
Using drawing operations
Although it is advisable to use the built-in components if possible, there are occasions
where you may need or wish to create a completely new custom component. This may be
to perform some specific drawing tasks or a unique user interface item. JUCE also handles
this elegantly.

First, create a new Introjucer project and name it Chapter02_05. To perform drawing tasks
in a component, you should override the Component::paint() function. Change the
contents of the MainComponent.h file to:

Change the contents of the MainComponent.cpp file to:

Build and run the application to see the resulting empty window filled with a blue color.

The paint() function is called when the component needs to redraw itself. This might be
due to the component having been resized (which of course you can try out using the
corner resizer), or specific calls to invalidate the display (for example, the component
displays visual representation of a value and this is no longer the currently stored value).
The paint() function is passed a reference to a Graphics object. It is this Graphics object
that you instruct to perform your drawing tasks. The Graphics::fillAll() function used in
the code above should be self-explanatory: it fills the entire component with the specified
color. The Graphics object can draw rectangles, ellipses, rounded rectangles, lines (in
various styles), curves, text (with numerous shortcuts for fitting or truncating text within
particular areas) and images.

The next example illustrates drawing a collection of random rectangles using random
colors. Change the paint() function in the MainComponent.cpp file to:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 void paint (Graphics& g);
};
#endif

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 setSize (200, 200);
}

void MainContentComponent::paint (Graphics& g)
{
 g.fillAll (Colours::cornflowerblue);
}

Page 1 of 8Using drawing operations

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02s05.html

This makes use of multiple calls to the JUCE random number generator class Random. This
is a convenient class that allows the generation of pseudo-random integers and floating-
point numbers. You can make your own instance of a Random object (which is recommend if
your application uses random numbers in multiple threads), but here we simply take a copy
of a reference to a global "system" Random object (using the Random::getSystemRandom()
function) and use it multiple times. Here, we fill the component with a blue background and
generate 20 rectangles. The color is generated from randomly generated floating point
ARGB values. The call to the Graphics::setColour() function sets the current drawing
color that will be employed by subsequent drawing commands. A randomly generated
rectangle is also created by first choosing width and height (each being a maximum value
of one-quarter of the parent component's width and height respectively). Then the position
of the rectangle is randomly selected; again this is done using the parent component's
width and height but this time subtracting the width and height of our random rectangle to
ensure its right and bottom edges are not off-screen. As mentioned previously, the paint()
function is called each time the component needs to be redrawn. This means we will get a
completely new set of random rectangles as the component is resized.

Changing the drawing command to fillEllipse() rather than fillRect() draws a
collection of ellipses instead. Lines can be drawn in various ways. Change the paint()
function as follows:

void MainContentComponent::paint (Graphics& g)
{
 Random& r (Random::getSystemRandom());
 g.fillAll (Colours::cornflowerblue);

 for (int i = 0; i < 20; ++i) {
 g.setColour (Colour (r.nextFloat(),
 r.nextFloat(),
 r.nextFloat(),
 r.nextFloat()));

 const int width = r.nextInt (getWidth() / 4);
 const int height = r.nextInt (getHeight() / 4);
 const int left = r.nextInt (getWidth() - width);
 const int top = r.nextInt (getHeight() - height);

 g.fillRect (left, top, width, height);
 }
}

Page 2 of 8Using drawing operations

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02s05.html

Here, we choose a random line thickness (between one and six pixels wide) before
the for() loop and use it for each line. The start and end positions of the lines are
also randomly generated. To draw a continuous line there are a number of options,
you could:

l store the last end point of the line and use this as the start point of the next
line; or

l use a JUCE Path object to build a series of line drawing commands and draw
the path in one pass.

The first solution would be something like this:

The second option is slightly different; in particular, each of the lines that make up

void MainContentComponent::paint (Graphics& g)
{
 Random& r (Random::getSystemRandom());
 g.fillAll (Colours::cornflowerblue);

 const float lineThickness = r.nextFloat() * 5.f + 1.f;
 for (int i = 0; i < 20; ++i) {
 g.setColour (Colour (r.nextFloat(),
 r.nextFloat(),
 r.nextFloat(),
 r.nextFloat()));

 const float startX = r.nextFloat() * getWidth();
 const float startY = r.nextFloat() * getHeight();
 const float endX = r.nextFloat() * getWidth();
 const float endY = r.nextFloat() * getHeight();

 g.drawLine (startX, startY,
 endX, endY,
 lineThickness);
 }
}

void MainContentComponent::paint (Graphics& g)
{
 Random& r (Random::getSystemRandom());
 g.fillAll (Colours::cornflowerblue);

 const float lineThickness = r.nextFloat() * 5.f + 1.f;

 float x1 = r.nextFloat() * getWidth();
 float y1 = r.nextFloat() * getHeight();
 for (int i = 0; i < 20; ++i) {
 g.setColour (Colour (r.nextFloat(),
 r.nextFloat(),
 r.nextFloat(),
 r.nextFloat()));

 const float x2 = r.nextFloat() * getWidth();
 const float y2 = r.nextFloat() * getHeight();
 g.drawLine (x1, y1, x2, y2, lineThickness);
 x1 = x2;
 y1 = y2;
 }
}

Page 3 of 8Using drawing operations

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02s05.html

the path must be same color:

Here the path is created before the for() loop and each iteration of the loop adds a
line segment to the path. These two approaches to line drawing clearly suit different
applications. The path drawing technique is heavily customizable, in particular:

l The joints at the corners of the line segments can be customized with the
PathStrokeType class (for example, to make the corners slightly rounded).

l The lines need not be straight: they can be Bezier curves.
l The path may include other fundamental shapes such as rectangles, ellipses,

stars, arrows and so on.

