WELCOME TO T.E.l. CRETE
Department of Electronic Engineering
Faculty of Applied Sciences
Centre for Plasma Physics & Lasers (CPPL)
http.//www.cppl.teicrete.qgr/

PowerlLaPs
High Power Laser Plasma Physics

Prof. Michael Tatarakis
Director CPPL
PowerlLaPs
Rethymno 02-13 July 2018

Bl rasmus+ ©“COoOL



http://www.cppl.teicrete.gr/

“In principle our knowledge is limited as it is in the
far interior of matter” , 4th century bc
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Plasma is a partially or completely ionised
medium, presents a collective behavior
(unlike the ideal gas). It is considered as
the fourth state of matter (unlike the ideal
gas)

t is named "plasma" «mA&opo» by |.
_langmuir and L. Tonks " O
Plasma should not contain more

than 1% neutral atoms or molecules
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* |t Is @ magnificent material

* |t is very selfish, does not like
external influences but likes group
work

* It has mind on its own
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 Plasma is the “fourth state” of
matter

Consists of electrons, ions and neutral atoms

Index of refraction < 1

99% of matter of the visible Universe is in
plasma state
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IS any ionised gas plasma?
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* Definition of plasma

A quasineutral gas of charged and neutral
particles which exhibits collective behavior

Quasineutral:

The plasma is neutral enough so that one can take ny~n,~n

Collective:

Plasma charges move around and generate local concentrations
of positive and negative charge and therefore electric fields.
Also, motion of charges generates currents, thus magnetic
fields. These fields affect the motion of other particles far away.
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Debye shielding

Poisson’s eq.

© o © o d’ e
© C @___ @ Debye sphere V2¢ d ¢ —(i’li —I’le)
© @ ) - / X €,
n.=n, /=1
°©% | @69 e .
© b — -Debyelength  Electron distribution function
Lo ©0) _ 1
@ — © f(u)=C exp[—(—mu2 + q(p) / kT, ]
C O © 2
® © g=-¢ ) ¢
— () = d
ne(q) )=n_ {f(u) u=n, exp(kT)
2
d(f=en expﬁ 1= _¢+__¢+
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Debye shielding
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The plasma parameter

Number of particles in the Debye sphere

3/2
N, = nfsz; _1.38x10°~

: o TCK)

Collective behavior requires:

A, << L
N, >>1



Plasma Ne T B AD Np  wp Vee W, rr

(m™%) (K) (T) (m) (s7H) ) ) (m)
Gas discharge 101 10* — 10-% 10 10" 10° — —
Tokamak 1020 108 10 1074 10% 10" 104 1012 107°
Ionosphere 1012 103 107> 1073 10° 10° 103 109 10~1
Magnetosphere 107 107 107®% 10* 10 10° 107® 10° 104
Solar core 1032 107 — 10~ 1 10 10— —
Solar wind 106 10° 107 10 10t 10° 1079 102 10
Interstellar medium 10° 104 10719 10 1010 104 107° 10 10*
Intergalactic medium | 1 10 — 10° 10t 10* 1071

Source: Chapter 19: The Patrticle Kinetics of Plasma
http://www.pma.caltech.edu/Courses/ph136/yr2004/
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Plasma Criteria

A, << L
N, >>1

T > 1

w Is the frequency of typical plasma oscillations
T Is the mean time between collisions with neutral
atoms
n,=10m3, T=1keV, Ap,=20um
n=10m=, T=10eV, A,=3m




For a plasma- Saha equation

l.e. hydrogen plasma in
thermodynamic equilibrium

N,=N, N,
n,=n, n,
Total density:

n=n +n, =nn+np

gas temperature: T°K
lonisation energy: E,



Megh Nad Saha
“Saha equation”

- (2amkT)” B 2k
£=( e3 ) e KT =2.4x1015T—e AT
n nh n.

n l

T=300°K, E=14,5eV (nitrogen), n,.=3x10%°m?

n. ~122
Ll 10
n

n



lonisation rate
Hydrogen atoms
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Kind of plasma

Electrical discharges

Earth’s ionosphere

Solar wind

Solar corona
Tokamak

White dwarfs
Hydrogen bomb
Interplanetary space

Laser plasma

Density n [cm-3] Temperature T [K]

~1010
~106
~10
~109
~1015
~1030
~1030

~102— 1

~10,000
~1,000

Te ~ 500,000, Ti ~ 100,000
~10,000,000
~100,000,000
~10,000
~100,000,000,000

~100

@
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N ouxvoTNTO MAACHATOC Elval :

