
Chapter 2. Building User Interfaces
This chapter covers the JUCE Component class, which is the main building block for creating
a Graphical User Interface (GUI) in JUCE. In this chapter we will cover the following topics:

l Creating buttons, sliders, and other components
l Responding to user interaction and changes: broadcasters and listeners
l Using other component types
l Specifying colors and using drawing operations

By the end of this chapter, you will be able to create a basic GUI and perform fundamental
drawing operations within a component. You will also have the skills required to design and
build more complex interfaces.

Creating buttons, sliders, and other
components
The JUCE Component class is the base class that provides the facility to draw on the screen
and intercept user interaction from pointing devices, touch-screen interaction, and keyboard
input. The JUCE distribution includes a wide range of Component subclasses, many of which
you may have encountered by exploring the JUCE Demo application in Chapter 1, Installing
JUCE and the Introjucer Application. The JUCE coordinate system is hierarchical, starting at
the computer's screen (or screens) level. This is shown in the following diagram:

Each on-screen window contains a single parent component within which other child
components (or subcomponents) are placed (each of which may contain further child
components). The top-left of the computer screen is coordinate (0, 0) with each top-left of
the content of JUCE windows being at an offset from this. Each component then has its own
local coordinates where its top-left starts at (0, 0) too.

Page 1 of 5Chapter 2. Building User Interfaces

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02.html

In most cases you will deal with the components' coordinates relative to their parent
components, but JUCE provides simple mechanisms to convert these values to be relative
to other components or the main screen (that is, global coordinates). Notice in the preceding
diagram that a window's top-left position does not include the title bar area.

You will now create a simple JUCE application that includes some fundamental component
types. As the code for this project is going to be quite simple, we will write all our code into
the header file (.h). This is not recommended for real-world projects except for quite small
classes (or where there are other good reasons), but this will keep all the code in one place
as we go through it. Also, we will split up the code into the .h and .cpp files later in the
chapter.

Create a new JUCE project using the Introjucer application:

1. Choose menu item File | New Project…
2. Select Create a Main.cpp file and a basic window from the Files to Auto-Generate

menu.
3. Choose where to save the project and name it Chapter02_01.
4. Click on the Create… button
5. Navigate to the Files panel.
6. Right-click on the file MainComponent.cpp, choose Delete from the contextual menu,

and confirm.
7. Choose menu item File | Save Project.
8. Open the project in your Integrated Development Environment (IDE), either Xcode

or Visual Studio.

Navigate to the MainComponent.h file in your IDE. The most important part of this file should
look similar to this:

Of course, we have removed the actual code from the autogenerated project by removing
the .cpp file.

First let's make an empty window. We will remove some of the elements to simplify the code
and add a function body for the constructor. Change the declaration of the
MainContentComponent class shown as follows:

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 //==
 MainContentComponent();
 ~MainContentComponent();

 void paint (Graphics&);
 void resized();

 private:
 //==
 JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR
 (MainContentComponent)
};

Page 2 of 5Chapter 2. Building User Interfaces

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02.html

Build and run the application, there should be an empty window named MainWindow in the
center of the screen. Our JUCE application will create a window and place an instance of
our MainContentComponent class as its content (that is, excluding the title bar). Notice our
MainContentComponent class inherits from the Component class and therefore has access to a
range of functions implemented by the Component class. The first of these is the setSize()
function, which sets the width and height of our component.

Adding child components

Building user interfaces using components generally involves combining other components
to produce composite user interfaces. The easiest way to do this is to include member
variables in which to store the child components in the parent component class. For each
child component that we wish to add, there are five basic steps:

1. Creating a member variable in which to store the new component.
2. Allocating a new component (either using static or dynamic memory allocation).
3. Adding the component as a child of the parent component.
4. Making the child component visible.
5. Setting the child component's size and position within the parent component.

First, we will create a button; change the code shown as follows. The preceding numbered
steps are illustrated in the code comments:

The important parts of the preceding code are:

l An instance of the JUCE TextButton class was added to the private section of our
class. This button will be statically allocated.

class MainContentComponent : public Component
{
public:

MainContentComponent()
 {
 setSize (200, 100);
 }
};

class MainContentComponent : public Component
{
public:
 MainContentComponent()
 : button1 ("Click") // Step [2]
 {
 addAndMakeVisible (&button); // Step [3] and [4]
 setSize (200, 100);
 }

 void resized()
 {
 // Step [5]
 button1.setBounds (10, 10, getWidth()-20, getHeight()-20);
 }

private:
 TextButton button1; // Step [1]
};

Page 3 of 5Chapter 2. Building User Interfaces

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02.html

l The button is initialized in the constructor's initializer list using a string that sets the text
that will appear on the button.

l A call to the component function addAndMakeVisible() is passed as a pointer to our
button instance. This adds the child component to the parent component hierarchy and
makes the component visible on screen.

l The component function resized() is overridden to position our button with an inset of
10 pixels within the parent component (this is achieved by using component functions
getWidth() and getHeight() to discover the size of the parent component). This call to
the resized() function is triggered when the parent component is resized, which in this
case happens when we call the setSize() function in the constructor. The arguments
to the setSize() function are in the order: width and height. The arguments to the
setBounds() function are in the order: left, top, width, and height.

Build and run the application. Notice that the button responds as the mouse pointer hovers
over the button and when the button is clicked, although the button doesn't yet do anything.

Generally, this is the most convenient method of positioning and resizing child components,
even though in this example we could have easily set all the sizes in the constructor. The
real power of this technique is illustrated when the parent component becomes resizable.
The easiest way to do that here is to enable the resizing of the window itself. To do this,
navigate to the Main.cpp file (which contains the boilerplate code to set up the basic
application) and add the following highlighted line to the MainWindow constructor:

Build and run the application and notice that the window now has a corner resizer in the
bottom-right. The important thing here is that the button automatically resizes as the window
size changes due to the way we implemented this above. In the call to the setResizable()
function, the first argument sets whether the window is resizable and the second argument
sets whether this is via a corner resizer (true) or allowing the border of the window to be
dragged to resize the window (false).

Child components may be positioned proportionally rather than with absolute or offset
values. One way of achieving this is through the setBoundsRelative() function. In the
following example you will add a slider control and a label to the component.

...
{
 setContentOwned (new MainContentComponent(), true);

 centreWithSize (getWidth(), getHeight());
 setVisible (true);

setResizable (true, true);
}
...

Page 4 of 5Chapter 2. Building User Interfaces

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02.html

In this case, each child component is 90 percent of the width of the parent component and
positioned five percent of the parent's width from the left. Each child component is 25
percent of the height of the parent, and the three components are distributed top to bottom
with the button five percent of the parent's height from the top. Build and run the application,
and notice that resizing the window automatically and smoothly, updates the sizes and
position of the child components. The window should look similar to the following
screenshot. In the next section you will intercept and respond to user interaction:

Tip

class MainContentComponent : public Component
{
public:
 MainContentComponent()
 : button1 ("Click"),
 label1 ("label1", "Info")
 {
 slider1.setRange (0.0, 100.0);
 addAndMakeVisible (&button1);
 addAndMakeVisible (&slider1);
 addAndMakeVisible (&label1);
 setSize (200, 100);
 }

 void resized()
 {
 button1.setBoundsRelative (0.05, 0.05, 0.90, 0.25);
 slider1.setBoundsRelative (0.05, 0.35, 0.90, 0.25);
 label1.setBoundsRelative (0.05, 0.65, 0.90, 0.25);
 }

private:
 TextButton button1;
 Slider slider1;
 Label label1;
};

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Page 5 of 5Chapter 2. Building User Interfaces

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02.html

