
DiscreteDiscrete--Time Signal Time Signal 
ProcessingProcessing

Lectures 18-19
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Designing FIR FiltersDesigning FIR FiltersDesigning FIR FiltersDesigning FIR Filters

i Advantages of FIR filters:i Advantages of FIR filters:
    1. more phase control--can design filters that are
       exactly linear phase       exactly linear phase
    2. guaranteed stability--FIR filters have only zeros, 
        no non-zero, finite poles, p
    3. can match any arbitrary design specification to
        arbitrary precision with sufficient filter length
    4. several excellent, well-understood, design techniques
    5. easy to implement



FIR Filter BasicsFIR Filter BasicsFIR Filter BasicsFIR Filter Basics
i FIR filters have the characteristic:

( ) 0 0,1,..., )h n n n M≠ =

i
          for a finite range of  (e.g., 
 FIR filters designed to match ideal frequency response:

( ) ( )j
id idH e h nω ←⎯→           (which is infinite 

i
in extent)

 How to do this? 



Windowing MethodWindowing MethodWindowing MethodWindowing Method
      

⇒ use a Rectangular Window to weight the ideal response



Windowing MethodWindowing Method
⇒

i Generalize this concept of weighting the ideal sequence
  by a finite duration window  Window Design Method

Want W(ejω) to be 
as close to an as close to an 
impulse as possible, 
in order to reduce 
the negative effects 
f   d  of ringing => need a 

window with what?



Window DesignsWindow Designs
 Example--Rectangular Windowi
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Window DesignsWindow Designs
i Rectangular Window Properties:
     1  main lobe width controls:     1. main lobe width controls:
    2. side lobe area controls:

M ⇒i If  increases  

0n n M= =i The sharp transitions of the windowed sequence at  and 0n n M The sharp transitions of the windowed sequence at  and 
   cause large ripples

M

⇒ in the filter  use more gradually tapering
   windows
 A   th  t l  i d  d  t   i d i

( ) ( ) ( ) ( ) ( )j j j
id id

M

W e H e H e h nω ω ωδ ω

→∞

= =

i As , the rectangular window corresponds to no windowing,
  i.e.,  and  (i.e., no truncation of )



Effect of Window at DiscontinuityEffect of Window at DiscontinuityEffect of Window at DiscontinuityEffect of Window at Discontinuity

 Consider ideal LPF with cutoff cωi
 The window frequency response is

   centered on the discontinuity
  - width between peak overshoots is

i

   width between peak overshoots is
    window main lobe width
  - approximation is symmetric around
    ω ω    cω ω=



Window DesignsWindow Designs
( ) 1 01. Rectangular: Rw n n M= ≤ ≤

0
4

( 1)
Main Lobe Width

otherwise

M
π

=

+
∼

( )
13

( ) 2 / 0 / 2

Peak Side Lobe Amplitude  dB
2. Bartlett (Triangular):

w n n M n M

= −

≤ ≤( ) 2 / 0 / 2
2 2 / / 2
0

Bw n n M n M
n M M n M

otherwise

= ≤ ≤
= − < ≤
=

8Main Lobe Width

Peak Side Lobe Amplitu
M
π∼

25de  dB= −

( ) ( ) ( ) ( / 2 point Rect. window)
 Main Lobe twice as large as for RW

B R Rw n w n w n M= ∗

⇒



Window DesignsWindow Designs
( ) 0.5 0.5cos(2 / ) 03. Hanning: HNw n n M n Mπ= − ≤ ≤( ) ( )

0
8

g

Main Lobe Width

HN

otherwise

M
π

=

∼

31

( ) 0 54 0 46 (2 / ) 0

Peak Side Lobe Amplitude  dB
4. Hamming:

M

M M

= −

( ) 0.54 0.46cos(2 / ) 0
0

HMw n M n M
otherwise

π= − ≤ ≤
=

8

41

Main Lobe Width

Peak Side Lobe Amplitude
M
π

= −

∼

 dBp



Window DesignsWindow Designs
5. Blackman:

