-
o
<
X
n
c
o
S
.0
s
=
o

Practical on SPARQL

Semantic Web module




RDF Dataset - Library

* Consider the following RDF dataset

@prefix library: <http://example.org/library#>.
@prefix book: <http://example.org/book#>.

library:A_Semantic_Web_Primer_1 a library:Book;
book:isbn "978-0262012102";
book:publicationYear 2004;
book:pages 272;
book:writtenBy library:G_Antoniou,

library:F_van_Harmelen.

library:A_Semantic_Web_Primer_2 a library:Book;
book:isbn "978-0262012423";
book:publicationYear 2008;
book:writtenBy library:G_Antoniou,

library:F_van_Harmelen.

-
o
<
o
n
c
o
S
.0
s
=
o




RDF Dataset - Library (cont'd)

library:A Semantic_Web Primer_3 a library:Book;
book:isbn "978-0262018289";
book:publicationYear 2012;
book:pages 288;

book:writtenBy library:G_Antoniou,
library:F_van_Harmelen,
library:P_Groth,
library:R_Hoekstra.
library:G_Antoniou a library:Author;
library:name "Grigoris Antoniou".
library:F_van_Harmelen a library:Author;
library:name "Frank van Harmelen".
library:P_Groth a library:Author;
library:name "Paul Groth".
library:R_Hoekstra a library:Author;

library:name "Rinke Hoekstra".

-
o
<
o
n
c
o
S
.0
s
=
o




SPARQL Queries — Library (1/16)

e All SPARQL queries for the library domain start with:

PREFIX library: <http://example.org/library#>
PREFIX book: <http://example.org/book#>

-
o
<
o
n
c
o
S
.0
s
=
o




SPARQL Queries — Library (2/16)

 The books that are represented in the dataset. o
A
PREFIX library: <http://example.org/library#> %
PREFIX book: <http://example.org/book#> %
o

SELECT ?book
WHERE {
?book a library:Book.

library:A_Semantic_ Web_Primer_1
library:A_Semantic_Web_Primer_2
library:A_Semantic_Web_Primer_3




SPARQL Queries — Library (3/16)

* The books and their authors.

PREFIX library: <http://example.org/library#>
PREFIX book: <http://example.org/book#>

-
o
<
o
n
c
o
S
.0
s
=
o

SELECT ?book ?author
WHERE {
?book a library:Book.
?book book:writtenBy ?author.




SPARQL Queries — Library (4/16)

The books and their authors (results). o
library:A_Semantic_ Web_Primer_1 library:G_Antoniou f_g
library:A_Semantic._ Web_Primer_1 library:F_van_Harmelen §
library:A_Semantic_Web_Primer_2 library:G_Antoniou
library:A_Semantic_Web_Primer_2 library:F_van_Harmelen

library:A_Semantic_ Web_Primer_3 library:G_Antoniou

library:A_Semantic._ Web_Primer_3 library:F_van_Harmelen
library:A_Semantic_Web_Primer_3 library:P_Groth

library:A_Semantic_Web_Primer_3 library:R_Hoekstra




SPARQL Queries — Library (5/16)

* The books that the name of their authors is "Rinke Hoekstra". o
&
PREFIX library: <http://example.org/library#> %
PREFIX book: <http://example.org/book#> %
o

SELECT ?book
WHERE {
?book a library:Book.
?book book:writtenBy ?author.
?author library:name "Rinke Hoekstra"~~xsd:string.

library:A_Semantic_Web_Primer_3




SPARQL Queries — Library (6/16)

 The books that are written by Grigoris Antoniou or Frank van Harmelen.

o

o

:

PREFIX library: <http://example.org/library#> IS
PREFIX book: <http://example.org/book#> %
©

(Al

SELECT ?book
WHERE {

{?book book:writtenBy library:G_Antoniou.}
UNION

{?book book:writtenBy library:F_van_Harmelen.}




SPARQL Queries — Library (7/16)

 The books that are written by Grigoris Antoniou or Frank van Harmelen
(results).

library:A_Semantic_ Web_Primer_2

—
o
<
[
n
c
o
S
=
s
©
a

library:A_Semantic_ Web_Primer_1
library:A_Semantic_Web_Primer_3
library:A_Semantic_Web_Primer_2
library:A_Semantic_Web_Primer_3

library:A_Semantic._ Web_Primer_1

* Some books are retuned twice because they were written by both Grigoris
Antoniou and Frank van Harmelen.