Plasma frequency

H e€lowon kivnong twv nAektpoviwv elval:
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Some important plasma parameters

n,e _
Plasma frequency @, = ; em =5.64 x10*n!radsec™
iti i W m,ge, 21 1Mm 3
Critical density n, = =1.113x10 cm”
e’ A
1/2 1/2 21 1/2
T T 10
Debye length Ay, = 8"sz€ =2.35x 10'8( < ) —| cm
n,e leV n,(cm”)
4 .3 6312 ;172
Debye number N, = ”gﬂ)"o =1.38x10°T"""/n

Average number of electrons in a plasma contained within a Debye sphere



The Plasma as a Fluid

In a real plasma the positions and motions of the particles (electrons, ions and
neutral atoms) are determined by randomness due to thermal effects and unexpected
internal or external perturbations. The E and B fields are therefore also determined
by the motions of the particles in the plasma and the currents that are generated due
to the external or internal perturbations.

Since the density of the plasma can vary from ~10!? particles/cm’® up to ~10%*
particles/cm?, it is obvious that in order to study the plasma dynamics it is really
almost impossible to follow each particle’s trajectory in time and its interaction
with the other particles and the time varying generated E and B fields.

Fortunately, most of the plasma phenomena for experimentally generated plasmas
(1.e. using lasers or pulsed power devices such as Z or X-pinches or Tokamak, can
be well described using fluid mechanics physics such as the plasma is fluid*. In this
case the behaviour and 1dentity of the individual particles is not taken into account
and instead, the motion of fluid elements using the fluid equations adapted to the
plasma conditions (and the fact that the fluid contains charged particles as well as E

and B fields) are implemented.

*1.e., see the plasma generated by lasers and collisions in the next slides



The Plasma as a Fluid

Can we really use the eq. of motion of a single
particle to describe a plasma? 0102 el/em™

n~10'® el/cm-3

Jt

A
“““
.

‘‘‘‘
‘‘‘‘‘
-
Py

k

noo

target E . I B (s polarised-O-wave)

A laser generated plasma i1s comprised of

regions with high charge density as well as

regions with lower charge density. Density

scale-length is of the order of um!
Within a few um the charge density 1s dropped
a few orders of magnitude!!



The Plasma as a Fluid - Maxwell’s equations

I3

(1) V-E = —f Gauss’ s Law for electricity V-D= o i
80

2) V-B=0 Gauss’ s Law for magnetism V- B = ()

JB Faraday' s Law of B
G) VXE =- W induction (emorycyn) VxE=- E

: ok dD
(4) VXB=M J,tTE —) Ampere’sLaw  VxH =7 . +—
ol *%0 ot T o
D=c¢cE=¢ E+P B=u H ls\:llfc%:;ttiigility

P=¢x E 8=(1+Xg)80 ‘um=(1+Xm)M0 M= H



The Plasma as a Fluid - Maxwell’s equations

In equations (1) and (4) p, and J; are the “free” charge and current density. The
“pound charge” and current densities arising from the polarisation and
magnetisation of the plasma (like 1n a dielectric medium) are included in the
quantities D and H, which are the electric displacement field and magnetic field
H (same name as the magnetic field B) respectively.

The total charge density is O, = 0, + 0,. So in a plasma the Gauss law would write:

V-D=p, =V-(gE+P)=¢ (1+x,)E

D=8E=80E+P

P=¢ x E 8=(1+X8)€0

H= —-M. B=u (H+M)



The Plasma as a Fluid

Convective derivative

Definition of Convective Derivative:
A derivative taken with respect to a moving coordinate system, also called the
Langrangian derivative, substantive derivative, or Stokes derivative. It is given by:

where 1s the gradient operator and v 1s the velocity of the fluid. This type of
derivative is especially useful in the study of fluid mechanics. When applied to v,
Dv  Jv

|
= +(VxvIxv+V(=v
Dt ot ( ) (2 )

(A-V)A=V(%A2)—Ax(V><A)

If there are no collisions and no thermal motion, all particles in a fluild move
together. The average velocity of the fluid in an element equals the individual
particle velocity.



The Plasma as a Fluid

Conservation of matter

The total number of particles can be altered only if there 1s
a net flux of particles across the surface S which bounds the

volume V & : v
_,f""/f Az
Particle flux density: J = nv —
Divergence theorem: f ) (V-A)dV = gﬁs A-dS

N

oN on
E= ngV=—Sﬁsnv'ds——fVV'(n’U)dVforanyvolumeV ==

on Equation of continuity for
E +V: (nv) =0 each specie of the plasma



The Plasma as a Fluid

Equation of state

=Cn’ : . : _2+N
p=_Ln y 1s the ratio of the specific heats C /C, 7= YA
N 1s the number of degrees of freedom
Vo Vi isothermal change y=1
— =Y—— adiabatic/isotropic 3 degrees of freedom y=>5/3
P I adiabatic 1 degree of freedom y=3
prove this adiabatic 2 degree of freedom y=2

