
WELCOME TO T.E.I. CRETE
Department of Electronic Engineering

Faculty of Applied Sciences
Centre for Plasma Physics & Lasers (CPPL)

http://www.cppl.teicrete.gr/

Prof. Michael Tatarakis
Director CPPL

PowerLaPs
Rethymno 02-13 July 2018

http://www.cppl.teicrete.gr/


“In principle our knowledge is limited as it is in the 
far interior of matter” , 4th century bc
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Plasma is a partially or completely ionised
medium, presents a collective behavior
(unlike the ideal gas). It is considered as
the fourth state of matter (unlike the ideal
gas)
It is named "plasma" «πλάσμα» by I.
Langmuir and L. Tonks
Plasma should not contain more
than 1% neutral atoms or molecules



• It is a magnificent material

• It is very selfish, does not like 
external influences but likes group 

work

• It has mind on its own



• Plasma is the “fourth state” of 
matter

Consists of electrons, ions and neutral atoms

Index of refraction < 1

99% of matter of the visible Universe is in 
plasma state



is any ionised gas plasma?



• Definition of plasma
A quasineutral gas of charged and neutral 
particles which exhibits collective behavior
Quasineutral:

Collective:
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The plasma parameter

Number of particles in the Debye sphere

ND = n
4
3
πλD

3 =1.38x106 T
3/2

n1/2
,T (oK )

€ 

λD << L

€ 

ND >>1

Collective behavior requires:
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Plasma ne T B λD ND ωp νee ωc rL

(m−3) (K) (T) (m) (s−1) (s−1) (s−1) (m)
Gas discharge 1016 104 — 10−4 104 1010 105 — —
Tokamak 1020 108 10 10−4 108 1012 104 1012 10−5

Ionosphere 1012 103 10−5 10−3 105 108 103 106 10−1

Magnetosphere 107 107 10−8 102 1010 105 10−8 103 104

Solar core 1032 107 — 10−11 1 1018 1016 — —
Solar wind 106 105 10−9 10 1011 105 10−6 102 104

Interstellar medium 105 104 10−10 10 1010 104 10−5 10 104

Intergalactic medium 1 106 — 105 1015 102 10−13 — —

Table 19.1: Representative densities, temperatures and magnetic field strengths together with
derived plasma parameters in a variety of environments. For definitions, see text. Values are given
to order of magnitude as all of these environments are quite inhomogeneous.

• Interstellar medium. The plasma, in our Galaxy, that fills the region between the stars;
this plasma exhibits a fairly wide range of density and temperature as a result of such
processes as heating by photons from stars, heating and compression by shock waves
from supernovae, and cooling by thermal emission of radiation.

• Intergalactic medium. The plasma that fills the space outside galaxies and clusters of
galaxies; we shall meet the properties and evolution of this intergalactic plasma in our
study of cosmology, in the last chapter of this book.

Characteristic plasma properties in these various environments are collected in Table 19.1.
In the next three chapters we shall study applications from all these environments.

****************************

EXERCISES

Exercise 19.1 Derivation: Boundary of Degeneracy
Show that the condition ne ≪ (mekBT )3/2/h3 [cf. Eq. (19.3)] that electrons be nondegenerate
is equivalent to the following statements:

(a) The mean separation between electrons, l ≡ n−1/3
e , is large compared to the deBroglie

wavelength, λ̄dB = !/(momentum), of an electron whose kinetic energy is kBT .

(b) The uncertainty in the location of an electron drawn at random from the thermal
distribution is small compared to the average inter-electron spacing.

(c) The quantum mechanical zero-point energy associated with squeezing each electron

into a region of size l = n−1/3
e is small compared to the electron’s mean thermal energy

kBT .

****************************

Source: Chapter 19: The Particle Kinetics of Plasma
http://www.pma.caltech.edu/Courses/ph136/yr2004/

http://www.pma.caltech.edu/Courses/ph136/yr2004/


Plasma Criteria

€ 

λD << L

€ 

ND >>1

€ 

ωτ >1

no= 1020 m-3 , T = 1 keV,    λD=20 μm
no= 108m-3 ,   T = 10 eV,    λD= 3 m

ω is the frequency of typical plasma oscillations
τ is the mean time between collisions with neutral 

atoms



For a plasma- Saha equation
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i.e. hydrogen plasma in 
thermodynamic equilibrium

Ne = Np Nn

ne = np nn
Total density:

n = nn + ne = nn + np
gas temperature: T oK
ionisation energy: Ei



Megh Nad Saha
“Saha equation”

T=300oK, Ei=14,5eV (nitrogen), nn=3x1025m-3

ni
nn
=
2πmekT( )3/2

nh3
e
−
Ei
kT = 2.4x1015 T

3/2

ni
e
−
Ei
kT

ni
nn
≈10−122



Ionisation rate 
Hydrogen  atoms 
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Kind of plasma        Density n [cm-3]         Temperature T [K]
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Plasma frequency
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d
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εome

= 5.64 ×104 ne
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Some important plasma parameters
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The Plasma as a Fluid
In a real plasma the positions and motions of the particles (electrons, ions and
neutral atoms) are determined by randomness due to thermal effects and unexpected
internal or external perturbations. The E and B fields are therefore also determined
by the motions of the particles in the plasma and the currents that are generated due
to the external or internal perturbations.

Since the density of the plasma can vary from ~1012 particles/cm3 up to ~1024

particles/cm3, it is obvious that in order to study the plasma dynamics it is really
almost impossible to follow each particle’s trajectory in time and its interaction
with the other particles and the time varying generated E and B fields.

