

ΜΟΝΤΕΛΛΑ ΕΛΑΣΜΑΤΩΝ

- Πολλά προϊόντα δημιουργούνται από ελάσματα.
 - Τα ελάσματα μπορούν να κοπούν, να καμφθούν και να μορφοποιηθούν, έτσι ώστε να προκύψει η τελική μορφή του επιθυμητού προϊόντος.
 - Σε σύστημα CAD/CAM, ο πρωτεύων στόχος είναι να σχεδιαστεί το έλασμα στη «λειτουργική» κατάσταση.
 - Ένας δευτερεύων στόχος είναι η δυνατότητα παροχής ενός αναπτυγμένου (Flattened) μοντέλου, που μπορεί να χρησιμοποιηθεί τόσο σε μηχανολογικά σχέδια, όσο και στην κατεργασία των ελασμάτων με τη βοήθεια υπολογιστή.
 - Στα σύγχρονα λογισμικά CAD υποστηρίζονται οι μηχανικές διαμορφώσεις ελασμάτων και συγκεκριμένα:
 - Απότμηση
 - Κάμψη
 - Βαθεία Κοίλανση

και παρέχεται η δυνατότητα προσδιορισμού του αναπτύγματος του ελάσματος, το οποίο είναι από τα βασικότερα ζητούμενα σε αυτές τις κατεργασίες

Απότμηση (Κοπή)

- Μέθοδος διαχωρισμού χωρίς απόβλητα (DIN 8588).
- Τμήμα ενός υλικού αποχωρίζεται από το υπόλοιπο κάτω από την επίδραση δύναμης.
- Η δύναμη ασκείται από κοπτικό εργαλείο, το οποίο είναι τοποθετημένο συνήθως σε μηχανική πρέσα.
- Υπάρχουν διάφορα είδη απότμησης, ανάλογα με το σχήμα του παραγόμενου αντικειμένου και τα εργαλεία που χρησιμοποιούνται για την παραγωγή του.

Κάμψη

- Είναι η πιο συνηθισμένη από τις πλαστικές κατεργασίες.
- Εφαρμόζεται σε υλικά που προηγουμένως έχουν διαμορφωθεί σαν φύλλα ή δοκοί με κάποια άλλη μηχανική διαμόρφωση.
- Η ευκολία της κατεργασίας σε συνδυασμό με τη δυνατότητα επίτευξης μεγάλης ποικιλίας μορφών, είναι οι λόγοι χρήσης της κατεργασίας στην κατασκευή πλήθους διαφορετικών εξαρτημάτων για έπιπλα, αμαξώματα, σωλήνες, κλπ.
- Η κατεργασία μπορεί να πραγματοποιηθεί εν ψυχρώ σε ελάσματα με μικρή διατομή ή εν θερμώ σε ελάσματα με μεγάλη διατομή.
- Η κατεργασία εκτελείται σε στράτζες ή στρατζοπρέσες.
- Υπάρχουν διάφορα είδη, όπως:
 - Ελεύθερη κάμψη
 - Κάμψη με καλούπια
 - Κάμψη με στροφή
 - Κάμψη σε κύλινδρο

ΕΛΕΥΘΕΡΗ ΚΑΜΨΗ (ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΓΑΛΕΙΟΥ)

ΠΕΡΙΣΤΡΟΦΙΚΗ ΚΑΜΨΗ (ΠΕΡΙΣΤΡΕΦΟΜΕΝΟ ΕΡΓΑΛΕΙΟ)

ΚΥΛΙΝΔΡΙΚΗ ΚΑΜΨΗ (ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΓΑΛΕΙΟΥ)

ΚΑΜΨΗ ΣΕ ΣΤΡΑΤΖΟΠΡΕΣΑ (ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΓΑΛΕΙΟΥ)

Βαθεία Κοίλανση

- Κατεργασία διαμόρφωσης, κατά την οποία ένα επίπεδο έλασμα διαμορφώνεται σε κοίλο, με τη βοήθεια κατάλληλου εργαλείου (έμβολο – μήτρα).
- Απαιτείται συγκράτηση του ελάσματος, για να μη δημιουργηθούν πτυχώσεις, οι οποίες έχουν ως συνέπεια την αυξημένη τραχύτητα, τη μειωμένη αντοχή ή τη θραύση του ελάσματος.
- Κατασκευάζονται δοχεία, όπως μαγειρικά σκεύη, κλπ. σε διάφορα σχήματα.
- Για υλικά όπως χαλκός, αλουμίνιο, μαλακός χάλυβας ή κατεργασία εκτελείται εν ψυχρώ. Για σκληρότερα υλικά, όπως το τιτάνιο η κατεργασία εκτελείται εν θερμώ.
- Στην απλούστερη μορφή η βαθεία κοίλανση χρησιμοποιείται για την κατασκευή κυαθίου (δοχείου) από ένα κυκλικό έλασμα. Για την κατεργασία αυτή απαιτείται ακριβής υπολογισμός της αρχικής διαμέτρου του ελάσματος, υπολογισμός της δύναμης κοίλανσης και της δύναμης συγκράτησης, επιλογή κατάλληλου λιπαντικού και ύπαρξη χάρης μεταξύ εμβόλου και μήτρας.

ΜΟΝΤΕΛΛΑ ΕΛΑΣΜΑΤΩΝ

Παράδειγμα – Automatic bending of sheet metal with a KUKA robot

ΜΟΝΤΕΛΛΑ ΕΛΑΣΜΑΤΩΝ

- Το έλασμα εμφανίζεται με διαφορετικού χρώματος επιφάνειες, που περιέχουν ανάμεσά τους τις πλευρικές επιφάνειες.
- Η δημιουργία ενός εξαρτήματος από έλασμα μπορεί να γίνει με δύο διαφορετικούς τρόπους:
 - Χρησιμοποιώντας απευθείας το ειδικό μενού δημιουργίας ελασμάτων που βρίσκεται στη δημιουργία εξαρτημάτων.
 - Σχεδιάζοντας ένα τυπικό εξάρτημα που έχει σταθερό πάχος και μετατρέποντας αυτό σε έλασμα

- Το πρώτο και βασικότερο χαρακτηριστικό ενός ελάσματος ονομάζεται τοίχωμα (Wall).
- Υπάρχουν δύο είδη τοιχωμάτων:
 - τα πρωτεύοντα (Primary) και
 - τα δευτερεύοντα (Secondary).
- Στα πρωτεύοντα δεν απαιτείται η παρουσία ενός άλλου τοιχώματος, ενώ τα δευτερεύοντα πρέπει να συσχετιστούν με κάποιο άλλο τοίχωμα, γιατί δεν μπορούν να υπάρξουν ως ανεξάρτητα
- Πρώτα δημιουργείται το πρωτεύον και στη συνέχεια δημιουργείται οποιοσδήποτε αριθμός τοιχωμάτων, τα οποία μορφοποιούνται και/ή ενώνονται μεταξύ τους.

Παράδειγμα – Autodesk Inventor 2010 Sheet Metal Design

Παράδειγμα – SolidWorks 2010 Sheet Metal Functionality

ΣΧΗΜΑ 2.75 Η λειτουργία της περιστροφής στη δημιουργία αντικειμένου από έλασμα.

ΣΧΗΜΑ 2.77 Η λειτουργία του επιπέδου στη δημιουργία αντικειμένου από έλασμα.

ΣΧΗΜΑ 2.78 Η λειτουργία της μετατόπισης στη δημιουργία αντικειμένου από έλασμα.

ΜΕΤΑΤΡΟΠΗ ΕΞΑΡΤΗΜΑΤΟΣ ΣΕ ΕΛΑΣΜΑ

Η απ' ευθείας δημιουργία ελασμάτων επιτρέπει τη δημιουργία πολλών τύπων και μορφών ελασμάτων. Παρ' όλα αυτά, δεν προσφέρει όλες τις δυνατότητες που υπάρχουν στη δημιουργία εξαρτημάτων. Γι' αυτό το λόγο ένα έλασμα μπορεί αρχικά να σχεδιαστεί ως στερεό αντικείμενο και στη συνέχεια να μετατραπεί σε μορφή ελάσματος. Ο τρόπος αυτός προσφέρει ευελιξία και συνδυάζει τα πλεονεκτήματα και των δύο μεθόδων, επιτρέποντας στο χρήστη να επιστρέψει στην κατάσταση δημιουργίας αντικειμένου εάν επιθυμεί να επανακαθορίσει τα στερεά χαρακτηριστικά του μοντέλου.