( ) 0.42 0.5cos(2 / ) 0.08cos(4 / ) 0
0

12

Bw n n M n M n M
otherwise

π π

π

= − + ≤ ≤
=

12

57

Main Lobe Width

Peak Side Lobe Amplitude  dB
M
π

= −

∼

Note:  all windows are symmetric =>



Window Frequency ResponsesWindow Frequency ResponsesWindow Frequency ResponsesWindow Frequency Responses

Log magnitude responses of windows with M=50; a) Rectangular, b) Triangular, 
c) Hanning, d) Hamming



Window Frequency ResponsesWindow Frequency ResponsesWindow Frequency ResponsesWindow Frequency Responses
Log magnitude response for 

50 Bl k  dM=50 Blackman window



Window DesignsWindow DesignsWindow DesignsWindow Designs
i All windows have the following general properties:

0
( )w n

ω =  - their frequency responses are concentrated around 
  - it is easy to compute the window, 
  - we can write the window frequency responses as sums of q y p

i

    shifted versions of the frequency response of the Rectangular 
    window
 Window Comparisons (from table on previous slide) Window Comparisons (from table on previous slide)

  



Window Filter Design ExampleWindow Filter Design ExampleWindow Filter Design ExampleWindow Filter Design Example



Linear Phase DesignsLinear Phase DesignsLinear Phase DesignsLinear Phase Designs
/ 2 1M M +

i All the windows we have talked about are symmetric
  around sample  for  point windows; therefore

/2

/ 2 1

( ) ( )

/

j j j M
e

M M

W e W e e

M

ω ω ω−

+

=

i

  around sample  for  point windows; therefore
         
 If the ideal filter response is also symmetric around

  sample 2 1M + for an  point filter duration  then/M  sample 
/2

2 1

( ) ( )j j j M
id e

M

H e H e eω ω ω−

+

=

i

 for an  point filter duration, then
         
 Then we have the result:

                



Kaiser Window DesignsKaiser Window DesignsKaiser Window DesignsKaiser Window Designs
i The real window design problem is finding a window that meets specifications 
   n b th tr nsiti n idth nd rippl  ith n  d r  f ' ptim lit '  th  ⇒

i

   on both transition width and ripple with any degree of optimality   the 
   Kaiser window meets this need
 Kaiser Win

0
dow Design Problem:  find a function that is maximally concentrated 

  around   the near optimal solution is found using Bessel functions (these 0;ω =  around   the near-optimal solution is found using Bessel functions (these 
  are related to the Prolate Spheroidal Wave Functio

2 1/ 2( ( ) / )β⎡ ⎤

ns which are the minimum 
  time-space product kernals)

2 1/ 2
0

0

(1 [( ) / ] )
( ) 0

( )
0
/ 2 ( )

I n
w n n M

I
otherwise

M I

β α α

β

⎡ ⎤− −⎣ ⎦= ≤ ≤

=
  ith  d  b i  th  th d  difi d B l f ti  f th  0/ 2 ( )M Iα = ⋅

i

  with , and  being the zeroth order modified Bessel function of the 
  first kind
 Win , Mβdow parameters: 
 M i  l b  idth d id  l b  h i ht  b  t d d ff i t h th  b  i Main lobe width and side lobe height can be traded off against each other by 

  varying these parameters



Kaiser Window DesignsKaiser Window DesignsKaiser Window DesignsKaiser Window Designs
, ,Mβ δi We can determine  exactly based on desired ripple,  and

( )20log10
s p

A

ω ω ω

δ

Δ = −

= −i

  transition band width, 
 Let

∴

⇒

 can find Kaiser window parameters easily based on desired
   filter specifications  removes the trial-and-error approach
   d it ti  f  fi di  th  b t/ t i t  i d   and iterations for finding the best/most appropriate window



Kaiser Window DesignsKaiser Window DesignsKaiser Window DesignsKaiser Window Designs

a) Kaiser windows for β=0, 3, and 6 
nd M 20; b) F i  t nsf ms and M=20; b) Fourier transforms 

corresponding to windows in a); c) 
Fourier transforms of Kaiser windows 
with β=6 and M=10,20 and 40β ,



Kaiser Window LPFKaiser Window LPFKaiser Window LPFKaiser Window LPF
i LPF Specifications:

1 20.4 ; 0.6 , 0.01, 0.001

0 001

p sω π ω π δ δ

δ

= = = =

=

i

    
 Since window designed filters must have the same

  ripple specs  we set 0.001

0 5 ; 0p s

δ

ω ω
ω π ω ω ω

=

+
= = Δ = =

i
  ripple specs, we set 
 Set ideal cutoff frequency to be:

   2π0.5 ; 0.
2c s pω π ω ω ω= = Δ = − =   2

20log10( ) 60 5 653 37A M

π

δ β= − = ⇒ = =

i Kaiser window parameters:

[ ] 2 1/ 2
0

20log10( ) 60 5.653, 37

(1 [( ) / ] )sin ( )
( ) 0c

A M

I nn
h n n M

δ β

β α αω α

⇒

⎡ ⎤− −− ⎣ ⎦ ≤ ≤

i Determine impulse response as:

     [ ]
0

( ) 0
) ( )

h n n M
n Iπ α β

⎣ ⎦= ⋅ ≤ ≤
−

     



Kaiser Window LPFKaiser Window LPFKaiser Window LPFKaiser Window LPF

Kaiser window designed LPF; 
a) impulse response for M=37; ) p p f ;
b) log magnitude response; c) 
approximation error



Equiripple Filter DesignEquiripple Filter DesignEquiripple Filter DesignEquiripple Filter Design

 The windowing method enabled us to design digital filtersi

22

 The windowing method enabled us to design digital filters
  that were minimum mean squared error designs:

π π

∫ ∫

i

22

( ) ( )
min ( ) min ( ) ( )          

 There are other criteria that can 

j j
idh n h n

E d H e H e dω ω

π π

ω ω ω
− −

= −∫ ∫
i be used to design digital There are other criteria that can 

i ( )

be used to design digital
  filters including:

        i i  i l   E⎡ ⎤
( )

min max ( )       - minimax ripple:  

 Such designs are called equiripple designs
h n

E
ω

ω⎡ ⎤
⎢ ⎥⎣ ⎦

i



Equiripple Filter DesignEquiripple Filter Design

Tolerance scheme Tolerance scheme 
and ideal response 
for lowpass filter

( ) Gi  th  id l   i  l  th  b djH ω( )
( ), 0,1,...,

 Given the ideal response,  in only the passband
  and stopband, find  with (generalized)
  linear phase such that it achieves the minimum values of

j
idH e

h n n M

ω

=

i

1 2  or  or both simultaneouδ δ sly
 Design issues:

     1. recognizing when the given filter is optimum  alternation theorem⇒

i
     1. recognizing when the given filter is optimum  alternation theorem
     2. determining the coefficients of the optimal filter remez algorithm

⇒

⇒



Equiripple Filter FREquiripple Filter FREquiripple Filter FREquiripple Filter FR
( ) ( ) ( )h n h n h M n= −i Assume  has even symmetry, i.e.,  and odd length

/

( ) ( ) ( )

( ) ( / 2) ( ) ( ),e e e

M
h n h n M h n h n

⇒

= + ⇒ = −

y y, , g
  (  is even)  Type I filter
           zero phase FIR

/ 2( ) ( )j j M j
eH e e A eω ω ω−=



Equiripple Filter FREquiripple Filter FREquiripple Filter FREquiripple Filter FR
cos( )

( )
nωi We can express the function  as a Chebyshev

  p l n mi l in icos( ),ω  polynomial in i.e.,
         

( )j
eA e ωi We can now express  as:



Equiripple Filter FREquiripple Filter FREquiripple Filter FREquiripple Filter FR



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem
i Note that:
              

( )
( ) 0,

j
eA e

P x

ω

ω π=

i

i

 Thus we see that derivatives of  are zero where the 
  derivatives of  are zero and at 
 We can thus define the Alternation Theorem as a weightedg

  approximation error function of the type:
          



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem

Minimum error achieved when all error are equiripple



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem
i Recall the problem we are trying to solve  namely we

( )j
eA e ω

⎛ ⎞

i Recall the problem we are trying to solve, namely we

  want to find  to minimize the maximum error, i.e.,

{ }
( )