Fortunately, most of the plasma phenomena for experimentally generated plasmas
(i.e. using lasers or pulsed power devices such as Z or X-pinches or Tokamak, can
be well described using fluid mechanics physics such as the plasma is fluid*. In this
case the behaviour and identity of the individual particles is not taken into account
and instead, the motion of fluid elements using the fluid equations adapted to the
plasma conditions (and the fact that the fluid contains charged particles as well as E
and B fields) are implemented.

*i.e., see the plasma generated by lasers and collisions in the next slides



The Plasma as a Fluid
Can we really use the eq. of motion of a single 
particle to describe a plasma?

A laser generated plasma is comprised of
regions with high charge density as well as
regions with lower charge density. Density
scale-length is of the order of µm!

B

target

blow off plasma

E ||  B (s polarised-O-wave)nwo

⊥E           B (p-polarised-X-wave)nwo

knwo

jf

Laser-p polarised

Within a few µm the charge density is dropped 
a few orders of magnitude!!

ne~1021 el/cm-3

ne~1018 el/cm-3



∇⋅E =
ρ
f

ε
o

∇⋅B = 0

∇×E = −∂B
∂t

Faraday�s Law of 
induction (επαγωγή)

Ampere�s Law

Gauss�s Law for electricity

Gauss�s Law for magnetism

∇⋅D = ρ f

∇⋅B = 0

∇×E = −∂B
∂t

∇×B = µo( j f +εo
∂E
∂t
) ∇×H = j f +

∂D
∂t

In vacuum In a medium

D = εE = εοΕ + P
ε = 1+ χε( )εoP = εoχεE

B = µmH
µm = 1+ χm( )µo M = χmH

Magnetic 
susceptibility

(1)

(2)

(3)

(4)

The Plasma as a Fluid - Maxwell’s equations



The total charge density is . So in a plasma the Gauss law would write:

The Plasma as a Fluid - Maxwell’s equations

In equations (1) and (4) ρf and Jf are the “free” charge and current density. The
“bound charge” and current densities arising from the polarisation and
magnetisation of the plasma (like in a dielectric medium) are included in the
quantities D and H, which are the electric displacement field and magnetic field
H (same name as the magnetic field B) respectively.

B = µο (Η +Μ )

ρq = ρ f + ρb

∇⋅D = ρ f ⇔∇⋅ (εοE + P) = εο (1+ χε )E

D = εE = εοΕ + P
ε = 1+ χε( )εoP = εoχεE



(Α ⋅∇ )Α =∇(
1
2
Α2 )−Α ×(∇ ×Α)

Definition of Convective Derivative:
A derivative taken with respect to a moving coordinate system, also called the
Langrangian derivative, substantive derivative, or Stokes derivative. It is given by:

where is the gradient operator and υ is the velocity of the fluid. This type of
derivative is especially useful in the study of fluid mechanics. When applied to υ,

The Plasma as a Fluid
Convective derivative

D
Dt

=
∂
∂t
+υ ⋅∇

Dυ
Dt

=
∂υ
∂t
+(∇ ×υ)×υ +∇ (

1
2
υ 2 )

If there are no collisions and no thermal motion, all particles in a fluid move
together. The average velocity of the fluid in an element equals the individual
particle velocity.



The Plasma as a Fluid
Conservation of matter

Particle flux density: J = nυ
Divergence theorem: 

∂Ν
∂t

=
∂n
∂tV∫ dV = − nυ ⋅dS

s∫ = − ∇
V∫ ⋅ (nυ)dV for any volume V ⇒

∂n
∂t
+∇ ⋅ (nυ) = 0 Equation of continuity for 

each specie of the plasma

The total number of particles can be altered only if there is
a net flux of particles across the surface S which bounds the
volume V

(∇ ⋅ A)dV
V∫ = A ⋅dS

s∫



p =Cnγ γ is the ratio of the specific heats Cp/Cv

∇p
p
= γ

∇n
n

isothermal change γ=1
adiabatic/isotropic 3 degrees of freedom γ=5/3
adiabatic 1 degree of freedom γ=3
adiabatic 2 degree of freedom γ=2

γ =
2+ N
N

N is the number of degrees of freedom

prove this

p = nKTideal gas: ∇ p =∇ (nKT ) = KT∇ n
isothermal compression:

The Plasma as a Fluid

Equation of state

n = N
V

particle density



The Plasma as a Fluid
Convective derivative

In the absence of collisions and thermal motion, the fluid equation could be 
obtained by multiplying the equation of motion by the density of the species n

mn∂υ
∂t

= qn E +υ ×B( )
In eq. of motion, time derivative is taken at the position of particles
(remember the non uniform E - finite Larmor-radius treatment).
But we are keen to have an equation for fluid elements fixed in space,
thus need a transformation to variables in a fixed frame. Assume G(x,t) to be
any variable of fluid.

dG(x,t)
dt

=
∂G
∂t

+
∂G
∂x
dx
dt
=
∂G
∂t

+υx
∂G
∂x

≡
DG
Dt

dG(x,t)
dt

=
∂G
∂t

+ (υ ⋅∇ )G υ ⋅∇  is a scalar differential operator3D:

Change at a fixed point
Change of G as the observer moves 
with the fluid into a region in which G 
is different



The Plasma as a Fluid

For a plasma G=υ the fluid velocity:

mn((∂υ
∂t

+ (υ ⋅∇ )υ) = qn E +υ ×B( )

Thermal motions:

∂υ
∂t

≡ Time derivative in a 
fixed frame

If there are no collisions and no thermal motion, all particles in a fluid move
together. The average velocity of the fluid in an element equals the individual
particle velocity.

If thermal motions are considered, a pressure force has to be included in the 
equation due to the random motion of the particles in the plasma fluid.

y

x
z

Lets consider for simplicity only 
the x component of the motion.  