Η μετατροπή εξαρτήματος σε έλασμα μπορεί να γίνει με δύο διαφορετικούς τρόπους:

- Το χαρακτηριστικό της κάμψης (bend feature) χρησιμοποιείται για να προσθέσει μια κάμψη σ' ένα επίπεδο τμήμα του ελάσματος.
- Η κάμψη αναπτύσσεται σε ευθεία γραμμή και δεν πρέπει να τέμνει προϋπάρχουσες κάμψεις

- Διακρίνονται δύο γενικοί τύποι κάμψης:
 - 1. Γωνίας (Angle): Δημιουργεί κάμψη με καθορισμένη ακτίνα και γωνία
 - Κατά μήκος του άξονα της ακτίνας εμφανίζεται μια γωνία για να δείξει τη φορά της κάμψης.
 - Η κατεύθυνση της γωνίας μπορεί να αναστραφεί έτσι ώστε να αλλάξει η φορά της κάμψης.

- Διακρίνονται δύο γενικοί τύποι κάμψης:
 - 2. Περιστροφής (Roll): Δημιουργεί κάμψη με μια καθορισμένη ακτίνα,
 - αλλά η γωνία που θα προκύψει θα εξαρτηθεί από την τιμή της ακτίνας και την ποσότητα υλικού που θα καμφθεί

19

CAD/CAM/CNC

٠

ΚΑΜΨΕΙΣ ΕΛΑΣΜΑΤΩΝ

- Για καθέναν από τους δύο παραπάνω τύπους κάμψεων υπάρχουν 3 δυνατές επιλογές:
 - 1. Κανονική Κάμψη (Regular): Δημιουργεί κάμψη που δεν περιέχει επιφάνειες που μετατοπίζονται.
 - 2. Κάμψη με Μετατόπιση (With Transition): Σε αυτόν τον τύπο παραμορφώνεται η επιφάνεια μετάβασης ανάμεσα στην κάμψη και σε μία επιφάνεια που έχει οριστεί να παραμείνει παγιωμένη

٠

ΚΑΜΨΕΙΣ ΕΛΑΣΜΑΤΩΝ

- Για καθέναν από τους δύο παραπάνω τύπους κάμψεων υπάρχουν 3 δυνατές επιλογές:
 - 3. Επίπεδη Κάμψη (Planar): Δημιουργεί κάμψη γύρω από έναν άξονα που είναι κάθετος στην επιφάνεια σχεδιασμού

ΕΠΙΛΟΓΕΣ ΣΤΗΝ ΚΑΜΨΗ

Η Γραμμή Κάμψης χρησιμοποιείται ως ένα σημείο αναφοράς για τον υπολογισμό του μήκους κάμψης. Η τοποθέτηση του προκύπτοντος τοιχώματος εξαρτάται από την επιλογή της μεριάς της γραμμής μετατόπισης στην οποία θα δημιουργηθεί η Κάμψη

ΕΠΙΛΟΓΕΣ ΣΤΗΝ ΚΑΜΨΗ

Η Γραμμή Κάμψης χρησιμοποιείται ως ένα σημείο αναφοράς για τον υπολογισμό του μήκους κάμψης. Η τοποθέτηση του προκύπτοντος τοιχώματος εξαρτάται από την επιλογή της μεριάς της γραμμής μετατόπισης στην οποία θα δημιουργηθεί η Κάμψη

ΕΠΙΛΟΓΕΣ ΣΤΗΝ ΚΑΜΨΗ

Η Γραμμή Κάμψης χρησιμοποιείται ως ένα σημείο αναφοράς για τον υπολογισμό του μήκους κάμψης. Η τοποθέτηση του προκύπτοντος τοιχώματος εξαρτάται από την επιλογή της μεριάς της γραμμής μετατόπισης στην οποία θα δημιουργηθεί η Κάμψη

ΣXHMA 2.88

Η λειτς

Ανάπτυγμα Κάμψεων (Unbend) και Επαναφορά Κάμψεων (Bend Back)

Η λειτουργία της ανάπτυξης χρησιμοποιείται για να κάνει επίπεδο ένα έλασμα, το οποίο περιέχει καμπυλωτές επιφάνειες που έχουν δημιουργηθεί μέσω τοιχωμάτων ή κάμψεων. Ο χρήστης μπορεί να επιλέξει τις κάμψεις που θα αναπτυχθούν

Αρχικο έλασμα, μερική και πλήρης ανάπτυξη

(unbend, unbend/all).