 If result list is not explicitly ordered, books are returned in any (generally
unpredictable) order.




SPARQL Queries — Library (8/16)

 The books that are written by Grigoris Antoniou or Frank van Harmelen
(return each book at most once).

PREFIX library: <http://example.org/library#>
PREFIX book: <http://example.org/booki#>

i
o
S
o
wn
=
o
©
O
©
©
o

SELECT DISTINCT ?book
WHERE {

{?book book:writtenBy library:G_Antoniou.}
UNION

{?book book:writtenBy library:F_van_Harmelen.}

library:A_Semantic_Web_Primer_2

library:A_Semantic_ Web_Primer_1

library:A_Semantic_Web_Primer_3



SPARQL Queries — Library (9/16)

At most two books that were written by Grigoris Antoniou or Frank van o
Harmelen. &

©

PREFIX library: <http://example.org/library#> %
PREFIX book: <http://example.org/booki#> o

SELECT DISTINCT ?book
WHERE {

{?book book:writtenBy library:G_Antoniou.}
UNION

{?book book:writtenBy library:F_van_Harmelen.}

}

library:A_Semantic_Web_Primer_2

library:A_Semantic_ Web_Primer_1




SPARQL Queries — Library (10/16)

 The books and if known, their number of pages. o
A
PREFIX library: <http://example.org/library#> %
PREFIX book: <http://example.org/book#> %
o

SELECT ?book ?pages

WHERE {
?book a library:Book.
OPTIONAL
{?book book:pages ?pages.}
}

library:A_Semantic_Web_Primer_1 272
library:A_Semantic_Web_Primer_2

library:A_Semantic_Web_Primer_3 288




SPARQL Queries — Library (11/16)

 The books that were published after 2010.

PREFIX library: <http://example.org/library#>
PREFIX book: <http://example.org/book#>

SELECT ?book

WHERE {
?book a library:Book.
?book book:publicationYear ?year.
FILTER (?year>2010).

library:A_Semantic_ Web_Primer_3

i
o
S
o
wn
=
o
©
O
©
©
o




SPARQL Queries — Library (12/16)

 The books that were published between 2002 and 2009.

PREFIX library: <http://example.org/library#>
PREFIX book: <http://example.org/book#>

SELECT ?book

WHERE {
?book a library:Book.
?book book:publicationYear ?year.
FILTER (?year>=2002 && ?year<=2009).

library:A_Semantic_Web_Primer_1

library:A_Semantic_ Web_Primer_2

i
o
S
o
wn
=
o
©
O
©
©
o




SPARQL Queries — Library (13/16)

 The authors with name that starts with "Grigoris".

PREFIX library: <http://example.org/library#>
PREFIX book: <http://example.org/book#>

SELECT ?author

WHERE {
?author a library:Author.
?author library:name ?name.
FILTER regex(?name,"~Grigoris").

library:G_Antoniou

i
o
S
o
wn
=
o
©
O
©
©
o




SPARQL Queries — Library (14/16)

* The authors with name that contains "o". o
&
PREFIX library: <http://example.org/library#> %
PREFIX book: <http://example.org/book#> %
o

SELECT ?author

WHERE {
?author a library:Author.
?author library:name ?name.
FILTER regex(?name,"0").

library:R_Hoekstra
library:P_Groth

library:G_Antoniou




SPARQL Queries — Library (15/16)

 The books, their isbn and their publication year ordered (in descending

order) by their publication year. e
PREFIX library: <http://example.org/library#> é
PREFIX book: <http://example.org/booki#> %

SELECT ?book ?isbn ?year
WHERE {
?book a library:Book.
?book book:isbn ?isbn.
?book book:publicationYear ?year.

}
ORDER BY DESC(?year)

library:A_Semantic_ Web_Primer_3 978-0262018289 2012
library:A_Semantic_Web_Primer_2 978-0262012423 2008
library:A_Semantic_Web_Primer_1 978-0262012102 2004




SPARQL Queries — Library (16/16)

The number of books that are written by Grigoris Antoniou.

PREFIX library: <http://example.org/library#>
PREFIX book: <http://example.org/book#>

SELECT (COUNT(?book) AS ?numberOfBooks)
WHERE {

?book a library:Book.
?book book:writtenBy library:G_Antoniou.

