-arrayl

s $0-arrayl

Figure 12.10
Table oscillator abstraction with initialised frequency and shape.

arguments. Let’s see this in action by modifying our table oscillator to take
arguments for initial frequency and waveform.

In figure 12.10 we see several interesting changes. First, there are two
boxes that have $n parameters. You can use as many of these as you like and
each of them will contain the nth creation parameter. They are all banged when
the abstraction is loaded by the [ea®and]. The first sets the initial pitch of the
oscillator, though of course this can still be overridden by later messages at the
pitch inlet. The second activates one of three messages via which contain
harmonic series of square, sawtooth, and sine waves respectively.

" SECTION 12.5

Defaults and States

A quick word about default parameters. Try creating some instances of the
abstraction in figure 12.10 (shown as my-tabsosc? in figure 12.11).2 Give one
a first parameter of 100Hz but no second parameter. What happens is use-
ful: the missing parameter is taken to be zero. That’s because defaults to
zero for an undefined argument. That’s fine most of the time, because you can
arrange for a zero to produce the behaviour you want. But what happens if
you create the object with no parameters at all? The frequency is set to 0Hz
of course, which is probably useful behaviour, but let’s say we wanted to have
the oscillator start at 440Hz when the pitch is unspecified. You can do this
with so that zero value floats trigger a message with the desired default.
Be careful choosing default behaviours for abstractions, as they are one of the
most common causes of problems later when the defaults that seemed good
in one case are wrong in another. Another important point pertains to initial
parameters of GUI components, which will be clearer in just a moment when
we consider abstractions with built-in interfaces. Any object that persistently
maintains state (keeps its value between saves and loads) will be the same
for all instances of the abstraction loaded. It can only have one set of values

2. The graphs with connections to them shown here, and elsewhere in the book, are abstrac-
tions that contain everything necessary to display a small time or spectrum graph from signals
received at an inlet. This is done to save space by not showing this in every diagram.

12.6 Common Abstraction Techniques 199

(those saved in the abstraction file). In other words, it is the abstraction class
that holds state, not the object instances. This is annoying when you have sev-
eral instances of the same abstraction in a patch and want them to individually
maintain persistent state. To do this you need a state-saving wrapper like
or [5=sad, but that is a bit beyond the scope of this textbook.

Eny—taboscz 640 0|E|y-taboscz 1280 llEny—taboscz 1920 o|

Figure 12.11
Three different waveforms and frequencies from the same table oscillator abstraction.

SECTION 12.6
(Common Abstraction Techniques

Here are a few tricks regularly used with abstractions and subpatches. With
these you can create neat and tidy patches and manage large projects made of
reusable general components.

Graph on Parent

It’s easy to build nice-looking interfaces in Pd using GUI components like slid-
ers and buttons. As a rule it is best to collect all interface components for an
application together in one place and send the values to where they are needed
deeper within subpatches. At some point it’s necessary to expose the interface
to the user, so that when an object is created it appears with a selection of
GUI components laid out in a neat way.

“Graph on Parent” (or GOP) is a property of
the canvas which lets you see inside from outside the
object box. Normal objects like oscillators are not
visible, but GUI components, including graphs, are.
GOP abstractions can be nested, so that controls
exposed in one abstraction are visible in a higher
abstraction if it is also set to be GOP. In figure 12.12
we see a subpatch which is a MIDI synthesiser with
three controls. We have added three sliders and con-
nected them to the synth. Now we want to make this abstraction, called
GOP-hardsynth, into a GOP abstraction that reveals the controls. Click any-
where on a blank part of the canvas, choose properties, and activate the GOP
toggle button. A frame will appear in the middle of the canvas. In the canvas
properties box, set the size to width = 140 and hetght = 80, which will nicely
frame three standard-size sliders with a little border. Move the sliders into the
frame, save the abstraction and exit.

linlet midi [note
[oo)
[oow

pd hardsynth

Figure 12.12
Graph on parent synth.

200 Abstraction
GoP-hardsynth Here is what the abstraction looks like when you cre-
: ate an instance (fig. 12.13). Notice that the name of
[o] the abstraction appears at the top, which is why we

left a little top margin to give this space. Although the
inlet box partly enters the frame in figure 12.12 it can-
not be seen in the abstraction instance because only

Figure 12.13
Appearance of a GOP
abstraction.

