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Visual recognition

* Image classification
* Object detection
* Object recognition

Slides credits:

Juan Carlos Niebles and Ranjay Krishna, Stanford Vision and
Learning Lab

Ali Farhadi, CSE 455, University of Washington
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Visual Recognition

- Object Detection + Classification
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Is thee he car in this picture and where is it located?
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Visual Recognition

Segmentation




Detection versus Recognition

Detection finds the faces in images Recognition recognizes WHO the
person is



Recognition

* Design algorithms that have the capability to:
* Object recognition
—Classify images or videos
—Detect and localize objects
—Estimate semantic and geometrical attributes
— Classify human activities and events

 Why is this challenging?



-ace detection and recognition
s it really so hard?

* changes in expression, lighting, age, occlusion, viewpoint

Ali Farhadi CSE 455 — University of Washington



Object recognition
s it really so hard?

Find the chair in this image Output of normalized correlation
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This is a chair




Object recognition
s it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it



Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

=  cat

Li, Johnson, Yeung, cs231n, Stanford 2019



The Problem: Semantic Gap _

[ 91 98 102 106 184 79 98 183 99 105 123 136 110 105 94 85]
[ 76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 8S5]
[ 99 81 81 93 120 131 127 188 95 9B 102 99 96 93 181 94)
186 91 61 64 69 91 BB 85 101 107 109 98 75 B4 96 95]
[114 188 B85 55 55 69 64 54 64 B7 112 129 98 74 84 091]
[133 137 147 183 65 81 B8 65 52 54 74 84 102 93 85 82]
(128 137 144 1492 109 95 B6 70 62 65 63 63 60 73 86 101)
(125 133 148 137 119 121 117 94 65 79 88 65 54 64 72 98]
[127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 B4]
[115 114 109 123 150 148 131 118 113 109 108 92 74 65 72 78]
[ 89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 8e]
[ 63 77 86 B1 77 79 102 123 117 115 117 125 125 138 115 87]
[ 62 65 82 B9 78 71 B0 101 124 126 119 101 107 114 131 119]
[63 65 75 B8 89 71 62 81 120 138 135 105 B1 98 110 118)
[ B7 65 71 B7 186 95 69 45 76 130 126 197 92 94 105 112]
(118 97 82 B6 117 123 116 66 41 51 95 93 B89 95 102 107]
[164 146 112 B8R 82 120 124 194 76 4B 45 66 BB 181 192 109]
[157 170 157 120 93 86 114 132 112 97 69 S5 790 B2 99 094]
(130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 86]
[128 112 96 117 1508 144 120 115 104 107 102 93 87 B1 72 79]
[123 187 96 86 83 112 153 149 122 109 184 75 80 187 112 99]
[122 121 102 B0 82 86 54 117 145 148 153 102 S8 78 92 107)
(122 164 148 103 71 S6 78 83 93 103 119 139 102 61 69 84]]

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

Li, Johnson, Yeung, cs231n, Stanford 2019



Challenges: Viewpoint variation

Ihis image by Nikilg is
licensed under CC-8Y 2.0
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All pixels change when
the camera moves!

Li, Johnson, Yeung, cs231n, Stanford 2019



Challenges O: Too many categories
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Challenges 1: view point variation

Michelangelo 1475-1564 AN . ei Fei, Fergus & Torralba



Challenges: Background Clutter

Li, Johnson, Yeung, cs231n, Stanford 2019



Challenges 2: illumination

Li, Johnson, Yeung, cs231n, Stanford 2019



Challenges 3: occlusion
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This image is CCO 1.0 public domain This image is CCO 1.0 public domain




Challenges 5: deformation




Challenges 4: scale

lide by ™& Fei, Fergus & Torralba



Challenges 6: background clutter

This image is CCO 1.0 public domain This image is CCO 1.0 public domain




Challenges 7: object intra-class variation

Ihis image is CCO0 1.0 public domain




Challenges 7: object intra-class variation

slide by Fei-Fei, Fergus & Torralba



Object classification/recognition

The machine learning framework

_— f(x) def classify_image(image):
y # Some magic here?
T T R\\\R return class_label
output  prediction Image
function feature