E

Δημιουργία Μορφοποιήσεων (Forms)

Μια άλλη χρήσιμη δυνατότητα στο σχεδιασμό ελασμάτων είναι η δημιουργία μορφοποιήσεων. Το σχήμα της μορφοποίησης δημιουργείται σε ένα άλλο, συνήθως στερεό αντικείμενο, που συναρμολογείται στο έλασμα

Αποτέλεσμα αυτού είναι να μεταφερθεί η γεωμετρία του αντικειμένου στο έλασμα, διατηρώντας παράλληλα σταθερό το πάχος σε κάθε σημείο του.

Παράδειγμα – sheet metal forming

Created by bending, cutting, or deforming a thin sheet of uniform thickness

> INVOKING THE SHEETMETAL MODE

The **New** dialog box

ΤΕΙ Κρήτης

The initial screen appearance in the Sheetmetal mode

Copyright@CADCIM Technologies (www.cadcim.com)

Primary Walls

Secondary Walls

Creating the Unattached Flat Wall

The Flat dashboard

References Tab

The **References** tab slide-down panel

Model of the unattached flat wall

Properties Tab

Creating the Unattached Revolve Wall

Figure A The FIRST WALL: Revolve dialog box

Figure B The ATTRIBUTES menu

Figure C The sketch showing the closed section

Figure D The revolved wall

Creating the Unattached Blend Wall

Parallel Blend

Figure A The BLEND OPTS menu

Figure B The ATTRIBUTES menu

Figure C The sketch showing three sections for creating the parallel blend feature

Figure D Parallel blend feature with straight edges

Figure E Parallel blend feature with smooth edges

ΤΕΙ Κρήτης

Copyright©CADCIM Technologies (www.cadcim.com)

Rotational Blend

The **ATTRIBUTES** menu

General Blend

Figure A The two sections with dimensions used to create the blend feature

Figure B Shaded model of the rotational blend feature using the **Open** option

Creating the Unattached Offset Wall

📑 FIRST WALL: Offset 🛛 💽				
Elemen	nt	Info		
> Surface		Defin	ing 🔺	
Distance)	Requ	ired	
Offset Ty	pe	Norm	al to Su 📱	
Leave O	ut	Optio	nal 🛛	
MaterialS	Side	Requ	ired 👻	
Define	R	efs	Info	
ОК	Ca	ncel	Preview	

Figure A The Unattached Wall:Offset dialog box

Figure B The OFFSETTYPE menu

- Normal to Surf
- Controlled Fit
- Auto Fit

Figure C Model with the original wall and the offset wall

Creating Reliefs in Sheetmetal Components

- Stretch Relief
- Rip Relief
- Rectangular Relief
- Obround Relief

Model with the rectangular relief

Model with the obround relief

Creating a Flat Wall

Figure A The Flat Wall dashboard

Placement Tab

Figure B The Placement tab slide-down panel

Shape Tab

Sketch Open.	Save As	
Shape Attachment:		
Height dimension i	ncludes thickness	
	ives not include unchne.	
	1	1
y• -100.38•		У
2 X	·	100 23

Figure C The Shape tab slide-down panel

- Offset Tab
- Miter Cuts Tab
- Relief Tab
- Bend Allowance Tab

Figure E The Relief tab slide-down panel

Figure F The Bend Allowance tab slide-down panel

ΤΕΙ Κρήτης

Copyright@CADCIM Technologies (www.cadcim.com)

Model with the flange wall attached to the base wall

ΤΕΙ Κρήτης

Copyright©CADCIM Technologies (www.cadcim.com)

Add Bend on the attachment edge Button

Figure G Model of the base wall

Figure H Model with the flat wall

Creating a Twist Wall

	TWIST		—
ſ	Element	Info	
>	Attach Edge	Defini	ng 🔺
	Twist Axis	Requi	ired
	Start Width	Requi	ired 📱
	End Width	Requi	ired U
	Twist Length	Requi	ired
	Twist Angle	Requi	ired 💌
C	Define	Refs	Info
	ок	ancel	Preview

Figure A The TWIST dialog box

Figure B The FEATURE REFS menu

Figure C The TWIST AXS PNT

menu

- Select Point
- Use Middle
- Start Width
- End Width
- Twist Length
- Twist Angle
- Developed Length

