Edge and corner detection

Book: Szeliski 4.1.1, 4.2, Forsyth 5.1, 5.2, 5.3
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Why extract features?

« Motivation: panorama stitching
« We have two images — how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images




Characteristics of good features

Repeatability

 The same feature can be found in several images despite geometric
and photometric transformations

Saliency
 Each feature is distinctive

Compactness and efficiency
« Many fewer features than image pixels

Locality

» A feature occupies a relatively small area of the image; robust to
clutter and occlusion



Applications

Feature points are used for:
* Image alignment
« 3D reconstruction
Motion tracking
Robot navigation
Indexing and database retrieval
Object recognition




Applications - currently
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Source: Deep feature extraction and combination for
synthetic aperture radar target classification



https://www.researchgate.net/publication/320461081_Deep_feature_extraction_and_combination_for_synthetic_aperture_radar_target_classification

Edge detection

Goal: Identify sudden
changes (discontinuities) in

an image o “*«5\
- Intuitively, most semantic and shape ( |
iInformation from the image can be I, \)

encoded in the edges
More compact than pixels

Ideal: artist’s line drawing
(but artist Is also using
object-level knowledge)

Source: D. Lowe



Origin of edges

Edges are caused by a variety of factors:

% surface normal discontinuity

depth discontinuity

P E—
AO‘[/_{\.E surface color discontinuity
N Z

illumination discontinuity

Source: Steve Seitz



Edge detection

An edge is a place of rapid change In the
Image intensity function

intensity function
imag (along horizontal

first
derivative
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edges correspond to
extrema of
derivative



Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

af(xay) :limf(x_l_gay)_f(xay)

ax g—0 c

For discrete data, we can approximate using finite
differences:

af(xay) ~ f(x—l_lay)_f(xay)
OX 1

To implement the above as convolution, what would be
the associated filter?

Source: K. Grauman



Partial derivatives of an image




Finite difference filters

Other approximations of derivative filters exist:
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Source: K. Grauman



Image gradient

The gradient of an image: V[ = [gi, gi]

V=20 Lg vi=[3%5]
I~ zf— 0.5 k

The gradient points in the direction of most rapid increase
IN Intensity
How does this direction relate to the direction of the edge?

The gradient direction is given by 6§ = tan—! (%/%)

The edge strength is given by the gradient magnitude
Af\2 Af\2
1Vl = (307 + ()

Source: Steve Seitz



Effects of noise

Consider a single row or column of the image
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Where is the edge?

Source: S. Seitz



Solution: smooth first

Sigma = 50

(@]
Kernel

f*g

Convolution

d
(/8

Differentiation

To find edges, look for peaks in —(f *g)

dx Source: S. Seitz



Derivative theorem of convolution

Differentiation is convolution, and convolution
IS associative: d d
—(f*g)=f*—¢
dx dx

This saves us one operation:

Sigma = 50
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Derivative of Gaussian filters
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Scale of Gaussian derivative filter

1 3 7
pixel pixels pixels

Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”

Source: D. Forsyth



The Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
Define two thresholds: low and high

Use the high threshold to start edge curves and
the low threshold to continue them

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.



http://www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf

The Canny edge detector

original image

Slide credit; Steve Seitz



The Canny edge detector

norm of the gradient



The Canny edge detector

How to turn
these thick
regions of

the gradient
INnto curves?

ff
Mﬁg;
-t
v
—Threshold
t

¥
fit)
\*Edge

thresholding



Non-maximum suppression
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Check if pixel is local maximum along gradient
direction, select single max across width of
the edge

- requires checking interpolated pixels p and r



The Canny edge detector

thinning
(non-maximum suppression)

Problem:
pixels along
this edge
didn’t
survive the
thresholding



Hysteresis thresholding

Use a high threshold to start edge curves, and a
low threshold to continue them.

Source: Steve Seitz



Hysteresis thresholding

l Lh. ll\h" -1

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Source: L. Fei-Fei



Image gradients vs. meaningful contours

image human segmentation gradient magnitude
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Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/



http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Data-driven edge detection

Training data
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P. Dollar and L. Zitnick, Structured forests for fast edge detection, ICCV 2013



http://vision.ucsd.edu/~pdollar/files/papers/DollarICCV13edges.pdf

Corner Detection: Basic Idea

« We should easily recognize the point by
looking through a small window

 Shifting a window in any direction should
give a large change in intensity

“flat” region: “edge”: “corner’:
no change in no change along sighificant
all directions the edge change in all

direction directions



Corner Detection: Mathematics

Change in appearance of window W for the shift [u,V]:

E(u,v)= D [I(x+u,y+Vv)—I(x,y)I

(X,y)ew

1(X, y) )

E(u, v)




Corner Detection: Mathematics

Change in appearance of window W for the shift [u,V]:

E(u,v)= D [I(x+u,y+Vv)—I(x,y)I

(X,y)ew

1(X, y) )

i,‘-
o !

E(u, v)




Corner Detection: Mathematics

The quadratic approximation can be written as

u
E(u,v)~[u v|M )

where M iIs a second moment matrix computed from image

derivatives:
i , _
2L 2N
X,y X,y
2
2Ly 2N
XY X,y i

(the sums are over all the pixels in the window W)




Quadratic Form Approximation

u
Consider a horizontal “slice” of E(u, v): [u v] M {v} = const
This is the equation of an ellipse.
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Interpreting the second moment matrix

u
:| = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This is the equation of an ellipse.
0
Diagonalization of M: M=P" & P
0 4,

The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by P

direction of the
fastest change

direction of the
slowest change



Visualization of second moment matrices




Visualization of second moment matrices
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Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:
>“2




Corner response function

R =det(M)—atrace(M)? = 44, — (4 + 4,)’

a. constant (0.04 to 0.06)




Harris corner detector

Ly and A, are large,

49



Harris corner detector

large 1, small %, .,

50



Harris corner detector

small 2, small 7, .,

o1



The Harris corner detector

1. Compute partial derivatives at each pixel

2. Compute second moment matrix M in a
Gaussian window around each pixel

3. Compute corner response function R

Threshold R

5. Find local maxima of response function
(nonmaximum suppression)

B

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector: Steps




Harris Detector: Steps

Compute corner response R
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Harris Detector: Steps




Invariance and covariance

We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations

* Invariance: image is transformed and corner locations do not change

« Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations



Affine intensity change

RA

threshold

=8 l>al+b

« Only derivatives are used =>
Invariance to intensity shiftl > 1+Db

* Intensity scaling: I > al

/

W AVAN

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change




Image translation
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* Derivatives and window function are shift-invariant

Corner location Is covariant w.r.t. translation




Image rotation
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Second moment ellipse rotates but its shape
(l.e. eigenvalues) remains the same

Corner location Is covariant w.r.t. rotation




Scaling

— —
7 I
Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!