« Training: given a training set of labeled examples {(x4,y1),
..., (XN, YN} estimate the prediction function f by minimizing
the prediction error on the training set

« Testing: apply f to a never before seen test example x and
output the predicted value y = f(x)




Object classification/recognition

Attempts have been made

Find edges Find corners

S VA




Object classification/recognition

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):
# Use model to predict labels
return test_labels




Families of recognition algorithms

Shape matching
Deformable models

Bag of words models Voting models

ﬂ ﬂ Berg, Berg, Malik, 2005
Cootes, Edwards, Taylor, 2001

Viola and Jones, ICCV 2001

Csurka, Dance, Fan, Willamowski, and

Heisele, Poggio, et. al., NIPS 01 .
Bray 2004 - Rigid template models
Sivic, Russell, Freeman, Zisserman, Schneiderman, Kanade 2004 9 P
ICCV 2005 Vidal-Naquet, Ullman 2003

Sirovich and Kirby 1987
Turk, Pentland, 1991

I Dalal & Triggs, 2006
Constellation models H F nputimage  Weidhted  weighted
- — pos wts neg wts
.

Neural networks

'Lijffﬁ
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\ 13

] 13 dense dense)|
1000
128 Max

() 192 192 ||
Max m—LeLLun et al, 98 pooling 207 2038

pooling pooling

Fischler and Elschlager, 1973
Burl, Leung, and Perona, 1995
Weber, Welling, and Perona, 2000
Fergus, Perona, & Zisserman, CVPR 2003




Discriminative methods

Object detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.

Decision

Background boundary
Where are the screens?

Bag of image patches Computer screen

In some feature space



Formulation

* Formulation: binary classification

/
. | \
= 5 —r
Features x = XN#1 XN+2 XN+M
Labels y= -1 +1 -1 -1 ? ? ?
— —— _ — —
Training data: each image patch is labeled Test data

as containing the object or background

e Classification function

g — F(Qj) Where F(QE) belongs to some family of functions

e Minimize misclassification error

(Not that simple: we need some guarantees that there will be generalization)



Object classification/recognition
Parametric Approach: Linear Classifier

Image
10 numbers givin
i > f(x,W) >~ Jving
class scores
Array of 32x32x3 numbers T
(3072 numbers total) W
parameters

or weights



Object classification/recognition
Parametric Approach: Linear Classifier

f(x,W)

3072x1

WK +

10x1 10x3072

Array of 32x32x3 numbers
(3072 numbers total)

f

- f(x, W)

W

parameters
or weights

b

10x1

-

10 numbers giving
class scores



Object classification/recognition
Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

56

231

24

Input image




Object classification/recognition
Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

v
56
02 | -05| 0.1 2.0 1.1 -96.8 | Cat score
231
1.5 | 1.3 | 21 | 0.0 3.2 | — | 437.9 | Dog score
24
. 0 025 0.2 | 0.3 -1.2 61.95 | Ship score
Input image 2




Object classification/recognition
Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

Algebraic Viewpoint

f(x,W) = Wx
v
0.2 | -0.5 1.5 | 13 0 .25
Stretch pixels into column
- ! W
56 0.1 2.0 21 0.0 0.2 | -0.3
02 | 05|01 20 11 -96.8 | Cat score
15|13 (21| 00 ! 4| 32 | = | 437.9 | Dog score + * *
24
0 o.z:N 02 | 03 : -: 61.95 | Ship score b 1.1 3.2 1.2
v Y v

Score -96.8 437.9 61.95




Interpreting a Linear Classifier: Geometric Viewpoint

airplane classifier/ &#
< dr:.:"" £
P ~
5 :::3‘:0‘
S ‘,0?““ - : <)

Plot created using Wolitam Cloud Lalimage by Nikilg is licensed under CC-RY 2.0

Array of 32x32x3 numbers
(3072 numbers total)




Discriminative methods

Nearest neighbor

e
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Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005