Figure D Model with the twist wall attached to the base wall

Creating an Extend Wall

Figure A The WALL Options: Extend dialog box

Figure B The EXT DIST and the SETUP PLANE menu

- Up To Plane
- Use Value

Figure C Model with two independent unattached flat walls

Figure D Model with the extend wall between two flat walls

Creating a Flange Wall

Figure A The Flange Wall dashboard

• Placement Tab

Figure B The Placement tab slide-down panel

- Profile Tab
- Length Tab

Figure C The Profile tab slide-down panel

<u> </u>		
Chain End	• 0.00	*
늘 Chain End	• 0.00	

Figure D The Length tab slide-down panel

- Offset Tab
- Miter Cuts Tab

Unset wa	II with respect to attachment edg
🔘 Add to	Part edge
(ii) Autom	atic
O By valu	e
0.00	*

Figure E The Offset tab slide-down panel

Figure F The Miter Cuts tab slide-down panel

Relief Tab

Bend Allowance Tab

Relief Category	
Bend Relief Corner Relief	
Define each side congrately	
Side 1	
 Side 2 	
Type Rip 🔹	

Figure G The Relief tab slide-down panel

Figure H The Bend Allowance tab slide-down panel

• Properties Tab

Name	FLANGE_1	0
Thickness	10.000000	

Figure I The Properties tab slide-down panel

Figure J Model with the flange wall attached to the base wall

Creating the Bend Feature

- Angle
- Roll
- Regular Bend

🔲 BEND Options: Angle, Reg 💌				
Elemer	nt	Info		
> Bend Ta	ble	Defin	ing	
Radius 1	Гуре	Requ	ired	
Sketch		Requ	ired	1
Relief		Requ	ired	
Bend An	gle	Requ	ired	
Radius		Requ	ired	•
Define	F	Refs	Int	fo
ОК	C	ancel	Prev	view

Figure B The BEND Options dialog box

Copyright©CADCIM Technologies (www.cadcim.com)

Figure E Model of the base wall

Figure F Model with the angle bend

Figure G Sketch for creating a bend using the **w/Transition** option

Figure H Model with an angle bend created using the **Regular** option

Figure I Model with an angle bend created using the **w/Transition** option

ΤΕΙ Κρήτης

Copyright@CADCIM Technologies (www.cadcim.com)

Planar Bend

Figure A Model of the base wall

Figure B Model with the planar bend

Creating the Unbend Feature

Regular

Figure A The UNBEND OPT menu

🔲 (Regular	r Type)	— ———————————————————————————————————
Elemen	t Info	
> Fixed Ge Unbend Deforma	om Defir Geom Req tion Defir	ning uired ned
Define	Refs	Info
ОК	Cancel	Preview

Figure B The Regular Type dialog box

Figure C The UNBENDSEL menu

Figure D Model with the regular bend and a flat wall

Figure E Model after unbending

Creating the Bend Back

Figure A The BEND BACK dialog box

Figure B The BENDBACKSEL menu

- BendBack Sel
- BendBack All

Figure C Model with the surfaces selected for the bend back feature

Figure D Model after creating the bend back feature

Creating the Conversion

- Basic conversion
- Sheetmetal Conversion

Figure A Model of the solid part

Figure B Model after converting into sheetmetal component by removing the bottom surface

Figure C The SMT CONVERSION dialog box

Figure D The solid model after being converted into a sheetmetal component

Figure E Model with the edge rip, rip connect, and bend features

• Creating Cuts in the Sheetmetal Component

Figure A The Extrude dashboard

- Remove material normal to both Driven and Offset surface button
- Remove material normal to Driven surface button
- Remove material normal to Offset surface button

Creating the Flat Pattern

Figure A Model used for the flat pattern

Figure B Model after creating the flat pattern

Tutorial 1: Creating the Cable Box Base

D PTC

1. Create a **new part** file and select Sheetmetal as the sub-type in the NEW dialog box, as shown in Figure. The Use default template option is selected so that the part uses the default sheetmetal template.

2. Click Extrude.

3. Select datum plane FRONT as the sketching plane and datum plane TOP as the top reference.

- 4. Sketch the section as shown in Figure.
- 5. Type [0.08] as the thickness.
- 6. Modify the radius dimension to [.13] and exit from Sketcher.