GUI elements are displayed. Coloured canvases
appear in GOP abstractions, so if you want decorations

3 also

they can be used to make things prettier. Any canvases
appear above the name in the drawing order so if you want to hide the
name make a canvas that fills up the whole GOP window. The abstraction
name can be turned off altogether from the properties menu by activating
hide object name and arguments.

Using List Inputs

[inlet f£1|[inlet £2|[inlet £3|[inlet £4]

Figure 12.14
Preconditioning normalised
inlets.

The patch in figure 12.14 is a fairly arbitrary exam-
ple (a 4 source cross ring modulator). It’s the kind
of thing you might develop while working on a
sound or composition. This is the way you might
construct a patch during initial experiments, with
a separate inlet for each parameter you want to
modify. There are four inlets in this case, one for
each different frequency that goes into the modu-
lator stages. The first trick to take note of is the
control preconditioners all lined up nicely at the
top. These set the range and offset of each param-
eter so we can use uniform controls as explained
below.

Packing and Unpacking

pd ringmod

Figure 12.15
Using a list input.

What we’ve done here in figure 12.15 is simply
replace the inlets with a single inlet that carries
a list. The list is then unpacked into its individ-
ual members which are distributed to each internal
parameter. Remember that lists are unpacked right
to left, so if there was any computational order
that needed taking care of you should start from
the rightmost value and move left. This modifica-
tion to the patch means we can use the flexible
arrangement shown in figure 12.16 called a “pro-
grammer.” It’s just a collection of normalised slid-
ers connected to a object so that a new list is
transmitted each time a fader is moved. In order
to do this it is necessary to insert

3. Here the word “canvas” is just used to mean a decorative background, different from the
regular meaning of patch window.

12.6 Common Abstraction Techniques 201

pd programer

freq_1 freq_1

C(
Tist propena set] [(

E.165354 0.19685 0.165354 0.110236 (

pd patch] E.us 0.251 0.22 0.1653(

&Y/

(a) Packing a list (b) Making a programmer

Figure 12.16
Packing and using parameter lists.

objects between each slider as shown in figure 12.16 (left). These go on all
but the far left inlet. Doing so ensures that the float value is loaded into
before all the values are sent again. By prepending the keyword set to a list,
a message box that receives it will store those values. Now we have a way of
creating patch presets, because the message box always contains a snapshot
of the current fader values. You can see in figure 12.16 (right) some empty
messages ready to be filled and one that’s been copied, ready to use later as a
preset.

Control Normalisation

Most patches require different parameter sets with some control ranges between
0.0 and 1.0, maybe some between 0.0 and 20000, maybe some bipolar ones
—100.0 to +100.0 and so on. But all the sliders in the interface of figure 12.17
have ranges from 0.0 to 1.0. We say the control surface is normalised.

If you build an interface where the input parame-

ters have mixed ranges it can get confusing. It means
you generally need a customised set of sliders for
each patch. A better alternative is to normalise the
controls, making each input range 0.0 to 1.0 and
[dac] then adapting the control ranges as required inside

the patch. Pre-conditioning means adapting the input

parameters to best fit the synthesis parameters. Nor-
Figure 12.17 malisation is just one of the tasks carried out at this
All faders are normalised stage. Occasionally you will see a or used to
0.0 to 1.0. adjust the parameter curves. Preconditioning opera-
tions belong together as close to where the control signals are to be used as
possible. They nearly always follow the same pattern: multiplier, then offset,
then curve adjustment.

202 Abstraction

Summation Chains

Sometimes when you have a lot of subpatches that will be summed to produce
an output it’s nicer to be able to stack them vertically instead of having many
connections going to one place. Giving each an inlet (as in figure 12.18) and
placing a object as part of the subpatch makes for easier to read patches.

1000 2000 3000 4000
unpack £ £ £ f

harmonic

1000 2000 3000 4000

unpack £ £ f f

harmonic

pd harmonic

pd harmonic pd harmonic

*~ 0.25 so you can do this

each harmonic
is like this
inside

instead of doing this

Figure 12.18
Stacking subpatches that sum with an inlet.

badger 100
mushroom button 50

Eird swallow european unladen 25 (

Eoute badger mushroom snake birdJ

route swallow starling

route african european
route laden unladen

route viper rattle

route button breakfast

oV [) [)

Figure 12.19
Route can channel named parameters to a destination.