106 examples

Neural networks

ci1:
\\\\\
222222222222

ps 16@5%
C5: layer
1111111 r 20 FS laye

| | Full conte

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

|
‘ n connections

Support Vector Machines and Kernels

Guyon, Vapnik
Heisele, Serre, Poggio, 2001

Conditional Random Fields

McCallum, Freitag, Pereira 2000
Kumar, Hebert 2003




Object classification/recognition

« Assign input vector to one of two or more classes

« Any decision rule divides input space into decision
regions separated by decision boundaries

5lid

e credit: L. Lazebnik



Object classification/recognition

« Apply a prediction function to a feature representation of
the image to get the desired output:

f(EJ) = "apple”
f(Rl) = “tomato”

f() — “COW”

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik



A simple pipeline - Training

Training

Labels

Training
Images

Y K
Image Learned
- > W Features Classifier

Test Image

Image Learned Prediction
Features Classifier



A simple pipeline - Training

Training
Images \
CENOeHa
P Twewy Image
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Features

Test Image

INEl=
Features



Image features

Input image




A simple pipeline - Training

Training
Images

Il&llll

Test Image

n___ . .



Classifiers: Nearest neighbor

o . Training
Tralnlrl‘lg . examples
examples . from class 2

from class 1 .

Slide credit: L. Lazebnik



A simple pipeline - Training

Training
Images
Y L

Test Image

5

Learned

Classifier




Classifiers: Nearest neighbor

¢
O n o
Training <> Test o fraining

examples
Exammes . example P
¢ : 1 from class 2
rom class .

Slide credit: L. Lazebnik



Distance Metric to compare images

L1 distance:

test image
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
di(l;, ) = Z 1 S5 = \/z (7 =)
p P




1-nearest neighbor

A
Distance measure - Euclidean X
x
D 2 X 0
D- XII X"l X" X"l x
ist(X7, X7 )=, ) (X; - X;")
= (o)
=] 0o
Where X" and X™ are the n-th and m-th data points O 0o
0
0
X2

x1



3-nearest neighbor

Distance measure - Euclidean

D 2
DI.SI(X" ,Xm) - 2 (X,-" o X,-m)
i=1

Where X" and X™ are the n-th and m-th data points

X2

x1

v



5-nearest neighbor

Distance measure - Euclidean

P >
DI.SI(X",X"’) _ \/2 (X,-" ik Xim)
i=|

Where X"and X™ are the n-th and m-th data points

X2

x1

v



K-NN: issues to keep in mind

* Choosing the value of k:

—If too small, sensitive to noise points

—If too large, neighborhood may include points from other
classes

...........
- -
-

.‘







K-NN: issues to keep in mind

* Choosing the value of k:

—If too small, sensitive to noise points

—If too large, neighborhood may include points from other
classes

—Solution: cross validate!

Test error

__|— Train error

K=20 =1
Model CDmplexity




Cross validation

Testdata | Training data

)
teration 1 >[0 0 00 D0 00000000000000
eration 2 > 00 009D 0000000000000
teration 3> 0000000000000 0000000

teration k=4—> @ PP DDV PPPIIPV VD VDV

* All data >




Many classifiers to choose from

* K-nearest neighbor Which is the best one?
» SVM

* Neural networks

* Naive Bayes

* Bayesian network

* Logistic regression

* Randomized Forests

* Boosted Decision Trees
* RBMs

* Etc.

Slide credit: D. Hoiem



Generalization

Training set (labels known) Test set (labels
unknown)

« How well does a learned model generalize from the data it
was trained on to a new test set?

Slide credit: L. Lazebnik



Bias-Variance Trade-off

¥ Sample 2
o
“ .. -
’ : o> ® ik
._ eSe 9! .

* Models with too few parameters
are inaccurate because of a large

bias (not enough flexibility).

* Models with too many
parameters are inaccurate
because of a large variance (too

much sensitivity to the sample).

Slide credit: D. Hoiem



Bias versus variance

* Components of generalization error

* Bias: how much the average model over all training sets differ from the true model?
* Error due to inaccurate assumptions/simplifications made by the model
* Variance: how much models estimated from different training sets differ from each other

* Underfitting: model is too “simple ” to represent all the relevant class characteristics
- High bias and low variance
— High training error and high test error

* Overfitting: model is too “complex” and fits irrelevant characteristics (noise) in the data
— Low bias and high variance

— Low training error and high test error



How do we evaluate object detection?