7. Extrude to a blind depth of [12]. The completed wall feature appears as shown in Figure.

8. Save the model and erase it from memory.

🍢 New	×
— Туре ————	- Sub-type
O 📉 Sketch	🔿 Solid
📀 🔲 Part	C Composite
O 🛄 Assembly	• Sneetmetai
O 🛄 Manufacturing	
🔿 🖳 Drawing	
🔿 🛄 Format	
C 🗐 Report	
C 🖵 Diagram	
🔿 🔚 Layout	
🔿 💆 Markup	
Name cable_box_base	
🔽 Use default template	
ОК	Cancel

Tutorial 2: Adding Walls to the Cable Box Base

- 1. Open CABLE_BOX_BASE.PRT (tutorial 1 part)
- 2. Click Flat.
- 3. Pick the lower green edge to attach the wall as shown in Figure.
- 4. Use the default bend angle of 90 degrees.
- 6. Click Shape and **Sketch** and sketch the section as an open section consisting of three lines as shown in Figure.
- 7. Exit Sketcher when the section is complete and orient to the default view.
- 8. Click Relief and select **Obround**

ΕΙ Κρήτης

- 10. Enter Value and type [0.20] for the relief's width.
- 11. Define the same relief for the other end of the wall.
- 12. Click OK in the dialog box. The part should appear as shown in Figure.
- 13. Create a similar flat wall on the opposite end of the cable box. Use obround relief on both ends of the wall. Make this wall reference the first flat wall (that is, no dimensions are required for the second flat wall). The part should appear as shown in Figure.
- 14. Save the model and erase it from memory.

) PTC

Tutorial 3: Unbend and bend back

- 1. Click Unbend
- 2. Select the bottom surface to remain fixed.
- 3. Select unbend all and done, to see the shape of the unbend feature, to check if geometry overlaps.
- 4. Click Bend back
- 5. Select the bottom surface to remain fixed.
- 6. Select bend back all and done to see the bend feature again

) PTC

Tutorial 4: Creating an Unattached Wall

- 1. Open CUSTOM_SHIELD.PRT.
- 2. Click Offset.
- 3. Pick the surface on the right-hand side, as shown in Figure.
- 4. Type [0] as the offset value.
- 5. If necessary, flip the arrow outward (to the right). Click Okay.
- 6. Type [.05] as the thickness and click OK.

7. Create an unattached offset wall on the other side. Notice that the Unattached option is automatically selected when you click Offset. Type **[0]** as the offset value and add the thickness to the outside (to the left).

8. Click Planar.

9. Pick the FRONT datum plane as the sketching reference. Flip the arrow outward.

10. Pick the TOP datum plane as the top reference.

11. Pick the top datum planes and the two vertical surfaces as references for the section, as shown in Figure.

12. Sketch a horizontal centerline along the TOP datum plane.

13. Sketch a rectangle, symmetric about the centerline, where the vertical edges lie on the referenced surfaces, as shown in Figure

14. Complete the feature when finished sketching.

Tutorial 5: Unbend and Bend Back

1. Create a new part called BEND BACK using the default template.

2. Create an **extruded wall** using the dimension scheme shown in Figure (use an equal length constraint for the horizontal segments). Create the wall on both sides of the datum plane. Type a blind depth of **[6.0**].

3. Click **Unbend**.

4. Pick the surface shown in Figure as the one to remain fixed while unbending.

5. Click Unbend All > Done and click OK in the dialog box.

6. Extrude.

7. Sketch on the large top face of the part.

8. Sketch the **cut** as shown in Figure.

9. Add the thickness to the outside of the cut. Type a thickness value of [0.3].

10. Click Thru Next for the depth of the cut. The completed feature should appear as shown in Figure.

D PTC

Tutorial 5: Unbend and Bend Back

11. Create a similar cut through the bend on the other side of the part.

- 12. Bend back
- 13. Pick the **surface** shown in Figure to remain fixed.
- 14. Pick the two surfaces shown in Figure.
- 15. After picking the two surfaces, click Done Sel > Done Refs.
- 16. Type [yes] at the prompt for the contour to remain flat.
- 17. Type [yes] for the second contour. The part should appear as shown in Figure.
- 18. Save the part and erase it from memory.

D PTC

Tutorial 6: Forms for the Cover

1. Open COVER.PRT.

2. Click **Form > Die Form**. Accept the defaults of Die and Reference in the OPTIONS menu.

3. Select FORM1.PRT for the referencing geometry. The form part opens in a second window along with a component placement window.

4. Align the front of the form and the green underside surface on the cover part, as shown in Figure.

5. Align Offset **DTM1** (yellow side) on the form part and the right side wall of the cover, as shown in Figure. Type [-4.33] as the offset value.
6. Mate Offset **DTM2** (yellow side) on the form part and the bottom

end surface of the cover, as shown in Figure. Type a value of [-6.33].

7. The Message Window prompts, "Form feature can now be placed". Click Show Placement to preview the placement of the form, then click Done to complete the placement.