?numberOfBooks

3

i
o
S
o
wn
=
o
©
O
©
©
o




RDF Dataset - Geography

* Consider the following RDF dataset

@prefix geo: <http://www.geography.org/schema.rdf#>.
@prefix countries: <http://example.org/countries#>.
@prefix cities: <http://example.org/cities#>.
countries:Belgium a geo:Country;

geo:capital cities:Brussels;

geo:borders countries:France,
countries:Netherlands,
countries:Germany,
countries:Luxembourg.

-
o
<
o
n
c
o
S
.0
s
=
o




RDF Dataset - Geography (cont'd)

countries:Netherlands a geo:Country;
geo:capital cities:Amsterdam;
geo:population 16645313;

geo:borders countries:Belgium,
countries:Germany.

countries:Luxembourg a geo:Country;

-
o
<
o
n
c
o
S
.0
s
=
o

geo:capital cities:Luxembourg;
geo:population 517000;

geo:borders countries:France,
countries:Belgium, countries:Germany.

cities:Amsterdam a geo:City;
geo:areaCode "020".

cities:Brussels a geo:City;
geo:areaCode "02".

cities:Luxembourg a geo:City;

geo:areaCode "00352".




Exercise 1

* Write appropriate SPARQL queries (and their results) that return
The countries that are represented in the dataset.
The countries and their capitals.

i
o
S
o
wn
=
o
©
O
©
©
o

The countries that the area code of their capitals is "020".

The countries that border Germany or France.

At most two countries that border Germany or France.

The countries and if known, their populations.

The capitals of the countries that border France.

The capitals of the countries that border a country that borders France.

0 X N O UL A WD R

The countries with population over 1000000.

10. The countries with population between 500000 and 900000.
11. The cities with area code that starts with "02".

12. The cities with area code that contains "2".




Exercise 1 (cont'd)

13. The countries, their capitals and their populations ordered (in descending
order) by their population.

14. The number of countries that border Germany.

-
o
<
o
n
c
o
S
.0
s
=
o




Exercise 1 - Solution

e All SPARQL queries for this exercise start with: o
A
PREFIX geo: <http://www.geography.org/schema.rdf#> g
PREFIX countries: <http://example.org/countries#> %
(Al

PREFIX cities: <http://example.org/cities#>




Exercise 1 - Solution

1. The countries that are represented in the dataset. o

A
PREFIX geo: <http://www.geography.org/schema.rdf#> %
PREFIX countries: <http://example.org/countries#> %
PREFIX cities: <http://example.org/cities#> a

SELECT ?country
WHERE {
?country a geo:Country.

? country

countries:Belgium
countries:Netherlands

countries:Luxembourg




Exercise 1 - Solution

2. The countries and their capitals.

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT ?country ?capital

WHERE {
?country a geo:Country.
?country geo:capital ?capital.

}
countries:Belgium cities:Brussels
countries:Netherlands cities:Amsterdam

countries:Luxembourg cities:Luxembourg

i
o
S
o
wn
=
o
©
O
©
©
o




Exercise 1 - Solution

3. The countries that the area code of their capitals is "020".

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT ?country
WHERE {
?country a geo:Country.
?country geo:capital ?capital.
?capital geo:areaCode "020"~"xsd:string.

? country

countries:Netherlands

i
o
S
o
wn
=
o
©
O
©
©
o




Exercise 1 - Solution

4. The countries that border Germany or France.

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT ?country
WHERE {

{?country geo:borders countries:Germany. }
UNION

{?country geo:borders countries:France.}

-
o
<
o
n
c
o
S
.0
s
=
o




Exercise 1 - Solution

4. The countries that border Germany or France (results)

? country

countries:Belgium

i
o
S
o
wn
=
o
©
O
©
©
o

countries:Netherlands
countries:Luxembourg
countries:Belgium

countries:Luxembourg

* Some countries are retuned twice because they border both Germany and
France

* If result list is not explicitly ordered, countries are returned in any (generally
unpredictable) order




Exercise 1 - Solution

4. The countries that border Germany or France (return each country at o

most once). &
PREFIX geo: <http://www.geography.org/schema.rdf#> S
PREFIX countries: <http://example.org/countries#> %
PREFIX cities: <http://example.org/cities#> =