~ predictions
- ground truth




How do we evaluate object detection?

~— predictions
~ ground truth

True positive:

- The overlap of the
prediction with the
ground truth is MORE
than 0.5




How do we evaluate object detection?

~ predictions
- ground truth

True positive:
False positive:
- The overlap of the
prediction with the

ground truth is LESS
than 0.5




How do we evaluate object detection?

~ predictions
~ ground truth

True positive:

False positive:

False negative:

- The objects that our
model doesn’t find




How do we evaluate object detection?

~—— predictions
- ground truth

True positive:

False positive:

False negative:

- The objects that our
model doesn’t find

What is a True
Negative?




Predicted 1  Predicted O Predicted 1  Predicted O

© true false o,
= " : = TP FN
=| positive negative =
- ) -
5 fd.ls.e true.: E Fp ™
=  positive negative =

Predicted 1  Predicted O

o TP
— _ precision =
§| hits | misses TP + FP
H
TP

?é| false correct recall = TP + FN
—|  alarms rejections




How do we evaluate object detection?

~ predictions
- ground truth

True positive: 1
False positive: 2
False negative: 1

So what is the
- precision?
- recall?




Classification metrics

* Precision versus recall
e Precision:
—how many of the object detections are correct?
e Recall:

—how many of the ground truth objects can the model detect?

* F1 score: useful when you want to seek a balance between Precision and Recall

Precision=Recall

F1=2x

Precision+Recall



In reality, our model makes a lot of predictions with varying
scores between 0 and 1

~ predictions
- ground truth

Here are all the boxes
that are predicted with
score > 0.

This means that our
- Recall is perfect!

- But our precision is
BAD!




How do we evaluate object detection?

~ predictions
- ground truth

Here are all the boxes
that are predicted with
score > 0.5

We are setting a
threshold of 0.5




Which model is the best?

Faster-RCNN
0.9 DPM
HOG

0.8
0.7 r

0.6 |

Precision
o
Ln
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall



True Positives - Person

UoCTTI_LSVM-MDPM




False Positives - Person

UoCTTI_LSYM-MDPM




Non-maximal suppression (NMS)
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Many detections above threshold. Detections after NMS.



Example DaIaI Trlggs pedestrlan detector
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1. Extract fixed-sized (64x128 pixel) window at each position
and scale

2. Compute HOG (histogram of gradient) features within each
window

3. Score the window with a linear SVM classifier

4. Perform non-maxima suppression to remove overlapping
detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Histograms of oriented gradients (HOG)

o N g M
e a’.,ﬁvm | \ - »_,_-Qg_ _

Bin gradients from 8x8 pixel neighborhoods into 9
orientations

(Dalal & Triggs CVPR 05)

Source: Deva Ramanan
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Compute
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Weighted vote
into spatial &
orientation cells

Contrast normalize

over overlapping
spatial blocks

Collect HOG s
over detection
window

Linear

Person /
—= 00— Persomn
classification

Slides by Pete Barnum

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Input
image

* Tested with
 RGB
* LAB
e Grayscale

Normalize

—»| pamma &

colour

>

Compute
eradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

—

Collect HOG s
over detection
window

-

Linear
SVM

Person /
3= [0I—person
classification

1

Slightly better performance vs. grayscale




Illp-l.l.t Mormalize Cﬂ]]!} ate Weig]l’lm:l vote Contrast normalize Collect HOG s Li
e g e e b e e
Outperforms
-1 10 011
centered 10
diagonal
-1 (1
uncentered
-1 10
210
11810 8]-1 -1 10
cubic-corrected Sobel

Slides by Pete Barnum

Person /

—= 00— Persomn

classification

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Normalize
—»| pamma &
colour

Input
image

>

Compute
eradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

—

Collect HOG s
over detection
window

-

Linear
SVM

Person /
3= [0I—person
classification

* Histogram of gradient orientations

Orientation: 9 bins (for

unsigned angles)