( ):0
min max

eh n n L
F

E

F
ω

ω
≤ ≤

∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

         

  where  defines the region of interest (the passband
( )E ω

i
  and the stop bands) and  is the weighted error function
 To get the solution we need to use the Alternation Theorem 

   h  f d bl  on the transformed problem



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem
. ( )

 Let  denote the closed subset consisting of the disjoint
  union of closed subsets of the real axis    denotes an

PF
x P x

i

0
( )

  -order polynomial

         

th

r
k

k
k

r

P x a x
=

=∑
( )  Also,  denotes a given desPD x

[ ]

; ( )
, ( )

ired function of  that is
  continuous on  is a positive function, continuous on
   and  denotes the weighted error
        

P P

P P

x
F W x

F E x

[ ]( ) ( ) ( ) ( ) .        
  The maximum error  is defined as
     

P P PE x W x D x P x

E

= −

max ( ) . 
P

Px F
E E x

∈
=

( )

( )

( 2)

  A necessary and sufficient condition that  is the unique
  -order polynomial that minimizes  is that  exhibit
    alternations, i.e., there must exist at leas

th
P

P x

r E E x

r +at  least t

1 2 2

1

( 2) ...
( ) ( ) 1, 2,..., ( 1).

   values  in  such that  and such that
   for 

i P r

P i P i

r x F x x x
E x E x E i r

+

+

+ < < <

= − = ± = +



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem
i Alternations are points of maximum error and of

( )P x ⇒

i

p
  alternating sign
 We use the alternation theorem to determine if the

  polynomial  is optimal filter design is optimal



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem

Equivalent polynomial 
approximation functions as a 
function of x=cos(ω); a) 
approximating polynomial; b) 
weighting function; c) weighting function; c) 
approximation error;

K=δ1/δ2



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem

Possible optimum lowpass filter approximations for L=7; a) L+3 
alternations (extraripple case); b) L+2 alternations (extremum at 
ω=π); c) L+2 alternations (extremum at ω=0); d) L+2 alternations 
(extremum at both ω=0 and ω=π)



Alternation TheoremAlternation TheoremAlternation TheoremAlternation Theorem
Illustration that the passband 
edge must be an alternation g
frequency

Illustration that the frequency 
response must be equiripple in 
the approximation bands



Alternation Theorem ExamplesAlternation Theorem ExamplesAlternation Theorem ExamplesAlternation Theorem Examples



Alternation Theorem ExamplesAlternation Theorem ExamplesAlternation Theorem ExamplesAlternation Theorem Examples



Optimal LPF ConditionsOptimal LPF ConditionsOptimal LPF ConditionsOptimal LPF Conditions

2
3

 Optimal (in a minimax sense) LPF satisfies the following conditions:
   1. minimum number of alternations
   2. maximum number of alternations  (extraripple case)

L
L

= +
= +

i

( pp )
       --in the extraripple cas 0

0

e  and  are points of alternation
 To get extraripple designs must have alternations at:

   1  each of the 4 band edges ( )

ω ω π

ω ω ω π

= =

=

i
0, , ,

1

   1. each of the 4 band edges ( )
   2. internally at  points of zero slopes
   3. total of 

p s

L
L

ω ω ω π=

−

+ 3 alternations



Optimal LPF ConditionsOptimal LPF ConditionsOptimal LPF ConditionsOptimal LPF Conditions
i Lowpass Filter Conditions for Optimality:

3

p s

L
ω ω

+

 Lowpass Filter Conditions for Optimality
  1.  Maximum number of alternations is 
  2. Both  and  must be points of alternationp

⇒

p
  3. Optimum Type I filter is equiripple  all points
      of zero slope inside the passband and stopband must

0,π      be points of maximum error (except possibly at )
  4. Transition region must have monotone response



LPF ExamplesLPF ExamplesLPF ExamplesLPF Examples



Alternation Theorem IssuesAlternation Theorem IssuesAlternation Theorem IssuesAlternation Theorem Issues
2 The Alternation Theorem says that there are  alternation

  points for any type of filter
L +i

1
p y yp

   - for lowpass/highpass filters, there are 4 band edges,  zero
     slopes within bands for a total of 