1sothermal compression:
ideal gas: p =nKT Vp=V(nKT)=KTVn

n= 7 particle density



The Plasma as a Fluid

Convective derivative

In the absence of collisions and thermal motion, the fluid equation could be
obtained by multiplying the equation of motion by the density of the species n

mn&—v—qn(E+va)

ot
In eq. of motion, time derivative 1s taken at the position of particles
(remember the non uniform E - finite Larmor-radius treatment).
But we are keen to have an equation for fluid elements fixed in space,
thus need a transformation to variables in a fixed frame. Assume G(x,?) to be
any variable of fluid.

dG(x,t) _9G 3G dx_9G 3G _DG

ot dx dt ot " ox Dt
/ Change of G as the observer moves

Change at a fixed point with the fluid into a region in which G
1s different

dG(x,) 0G
dt ot

3D: +(v-V)G v -V 1s a scalar differential operator



The Plasma as a Fluid

If there are no collisions and no thermal motion, all particles in a fluid move
together. The average velocity of the fluid in an element equals the individual
particle velocity.

For a plasma G=v the fluid velocity:

oV Time derivative in a

v -
(== + (V)W) =gn(E+vxB) 5= fied frame

Thermal motions:

If thermal motions are considered, a pressure force has to be included in the
equation due to the random motion of the particles in the plasma fluid.

y

e "

(X,, 1/20y, 1/207)

Lets consider for simplicity only
the x component of the motion.




The Plasma as a Fluid

Ordinary fluid dynamics
Navier — Stokes equation

Viscosity term,
y 1s the kinematic viscosity
coefficient

(1) p(i—zt} +(v-VYv=-Vp+pwWv«——

Comparison with the plasma motion equation:

mn(v-uv )

(2)mn(a—v+(v°V)v=qn(E+va)—V-P—
ot T

va2U —> Viscosity term corresponds to the collisional part in the fluid eq.

Equation (1) describes a collisional fluid with frequent collisions between
particles.

Equation 2 was derived without “collision rate” definition between plasma
species, but eq. (2) indeed can describe the plasma species. Since we used the
Maxwellian velocity distribution we implicitly considered collisions.




The Plasma as a Fluid

The complete set of equations

V- E = pq — niqi-l_neqe
80 80
JB
VxXE=-——
ot

VxB=,u0(j+30i)—E)=
[

=u (nqu.+nquv +&

V-B=0

oE
¢ at)

-] = niqivi T neqeve

pq = niqi T neqe

All charges are included in p,, bound
& free



Waves 1n plasmas
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VxE=—§

ot
VxB=u0(j+80@)=
ot

JE
= ‘uo (niqivi + neqeve + 80 E)

V-B=0

-] = niqivi t neqeve

’Oq - niqi +neqe

Waves in plasmas

1. Linearisation of plasma equations:
S=5 +S
0 1

S is the plasma variable in equilibrium

$, 1s the perturbation of the plasma
variable in equilibrium

2. the perturbation 1s a planar harmonic
wave around the point of equilibrium S:

_ i(k-r-wt)
S1 = Sme

3. Solve the linearised equations of the
plasma to find the dispersion relation w(k):

4. We 1gnore the influence of the oscillations
on the unperturbed quantities 1.e. S, ):



Plasma - One Fluid Equations - ME

Current density:  J(r,t) = e(nl.’ul. — neve) J=nquv +ngqu,
’Oq B niqz’ +neqe
Charge density: 0 q (rf)=e (ni B ne) For electrically neutral plasma:
, Jelle ~ qiB;
Mass density: pm(r,t) = (neme + niml.) =nm.
because m, <<m. n =n
For isotropic plasma:
Pressure: pP=p,*+D,

2
p.=nmu’ =n.KBT].
Mass centre vel. J JoJ J
of fluid: v= (minivi + meneve )/pm
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MHD Equations




Waves in plasmas P

A\

PowerLaPs

> Hg Power Laser Plasma Physics

Ideal Magneto-Hydro Dynamics (Ideal MHD

[f we also consider that there 1s no accumulation of space charge 1.e. p,=0, the
Simplified MHD equations including Maxwell equations are:

Closed system of equations — Good luck!!