(xo, 1/2δy, 1/2δz)



The Plasma as a Fluid
Ordinary fluid dynamics 
Navier – Stokes equation  

mn(∂υ
∂t

+ (υ ⋅∇ )υ = qn E +υ ×B( )−∇ ⋅P− mn(υ −υo )
τ

ρ(∂υ
∂t

+ (υ ⋅∇ )υ = −∇ p+ ρv∇2υ
Viscosity term, 

is the kinematic viscosity 
coefficient
v

ρv∇2υ→

Comparison with the plasma motion equation:

Equation (1) describes a collisional fluid with frequent collisions between 
particles.
Equation 2 was derived without “collision rate” definition between plasma 
species, but eq. (2) indeed can describe the plasma species. Since we used the 
Maxwellian velocity distribution we implicitly considered collisions.

Viscosity term corresponds to the collisional part in the fluid eq. 

(1)

(2)



∇⋅E =
ρq
εo

=
niqi + neqe

εo

∇⋅B = 0

∇×E = −∂B
∂t

∇×B = µo ( j +εo
∂E
∂t
) =

= µo (niqiυi + neqeυe +εo
∂E
∂t
)

p j =C jn j
γ j = i,e

∂n j
∂t

+∇ ⋅ (n jυ j ) = 0

The Plasma as a Fluid
The complete set of equations

ρq = niqi + neqe

j = niqiυi + neqeυe

m jn j (
∂υ j

∂t
+ (υ j ⋅∇ )υ j ) = qjn j E +υ j ×B( )−∇ p j j=i,e

All charges are included in ρq, bound 
& free



Waves in plasmas



∇⋅E = ρ
εo
=
niqi + neqe

εo

∇⋅B = 0

∇×E = −∂B
∂t

∇×B = µo ( j +εo
∂E
∂t
) =

= µo (niqiυi + neqeυe +εo
∂E
∂t
)

is the plasma variable in equilibrium

1. Linearisation of plasma equations:

s = so + s1
so

is the perturbation of the plasma 
variable in equilibrium

s1

s1 = s10e
i (k⋅r−ωt )

2. the perturbation is a planar harmonic
wave around the point of equilibrium So:

3. Solve the linearised equations of the 
plasma to find the dispersion relation ω(κ):

4. We ignore the influence of the oscillations
on the unperturbed quantities i.e. So ):

Waves in plasmas

p j =C jn j
γ j = i,e

∂n j
∂t

+∇ ⋅ (n jυ j ) = 0

ρq = niqi + neqe

j = niqiυi + neqeυe
m jn j (

∂υ j

∂t
+ (υ j ⋅∇ )υ j ) = qjn j E +υ j ×B( )−∇ p j j=i,e



p j =C jn j
γ j = i,e

∂n j
∂t

+∇ ⋅ (n jυ j ) = 0

ρq = niqi + neqe

J = niqiυi + neqeυe

ρq (r,t) = e ni − ne( )

J (r,t) = e niυi − neυe( )Current density:

Charge density:

Mass density: ρm(r,t) = neme + nimi( ) ≅ nimi
me <<mi ne ≅ nibecause

p = pe + piPressure:

υ = miniυi +meneυe( ) ρm
Mass centre vel.
of fluid:

Plasma - One Fluid Equations - MHD

m jn j (
∂υ j

∂t
+ (υ j ⋅∇ )υ j ) = qjn j E +υ j ×B( )−∇ p j

For electrically neutral plasma:
qene ~ qini

p j = n jmjυ j
2 = n jKBTj

For isotropic plasma:
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mi
eρm

J ×B+ mi
2eρm

∇ P − J
σ

ρm
∂υ
∂t

= −∇ P + ρqE + J ×B

∂ρm
∂t

+∇ ⋅ (ρmυ) = 0

∂ρq
∂t

+∇ ⋅ J = 0

∇×E = −∂B
∂t

∇×B = µo (J +εo
∂E
∂t
)

p =Cnγ

MHD Equations



If we also consider that there is no accumulation of space charge i.e. ρq=0, the 
Simplified MHD equations including Maxwell equations are:  

Waves in plasmas

Ideal Magneto-Hydro Dynamics (Ideal MHD)

ρm
∂υ
∂t

= −∇ P + J ×B

∂ρm
∂t

+∇ ⋅ (ρmυ) = 0

J =σ E +υ ×B( )

∇×E = −∂B
∂t

∇×B = µoJ

p =Cnγ

∇⋅E = 0 ∇⋅B = 0

Closed system of equations – Good luck!!



Waves in plasmas

∇p
p
= γ

∇ρm
ρm

p = ρmKT
m

ideal gas:

ρm(
∂υ
∂t

+ (υ ⋅∇ )υ) = −∇ p = −γ p
ρm
∇ ρm Navier-Stokes – no viscosity

∂ρm
∂t

+∇ ⋅ (ρmυ) = 0

Linearising about a stationary equilibrium with uniform po and ρο: 

Continuity equation

ρm = ρmο + ρ1moe
i (k⋅r−ωt )

Oscillation about the density ρο of the fluid

υ =υο +υ10e
i (k⋅r−ωt ) ,υο = 0

Fluid is immobile and we investigate the vibrations 
of its velocity

−iωρ1 + ροik ⋅υ1 = 0 Continuity equation

−iωρου1 = −γ
pο
ρο
ikρ1 Navier-Stokes 

k = k    x ,  and υ =υ   x

Eliminating ρ1:

Sound waves in a fluid: ion acoustic waves in a plasma

(keep only 1st order 
terms) 



−iωρmου1 = −γ
pο
ρmο
ik ρmoikυ1

iω
⇔ω 2υ1 = k

2γ
pο
ρmο

υ1⇔

ω
k
= γ

pο
ρmο

#

$
%%

&

'
((

1/2 Sound waves velocity in a neutral gas. These 
are pressure waves which propagate through 
collisions among the air molecules. 