8. Pick the front surface of the form as the boundary plane, as shown in Figure. Pick one of the rounds that touch the bounding plane as the seed surface.

9. Click Preview > OK to place the form. The part should appear as shown in Figure.

PTC

ΓΕΙ Κρήτης

Tutorial 6: Forms for the Cover

PTC

10. Create the rectangular cut shown in Figure. Locate the cut from the same end and side surfaces used to locate the form feature.

1. Create an unbend feature with the top surface remaining fixed. As shown in Figure, the form geometry is not flattened.

- 2. Click Form > Flatten Form.
- 3. Select the optional Form element in the dialog box and click Define.
- 4. Pick the recess created with the FORM1.PRT part.
- 5. Click Done Sel > Done Refs.
- 6. Click Ok. The form feature is flattened.
- 8. Save the part and erase it from memory.

Ασκήσεις

Στη συνέχεια ακολουθούν ασκήσεις σχετικές με τη διαμόρφωση ελασμάτων.

Τις ασκήσεις αυτές πρέπει να τις υλοποιήσετε στο λογισμικό του PTC Pro Engineer Creo 2.0 και να τις αποστείλετε σε ηλεκτρονική μορφή μέχρι το επόμενο μάθημα (μέχρι την ημέρα του επόμενου μαθήματος, πριν από αυτό). Μπορείτε να χρησιμοποιήσετε τις οδηγίες που παρέχονται, ή να χρησιμοποιήσετε δικό σας τρόπο σκέψης και υλοποίησης των ασκήσεων.

Ζητείται να παραδοθούν τα αντίστοιχα αρχεία σχεδίων.

Μαζί με τα αρχεία αυτά πρέπει να παραδοθεί και αναφορά, στην οποία να περιγράφεται:

Η διαδικασία υλοποίησης των ασκήσεων

Η μεθοδολογία που ακολουθήσατε και η ροή των εντολών στο λογισμικό

Πιθανά προβλήματα και δυσκολίες που συναντήσατε

Πιθανές σκέψεις που μπορεί να σας αναπτυχθούν, σε σχέση με τη διαδικασία χειρισμού του λογισμικού, οι οποίες πιστεύετε ότι θα έκαναν απλούστερη την υλοποίηση των ασκήσεων (με αντίστοιχη τεκμηρίωση)

Tutorial 1

In this tutorial, you will create the sheetmetal component of the Holder Clip shown in Figure A. The flat pattern of the component is shown in Figure C. The dimensions are shown in Figures B and D. The thickness of the sheet is 1 mm. After creating the sheet metal component, create its flat pattern. (Expected time: 45 min)

Figure A Model for Tutorial 1

Figure B Top view of the Holder Clip

Figure C Flat pattern of the component

Figure D Front view of the Holder Clip

The following steps are required to complete this tutorial:

 Create the base feature, which is an unattached flat wall. The sketch of the base wall is shown in Figure E. The model similar to the one shown in Figure F is displayed in the drawing area.

Figure E The sketch for the base wall

Figure F Model of the base wall

2. Create the flange walls on the right, left, and front edges of the base wall, refer to **Figures G, H, I, J, K, and L**.

Figure G The attachment edge for the flange wall

Figure H Model with the flange wall

Figure I Model with the flange wall created on the right edge

Figure K The attachment edge for the flange wall

Figure J Model after creating the flange on the left edge

Figure L Model with the flange wall

3. Next, create a cut feature on front flange wall. The sketch for the cut feature is shown in **Figure M**. The sheetmetal component after creating the cut feature is shown in **Figure N**.

Figure M The sketch for the cut feature

Figure N Model after creating the cut feature

4. Create a flat wall attached to the flange wall created in the previous step, refer to **Figure O**.

Figure O Model after creating the flat walls

5. Create the flange wall. The attachment edge for this flange wall is shown in **Figure P**. The model similar to the one shown in **Figure Q** is displayed in the drawing area.

Figure P The attachment edge for the flange

Figure Q Model showing the flange wall

6. Create the next flange wall on the front edge of the base wall. Select the base wall as shown in **Figure R**. The model, similar to the one shown in **Figure S** is displayed in the drawing area.