BB rasmus+ OO\




Waves 1n plasmas

Sound waves in a fluid: 1on acoustic waves 1n a plasma

Navier-Stokes — no viscosity

Vp _ VD,
- = ’)/
P P,
Continuity equation
ideal gas: p = ———
m
Linearising about a stationary equilibrium with uniform p, and p_: (keep only 1%t order
_ n ei(k-r—a)t) . . terms)
Lo = P T Prio Oscillation about the density p, of the fluid

v=v +U, g/ thr-on v =0 Fluid is immobile and we investigate the vibrations

of its velocity
—iwp, +p ik v, =0 Continuity equation k= kx, and v=vx

—lwp v, = -y &ik 0, Navier-Stokes Eliminating p,-

(0]



Waves 1n plasmas
Eliminating p,. p KT

: P
, ikv m
po lkpmo. 1©O)2U1=k2)/ po v =
Poo lw Pro
Sound waves velocity in a neutral gas. These

1
are pressure waves which propagate through
collisions among the air molecules.

_iwpmovl = _y

Low frequency oscillations because of the

In a plasma: Ion acoustic waves .
large mass of the 1on.

For the electrons we

[on fluid equation: assume m,=0
Low frequency so we use

plasma approximation, so:
nl. = I’le =N

Linearising (assuming plane waves): —jwmn v.. = —eik¢ -y KTikn
i o il 1 L i 1




Waves 1n plasmas

Ion sound waves in a plasma

The balance of forces on electrons requires:

eg, Boltzmann relation for electrons
KT, €¢1
n=n=ne °=n|l+ +... e
KTe n =n eKTe
e oe
Since E, =0, ¢ =0: Electrons are very mobile that their heat

conductivity is huge! So we can consider
1sothermal electrons 1.e. y=1

The perturbation in the electron and therefore the 1on density can be written:

ep,

n=n KT Linearising the 1on equation of continuity:
e
on on
—+V:-(nv +nv,)=0=—+nV-v +v -‘Vn)=0<
at_ o 1 4 at o L L o

< —iwn, = -n ikv
0 tl



Waves 1n plasmas
Ion sound waves in a plasma

So the set of equations are:

—iomn v, =—eik¢ -y KT ikn,

. . 1 19}
—in, =-n ikv KT,
0 el

Substituting for ¢, and n, in the equation of motion:

KT kv, KT +y KT
iwminovil — enoik e 4 )/LKT;lk nol. U,l Py 0)2 _ k2 e )/L .
en LV m.

o l

Ions suffer 1-D compression due to the
plane wave we can use y=3.

Electrons are so fast that they have time
to equalise their temperature everywhere,
so they are 1sothermal and y_=1.

Dispersion relation of 1on acoustic wave — vy 1s the sound speed in a
plasma



Waves 1n plasmas
Electron waves in a plasma

B=0 1.e. non magnetised plasma T,=T,=0 1.e. no thermal motion, 1ons are fixed in
space and have uniform distribution, plasma is infinite in space.

Let’s display electrons from the uniform 1on background: E-field will be generated to
restore neutrality.

Equation of motion for electrons: Continuity equation:

We chose 1D for simplicity

Linearisation:
n,=n,+n. U=V 4V, E=F +F

_ i (bx—oot) _ i (bx—oot) _ i (bx—oot)
v =, e n=n.e E = Eoe



Waves 1n plasmas

Electron waves in a plasma

Initial conditions (uniform neutral plasma): In equilibrium: n, .=n_, and n;;=0

Vn =v =E =0 in =iv =iE -0

0 because quadratic

0
From Poisson’s equation:

Since n;,= N,
and n,=0 by the
assumption of
fixed ions




Waves 1n plasmas

Electron waves in a plasma

So there are three equations and three unknowns, linearising:

—Jomv. =—-eE Eliminating n, and E,
e 1 1
: 2
: : . —e —n ikv, ne
—iwn, =-n ikv, —iomv, =-e- o L=—i—v,
? tke  —iw £ W
ike £ =—-en -
o 1 1 ) n082 Characteristic plasma
— W = rad/sec frequency
m€80
2
Plasma frequency , ne
@ does not depend on & W = —2
49 L pe
pe _ f ~0 / 7 Group velocity 1s zero me.
21 pe € No propagation

[, ~9GHz!for n =10"m™ [, ~28GHz/Tesla




Waves 1n plasmas

Thermal electron waves in a plasma

Vp, =3KT Vn,

3
W’ =’ +=kv?
p 2 th
/
/4/
P Ay

OCOPL



Waves 1n plasmas

Magnetised plasmas

The existence of an external B, adds one more parameter to the cases we have studied
1.e.:

Electrostatic waves (B,=0) of low or high frequencies,

Electromagnetic waves (B,#0) of low or high frequencies,

The new parameter is now whether the propagation is:
1) Perpendicularto B: k- B =0
2) Parallel to B: kxB =0

Note that waves travelling parallel to the perturbation E are longitudinal i.e. kx E =0
while waves travelling perpendicular to the perturbation E, are transverse i.e. k- E =0

Home work: Show that all electrostatic waves are longitudinal and vise versa and that
all transverse waves are electromagnetic but the opposite 1s not true.



