
Specifying and manipulating text strings
In JUCE, text is generally manipulated using the String class. In many ways, this class
may be seen as an alternative to the C++ Standard Library std::string class. We have
already used the String class for the basic operations in earlier chapters. For example, in
Chapter 2, Building User Interfaces, strings were used to set the text appearing on a
TextButton object and used to store a dynamically changing string to display in response to
mouse activity. Even though these examples were quite simple, they harnessed the power
of the String class to make setting and manipulating the strings straightforward for the
user.

The first way this is achieved is through storing strings using reference counted objects.
That is to say, when a string is created, behind the scenes JUCE allocates some memory
for the string, stores the string, and returns a String object that refers to this allocated
memory in the background. Straight copies of this string (that is, without any modifications)
are simply new String objects that refer to this same shared memory. This helps keep code
efficient by allowing String objects to be passed by value between functions, without the
potential overhead of copying large chunks of memory in the process.

To illustrate some of these features, we will use a console, rather than a Graphical User
Interface (GUI), application in the first instance. Create a new Introjucer project named
Chapter03_01; changing the Project Type to Console Application, and only selecting
Create a Main.cpp file in the Files to Auto-Generate menu. Save the project and open it
into your Integrated Development Environment (IDE).

Posting log messages to the console

To post messages to the console window, it is best to use JUCE's Logger class. Logging
can be set to log a text file, but the default behavior is to send the logging messages to the
console. A simple "Hello world!" project using a JUCE String object and the Logger class is
shown as follows:

The first line of code in the main() function stores a pointer to the current logger such that
we can reuse it a number of times in later examples. The second line creates a JUCE
String object from the literal C string "Hello world!", and the third line sends this string to
the logger using its writeToLog() function. Build and run this application, and the console
window should look something like the following:

#include "../JuceLibraryCode/JuceHeader.h"

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String message ("Hello world!");
 log->writeToLog (message);

 return 0;
}

JUCE v2.1.2
Hello world!

Page 1 of 4Specifying and manipulating text strings

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s02.html

JUCE reports the first line automatically; this may be different if you have a later version of
JUCE from the GIT repository. This is followed by any logging messages from your
application.

String manipulation

While this example is more complex than an equivalent using standard C strings, the power
of JUCE's String class is delivered through the storage and manipulation of strings. For
example, to concatenate strings, the + operator is overloaded for this purpose:

Here, separate strings are constructed from literals for "Hello", the space in between, and
"world!", then the final message string is constructed by concatenating all three. The stream
operator << may also be used for this purpose for a similar result:

The stream operator concatenates the right-hand side of the expression onto the left-hand
side of the expression, in-place. In fact, using this simple case, the << operator is equivalent
to the += operator when applied to strings. To illustrate this, replace all the instances of <<
with += in the code.

The main difference is that the << operator may be more conveniently chained into longer
expressions without additional parentheses (due to the difference between the precedence
in C++ of the << and += operators). Therefore, the concatenation can be done all on one
line, as with the + operator, if needed:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String hello ("Hello");
 String space (" ");
 String world ("world!");
 String message = hello + space + world;

 log->writeToLog (message);

 return 0;
}

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String hello ("Hello");
 String space (" ");
 String world ("world!");
 String message;

 message << hello;
 message << space;
 message << world;

 log->writeToLog (message);

 return 0;
}

Page 2 of 4Specifying and manipulating text strings

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s02.html

To achieve the same results with += would require cumbersome parentheses for each part
of the expression: (((message += "Hello") += " ") += "world!").

The way the internal reference counting of strings works in JUCE means that you rarely
need to be concerned about unintended side effects. For example, the following listing
works as you might expect from reading the code:

This produces the following output:

Breaking this down into steps, we can see what happens:

l String string1 ("Hello");: The string1 variable is initialized with a literal string.
l String string2 = string1;: The string2 variable is initialized with string1; they

now refer to exactly the same data behind the scenes.
l string1 << " world!";: The string1 variable has another literal string appended. At

this point string1 refers to a completely new block of memory containing the
concatenated string.

l log->writeToLog ("string1: " + string1);: This logs string1, showing the
concatenated string Hello world!.

l log->writeToLog ("string2: " + string2);: This logs string2; this shows that
string1 still refers to the initial string Hello.

One really useful feature of the String class is its numerical conversion capabilities.
Generally, you can pass a numerical type to a String constructor, and the resulting String
object will represent that numerical value. For example:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String message;

 message << "Hello" << " " << "world!";

 log->writeToLog (message);

 return 0;
}

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String string1 ("Hello");
 String string2 = string1;

 string1 << " world!";

 log->writeToLog ("string1: " + string1);
 log->writeToLog ("string2: " + string2);

 return 0;
}

string1: Hello world!
string2: Hello

Page 3 of 4Specifying and manipulating text strings

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s02.html

Other useful features are conversions to uppercase and lowercase. Strings may also be
compared using the == operator.

String intString (1234); // string will be "1234"
String floatString (1.25f); // string will be "1.25"
String doubleString (2.5); // string will be "2.5"

Page 4 of 4Specifying and manipulating text strings

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch03s02.html

