11
Pure Data Audio)

" SECTION 11.1

Audio Objects

We have looked at Pd in enough detail now to move on to the next level. You
have a basic grasp of dataflow programming and know how to make patches
that process numbers and symbols. But why has no mention been made of
audio yet? Surely it is the main purpose of our study? The reason for this is
that audio signal processing is a little more complex in Pd than the numbers
and symbols we have so far considered, so I wanted to leave this until now.

Audio Connections

I have already mentioned that there are two kinds of objects and data for mes-
sages and signals. Corresponding to these there are two kinds of connections,
audio connections and message connections. There is no need to do anything
special to make the right kind of connection. When you connect two objects
together, Pd will work out what type of outlet you are attempting to connect to
what kind of inlet and create the appropriate connection. If you try to connect
an audio signal to a message inlet, then Pd will not let you, or it will complain
if there is an allowable but ambiguous connection. Audio objects always have
a name ending with a tilde (~) and the connections between them look fatter
than ordinary message connections.

Blocks

The signal data travelling down audio cords is made of samples, single floating
point values in a sequence that forms an audio signal. Samples are grouped
together in blocks.

A block, sometimes called a vector, typically has 64 samples inside it, but
you can change this in certain circumstances. Objects operating on signal blocks
behave like ordinary message objects; they can add, subtract, delay, or store
blocks of data, but they do so by processing one whole block at a time. In
figure 11.1 streams of blocks are fed to the two inlets. Blocks appearing at the
outlet have values which are the sum of the corresponding values in the two
input blocks. Because they process signals made of blocks, audio objects do a
lot more work than objects that process messages.

Audio Object CPU Use

All the message objects we looked at in the last chapters only use CPU when
event-driven dataflow occurs, so most of the time they sit idle and consume
no resources. Many of the boxes we put on our sound design canvases will be
audio objects, so it’s worth noting that they use up some CPU power just being

186 Pure Data Audio

Signal Block

A] A2 AJ A4
o o oz Jo]

Wire

A+B; Ap+B, A+By A +By

Figure 11.1
Object processing data.

idle. Whenever compute audio is switched on they are processing a constant
stream of signal blocks, even if the blocks contain only zeros. Unlike messages,
which are processed in logical time, signals are processed synchronously with
the sound card sample rate. This real-time constraint means glitches will occur
unless every signal object in the patch can be computed before the next block
is sent out. Pd will not simply give up when this happens; it will struggle
along trying to maintain real-time processing, so you need to listen carefully.
As you hit the CPU limit of the computer you may hear crackles or pops. The
DIO indicator on the Pd console shows when over-run errors have occurred.
Click this to reset it. It is also worth knowing how audio computation relates
to message computation. Message operations are executed at the beginning of
each pass of audio block processing, so a patch where audio depends on mes-
sage operations which don’t complete in time will also fail to produce correct
output.

Audio Objects and Principles

" SECTION 11.2

There are a few ways that audio objects differ from message objects, so let’s
look at those rules now before starting to create sounds.

Fanout and Merging

You can connect the same signal outlet to as many other
audio signal inlets as you like; blocks are sent in an order
rar] which corresponds to the creation of the connections, much

like message connections. But unlike messages, most of the

time this will have no effect whatsoever, so you can treat

Figure 11.2 audio signals that fan out as if they were perfect simultane-

Signal fanout is okay. ous copies. Very seldom you may meet rare and interesting

problems, especially with delays and feedback, that can be

fixed by reordering audio signals (see chapter 7 of Puckette 2007 regarding time
shifts and block delays).

11.2 Audio Objects and Principles 187

When several signal connections all come into the
same signal inlet that’s also fine. In this case they
are implicitly summed, so you may need to scale your
signal to reduce its range again at the output of the
object. You can connect as many signals to the same
Figure 11.3

inlet as you like, but sometimes it makes a patch eas-
ier to understand if you explicitly sum them with a
unit.

Merging signals is okay.

Time and Resolution

Time is measured in seconds, milliseconds (one thousandth of a second, written
1ms) or samples. Most Pd times are in ms. Where time is measured in sam-
ples, this depends on the sampling rate of the program or the sound card of
the computer system on which it runs. The current sample rate is returned by
the object. Typically a sample is 1/44100th of a second and is the
smallest unit of time that can be measured as a signal. But the time resolution
also depends on the object doing the computation. For example, and
are able to deal in fractions of a millisecond, even less than one sample. Tim-
ing irregularities can occur where some objects are only accurate to one block
boundary and some are not.