Waves in plasmas

In a plasma: Ion acoustic waves

= γ
KT
m

!

"
#

$

%
&

1/2

≡ cs

p =
ρmoKT
m

Eliminating ρ1:

Low frequency oscillations because of the 
large mass of the ion. 

Ion fluid equation:

min(
∂υi
∂t

+ (υi ⋅∇ )υi ) = enE−∇ p = −en∇φ −γ iKTi∇ n ni = ne = n

Linearising (assuming plane waves): −iωminoυi1 = −eikφ1 −γιKTiikn1

For the electrons we 
assume me=0
Low frequency so we use 
plasma approximation, so:



Waves in plasmas
Ion sound waves in a plasma

The perturbation in the electron and therefore the ion density can be written: 

ne = n = noe
eφ1
KTe = no 1+

eφ1
KTe

+ ...
!

"
##

$

%
&&

The balance of forces on electrons requires: 

Boltzmann relation for electrons

ne = noee
eφ
KTe

Electrons are very mobile that their heat
conductivity is huge! So we can consider 
isothermal electrons i.e. γ=1

Since Eo =0, φο=0: 

n1 = no
eφ1
KTe

Linearising the ion equation of continuity: 

∂n1
∂t

+∇ ⋅ (noυι1 + n1υι1) = 0⇔
∂n1
∂t

+ no∇ ⋅υι1 +υι1 ⋅∇ no ) = 0⇔

⇔−iωn1 = −noikυι1



−iωn1 = −noikυι1

−iωminoυi1 = −eikφ1 −γιKTiikn1
n1 = no

eφ1
KTe

Substituting for φ1 and n1 in the equation of motion: 

iωminoυi1 = enoik
KTe
eno

+γιKTiik
noikυi1
iω

⇔ ω 2 = k 2 KTe +γιKTι
mi

!

"
##

$

%
&&

Dispersion relation of ion acoustic wave – υs is the sound speed in a 
plasma

Waves in plasmas
Ion sound waves in a plasma

So the set of equations are:

Ions suffer 1-D compression due to the 
plane wave we can use γι=3. 
Electrons are so fast that they have time 
to equalise their temperature everywhere, 
so they are isothermal and  γe=1.

ω
k
=
KTe +γιKTι

mi

!

"
##

$

%
&&

1/2

≡υs
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Electron waves in a plasma

Β=0 i.e. non magnetised plasma Te=Ti=0 i.e. no thermal motion, ions are fixed in 
space and have uniform distribution, plasma is infinite in space.

Let’s display electrons from the uniform ion background: E-field will be generated to
restore neutrality.

mene (
∂υe
∂t

+ (υe ⋅∇ )υe ) = −eneE

Equation of motion for electrons: Continuity equation:

∂ne
∂t

+∇ ⋅ (neυe ) = 0

We chose 1D for simplicityεo∇⋅E = εo
∂E
∂x

= e(ni − ne )
Linearisation:

ne = no + n1

υ1 =υ10e
i (kx−ωt )

E = Eo + E1υe =υo +υ1

n1 = n10e
i (kx−ωt ) E = E0e

i (kx−ωt )
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Electron waves in a plasma

Initial conditions (uniform neutral plasma):

∇no =υo = Eo = 0
∂
∂t
no =

∂
∂t
υo =

∂
∂t
Eo = 0

mene (
∂υe
∂t

+ (υe ⋅∇ )υe ) = −eneE me (
∂υ1
∂t

+ (υ
1
⋅∇ )υ1) = −eE⇒

0 because quadratic∂ne
∂t

+∇ ⋅ (neυe ) = 0 ⇒
∂n1
∂t

+∇ ⋅ (noυ1 + n1υ1) = 0

0

∂n1
∂t

+ no∇ ⋅υ1 +υ1 ⋅ ∇no = 0

0

⇒

In equilibrium: nio=neo and ni1=0

εo
∂E1
∂x

= −en1

From Poisson’s equation:

Since nio= neo
and ni1=0 by the
assumption of
fixed ions
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So there are three equations and three unknowns, linearising:

−iωn1 = −noikυ1

−iωmeυ1 = −eE1

ikεoE1 = −en1

Eliminating n1 and E1

−iωmeυ1 = −e
−e
ikεo

−noikυ1
−iω

= −i
noe

2

εoω
υ1

⇒ω 2 =
noe

2

meεo

Characteristic plasma 
frequency

ω pe
2 =
noe

2

meεo
ω pe

2π
= f pe ~ 9 ne

Plasma frequency

f pe ~ 9GHz! for no =10
18m−3 fce ~ 28GHz /Tesla

f pe ~ fce for B ~ 0.32Tesla and n ~1018m−3

ω does not depend on k
Group velocity is zero

No propagation

rad/sec
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Thermal electron waves in a plasma

∇pe = 3KTe∇ne

ω 2 =ω p
2 +
3
2
k 2υth

2



Waves in plasmas
Magnetised plasmas

The existence of an external Bo adds one more parameter to the cases we have studied
i.e.:
Electrostatic waves (B1=0) of low or high frequencies,
Electromagnetic waves (B1≠0) of low or high frequencies,

The new parameter is now whether the propagation is:
1) Perpendicular to Bo:
2) Parallel to Bo:

k ⋅Bo = 0
k ×Bo = 0

Note that waves travelling parallel to the perturbation E1 are longitudinal i.e.
while waves travelling perpendicular to the perturbation E1 are transverse i.e.

k × E1 = 0
k ⋅E1 = 0

Home work: Show that all electrostatic waves are longitudinal and vise versa and that
all transverse waves are electromagnetic but the opposite is not true.



