
Using dynamically allocated arrays
While most instances of JUCE objects can be stored in regular C++ arrays, JUCE offers a
handful of arrays that are more powerful, somewhat comparable to the C++ Standard
Library classes, such as std::vector. The JUCE Array class offers many features; these
arrays can be:

l Dynamically sized; items can be added, removed, and inserted at any index
l Sorted using custom comparators
l Searched for particular content

The Array class is a template class; its main template argument, ElementType, must meet
certain criteria. The Array class moves its contents around by copying memory during
resizing and inserting elements, this could cause problems with certain kinds of objects.
The class passed as the ElementType template argument must also have both a copy
constructor and an assignment operator. The Array class, in particular, works well with
primitive types and some commonly used JUCE classes, for example, the File and Time
classes. In the following example, we create an array of integers, add five items to it, and
iterate over the array, sending the contents to the console:

This should produce the output:

Notice that the JUCE Array class supports the C++ indexing subscript operator []. This will
always return a valid value even if the array index is out of bounds (unlike a built-in array).
There is a small overhead involved in making this check; therefore, you can avoid the
bounds checking by using the Array::getUnchecked() function, but you must be certain
that the index is within bounds, otherwise your application may crash. The second for()
loop can be rewritten as follows to use this alternative function, because we have already
checked that out indices will be in-range:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 Array<int> array;

 for (int i = 0; i < 5; ++i)
 array.add (i * 1000);

 for (int i = 0; i < array.size(); ++i) {
 int value = array[i];
 log->writeToLog ("array[" + String (i) + "]= " + String
(value));
 }

 return 0;
}

array[0]= 0
array[1]= 1000
array[2]= 2000
array[3]= 3000
array[4]= 4000

Page 1 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

Finding the files in a directory

The JUCE library uses the Array objects for many purposes. For example, the File class
can fill an array of File objects with a list of child files and directories it contains using the
File::findChildFiles() function. The following example should post a list of files and
directories in your user Documents directory to the console:

Here, the File::findChildFiles() function is passed the array of File objects, to which it
should add the result of the search. It is also told to find both files and directories using the
value File::findFilesAndDirectories (other options are the File::findDirectories and
File::findFiles values). Finally, it is told not to search recursively.

Tokenizing strings

Although it is possible to use Array<String> to hold an array of JUCE String objects, there
is a dedicated StringArray class to offers additional functionality when applying array
operations to string data. For example, a string can be tokenized (that is, broken up into
smaller strings based on whitespace in the original string) using the String::addTokens()
function, or divided into strings representing lines of text (based on newline character
sequences found within the original string) using the String::addLines() function. The
following example tokenizes a string, then iterates over the resulting StringArray object,
posting its contents to the console:

...
 for (int i = 0; i < array.size(); ++i) {
 int value = array.getUnchecked (i);
 log->writeToLog("array[" + String (i) + "] = " +
 String (value));
 }
...

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 File file =
 File::getSpecialLocation (File::userDocumentsDirectory);

 Array<File> childFiles;

 bool searchRecursively = false;
 file.findChildFiles (childFiles,
 File::findFilesAndDirectories,
 searchRecursively);

 for (int i = 0; i < childFiles.size(); ++i)
 log->writeToLog (childFiles[i].getFullPathName());

 return 0;
}

Page 2 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

Arrays of components

User interfaces comprising banks of similar controls, such as buttons and sliders, can be
managed effectively using arrays. However, the JUCE Component class and its subclasses
do not meet the criteria for storage as an object (that is, by value) in a JUCE Array object.
These must be stored as arrays of pointers to these objects instead. To illustrate this, we

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 StringArray strings;
 bool preserveQuoted = true;
 strings.addTokens("one two three four five six",
 preserveQuoted);

 for (int i = 0; i < strings.size(); ++i) {
 log->writeToLog ("strings[" + String (i) + "]=" +
 strings[i]);
 }

 return 0;
}

need a new Introjucer project with a basic window as used throughout Chapter 2, Building
User Interfaces. Create a new Introjucer project, such as this, name it Chapter03_02, and
open it into your IDE. To the end of the MainWindow constructor in Main.cpp, add the
following line:

In the MainComponent.h file change the code to:

Notice that the Array object here is an array of pointers to TextButton objects (that is,
TextButton*). In the MainComponent.cpp file change the code to:

setResizable (true, true);

