

Machine Vision Iasonas Oikonomidis Alexandros Makris Kostas Papoutsakis

Course Info

Class Schedule

- .Friday 4-6: Theory
- •Friday 6-8: Lab

Grading

- Participation 20%
- •Python programming Assignments 80%.

.Prerequisites

- .Linear algebra
- Probabilities
- .Programming

Course Info

Site: https://eclass.hmu.gr/courses/TM152/

(pwd:cv2019)

- Textbooks:
 - Forsyth & Ponce, Computer Vision: A Modern Approach
 - Szeliski, Computer Vision: Algorithms and Applications.
 - Hartley, Zisserman, Multiple View Geometry in Computer Vision.

The goal of Computer Vision

Make computers understand images.

(e.g. photos, videos, medical images)

What Kind of information?

Information

Information

Semantic Information: Scene and Context

Semantic Information: Object Recognition

Connections to other disciplines

Computer Vision vs Graphics

$$I = f(C_{amera}, L_{ight}, M_{aterial}, S_{tructure})$$

Computer Graphics: Knowing C, L, M, S, construct I. Computer Vision: Knowing I, extract C, L, M, S.

Computer Vision Applications

Cartography

Intelligent Vehicles

Robotics

Security

Medical

Multimedia Databases

Computer Vision Examples

Optical Character Recognition (OCR)

- Convert scanned documents to text.
- . License plate readers.
- . Automatic check processing.

Check Entry			
DataTrade Demo Not Negostable 3833 Sub Annue Otopport Any TO THE OT Demo Bank Surgene NO 6000 MEMO	. Ootlaw 1%	100 ours Lab 18-20 \$53.10 00000000000000000000000000000000000	Pidae 726. ARS
Each No. 1001 Sequence No. 2 Routing No. 111907445 MERCHAN	Deck Account No. 5 72344 T R E M I T) (Deck.No: (1999) 100	Oreck Amount 653.10 Enter Reject

Biometrics

Fingerprint recognition Face recognition

Face Detection

Digital Cameras

On-line services, social networks.

Smile Detection

Intelligent Vehicles

Sports

3D Body Tracking (Kinect)

3D Hand Tracking

https://youtu.be/3yvaFuX09xY?t=21

Mobile Robots

Challenges: viewpoint variation

Challenges: Illumination

Challenges: Scale

Challenges: Deformation

Challenges: Appearance variation.

Challenges: Occlusion

Challenges: Background Clutter

Challenges: Ambiguity

Many different 3D scenes could have given rise to a particular 2D picture.

Course Overview

- Image Formation
- Linear Filters
- Edge & Corner
 detection
- Feature Extraction
- Grouping and fittingHough Transform

- Alignment
- Stereo Vision
- Segmentation
- Image/Object Recognition
- Video Recognition
- Motion & Tracking
- Deep Learning for Computer Vision

Image Formation

Filtering

Feature Extraction

Corner and blob detection

Grouping and Model Fitting

Fitting: Least squares, Hough transform, RANSAC.

Stereo Vision

- •Adds depth to the image.
- •<u>Stereo Occupancy</u> <u>Grids</u>

Motion and Optical Flow

Tracking

https://youtu.be/Z9X3IhHytrQ?t=78

Object Segmentation vs Detection

Pixel-level labels Category only Bounding box labels Category + instance

Object Recognition

Image/Video Recognition

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

This image by Nikita is licensed under CC-BY 2.0 cat

Deep Learning