Waves 1n plasmas

High Frequency Electrostatic waves propagating transverse to external B field
Upper Hybrid Frequency (UHF)

We will apply the same approaches as in non magnetised plasmas, “cold plasma”,
T.=T=0 1.e. no thermal motion (thus P,=P,=0) 1ons are fixed in space and have uniform
distribution, plasma is infinite in space. Since the waves have high frequency, 1ons can
be considered immobile because of their large mass.

Since electrostatic waves are longitudinal, k x E, =0 and we also consider
that k-B =0

To 1dentify the dispersion relation the following equations are needed:

J
mn ( ;e +(v, Vv )=-en, [E1 +vU X BO]

ane
ot

+V-(nv )=0

eV-E =e(n -n) N =N =N

10 €eo o




Waves 1n plasmas

High Frequency Electrostatic waves propagating transverse to external B field
E Upper Hybrid Frequency (UHF)

X

Bk Lets consider that E ,=E,x, k=kx, B.=B_z

Yz In order for the eq. of motion to be obeyed, v, should lye on the (x,y) plane

Linearising the three equations (motion, continuity, Poisson) and keeping first order
terms:

_eE] — ev B _ia)m (¥ = ev B | 1 WAVE FRONTS
ely 0 e ely 0 / )

elx 0

el )
Geometry of a longitudinal plane
wave propagating at right angles to B,.

—iwm v
e elx

—ion _+ikn v, =0 ike £ =—en
el o elx o 1

From the first two (eq. of motion):  Substituting in the third (continuity) and using

¢E, r the fourth (Poisson):

QZ
1%
(40,

e

elx

im
e




Waves 1n plasmas

High Frequency Electrostatic waves propagating transverse to external B field
Upper Hybrid Frequency (UHF)

The upper hybrid frequency (mdvm vPp1okn cuyvotnta) is equivalent to the plasma
Frequency for waves travelling transverse to the external magnetic field.

The electrons perform an additional cyclotron oscillation due to the presence of the
external magnetic field.

Group velocity 1s zero as long as thermal motion is neglected.

Electrostatic electron wave along B, are the usual plasma oscillations with o=w,

Home work 1: Why in the above analysis we ignored the last three Maxwell’s
equations (Gauss’s law for magnetism, Ampere’s law, Faraday’s law) and we used
only the Poisson’s equation.



Waves 1n plasmas

Low Frequency Electrostatic waves propagating transverse to external B field

Lower Hybrid Frequency (LHF)

Since electrostatic waves are investigated, only Poisson’s equation could be used
From the Maxwell's equations, but since frequency 1s low 1ons can follow the
vibrations of electrons and n,;=n;;. So we have to use the equations of motion and
continuity for both ions and electrons, thus the equations which describe the

propagation of such waves are:

v,
ot
o,
Jt

mene (

m.n. (

+(, Vv )=-en, [E1 +vV X BO]
+(v,"V)v,)=-en|E +v,xB,|

n =n =n

10 €eo o

8ne
dt
on.

l

ot

+V-(nv, )=0

+V-(nv,)=0

After linearisation:




Waves 1n plasmas

Low Frequency Electrostatic waves propagating transverse to external B field
Lower Hybrid Frequency (LHF)

oV on
mn —<=-ykTVn_ —en [E1+v xB] <L+nV-v =0
e O 0')t e e e o e (0] at
ov. on
mn —t=-yk TVn +en [E1 +v.xB ] <L+nV-v =0
1 0 &t l l e (0] l o at
VP, =yk TV,

where we have used that n,;=n;; As previously B, =Bz, and the waves propagate
on the (x,z) plane parallel with the perturbation

i(k'r-wt)
€ of the E field, k/E;,

solutions ~

Add by parts:

—iwon (mv_+mv,)=—ikn (v kT +ykT)+en (V.-V )xB



Waves 1n plasmas

Low Frequency Electrostatic waves propagating transverse to external B field
Lower Hybrid Frequency (LHF)

wn

From the continuity equations : k- =k-v =—4 So equation of motion
n becomes:
. 2 n 1 .7 2
—iw'n (m,+m,) ne =—ik'n (v kT +yk,T)+en k-[(v,-v )xB ] (1)

o
But to find the dispersion relation from this

k-l(v,-v)xB ]=k[(v,-v,)B,] equation we need to express the velocities as
functions of the density.