Audio Signal Block to Messages

To see the contents of a signal block we can take a snapshot or an average.
The object provides the RMS value of one block of audio data scaled 0 to
100 in dB, while gives the instantaneous value of the last sample in the
previous block. To view an entire block for debugging, can be used. It
accepts an audio signal and a bang message on the same inlet and prints the
current audio block contents when banged.

Sending and Receiving Audio Signals

Audio equivalents of and are written and [receiver] with shortened
forms and [-]. Unlike message sends, only one audio send can exist with a
given name. If you want to create a signal bus with many-to-one connectivity,
use and instead. Within subpatches and abstractions we use the
signal objects and to create inlets and outlets.

Audio Generators

Only a few objects are signal sources. The most important and simple one is
the [raserr]. This outputs an asymmetrical periodic ramp wave and is used at
the heart of many other digital oscillators we are going to make. Its left inlet
specifies the frequency in Hz, and its right inlet sets the phase, between 0.0
and 1.0. The first and only argument is for frequency, so a typical instance of
a phasor looks like [prasez-118], For sinusoidal waveforms we can use [==. Again,
frequency and phase are set by the left and right inlets, or frequency is set by
the creation parameter. A sinusoidal oscillator at concert A pitch is defined
by [se- 449, White noise is another commonly used source in sound design. The

188 Pure Data Audio

phasor~ 3000 A B

tabread~ A

Figure 11.4
Table oscillator.

noise generator in Pd is simply and has no creation arguments. Its output
is in the range —1.0 to 1.0. Looped waveforms stored in an array can be used
to implement wavetable synthesis using the object. This is a 4-point
interpolating table ocillator and requires an array that is a power of 2, plus 3
(e.g. 0 to 258) in order to work properly. It can be instantiated like or
with a frequency argument. A table oscillator running at 3kHz is shown in
figure 11.4. It takes the waveform stored in array A and loops around this at the
frequency given by its argument or left inlet value. To make sound samplers we

snum set kitl-01; snum set kitl-02; snum set kitl-03; snum set kitl-04;
phase 1, 4.41e+08 le+07; phase 1, 4.41e+08 le+07; | [phase 1, 4.41e+08 le+07; | [phase 1, 4.41e+08 le+07;

kitl1-01 kitl1-02 kit1-03 kitl1-04

—

loadbang|

read ./sounds/ttsnr.wav kitl-01, read ./sounds/jrsnr.wav
kit1-02, read ./sounds/dlsnr.wav kitl-03, read
./sounds/ezsnr.wav kitl-04

Figure 11.5
Sample replay from arrays.

need to read and write audio data from an array. The index to and its
interpolating friend is a sample number, so you need to supply a signal
with the correct slope and magnitude to get the proper playback rate. You can
use the special set message to reassign to read from another array. The
message boxes in figure 11.5 allow a single object to play back from more than

11.2 Audio Objects and Principles 189

one sample table. First the target array is given via a message to snum, and
then a message is sent to phase which sets moving up at 44,100 samples
per second. The arrays are initially loaded, using a multipart message, from a
sounds folder in the current patch directory.

Audio Line Objects

For signal rate control data the object is useful. It is generally programmed
with a sequence of lists. Each list consists of a pair of numbers: the first is a
level to move to and the second is the time in milliseconds to take getting
there. The range is usually between 1.0 and 0.0 when used as an audio con-
trol signal, but it can be any value such as when using to index a table. A
more versatile line object is called [z, which we will meet in much more detail
later. Amongst its advantages are very accurate sub-millisecond timing and the
ability to read multisegment lists in one go and to delay stages of movement.
Both these objects are essential for constructing envelope generators and other
control signals.

Audio Input and Output

Audio 10 is achieved with the and objects. By default these offer two
inlets or outlets for stereo operation, but you can request as many additional
sound channels as your sound system will handle by giving them numerical
arguments.

Example: A Simple MIDI Monosynth

Using the objects we've just discussed let’s create a
little MIDI keyboard-controlled music synthesiser as
shown in figure 11.6. Numbers appearing at the left
outlet of control the frequency of an oscillator.
MIDI numbers are converted to a Hertz frequency by
[eef, The MIDI standard, or rather general adherence
to it, is a bit woolly by allowing note-off to also be a
note-on with a velocity of zero. Pd follows this defini-
tion, so when a key is released it produces a note with
a zero velocity. For this simple example we remove
it with [strienote] which only passes note-on messages
when their velocity is greater than zero. The velocity
value, ranging between 1 and 127, is scaled to between Figure 11.6

0 and 1 in order to provide a rudimentary amplitude MIDI note control.
control.

