

PARTICULATES #2

- Filter systems
- Wet scrubbers
- Cost comparison cyclone / ESP / filter
- High temperature high pressure particulate control
- Particulate emission control for vehicles

see: www.hut.fi/~rzevenho/gasbook

Filters : major types & characteristics

Bag filters fiber materials : textile, plastics, ceramic **Barrier filters** sintered ceramic or metal, powders or fibers **Granular bed filters** layer of granular solids

Factors determining filtration quality : • Efficiency

- Pressure drop, pressure drop increase
- Filtration velocity = flow / filter area
- Medium properties : sustain, costs, cleanability
 - Filter clean-up / regeneration

<u>A shake/deflate-cleaned baghouse filter</u>

Filters : cleaning methods

Type	Method	<u>Mechanism</u>
Bag filter	Pulse jet	Inertia / drag forces
	Shaking	Inertia
	Reverse flow	Drag forces
Granular bed filter		
fixed bed	Reverse flow	Elutriation
moving bed	Media recycle	Elutriation
Ceramic bag filter	Pulse iet	Inertia / drag forces
	1 4100)00	
Barrier filters	Pulse jet	Drag forces

Particle capture by a filter fiber

HELSINKI UNIVERSITY OF TECHNOLOGY

ENE-47.153

Filtration efficiency of a 5 µm fiber

dust in ambient air, a = particle size, v = gas velocity

Capture mechanism "contours"

Efficiency contours

Filter efficiency as function of particle size

Fabric filter cloth characteristics (1996)

Fibre	Maximum	Acid	Alkali	Dry heat	Wet heat	Flex and
	operating	resistance	resistance	resistance	resistance	abrasion
	temperature, °C					resistance
Cotton	82	poor	good	fair	fair	good
Polypropylene	94	excellent	excellent	fair	fair	very good
(Propex)						
Nylon	120	fair	good	good	good	excellent
Neotex ^R						
Acrylic	125	excellent	fair	good	good	fair
(Dratex)						
Polyester	148	good	fair	good	good	very good
Terytex ^R						
Ryton ^R	190	excellent	excellent	very good	very good	very good
Aramid	204	fair	good	excellent	excellent	very good
Nomex ^R						
Glass	260	very good	fair	excellent	excellent	poor
P-84 ^R	260	good	fair	excellent	excellent	very good
Teflon ^R	260	excellent	excellent	excellent	excellent	excellent
Tefair ^R	260	very good	excellent	excellent	excellent	excellent

(Data in brackets) = Registered Trade Names

HELSINKI UNIVERSITY OF TECHNOLOGY

Fibre	Generic name	Aramid	Glass	PTFE	Polyphenylene sulphide	Polybenzi- Midazole	Metal	Ceramic
	Trade name	Nomex	Fibreglass	Teflon	Ryton	РВІ	Bekinox	Nextel 312
Recomm continuo temperat	ended us operation ure (dry heat)	204°C	260°C	260°C	190°C	260°C	450°C	1150°C
Water va condition	pour saturated n (moist heat)	177°C	260°C	260°C	190°C	260°C	400°C	1150°C
Maximu operation (dry heat	m (short time) n temperature 1)	232°C	290°C	290°C	232°C	343°C	510°C	1427°C
Specific	density	1.38	2.54	2.30	1.38	1.43	7.90	2.70
Relative in % (at relative r	moisture regain 20°C & 65% noisture)	4.5	. 0	0	0.6	14.0	0	0
Supports	combustion	No	No	No	No	No	No	No
Biologic (bacteria	al resistance 1, mildew)	No effect	No effect	No effect	No effect	No effect	No effect	No effect
Resistan	ce to alkalis	Good	Fair	Excellent	Excellent	Good	Very good	Good
Resistan mineral	ce to acids	Fair	Very good	Excellent	Excellent	Excellent	Very good	Very good
Resistan organic :	ce to acids	Fair	Very good	Excellent	Excellent	Excellent	Very good	Very good
Resistan oxidisin	ce to g agents	Poor	Excellent	Excellent	Attacked by strong oxidising agen	Fair ts	Very good	Excellent
Resistan organic	ice to solvents	Very good	Very good	Excellent	Excellent	Excellent	Very good	Excellent

ENE-47.153

Properties of fiber materials for high temperature filters

Wet particulate collectors

Wet scrubbers : some characteristics

- Collects still very fine particles, and also gases & alkali
- Low capital costs compared to ESP and baghouse filters
- High pressure drop, operation costs, up to %'s of a power plant net output
- Gaseous waste stream \rightarrow liquid waste stream

Typical data :

•Gas inlet velocities ~ 100 m/s

•Collection efficiencies ~ 99 %

•Pressure drop up to 1 bar (!)

Operation problems :

corrosion, abrasion, solids build-up, rotating parts failure re-start after a down-period

Cost comparison cyclone, ESP, baghouse

Cost comparison for particulate control equipment at 10 MW_{thermal}

	Efficiency %	Capital cost US\$ 1982	Operation cost US\$/ton removed
High efficiency cyclone	87.0	10500	1.68
ESP	98.3	96500	2.84
Reverse air baghouse	99.9	49000	3.14

Assumptions: coal ash, electricity costs 0.0614 US\$/kWh, 8000 h/year, filter bags lifetime 2 years