For this reason we externally multiply the electron equation of motion (two slides
before) with k and we take:

—

10
Uex=_ Uey
Qe
—iomn (kxv )=-en kx(v xB ) —

e o e o e o k Q 2
v o=tiv —=e|1-L
ez eyk 92
X a) e




Waves 1n plasmas

Low Frequency Electrostatic waves propagating transverse to external B field
Lower Hybrid Frequency (LHF)

Electron continuity equations becomes:

k (-iﬂ)+k
X Qe VA

By substituting v, in the previous relations for v, v,, we have written v, v, as
Functions of n,. Substituting in eq (1) of the previous slide and considering m <<m;
we obtain the dispersion relation:

2
1-9_

QZ

k

z

kx

n n
kv +kv =0 <=sw--4=
X ex zZ ez

nO nO

+1Q
e

0y

€y

ke Q 1 |
Il - =0
® W _a)+Qek22 1_(02 w QK[| o
Q wk| @) Q wkl| @

2 _ yekBTe + yikBT;

c General dispersion relation

m.

1




Waves 1n plasmas

Low Frequency Electrostatic waves propagating transverse to external B field
Lower Hybrid Frequency (LHF)

If for instance k =0 (k//B,) we obtain : @* = cszkz2 as we have previously
calculated for B, =0 (10vTaKovoTIKEG TAAAVIDOGEL).

2.2 2
If k,=0 the dispersion relation1s 11— A2 — QL — o =0
v 0 0

2 2712
Because Q?*<<|QQ |we have: w " =ck”+Q Q
1 1 e S X e 1

When £ —0 we have: a)iH = QiQe This 1s the Lower Hybrid Frequency —
KT VPO cLuYVOTNTA



Waves 1n plasmas

High Frequency Electromagnetic waves propagating transverse to external B field

Perpendicular propagation k 1 B , if we take transverse waves with g 1 E there
are two choices, 1) E, can be parallel to B, and 2) E, can be perpend1cular to B,

Ordinary wavek 1 B ,E || B,

For E, parallel to B, we can take B_=B_z, E,=Ez, k=kx
The wave equation 1s (as in the case for EM waves with B_=0)

—-iw] In ewv .
w0 -k E =280 B i ep v on =n
1 g g 1 oe el oe 9]
0]

Because E,=E,z, we need only the v,, component which is given by the
particle equation of motion

v Since everything is the same as the equation with B=0
m, atez = —eEZ the dispersion relation is: remember
v, //E =v, xB =0
a)z = a)lz)e+ cz k2 So the O-wave does not feel the existence

of the external B



Waves 1n plasmas

High Frequency Electromagnetic waves propagating transverse to external B field

Perpendicular propagation k1 B .transverse waves k 1 E , E; perpendicular to
B

(0]

Extra-ordinary wave k1B ,EIB,

When E| is perpendicular to B, the electron motion will be affected by B, since
vxB, force 1s not zero as for the previous case (ordinary wave)

To treat this case we can take B =B z,, k=kx . However, for the E, someone
should allow for the development of one more component along k, so even if we
start with E,=E,y the E, for generality can be E,=E,x+E y (Actually, it turns out
that the wave will become elliptically polarised instead of plane (linearly)
polarised, so it will become partly longidudinal and partly transverse.

V4
: 1 | 1
B0 v Bo
ET I Bo
. E1
E, 1B, -y v
Ordinary case .
k y
Extraordinary case X £ :

X | (initial)



Waves 1n plasmas

High Frequency Electromagnetic waves propagating transverse to external B field

v
mn(—¢+(w -V)v )=-en [E+v xB] on, : _
el c e c e v +V-(nv )=0
0B . JE .
VxE=-— VxB=u(j+& —) J=—-enu,
ot ’ ° ot
oV
meno = _enoEl - novel X Bo VxE = —é)—Bl
ot 1 ot
. OE :
VxB =u(j+e —) J=-env
ot
n,=n,+tn, v =v, +v, E=E B=B +B, n,=n,
nel _ neloei(kx—wt) Uel _ veloei(kx—wt) El _ E()lei(loc—a)t) Bl _ B()lei(kx—a)t) ”er = O




Waves 1n plasmas

High Frequency Electromagnetic waves propagating transverse to external B field
The three linearised equations become:

From the last three:

—iwomv_=-eE —ev B / \
e X X y o
e W 1
— - — _ vV =— |-k ——F
la)me”Uy eEy evaO X mao X W y 1 a)cz
: : 2
ikE =iwB \ o)
Y 1 ( \
—ikB =—-en v —iwE
1 0"y y e | . ) 1
_ v =—/|-iFk ——F >
O=-env -iwkE Tomo\ 7 o 9
\ o)
. . 2
Replacing into the first two and ;2 _ n.c
taking into account that: e e m



