
Employing smart pointer classes
The OwnedArray class may be considered a manager of smart pointers, in the sense that it
manages the lifetime of the object to which it points. JUCE includes a range of other smart
pointer types to help solve a number of common issues when writing code using pointers.
In particular, these help avoid mismanagement of memory and other resources.

Perhaps the simplest smart pointer is implemented by the ScopedPointer class. This
manages a single pointer and deletes the object to which it points when no longer needed.
This may happen in two ways:

l When the ScopedPointer object itself is destroyed
l When a new pointer is assigned to the ScopedPointer object

One use of the ScopedPointer class is as an alternative means of storing a Component
objects (or one of its subclasses). In fact, adding subcomponents in the Introjucer
applications graphical editor adds the components to the code as ScopedPointer objects in
a similar way to the example that follows. Create a new Introjucer project named
Chapter03_05. The following example achieves an identical result to the Chapter02_02
project, but uses ScopedPointer objects to manage the components rather than statically
allocating them. Change the MainComponent.h file to:

Notice that we use a ScopedPointer<Button> object rather than a
ScopedPointer<TextButton> object for the same reasons we used an OwnedArray<Button>
object in preference to an OwnedArray<TextButton> object previously. Change the
MainComponent.cpp file as follows:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener,
 public Slider::Listener
{
public:
 MainContentComponent();
 void resized();

 void buttonClicked (Button* button);
 void sliderValueChanged (Slider* slider);

private:
 ScopedPointer<Button> button1;
 ScopedPointer<Slider> slider1;
 ScopedPointer<Label> label1;
};

#endif

Page 1 of 3Employing smart pointer classes

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s05.html

The main changes here are to use the -> operator (which the ScopedPointer class
overloads to return the pointer it contains) rather than the . operator. The components are
all explicitly allocated use the new operator, but other than that, the code is almost identical
to the Chapter02_02 project.

Other useful memory management classes in JUCE are:

l ReferenceCountedObjectPtr<ReferenceCountedObjectClass>: This allows you to write
classes such that instances can be passed around in a similar way to the String
objects. The lifetime is managed by the object maintaining its own counter that counts
the number of references that exists to the object in the code. This is particularly
useful in multi-threaded applications and for producing graph or tree structures. The
ReferenceCountedObjectClass template argument needs to inherit from the
ReferenceCountedObject class.

l MemoryBlock: This manages a block of resizable memory and is the recommended
method of managing raw memory (rather than using the standard malloc() and free
() functions, for example).

l HeapBlock<ElementType>: Similar to the MemoryBlock class (in fact a MemoryBlock
object contains a HeapBlock<char> object), but this is a smart pointer type and

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 button1 = new TextButton ("Zero Slider");
 slider1 = new Slider (Slider::LinearHorizontal,
 Slider::NoTextBox);
 label1 = new Label();
 slider1->setRange (0.0, 100.0);
 slider1->addListener (this);
 button1->addListener (this);
 slider1->setValue (100.0, sendNotification);

addAndMakeVisible (button1);
addAndMakeVisible (slider1);
addAndMakeVisible (label1);

 setSize (200, 100);
}

void MainContentComponent::resized()
{
 button1->setBoundsRelative (0.05, 0.05, 0.90, 0.25);
 slider1->setBoundsRelative (0.05, 0.35, 0.90, 0.25);
 label1->setBoundsRelative (0.05, 0.65, 0.90, 0.25);
}

void MainContentComponent::buttonClicked (Button* button)
{
 if (button1 == button)
 slider1->setValue (0.0, sendNotification);
}

void MainContentComponent::sliderValueChanged (Slider* slider)
{
 if (slider1 == slider)
 label1->setText (String (slider1->getValue()),
 sendNotification);
}

Page 2 of 3Employing smart pointer classes

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s05.html

supports the -> operator. As it is a template class, it also points to an object or objects
of a particular type.

Page 3 of 3Employing smart pointer classes

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s05.html