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 ~MainContentComponent();

 void resized();

private:
 Array<TextButton*> buttons;
};

#endif

Page 3 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

Here, we create 10 buttons and using a for() loop, adding these buttons to an array, and
basing the name of the button on the loop counter. The buttons are allocated using the new
operator (rather than the static allocation used in Chapter 2, Building User Interfaces), and
it is these pointers that are stored in the array. (Notice also, that there is no need for the &
operator in the function call to Component::addAndMakeVisible() because the value is
already a pointer.) In the resized() function, we use a Rectangle<int> object to create a
rectangle that is inset from the MainContentComponent object's bounds rectangle by 10
pixels all the way around. The buttons are positioned within this smaller rectangle. The
height for each button is calculated by dividing the height of our rectangle by the number of
buttons in the button array. The for() loop then positions each button, based on its index
within the array. Build and run the application; its window should present 10 buttons
arranged in a single column.

There is one major flaw with the preceding code. The buttons allocated with the new
operator are never deleted. The code should run fine, although you will get an assertion
failure when the application is exited. The message into the console will be something like:

To solve this, we could delete the buttons in the MainComponent destructor like so:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 for (int i = 0; i < 10; ++i)
 {
 String buttonName;
 buttonName << "Button " << String (i);
 TextButton* button = new TextButton (buttonName);
 buttons.add (button);
 addAndMakeVisible (button);
 }

 setSize (500, 400);
}

MainContentComponent::~MainContentComponent()
{
}

void MainContentComponent::resized()
{
 Rectangle<int> rect (10, 10, getWidth() - 20, getHeight() - 20);

 int buttonHeight = rect.getHeight() / buttons.size();

 for (int i = 0; i < buttons.size(); ++i) {
 buttons[i]->setBounds (rect.getX(),
 i * buttonHeight + rect.getY(),
 rect.getWidth(),
 buttonHeight);
 }
}

*** Leaked objects detected: 10 instance(s) of class TextButton
JUCE Assertion failure in juce_LeakedObjectDetector.h:95

Page 4 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

However, it is very easy to forget to do this kind of operation when writing complex code.

Using the OwnedArray class

JUCE provides a useful alternative to the Array class that is dedicated to pointer types: the
OwnedArray class. The OwnedArray class always stores pointers, therefore should not
include the * character in the template parameter. Once a pointer is added to an
OwnedArray object, it takes ownership of the pointer and will take care of deleting it when
necessary (for example, when the OwnedArray object itself is destroyed). Change the
declaration in the MainComponent.h file, as highlighted in the following:

You should also remove the code from the destructor in the MainComponent.cpp file,
because deleting objects more than once is equally problematic:

Build and run the application, noticing that the application will now exit without problems.

This technique can be extended to using broadcasters and listeners. Create a new GUI-
based Introjucer project as before, and name it Chapter03_03. Change the MainComponent.h
file to:

MainContentComponent::~MainContentComponent()
{
 for (int i = 0; i < buttons.size(); ++i)
 delete buttons[i];
}

...
private:
 OwnedArray<TextButton> buttons;
};

...
MainContentComponent::~MainContentComponent()
{
}
...

Page 5 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

This time we use an OwnedArray<Button> object rather than an OwnedArray<TextButton>
object. This simply avoids the need to typecast our button pointers to different types when
searching for the pointers in the array, as we do in the following code. Also, notice here that
we added a Label object to our component, made our component a button listener, and that
we do not need a destructor. Change the MainComponent.cpp file to:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener
{
public:
MainContentComponent();

void resized();
void buttonClicked (Button* button);

private:
OwnedArray<Button> buttons;
Label label;
};

#endif

Page 6 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

Here, we add the label in the constructor, reduce the width of the bank of buttons to occupy
only the left half of the component, and position the label at the top in the right-half. In the
button listener callback, we can obtain the index of the button using the
OwnedArray::indexOf() function to search for the pointer (incidentally, the Array class also
has an indexOf() function for searching the items). Build and run the application and notice
that our label reports which button was clicked. Of course, the elegant thing about this code
is that we need only change the value in the for() loop when the buttons are created in our
constructor to change the number of buttons that are created; everything else works
automatically.