Waves 1n plasmas

High Frequency Electromagnetic waves propagating transverse to external B field

2 W’ 2 w,w
0 |l-—<|-w —— -
o’ pe o E For E,, E, other than zero this
, , £ |” system has a solution only 1f
( w2 — 2 kz) 1- W, | o i W, D, y the determinant is zero
0)2 pe W
Taking into account that: w;e to’=w, =
- 2
2 2
0 w w
(a)z—wh) W -w’ -c’k*|1- =
)] )]
2
e
2 2 pe ¢ .
W -, = Replacing back the ()3
22 w (a) —, ) and multiplying through
> = > > - with @ -w;  we find:
1)) w —w



Waves 1n plasmas

High Frequency Electromagnetic waves propagating transverse to external B field

272 2 2 h
s — ¢ =1- wpe @ a)pe Dispersion relation for the
w> v W’ 0w -’ extraordinary wave (X-wave
h

Cutoff and Resonance frequencies for the X-wave

For k — o o — o, so that a resonance occurs at a point in the plasma where:
w =w +w’
pe c

This 1s the dispersion relation for electrostatic waves propagating across B,. As the
wave approaches the resonant point both its phase velocity and its group velocity
approach zero and the energy i1s converted into upper hybrid oscillations. The
X-wave 1s partly electromagnetic and partly electrostatic, so at resonance this wave
losses its electromagnetic character and becomes an electrostatic oscillation.



Waves 1n plasmas

High Frequency Electromagnetic waves propagating transverse to external B field

The cutoffs of the X-wave are found by setting k equal to zero at the dispersion relation.
After some easy algebra we conclude to the following equation:

2

2 2 2
a)Pe 6()c C()pe a)c 2 — 2
1- ~| = 2@1— =0 +a)a)c—a)pe=0©
W W W w

1/2
/a)R=la) +| w? +la)2
9 oc pe 4 ¢

1/2
1 S
W, =——0 +|lw +—w
\ L 2 c pe 4 c




Waves 1n plasmas
High Frequency Electromagnetic waves propagating transverse to external B field

7

v" From the dispersion relation it is clear
that at =0, the wave propagates at
the velocity of light.

v For o<, there is another region of
non propagation.

The cutoff and resonance frequencies divide the
dispersion diagram into regions of
propagation and non propagation.

v

v

At large o (or low density) the phase velocity
approaches the velocity of light.

As the wave travels further the phase velocity
increases until the right hand cutoff w=wm; 1s
met. There the phase velocity becomes infinite.
Between w=wy and w=wy, the (v )* is negative
and propagation is prohibited.

At o=y, there is a resonance and v, goes to
Zero.

Between o=, and o=w; propagation is again
allowed. In this region the wave travels either
faster or slower than ¢ depending on whether ®
is smaller or larger than @ .



Waves 1n plasmas
High Frequency Electromagnetic waves propagating transverse to external B field

For the O-wave:

O WAVE
v2
C—f //// v" Only one cutoff
1

0 .,”,//// - v" No resonance.

Cutoff layer

(a) - reflection |

|

|

\

\

|

|
/—v_\/\/\/
Asoo Evanescent

\

Incident energy ————

(b) i
\

A—0

Resonant layer
- absorption



Waves 1n plasmas

High Frequency Electromagnetic waves propagating parallel to external B field

Let’s consider that k lies along z axis and allow E, to have both transverse
components (general case)

remember
Wave equation: Vx(VxE,)=V(V-E)-V’E, =—V><%B1 w =Q
, R
1) I
(0 =K )E, =—L| E, -—<E o’
¥ w ¥ w 7 0= pz / o) 242 .o
-2 2| (@ =K = 8)E, +id—=E, =0
w > X W y
N )
(0=, - | £, +“ep (@ =k =8| E ~i6—<E =0
1_& o Y 4y
a)Z

N

Setting determinant equal to zero:

2
(a)z—c2k2—5)2=(5w0) _0 ©w2—02k2—6=i(5w"
w (49




Waves 1n plasmas

High Frequency Electromagnetic waves propagating parallel to external B field

...k lies along z axis and allow E, to have both transverse components
(general case)

)
ow w’ [ w’

w -’k -0=x—¢ & @ -*=5 e Pl P =’ W =—7
W w w’ a) Pl w w _ o,

1-—< 1+ —<|[1-—<| IF
0, ) i, w

The £ sign shows that two solutions of two different waves that can propagate
along B, exist. Their dispersion relations are:

Ty 2 ‘ 1
k W B,
R p (-)R-wave

]
2 YN

2712
» C k w
N =—=1- £ (+)L-wave
w wz (1 + (l)c) remember
k
W n=-%
v

¢



Waves 1n plasmas

High Frequency Electromagnetic waves propagating parallel to external B field

(-)R-wave Right hand circular polarisation
(+)L-wave Left hand circular polarisation

Since these equations depend only on k? the direction of rotation of the E vector is
independent of the sign of k thus the polarisation 1s the same for waves propagating
in the opposite direction.