Waves in plasmas
High Frequency Electrostatic waves propagating transverse to external B field

Upper Hybrid Frequency (UHF)  

We will apply the same approaches as in non magnetised plasmas, “cold plasma”,
Te=Ti=0 i.e. no thermal motion (thus Pe=Pi=0) ions are fixed in space and have uniform
distribution, plasma is infinite in space. Since the waves have high frequency, ions can
be considered immobile because of their large mass.

Since electrostatic waves are longitudinal, and we also consider
that

k × E1 = 0
k ⋅Bo = 0

To identify the dispersion relation the following equations are needed:

mene (
∂υe
∂t

+ (υe ⋅∇ )υe ) = −ene E1 +υe ×Bo$% &'
∂ne
∂t

+∇ ⋅ (neυe ) = 0

εo∇ ⋅E1 = e(no − ne ) nio = neo = no



y
Bo

x

z

k

E

Waves in plasmas
High Frequency Electrostatic waves propagating transverse to external B field

Upper Hybrid Frequency (UHF)  

Lets consider that E1=E1x, k=kx, Bo=Boz
In order for the eq. of motion to be obeyed, υ e should lye on the (x,y) plane

Linearising the three equations (motion, continuity, Poisson) and keeping first order 
terms:

−iωne1 + iknoυe1x = 0

−iωmeυe1x = −eE1 − eυe1yB0

ikεoE1 = −ene1

−iωmeυe1y = eυe1xB0

From the first two (eq. of motion):

υe1x =
eE1

imeω 1− Ωe
2

ωe
2

#

$
%%

&

'
((

Substituting in the third (continuity) and using
the fourth (Poisson):

−
ω 2

ωe
2
+1+

Ωe
2

ωe
2

#

$
%%

&

'
((E1 = 0⇔ω 2 =ωe

2 +Ωe
2 ≡ωUH

2

Ωe ≡
eBo
me



The upper hybrid frequency (πάνω υβριδική συχνότητα) is equivalent to the plasma
Frequency for waves travelling transverse to the external magnetic field.

The electrons perform an additional cyclotron oscillation due to the presence of the
external magnetic field. 

Waves in plasmas
High Frequency Electrostatic waves propagating transverse to external B field

Upper Hybrid Frequency (UHF)  

Group velocity is zero as long as thermal motion is neglected.

Electrostatic electron wave along Bo are the usual plasma oscillations with ω=ωp

Home work 1: Why in the above analysis we ignored the last three Maxwell’s 
equations (Gauss’s law for magnetism,  Ampere’s law, Faraday’s law) and we used 
only the Poisson’s equation.

---------------------------



Waves in plasmas
Low Frequency Electrostatic waves propagating transverse to external B field

Lower Hybrid Frequency (LHF)  

Since electrostatic waves are investigated, only Poisson’s equation could be used
From the Maxwell's equations, but since frequency is low ions can follow the
vibrations of electrons and ne1=ni1. So we have to use the equations of motion and
continuity for both ions and electrons, thus the equations which describe the
propagation of such waves are:

mene (
∂υe
∂t

+ (υe ⋅∇ )υe ) = −ene E1 +υe ×Bo$% &'
∂ne
∂t

+∇ ⋅ (neυe ) = 0

mini (
∂υi
∂t

+ (υi ⋅∇ )υi ) = −eni E1 +υi ×Bo$% &'
∂ni
∂t

+∇ ⋅ (niυi ) = 0

nio = neo = no

After linearisation:
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Low Frequency Electrostatic waves propagating transverse to external B field

Lower Hybrid Frequency (LHF)  

where we have used that ne1=ni1 As previously Bo=Boz, and the waves propagate
on the (x,z) plane parallel with the perturbation
of the E field, k//E1

meno
∂υe
∂t

= −γekBTe∇ ne1 − eno E1 +υe ×Bo#$ %&
∂ne1
∂t

+ no∇ ⋅υe = 0

mino
∂υi
∂t

= −γ ikBTi∇ ne1 + eno E1 +υi ×Bo#$ %&
∂ne1
∂t

+ no∇ ⋅υi = 0

∇ Pj = γ jkBTj∇ n j

solutions ~ ei (k⋅r−ωt )

Add by parts:

−iωno (meυe +miυi ) = −ikne1(γekBTe +γ ikBTi )+ eno (υi −υe )×Bo
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Low Frequency Electrostatic waves propagating transverse to external B field

Lower Hybrid Frequency (LHF)  

From the continuity equations : k ⋅υe1 = k ⋅υi1 =
ωne1
no

So equation of motion
becomes:

−iω 2no (me +mi )
ne1
no

= −ik 2ne1(γekBTe +γ ikBTi )+ enok ⋅[(υi −υe )×Bo ]

k ⋅[(υi −υe )×Bo ]= kx[(υiy −υey )Bo ]
But to find the dispersion relation from this
equation we need to express the velocities as
functions of the density.

For this reason we externally multiply the electron equation of motion (two slides
before) with k and we take:

−iωmeno (k ×υe ) = −enok × (υe ×Bo )

υex = −
iω
Ωe

υey

υez = +iυey
kz
kx

Ωe

ω
1−ω

2

Ω2
e

#

$
%%

&

'
((

(1)
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Low Frequency Electrostatic waves propagating transverse to external B field

Lower Hybrid Frequency (LHF)  

Electron continuity equations becomes:

kxυex + kzυez =ω
ne1
no

⇔ω
ne1
no

= kx −
iω
Ωe

"

#
$$

%

&
''+ kz

+iΩe

ω

!