So, here’s a great place to elaborate on the anatomy of the message used
to control as shown in figure 11.7. The syntax makes perfect sense, but
sometimes it’s hard to visualise without practice. The general form has three
numbers per list. It says: “go to some value,” given by the first number, then
“take a certain time to get there,” which is the second number in each list. The
last number in the list is a time to wait before executing the command, so it
adds an extra “wait for a time before doing it.” What makes cool is you

190 Pure Data Audio

Level

...................

at zero

'
after a 0 millisecond delay
'

in 10 milliseconds return to zero

i . i . i
moveto1 .__ AR H LT _. taking 100 milliseconds ~~~*
. . ! .

B |
B H
H H
H H
i . < : . B :
B N it ias '

--startatzero --------..____ 5T 100, 0 100 200"~ after a 20 millisecond delay - - -

Figure 11.7
Anatomy of vline message.

can send a sequence of list messages in any order, and so long as they make tem-
poral sense will execute them all. This means you can make very complex
control envelopes. Any missing arguments in a list are dropped in right-to-left
order, so a valid exception is seen in the first element of figure 11.7 where a
single 0 means “jump immediately to zero” (don’t bother to wait or take any
time getting there).

Audio Filter Objects

Six or seven filters are used in this book. We will not look at them in much
detail until we need to because there is a lot to say about their usage in each
case. Simple one-pole and one-zero real filters are given by and [Fzere],
Complex one-pole and one-zero filters are and [czxo]. A static biquad filter
also comes with a selection of helper objects to calculate coefficients for
common configurations, and [fer7], Bird, and provide the standard low, high,
and band pass responses. These are easy to use and allow message rate control
of their cutoff frequencies and, in the case of bandpass, resonance. The first and
only argument of the low and high pass filters is frequency, so typical instances
may look like [ter- 500 and [ie- 500 Bandpass takes a second parameter for reso-
nance like this [p=10073]. Fast signal rate control of cutoff is possible using the
versatile “voltage controlled filter.” Its first argument is cutoff frequency
and its second argument is resonance, so you might use it like [ef="1002, With
high resonances this provides a sharp filter that can give narrow bands. An
even more colourful filter for use in music synthesiser designs is available as an
external called oo, which provides a classic design that can self-oscillate.

11.2 Audio Objects and Principles 191

Audio Arithmetic Objects

Audio signal objects for simple arithmetic are summarised in figure 11.8.

Function

Add two signals (either input will also accept a message)
Subtract righthand signal from lefthand signal
Divide lefthand signal by right signal

Signal multiplication

plals]bla(s
! [}
=8

Signal wrap, constrain any signal between 0.0 and 1.0

Figure 11.8
List of arithmetic operators.

Trigonometric and Math Objects

A summary of higher maths functions is given in figure 11.9. Some signal units
are abstractions defined in terms of more elementary intrinsic objects, and those
marked * are only available through external libraries in some Pd versions.

Object Function

Signal version of cosine function. Domain: —1.0 to +
1.0. Note the input domain is “rotation normalised.”

Not intrinsic but defined in terms of signal cosine by
subtracting 0.25 from the input.

* Signal version of arctangent with normalised range.

Signal version of natural log.
Signal version of abs.
A square root for signals.

A fast square root with less accuracy.

Signal version of power function.

Figure 11.9
List of trig and higher math operators.

Audio Delay Objects

Delaying an audio signal requires us to create a memory buffer using [etwrite-],
Two arguments must be supplied at creation time: a unique name for the
memory buffer and a maximum size in milliseconds. For example,
creates a named delay buffer “mydelay” of size 500ms. This
object can now be used to write audio data to the delay buffer through its

192 Pure Data Audio

left inlet. Getting delayed signals back from a buffer needs [eireas]. The only
argument needed is the name of a buffer to read from, so will
listen to the contents of mydelay. The delay time is set by a second argu-
ment, or by the left inlet. It can range from zero to the maximum buffer size.
Setting a delay time larger than the buffer results in a delay of the maxi-
mum size. It is not possible to alter the maximum size of a buffer
once created. But it is possible to change the delay time of for cho-
rus and other effects. This often results in clicks and pops! so we have a
variable-delay object. Instead of moving the read point, changes the rate at
which it reads the buffer, so we get tape echo and Doppler-shift-type effects.
Using [4] is as easy as before: create an object that reads from a named buffer
like o~ mydelay]. The left inlet (or argument following the name) sets the delay

time.

References

Puckette, M.(2007). The Theory and Technique of Electronic Music. World
Scientific.

1. Hearing clicks when moving a delay read point is normal, not a bug. There is no reason
to assume that waveforms will align nicely once we jump to a new location in the buffer. An
advanced solution crossfades between more than one buffer.