Figure R The attachment edge for the flange wall

Figure S Model showing the flange wall

7. Create the round and chamfer features, refer to **Figures T** and **U**.

Figure T Model after the creating the round feature

Figure U Model after creating the chamfer feature

8. Create the hole features on the Top and Bottom Walls, refer to **Figures V** and **W**.

Figure V Model with the cut feature on the base wall

Figure W Model with the cut feature on the bottom flange wall

9. Create the flat pattern of the model, refer to **Figure X**.

Figure X Model after creating the flat pattern

10. Save the model and close the window.

Tutorial 2

In this tutorial, you will create the sheet metal component shown in **Figure A**. The dimensions are shown in **Figures B**, **C**, and **D**. The flat pattern of the component is shown in **Figure E**. The thickness of the sheet is 1 mm. After creating the sheetmetal component, create its flat pattern. (Expected time: 45 min)

Figure A Model for Tutorial 2

Figure B Top view of the model

Figure C Left-side view of the model

Figure E Flat pattern of the component

1. Create the base feature, refer to **Figures F** and **G**.

Figure F The sketch for the base wall

Figure G Model of the base wall

2. Create the hole feature on the top surface of the base wall, refer to **Figure H** and pattern the hole feature, refer to **Figure I**.

Figure H Model after creating the hole feature

Figure I Model after creating the pattern of the hole feature

3. Create a flange wall on the right edge of the base wall, refer to **Figure J**.

Figure J Model with the flange wall

TEI Κρήτης

Copyright@CADCIM Technologies (www.cadcim.com)

4. Create the cut feature, refer to **Figures K** and **L**.

Figure K The sketch for the cut feature

Figure L Model with the cut feature

 Create the next flange wall attached to the wall created previously, refer to Figures M and N.

Figure M The attachment edge for the flange wall

Figure N Model with the flange wall flange wall

6. Create the two flange walls along with the cut feature on the left side of the base wall as created previously, refer to **Figure O**.

Figure O Model after creating the flange walls and the cut feature on the left edge of the base wall

7. Create the flat wall on the front edge of the base wall, refer to **Figures P** and **Q**.

Figure P The sketch for the flat wall

Figure Q Model after creating the flat wall

8. Create the flat pattern of the component, refer to **Figure R**.

Figure R Model after creating the flat pattern

ΤΕΙ Κρήτης

Copyright@CADCIM Technologies (www.cadcim.com)

Άσκηση 3 – Creating a box

>) PTC

1. Create a new sheetmetal part called BOX.

2. For the first sheetmetal feature, create an extruded wall using the section shown in Figure, sketched on the TOP datum plane.

3. Type [0.12] as the inside wall value to maintain the proper dimensioning scheme. Make sure that the 0.35 dimension belongs to the inside (thickened) portion.

- 4. Extrude the wall to a blind depth of [10.00].
- 5. Create a flat wall.
- 6. Pick the green edge indicated in Figure to attach the wall.
- 7. Use the default bend angle of 90 degrees.
- 5. Sketch the wall as shown in Figure. After finishing the sketch, click No Relief and type [0.10] as the bend radius.

6. Create another flat wall so that it closes off the end of the box and Pro/ENGINEER miters the corner automatically. Use the default bend angle of 90 degrees.

Άσκηση 3 – Creating a box

7. Pick the edge shown in Figure.

8. Sketch the section for the wall, as shown in Figure. You do not need to add dimensions, but add the appropriate references. Notice that the side of the sketch crossing the bend is beyond the Sketcher point. Pro/ENGINEER, therefore, miters both walls at this corner.

9. After finishing the sketch, click Relief and use the Rip relief option for the right vertex, as shown in Figure. Type [0.35] as a bend radius.

10. Create another flat wall for the other end of BOX.PRT. Use the default bend angle of 90 degrees. Pick the white edge indicated in Figure.

11. Sketch the wall using the section shown in Figure. After finishing the sketch, click No Relief and type [0.10] as the bend radius.

Άσκηση 4 – Creating a Twisted Secondary Wall

5.00

- 1. Create a new part called TWIST.PRT.
- 2. Create a flat primary wall (Planar) as shown in Figure.
- 3. Click Shapes > Twist
- 4. Pick the green or white lower edge of the wall, as indicated in Figure.
- 5. Click Use Middle to create a datum point at the midpoint of the selected edge to locate the twist axis.
- 6. Type [2.0] as the start width. The default value is the length of the selected edge.
- 7. Type [2.5] as the end width.
- 8. Type [2.5] as the twist length (length after twisting).
- 9. Type [90] as the twist angle.
- 10. Type [4.0] as the developed length. This represents the length of the wall if you unbend it.
- 11. Click OK. The completed part appears as shown in Figure.
- 12. Save the part and erase it from memory.