L
L

−

3
1

 maximum number of alternations
   - for bandpass filters  there are 6 band edges   zero slopes within L

+

−1
5

    for bandpass filters, there are 6 band edges,  zero slopes within 
      bands for a total of  maximum number of alternations; thus there 
      is no problem

L
L +

 with "lose one-lose two" alternations;  also you can either
      l   b d d    i t f lt ti   h   i i l

0,
      lose one band edge as a point of alternation, or have one non-equiripple
      point and possible no alternation at  and still be ω π= optimal



Alternation Theorem ExamplesAlternation Theorem ExamplesAlternation Theorem ExamplesAlternation Theorem Examples



ParksParks--McClellan Filter DesignMcClellan Filter DesignParksParks McClellan Filter DesignMcClellan Filter Design
 Method for determining coefficients of optimal filtersi

    - Remez exchange algorithm used in the Parks-McClellan
      algorithm
 Th  i l fil  i fi  h  l i

( ) ( )

 The optimal filter satisfies the relations:

          ij
i d eW H e Aωω −

i

( ) 1( 1) 1,2,..., ( 2)ij ie i Lω δ+⎡ ⎤ = − = +⎣ ⎦
⎡ ⎤ 1

2

2
1 1 1 1 0

2
2 2 2 2 1

1 1/ ( ) ( )
1 1/ ( ) ( )

L j
d

L j
d

x x x W a H e
x x x W a H e

ω

ω

ω
ω

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥

( ) 222
2 2 2 2

. . . . . . .
( )1 1 / ( )

cos( )  are points of 

LL jL
dL L L L H ex x x W

x

ωδω

ω ω

++
+ + + +

⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= alternationscos( ),  are points of i i ix ω ω alternations



Remez Exchange AlgorithmRemez Exchange AlgorithmRemez Exchange AlgorithmRemez Exchange Algorithm
( )j

i ea A e ω→i Can use the above set of equations to solve for 

{ }
{ }

, 1, 2,..., ( 2)

,
i

p s i

i Lω

ω ω ω

= +

i The steps in the solution are as follows:
  1. guess a set of 
     -  and  are fixed and must be 2 of the set of  namely{ },p s i

( )

1

( 1)

l p l s

ia
L

ω ω ω ω

δ

δ ω δ

+= =

+ ±

y
        and 
  2. can solve equations for  and  using initial guess (Parks-McClellan
      algorithm finds  and interpolates through  points  to ( )( 1) ,

( ))
i

j
e

L

A e ω

δ ω δ+ ±      algorithm finds  and interpolates through  points  to 
      get 
  3. if ( )

( 2)

E

L

ω δ ω≤ ∀ ∈ ⇒

+

  the passband and stopband  optimal filter found.
     Otherwise  find a new set of extremal frequencies usin  the  lar est( 2)

( )j
e

L

A e ω

+     Otherwise, find a new set of extremal frequencies using the  largest
     peaks of the error in the current  (This is what is known as the Remez
     Exchange Algorithm)



ParksParks--McClellan / Remez McClellan / Remez 
E h E lE h E lExchange ExampleExchange Example

Illustration of the search 
part of the Parks-McClellan 
algorithm for equiripple g q pp
approximation



Optimal FIR FiltersOptimal FIR FiltersOptimal FIR FiltersOptimal FIR Filters

Optimum Type I FIR lowpass filter 
for ω =0 4π  ω =0 6π  K=δ1/δ2  and for ωp=0.4π, ωs=0.6π, K=δ1/δ2, and 
M=26; a) impulse response; b) log 
magnitude response; c) 
approximation error (unweighted)



Optimal FIR FiltersOptimal FIR FiltersOptimal FIR FiltersOptimal FIR Filters

Optimum Type II FIR lowpass 
filter for ω =0 4π  ω =0 6π  filter for ωp=0.4π, ωs=0.6π, 
K=δ1/δ2, and M=26; a) impulse 
response; b) log magnitude 
response; c) approximation error 
( i h d)(unweighted)

Notice error at ω=π



Remez Exchange AlgorithmRemez Exchange AlgorithmRemez Exchange AlgorithmRemez Exchange Algorithm