"
#

$

%
&
kz
kx
1−ω

2

Ωe
2

"

#
$$

%

&
''

(

)
*
*

+

,
-
-
υey

By substituting υey in the previous relations for υex, υez we have written υex, υez as
Functions of ne1. Substituting in eq (1) of the previous slide and considering me<<mi,
we obtain the dispersion relation:

1−
k 2c2s
ω 2

+
Ωi

ω
1

−
ω
Ωe

+
Ωe

ω
kz
2

kx
2 1−

ω 2

Ωe
2

#

$
%%

&

'
((

−
1

ω
Ωi

−
Ωi

ω
kz
2

kx
2 1−

ω 2

Ωi
2

#

$
%%

&

'
((

)

*

+
+
+
+
+

,

-

.

.

.

.

.

= 0

cs
2 =

γekBTe +γ ikBTi
mi

General dispersion relation
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Lower Hybrid Frequency (LHF)  

If for instance kx=0 (k//Bo) we obtain : as we have previously
calculated for Bo=0 (ιοντακουστικές ταλαντώσεις).

ω 2 = cs
2kz
2

If kz=0 the dispersion relation is 1−
kx
2c2s
ω 2

−
ΩiΩe

ω 2
−
Ωi
2

ω 2
= 0

Because we have:Ωi
2 << ΩiΩe

ω 2 = cs
2kx
2 +ΩeΩi

When we have:kx → 0 ωLH
2 =ΩiΩe This is the Lower Hybrid Frequency –

κάτω υβριδική συχνότητα
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High Frequency Electromagnetic waves propagating transverse to external B field 

For E1 parallel to Bo we can take  Bo=Boz, E1=E1z, k=kx
The wave equation is (as in the case for EM waves with Bo=0)

Perpendicular propagation , if we take transverse waves with there
are two choices, 1) E1 can be parallel to Bo and 2) E1 can be perpendicular to Bo

k ⊥ Bo k ⊥ E1

Ordinary wave k ⊥ Bo ,E ||Bo

ω 2 − c2k 2( )E1 = −iω j1εo
=
inoeωυe1

εo
j1 = −enoeυe1 noe = no

Because  E1=E1z, we need only the υez component which is given by the 
particle equation of motion

me
∂υez
∂t

= −eEz
Since everything is the same as the equation with B=0 
the dispersion relation is:

ω 2 =ω pe
2 + c2k 2

remember
υe1 / /E1⇒ υe1 ×Bo = 0

So the O-wave does not feel the existence
of the external Bo
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Perpendicular propagation ,transverse waves , E1 perpendicular to
Bo

k ⊥ Bo k ⊥ E1

Extra-ordinary wave k⊥Bo,E⊥Bo

When E1 is perpendicular to Bo, the electron motion will be affected by Bo since
υxBo force is not zero as for the previous case (ordinary wave)

To treat this case we can take Bo=Boz,, k=kx . However, for the E1 someone
should allow for the development of one more component along k, so even if we
start with E1=E1y the E1 for generality can be E1=Exx+Eyy (Actually, it turns out
that the wave will become elliptically polarised instead of plane (linearly)
polarised, so it will become partly longidudinal and partly transverse.

Extraordinary case
(initial)

Ordinary case
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The system of equations is:

mene (
∂υe
∂t

+ (υe ⋅∇ )υe ) = −ene E+υe ×B$% &'
∂ne
∂t

+∇ ⋅ (neυe ) = 0

j = −eneυe∇ ×E = −∂B
∂t

∇ ×B = µo ( j +εo
∂E
∂t
)

The linearised system of equations is (linearised as in previous cases):

meno
∂υe1
∂t

= −enoE1 − noυe1 ×Bo

j = −enoυe1

∇ ×E1 = −
∂B1
∂t

∇ ×B1 = µo ( j +εo
∂E1
∂t
)

neo = none = neo + ne1
υe1 =υe10e

i (kx−ωt )

E = E1υe =υeo +υe1
ne1 = ne10e

i (kx−ωt )
E1 = E01e

i (kx−ωt )

B = Bo + B1

B1 = B01e
i (kx−ωt ) υeo = 0
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The three linearised equations become:

−iωmeυx = −eEx − eυ yBo
−iωmeυ y = −eEy − eυxBo
ikEy = iωB1
−ikB1 = −enoυ y − iωEy
0 = −enoυx − iωEx

υx =
e
mω

−iEx −
ωc

ω
Ey

"

#
$

%

&
'

1

1−ωc
2

ω 2

"

#

$
$
$
$

%

&

'
'
'
'

υ y =
e
mω

−iEy −
ωc

ω
Ex

"

#
$

%

&
'

1

1−ωc
2

ω 2

"

#

$
$
$
$

%

&

'
'
'
'

Replacing into the first two and
taking into account that:

ω pe
2 =

nee
2

εome

From the last three:



Waves in plasmas
High Frequency Electromagnetic waves propagating transverse to external B field 

ω 2 1−
ωc
2

ω 2

"

#
$$

%

&
''−ω pe

2 i
ω pe
2 ωc

ω

ω 2 − c2k 2( ) 1−ωc
2

ω 2

"

#
$$

%

&
''−ω pe

2 −i
ω pe
2 ωc

ω

(

)

*
*
*
*
*
*

+

,

-
-
-
-
-
-

Ex
Ey

(

)

*
*

+

,

-
-
= 0

0

(

)
*

+

,
-

For Ex, Ey, other than zero this
system has a solution only if
the determinant is zero

Taking into account that: ω pe
2 +ωc

2 =ωUH
2 =ωh

2

ω 2 −ωh
2( ) ω 2 −ωh

2 − c2k 2 1−ωc
2

ω 2

!