90
135 45
180 0
225 315
270

Histograms in 8x8

pixel cells

* Votes weighted by magnitude

 Bilinear interpolation between cells

Slides by Pete Barnum

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Input
image

Normalize with respect to
surrounding cells

Normalize

—»| zamma & |

colour

Weighted vote Contrast normalize Collect HOG's . Person /
g&%ﬁﬁ — | into spatial &  |—| over overlapping  |—| over detection —» Ié‘{f‘ﬁr —» Non-person
orientation cells spatial blocks window classification

Slides by Pete Barnum

— Block —

L2 — norm : v — v/\/[[v]]3 + €2

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Normalize
—»| pamma &
colour

Input
image

Compute
eradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

—

Collect HOG s
over detection
window

-

Linear
SVM

Person /
3= [0I—person

classification

Slides by Pete Barnum

1

/7

# cells

# orientations

# features =15 x 7 x @ =3780

N\

# normalizations by
neighboring cells

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Histograms of oriented gradients (HOG)

Input
image

Normalize
gamma &

colour

Compute
gradients

Weighted vote
into spatial &
orientation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG s
—» | over detection
window

Y

Linear
SVM

Person /
— non—person
classification

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks
in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression

is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.

a) Input image

b=round(8 9/ xt) mod 9
0= (dx.dy)

b) Oriented edges

Fi(x,y)=r if b=l

C100y)

¢) Subsampling edge maps

N1 (y)=[Clxy) +
Clx+Lyp+
Clry it C /N1
ClxtLy+1F™

2{1,?}'[(_7{x,y}'1+ C/N2

C(x-1y*
Cix g+l J+
Cix-Ly+1y]

N3y(xy[Clxyi+  C /N3
Cix+1 ;_v];+ —
Clxy-1)F
Clatly-1°

C/N4

L5

Na(x.y)=[Cly)+
Clx-Ly)+
Clxy-1)+,
Clx-1y-171"

LALLM |

HOG =

. 36 dimensions/pixel

-

d) Local contrast normalization



Training set

+




SVM

A Support Vector Machine (SVM) learns a classifier with the form:

M

H(x) = Z o Ym k(T )

m—=1

Where {x.,, y,}, form =1...M, are the training data with x_, being
the input feature vector and y,, = +1,-1 the class label. k(x, x..,) is the kernel and it can
be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

* Linear kernel: k(x, x,) = x" x,,
* Radial basis function: k(x, x,.,) = exp(=|x - x,|2/0?).
* Histogram intersection: k(x,x,) = sum.(min(x(i), x.,(i)))



Normalize . Weighted vote Contrast normalize Collect HOG's . Person /
!nl}ume —»| zamma & | [fualélil:alrlltti —= | into spatial &  [—=| over overlapping  |—3| over detection —» IS_":,EI:[HI. — NON-person
s colour E orientation cells spatial blocks window - classification

Origin
O Z Margin

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO5



Linear SVM

O
@
O O
margin ‘ ‘
w O
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f(x) = (w.x +Db)



Scanning-window templates

Weighted vote Contrast normalize Collect HOG s Person /

MNormalize .
Input Compute . p p ; Linear
. —» ma & [ ] —=| into spatial &  |—=| over ov —> — -
image gam gradients into spa er overlapping over detection —» SVM ::llg:;sil;ii;st?:.ln

colour orientation cells spatial blocks window
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w = weights for orientation and spatial bins

w-x>0



How to interpret positive and negative weights?

w-x >0
(Wpos - Wneg)-x > 0

Wpos'X > Whneg'X

Pedestrian

template @ background

template

Wpos,Wneg = Weighted average of positive, negative support vectors

Right approach is to compete pedestrian, pillar, doorway... models

Background class is hard to model - easier to penalize particular vertical edges

Source: Deva Ramanan



Normalize Weighted vote Contrast normalize Collect HOG’s Person/
_Iupul —»| zamma & | Cm‘:; —» | into spatial &  [—»| over overlapping  |—| over detection > non-person
Image colour g orientation cells spatial blocks window SVM classification

1

LB

" 016 =wTz—b

sign(0.16) = 1

—> pedestrian

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR0O5



Histograms of oriented gradients

Dalal & Trigs, 2006

_’I X I Not a person
i I—’ person




Detection examples







EFach window is separately classified