Cutoff and Resonance frequencies for R and L waves

For the R wave k — o at o=w,_ the wave 1s therefore in resonance with the cyclotron
motion of the electrons. The direction of rotation of the polarisation plane 1s the same
as the direction of the gyration of electrons so the wave loses its energy in continuou-
sly accelerating the electrons and therefore cannot propagate.

The L wave does not have a cyclotron resonance with the electrons because it rotates

in the opposite direction. Actually as seen from its dispersion relation the L wave does
not have a resonance for positive ® (in some considerations ® can take negative values).
(If we had included 10ons motion, the L. wave would have a resonance at o=o_,)



Waves 1n plasmas

High Frequency Electromagnetic waves propagating parallel to external B field

Remember that in our convection ® is always positive and waves propagating in the
— direction (1.e. —x) are described by negative k.

Cutoffs: For k—0

1/2

1 1 v :

W, =—0 + 0 +—w> Same equations as for the cutoffs of
7 ¢ pe 4 ¢ the X-wave

v' The R-wave (-) has the higher cutoff

1/2 .
1 A frequency wyp while the L-wave (+)
w, = _Ewc T, T ch has the lower cutoff frequency




Waves 1n plasmas

High Frequency Electromagnetic waves propagating parallel to external B field

Whistler mode

Ml'e'-:m

(2]

—_

The dispersion diagram for the R and L waves.
Regions of non propagation are for v2 /c* <0

v The L wave (+) has a stop band at low

frequencies and 1t behaves like the O-
wave except that the cutoff occurs at
o, instead of ®,

The R-wave (-) has a stop band
between oy and o, but there is a
second band of propagation with v, <c
bellow ®. The wave in this low
frequency region is called the
“whistler mode” (c@uprytd) and 1s of
extreme i1mportance for ionospheric
phenomena



Waves 1n plasmas

High Frequency Electromagnetic waves propagating parallel to external B field

Summary

The principal electromagnetic waves propagating along B, are a Right-hand (R)
and a Left-hand (L) circularly polarised wave, the principal waves propagating

across B, are a plane-polarised wave (O-wave) and an elliptically polarised wave
(X-wave)



Waves 1n plasmas

High Frequency Electromagnetic waves propagating parallel to external B field

Faraday rotation

From the previous diagram it 1s clear that for large o, the R wave travels faster than
the L wave. Consider the plane polarised wave to be the sum of an R wave and an
L wave (of course at the same frequency).

After let’s say N cycles, the E; and E; vectors will return to their initial positions.
However, after propagating a given distance d in a plasma the R and L waves will
have undergone a different number of cycles since they require a different amount
of time to cover the distance.

A plane polarised wave 1s the sum of left and right
+ — Handed circularly polarised waves

i | Since the L wave travels more slowly (in a plasma)

| 0/2
+ __\ | 1itwill have undergone N+a cycles at the position
T where R has undergone N cycles

| | The plane of polarisation is rotated

The principle of Faraday rotation
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High Frequency Electromagnetic waves propagating parallel to external B field

Faraday rotation

3192
e’ A
O(rad) = ——"—
87T m.e c
e’ ~13 ;-1
4 14 PRI =2.6312%x10"°(T™)
423 8312
4 24 0 = f Bdz ns>sn
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Waves 1n plasmas

Electron waves (electrostatic):

BO =0 2 3.2 5

oF W = a)p +— k v, Plasma oscillations
k//B

k1B w’ = a)j) + a)c2 Upper hybrid oscillations

Ion waves (electrostatic):

B =0 T P T 1/2
’ 2 ) 2| Y KL, TY .
or w” =k . =k £ o Acoustic waves
k//B ",
(W’ = Qi + kzvs2 Electrostatic 1on cyclotron
kLB < or waves

Lower hybrid oscillations

OCOPL




Waves 1n plasmas

Electron waves (electromagnetic):

B =0

o

kL1B.E/IB

kLB.,E LB

k//B

W’ = a); + ke’

272 2
ck i w,
2 - 2
a 0);
o 2 2 2
ik =1_a)pa) W,
w* W’ a)z—a),f
2712 2
( k i w,
2 - 2
0)] ()] —a)a)c
2712 2
ck 1 »
2 2
\CU ()] +CUOUC

Light waves

O - wave

X - wave

R - wave
whistler mode

L - wave

OCOPL



Waves 1n plasmas

Ion waves (electromagnetic):
B -0 10 There 1s no electromagnetic
’ wave
k//B, W = kzvj Alfvén wave
2 2 2

w UV +U :
klB — E c? ;—124 Magnetosonic wave

k " +U]

The above dispersion relations cover the main propagation
geometries

Erasmus+ «@CDDL
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