"
##

$

%
&&

'

(
)
)

*

+
,
,
=
ω pe
2 ωc

ω

!

"
#
#

$

%
&
&

2

c2k 2

ω 2
=

ω 2 −ωh
2 −

ω pe
2 ωc( )

2

ω 2 ω 2 −ωh
2( )

"

#

$
$
$

%

&

'
'
'

ω 2 −ωc
2

Replacing back the (ωh)2

and multiplying through
with ω 2 −ωh

2 we find:
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c2k 2

ω 2
=
c2

υϕ
2
=1−

ω pe
2

ω 2

ω 2 −ω pe
2

ω 2 −ωh
2

Dispersion relation for the 
extraordinary wave (X-wave

Cutoff and Resonance frequencies for the X-wave

For ω ωh so that a resonance occurs at a point in the plasma where:

This is the dispersion relation for electrostatic waves propagating across Bo. As the
wave approaches the resonant point both its phase velocity and its group velocity
approach zero and the energy is converted into upper hybrid oscillations. The
X-wave is partly electromagnetic and partly electrostatic, so at resonance this wave
losses its electromagnetic character and becomes an electrostatic oscillation.

k→∞ →

ωh
2 =ω pe

2 +ωc
2



The cutoffs of the X-wave are found by setting k equal to zero at the dispersion relation.
After some easy algebra we conclude to the following equation:

Waves in plasmas
High Frequency Electromagnetic waves propagating transverse to external B field 

1−
ω pe
2

ω 2

"

#
$
$

%

&
'
'

2

=
ωc
2

ω 2
⇔1−

ω pe
2

ω 2
= ±

ωc

ω
⇔ω 2 ωωc −ω pe

2 = 0⇔

ωR =
1
2
ωc + ω pe

2 +
1
4
ωc
2!

"
#

$

%
&

1/2

ωL = −
1
2
ωc + ω pe

2 +
1
4
ωc
2!

"
#

$

%
&

1/2⇔
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The cutoff and resonance frequencies divide the
dispersion diagram into regions of
propagation and non propagation.

ü At large ω (or low density) the phase velocity
approaches the velocity of light.

ü As the wave travels further the phase velocity
increases until the right hand cutoff ω=ωR is
met. There the phase velocity becomes infinite.

ü Between ω=ωR and ω=ωh the (υφ)2 is negative
and propagation is prohibited.

ü At ω=ωh there is a resonance and υφ goes to
zero.

ü Between ω=ωh and ω=ωL propagation is again
allowed. In this region the wave travels either
faster or slower than c depending on whether ω
is smaller or larger than ωpe.

ü From the dispersion relation it is clear 
that at ω=ωpe the wave propagates at 
the velocity of light. 

ü For ω<ωL there is another region of 
non propagation. 
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ü Only one cutoff

ü No resonance.

9.5 Propagation Parallel to B 175

Evanescent

Cutoff layer
- reflection

Resonant layer
- absorption

Incident energy

←

λ ∞

←λ 0

(a)

(b)

Figure 9.2: (a) Near a cutoff, the wave field swells, the wavelength increases and

the wave is ultimately reflected. (b) near a resonance, the wavefield diminishes,

the wavelength decreases and the wave enrgy is absorbed.

For the right hand wave,

vφR =
(

ω

k

)

R
=

c(1 − ωce/ω)1/2

(1 − ωce/ω − ω2
pe/ω

2)1/2
(9.34)

This is real for ω > ω0R and ω < ωce.

At low frequencies, the left hand and right hand waves merge to become the
torsional Alfvén wave propagating along B at phase velocity VA. This behaviour
is shown in Fig. 9.3 which plots the phase velocity versus frequency for waves
propagating parallel to the field.

At high frequencies ω ≫ ωce Eq. (9.29)

c2

v2
φ

= 1 −
ω2

pe

ω2
. (9.35)

This is the dispersion relation for an electromagnetic wave in an unmagnetized
plasma (as might be expected). Note that the phase velocity is greater than c
for this wave. When the wave frequency is much greater than both magnetic and
plasma frequencies, we obtain vφ = c and the wave is an electromagnetic light
wave that is insensitive to the presence of the conducting plasma.

For the O-wave:
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Let’s consider that k lies along z axis and allow E1 to have both transverse
components (general case)

Wave equation: ∇ × ∇ × E1( ) =∇ ∇ ⋅Ε1( )−∇ 2E1 = −∇ ×
∂
∂t
B1

ω 2 − c2k 2( )Ex =
ω p
2

1−ωc
2

ω 2

Ex −
iωc

ω
Ey

"

#
$

%

&
'

ω 2 − c2k 2( )Ey =
ω p
2

1−ωc
2

ω 2

Ey +
iωc

ω
Ex

"

#
$

%

&
'

δ ≡
ω p
2

1−ωc
2

ω 2

Setting determinant equal to zero:

ω 2 − c2k 2 −δ( )Ex + iδωc

ω
Ey = 0

ω 2 − c2k 2 −δ( )Ey − iδωc

ω
Ex = 0

⇔

ω 2 − c2k 2 −δ( )
2
=
δωc

ω

"

#
$

%

&
'

2

= 0 ⇔ ω 2 − c2k 2 −δ = ±δωc

ω

remember
ωc ≡Ω



High Frequency Electromagnetic waves propagating parallel to external B field 

…k lies along z axis and allow E1 to have both transverse components
(general case)

Waves in plasmas

⇔ω 2 − c2k 2 −δ = ±δωc

ω
ω 2 − c2k 2 = δ 1±ωc

ω

"

#
$

%

&
'=

ω p
2

1−ωc
2

ω 2

1±
ωc

ω

"

#
$

%

&
'=ω p

2
1±ωc

ω

1+ωc

ω

(

)
*

+

,
- 1−

ωc

ω

(

)
*

+

,
-

=
ω p
2

1ωc

ω

The sign shows that two solutions of two different waves that can propagate
along Bo exist. Their dispersion relations are:


remember

η ≡
c
υφ

=
ck
ω

η2 =
c2k 2

ω 2
=1−

ω p
2

ω 2 1−ωc

ω

"

#
$

%

&
'

η2 =
c2k 2

ω 2
=1−

ω p
2

ω 2 1+ωc

ω

"

#
$

%

&
'

R-wave(-)

L-wave(+) 



High Frequency Electromagnetic waves propagating parallel to external B field 
Waves in plasmas

Since these equations depend only on k2 the direction of rotation of the E vector is
independent of the sign of k thus the polarisation is the same for waves propagating
in the opposite direction.