In addition to these line drawing commands, there are accelerated functions
specifically for drawing horizontal and vertical lines (that is, non-diagonal). These are
the Graphics::drawVerticalLine() and Graphics::drawHorizontalLine() functions.

Intercepting mouse activity

To help your component respond to mouse interaction, the Component class has six
important callback functions that you can override:

l mouseEnter(): Called when the mouse pointer enters the bounds of this
component and the mouse buttons are up.

l mouseMove(): Called when the mouse pointer moves within the bounds of this
component and the mouse buttons are up. A mouseEnter() callback will always
have been received first.

l mouseDown(): Called when one or more mouse buttons are pressed while the
mouse pointer is over this component. A mouseEnter() callback will always have
been received first and it is highly likely one or more mouseMove() callbacks will
have been received too.

l mouseDrag(): Called when the mouse pointer is moved following a mouseDown()
callback on this component. The position of the mouse pointer may be outside
the bounds of the component.

l mouseUp(): Called when the mouse button is released following a mouseDown()

void MainContentComponent::paint (Graphics& g)
{
 Random& r (Random::getSystemRandom());
 g.fillAll (Colours::cornflowerblue);

 Path path;
 path.startNewSubPath (r.nextFloat() * getWidth(),
 r.nextFloat() * getHeight());
 for (int i = 0; i < 20; ++i) {
 path.lineTo (r.nextFloat() * getWidth(),
 r.nextFloat() * getHeight());
 }

g.setColour (Colour (r.nextFloat(),
 r.nextFloat(),
 r.nextFloat(),
 r.nextFloat()));

 const float lineThickness = r.nextFloat() * 5.f + 1.f;
 g.strokePath (path, PathStrokeType (lineThickness));
}

Page 4 of 8Using drawing operations

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02s05.html

callback on this component (the mouse pointer will not necessarily be over this
component at this time).

l mouseExit(): Called when the mouse pointer leaves the bounds of this
component when the mouse buttons are up and after a mouseUp() callback if the
user has clicked on this component (even if the mouse pointer exited the
bounds of this component some time ago).

In each of these cases, the callbacks are passed a reference to a MouseEvent object
that can provide information about the current state of the mouse (where it was at
the time of the event, when the event occurred, which modifier keys on the keyboard
were down, which mouse buttons were down, and so on). In fact, although these
classes and function names refer to the "mouse" this system can handle multi-touch
events and the MouseEvent object can be ask which "finger" was involved in such
cases (for example, on the iOS platform).

To experiment with these callbacks, create a new Introjucer project and name it
Chapter02_06. Use the following code for this project.

The MainComponent.h file declares the class with its various member functions and
data:

The MainComponent.cpp file should contain the following code. First, add the
constructor and the paint() function. The paint() function draws a yellow circle at
the mouse position and some text showing the current phase of the mouse
interaction:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 void paint (Graphics& g);

 void mouseEnter (const MouseEvent& event);
 void mouseMove (const MouseEvent& event);
 void mouseDown (const MouseEvent& event);
 void mouseDrag (const MouseEvent& event);
 void mouseUp (const MouseEvent& event);
 void mouseExit (const MouseEvent& event);

 void handleMouse (const MouseEvent& event);

private:
 String text;
 int x, y;
};
#endif

Page 5 of 8Using drawing operations

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02s05.html

Then add the mouse event callbacks and our handleMouse() function described as
follows. We store the coordinates of the mouse callbacks with reference to our
component and store a String object based on the type of callback (mouse down, up,
move, and so on). Because the storage of the coordinates is the same in each case,
we use the handleMouse() function, which stores the coordinates from the MouseEvent
object in our class member variables x and y, and pass this MouseEvent object from
the callbacks. To ensure that the component redraws itself, we must call the
Component::repaint() function.

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: x (0), y (0)
{
 setSize (200, 200);
}

void MainContentComponent::paint (Graphics& g)
{
 g.fillAll (Colours::cornflowerblue);
 g.setColour (Colours::yellowgreen);
 g.setFont (Font (24));
 g.drawText (text, 0, 0, getWidth(), getHeight(),
 Justification::centred, false);
 g.setColour (Colours::yellow);
 const float radius = 10.f;
 g.fillEllipse (x - radius, y - radius,
 radius * 2.f, radius * 2.f);
}

Page 6 of 8Using drawing operations

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02s05.html

As shown in the following screenshot, the result is a yellow circle that sits under our
mouse pointer and a text message in the center of the window that gives feedback as
to the type of mouse event most recently received:

void MainContentComponent::mouseEnter (const MouseEvent& event)
{
 text = "mouse enter";
 handleMouse (event);
}

void MainContentComponent::mouseMove (const MouseEvent& event)
{
 text = "mouse move";
 handleMouse (event);
}

void MainContentComponent::mouseDown (const MouseEvent& event)
{
 text = "mouse down";
 handleMouse (event);
}

void MainContentComponent::mouseDrag (const MouseEvent& event)
{
 text = "mouse drag";
 handleMouse (event);
}

void MainContentComponent::mouseUp (const MouseEvent& event)
{
 text = "mouse up";
 handleMouse (event);
}

void MainContentComponent::mouseExit (const MouseEvent& event)
{
 text = "mouse exit";
 handleMouse (event);
}

void MainContentComponent::handleMouse (const MouseEvent& event)
{
 x = event.x;
 y = event.y;
 repaint();
}

Page 7 of 8Using drawing operations

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02s05.html

Page 8 of 8Using drawing operations

17/12/2020file:///C:/Users/user/AppData/Local/Temp/fmfhzclr.yji/OEBPS/ch02s05.html