Other banks of controls

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 for (int i = 0; i < 10; ++i) {
 String buttonName;
 buttonName << "Button " << String (i);
 TextButton* button = new TextButton (buttonName);
 button->addListener (this);
 buttons.add (button);
 addAndMakeVisible (button);
 }

 addAndMakeVisible (&label);
 label.setJustificationType (Justification::centred);
 label.setText ("no buttons clicked", dontSendNotification);

 setSize (500, 400);
}

void MainContentComponent::resized()
{
 Rectangle<int> rect (10, 10,
 getWidth() / 2 - 20, getHeight() - 20);

 int buttonHeight = rect.getHeight() / buttons.size();

 for (int i = 0; i < buttons.size(); ++i) {
 buttons[i]->setBounds (rect.getX(),
 i * buttonHeight + rect.getY(),
 rect.getWidth(),
 buttonHeight);
 }

 label.setBounds (rect.getRight(),
 rect.getY(),
 getWidth() - rect.getWidth() - 10,
 20);
}

void MainContentComponent::buttonClicked (Button* button)
{
 String labelText;
 nt buttonIndex = buttons.indexOf (button);
 labelText << "Button clicked: " << String (buttonIndex);
 label.setText (labelText, dontSendNotification);
}

Page 7 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

This approach may be applied to other banks of controls. The following example creates a
bank of sliders and labels, keeping each corresponding component updated with the
appropriate value. Create a new GUI-based Introjucer project, and name it Chapter03_04.
Change the MainComponent.h file to:

Here, we have arrays of sliders and labels and our component is both a label listener and a
slider listener. Now, update the MainComponent.cpp file to contain the include directive, the
constructor, and the resized() function:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Slider::Listener,
 public Label::Listener
{
public:
 MainContentComponent();

 void resized();
 void sliderValueChanged (Slider* slider);
 void labelTextChanged (Label* label);

private:
 OwnedArray<Slider> sliders;
 OwnedArray<Label> labels;
};

#endif

Page 8 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

Here, we use a for() loop to create the components and add them to the corresponding
arrays. In the resized() function, we create two helper rectangles, one for the bank of
sliders and one for the bank of labels. These are positioned to occupy the left half and right
half of the main component respectively.

In the listener callback functions, the index of the broadcasting component is looked up in
its array, and this index is used to set the value of the other corresponding component. Add
these listener callback functions to the MainComponent.cpp file:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 for (int i = 0; i < 10; ++i) {
 String indexString (i);
 String sliderName ("slider" + indexString);
 Slider* slider = new Slider (sliderName);
 slider->setTextBoxStyle (Slider::NoTextBox, false, 0, 0);
 slider->addListener (this);
 sliders.add (slider);
 addAndMakeVisible (slider);

 String labelName ("label" + indexString);
 Label* label = new Label (labelName,
 String (slider->getValue()));
 label->setEditable (true);
 label->addListener (this);
 labels.add (label);
 addAndMakeVisible (label);
 }

 setSize (500, 400);
}

void MainContentComponent::resized()
{
 Rectangle<int> slidersRect (10, 10,
 getWidth() / 2 - 20,
 getHeight() - 20);
 Rectangle<int> labelsRect (slidersRect.getRight(), 10,
 getWidth() / 2 - 20,
 getHeight() - 20);

 int cellHeight = slidersRect.getHeight() / sliders.size();

 for (int i = 0; i < sliders.size(); ++i) {
 sliders[i]->setBounds (slidersRect.getX(),
 i * cellHeight + slidersRect.getY(),
 slidersRect.getWidth(),
 cellHeight);
 labels[i]->setBounds (labelsRect.getX(),
 i * cellHeight + labelsRect.getY(),
 labelsRect.getWidth(),
 cellHeight);
 }
}

Page 9 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

Here, we use the String class to perform the numerical conversions. After moving some of
the sliders, the application window should look similar to the following screenshot:

Hopefully, these examples illustrate the power of combining JUCE array classes with other
JUCE classes to write elegant, readable, and powerful code.

void MainContentComponent::sliderValueChanged (Slider* slider)
{
 int index = sliders.indexOf (slider);
 labels[index]->setText (String (slider->getValue()),
 sendNotification);
}

void MainContentComponent::labelTextChanged (Label* label)
{
 int index = labels.indexOf (label);
 sliders[index]->setValue (label->getText().getDoubleValue());
}

Page 10 of 10Using dynamically allocated arrays

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s04.html