R-wave(-) Right hand circular polarisation
L-wave(+) Left hand circular polarisation

Cutoff and Resonance frequencies for R and L waves

k→∞For the R wave at ω=ωc the wave is therefore in resonance with the cyclotron
motion of the electrons. The direction of rotation of the polarisation plane is the same
as the direction of the gyration of electrons so the wave loses its energy in continuou-
sly accelerating the electrons and therefore cannot propagate.

The Lwave does not have a cyclotron resonance with the electrons because it rotates
in the opposite direction. Actually as seen from its dispersion relation the L wave does
not have a resonance for positive ω (in some considerations ω can take negative values).
(If we had included ions motion, the L wave would have a resonance at ω=ωci)



ωR =
1
2
ωc + ω pe

2 +
1
4
ωc
2!

"
#

$

%
&

1/2

ωL = −
1
2
ωc + ω pe

2 +
1
4
ωc
2!

"
#

$

%
&

1/2

Waves in plasmas
High Frequency Electromagnetic waves propagating parallel to external B field 

Remember that in our convection ω is always positive and waves propagating in the
– direction (i.e. –x) are described by negative k.

ü Same equations as for the cutoffs of
the X-wave

ü The R-wave (-) has the higher cutoff
frequency ωR while the L-wave (+)
has the lower cutoff frequency

Cutoffs: For k→ 0
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The dispersion diagram for the R and L waves.
Regions of non propagation are for υ2

φ/c2 < 0

ü The L wave (+) has a stop band at low
frequencies and it behaves like the O-
wave except that the cutoff occurs at
ωL instead of ωp

ü The R-wave (-) has a stop band
between ωR and ωc, but there is a
second band of propagation with υφ< c
bellow ωc. The wave in this low
frequency region is called the
“whistler mode” (σφυριχτά) and is of
extreme importance for ionospheric
phenomena

Whistler mode



Summary
The principal electromagnetic waves propagating along Bo are a Right-hand (R)
and a Left-hand (L) circularly polarised wave, the principal waves propagating
across Bo are a plane-polarised wave (O-wave) and an elliptically polarised wave
(X-wave)

Waves in plasmas
High Frequency Electromagnetic waves propagating parallel to external B field 



Faraday rotation

Waves in plasmas
High Frequency Electromagnetic waves propagating parallel to external B field 

From the previous diagram it is clear that for large ω, the R wave travels faster than
the L wave. Consider the plane polarised wave to be the sum of an R wave and an
L wave (of course at the same frequency).
After let’s say N cycles, the EL and ER vectors will return to their initial positions.
However, after propagating a given distance d in a plasma the R and L waves will
have undergone a different number of cycles since they require a different amount
of time to cover the distance.

9.6 Propagation Perpendicular to B 177

Faraday rotation

Above ω0R both left and right handed waves propagate, but at different phase
velocities along the magnetic field. After crossing the plasma, the phase of the left
hand wave has increased more than the right because of its lower phase velocity
(it takes longer to get there). The resulting wave emerging from the plasma will
have had its plane of polarization rotated as shown in Fig. 9.4. The total rotation
angle ψ van be used to measure the internal magnetic field:

ψ ∝
∫ L

0
dℓ neB∥dℓ (9.36)

B0

EL ER+ =

+ =
θ/2

θ

RH

RH

LH

LH

EREL

Figure 9.4: The principle of Faraday rotation for an initially plane polarized wave

propagating parallel to the magnetic field.

9.6 Propagation Perpendicular to B

In this case, the solutions to Eq. (9.24) are simply

n2 = P

n2 = RL/S. (9.37)

We examine the two solutions in turn.

The principle of Faraday rotation

Since the L wave travels more slowly (in a plasma)
it will have undergone N+a cycles at the position
where R has undergone N cycles

A plane polarised wave is the sum of left and right
Handed circularly polarised waves

The plane of polarisation is rotated
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Electron waves (electrostatic):

ω 2 =ω p
2 +
3
2
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2 Plasma oscillations
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Bo = 0
or
k / /  Bo
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2 +ωc

2 Upper hybrid oscillations

Ion waves (electrostatic):
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Acoustic waves

k ⊥ Bo

ω 2 =Ωc
2 + k 2υs

2 Electrostatic ion cyclotron
waves

ω 2 =ωl
2 =Ωcωc

or

Lower hybrid oscillations
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Electron waves (electromagnetic):

ω 2 =ω p
2 + k 2c2Bo = 0 Light waves
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X - wave
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R - wave
whistler mode
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L - wave
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Ion waves (electromagnetic):

Bo = 0

k ⊥ Bo

k / /  Bo

There is no electromagnetic
wave

ω 2 = k 2υA
2 Alfvèn wave

ω
k 2

2

= c2 υs
2 +υA

2

c2 +υA
2

Magnetosonic wave

no

The above dispersion relations cover the main propagation
geometries



e.m. waves in a magnetised plasma
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