SELECT DISTINCT ?country
WHERE {

{?country geo:borders countries:Germany.}
UNION

{?country geo:borders countries:France.}

}

countries:Belgium
countries:Netherlands

countries:Luxembourg




Exercise 1 - Solution

5. At most two countries that border Germany or France.

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT DISTINCT ?country
WHERE {

{?country geo:borders countries:Germany.}
UNION

{?country geo:borders countries:France.}

}
LIMIT 2

countries:Belgium

countries:Netherlands

i
o
S
o
wn
=
o
©
O
©
©
o




Exercise 1 - Solution

6. The countries and if known, their populations.

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT ?country ?population
WHERE {
?country a geo:Country.
OPTIONAL

{?country geo:population ?population.}

countries:Belgium
countries:Netherlands 16645313

countries:Luxembourg 517000

i
o
S
o
wn
=
o
©
O
©
©
o




Exercise 1 - Solution

7. The capitals of the countries that border France

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT ?capital

WHERE {
?country a geo:Country.
?country geo:capital ?capital.
?country geo:borders countries:France.

T

cities:Brussels

cities:Luxembourg

i
o
S
o
wn
=
o
©
O
©
©
o




Exercise 1 - Solution

8. The capitals of the countries that border a country that borders France. o
PREFIX geo: <http://www.geography.org/schema.rdf#> é
PREFIX countries: <http://example.org/countries#> S
PREFIX cities: <http://example.org/cities#> %

o

SELECT ?capital
WHERE {
?country a geo:Country.
?country geo:capital ?capital.
?country geo:borders ?anotherCountry.
?anotherCountry geo:borders countries:France.

T

cities:Brussels
cities:Amsterdam

cities:Luxembourg




Exercise 1 - Solution

9. The countries with population over 1000000

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT ?country

WHERE {
?country a geo:Country.
?country geo:population ?population.
FILTER (?population>1000000) .

? country

countries:Netherlands

i
o
S
o
wn
=
o
©
O
©
©
o




Exercise 1 - Solution

10. The countries with population between 500000 and 900000

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT ?country
WHERE {
?country a geo:Country.
?country geo:population ?population.
FILTER (?population>500000 && ?population<900000).

? country

countries:Luxembourg

i
o
S
o
wn
=
o
©
O
©
©
o




Exercise 1 - Solution

11. The cities with area code that starts with "02". o

&
PREFIX geo: <http://www.geography.org/schema.rdf#> %
PREFIX countries: <http://example.org/countries#> %
PREFIX cities: <http://example.org/cities#> a

SELECT ?city

WHERE {
?city a geo:City.
?city geo:areaCode ?code.
FILTER regex(?code,""02").

cities:Amsterdam

cities:Brussels




Exercise 1 - Solution

12. The cities with area code that contains "2". o
PREFIX geo: <http://www.geography.org/schema.rdf#> é
PREFIX countries: <http://example.org/countries#> S
PREFIX cities: <http://example.org/cities#> %

o

SELECT ?city

WHERE {
?city a geo:City.
?city geo:areaCode ?code.
FILTER regex(?code,"2").

cities:Amsterdam
cities:Brussels

cities:Luxembourg




Exercise 1 - Solution

13. The countries, their capitals and their populations ordered (in

descending order) by their population. e
PREFIX geo: <http://www.geography.org/schema.rdf#> %
PREFIX countries: <http://example.org/countries#> é
PREFIX cities: <http://example.org/cities#> §

o

SELECT ?country ?capital ?population

WHERE {
?country a geo:Country.
?country geo:capital ?capital.
?country geo:population ?population.

}
ORDER BY DESC(?population)

countries:Netherlands cities:Amsterdam 16645313

countries:Luxembourg cities:Luxembourg 517000




Exercise 1 - Solution

14. The number of countries that border Germany.

PREFIX geo: <http://www.geography.org/schema.rdf#>
PREFIX countries: <http://example.org/countries#>
PREFIX cities: <http://example.org/cities#>

SELECT (COUNT(?country) AS ?numberOfCountries)
WHERE {

?country a geo:Country.

?country geo:borders countries:Germany.

? numberOfCountries

3

i
o
S
o
wn
=
o
©
O
©
©
o




SPARQL Queries — Library (1/2)

Write a SPARQL query that checks whether there are authors with o
name that starts with "Grigoris". &

PREFIX library: <http://example.org/library#> %

PREFIX book: <http://example.org/book#> n

ASK

WHERE {

?author a library:Author.
?author library:name ?name.
FILTER regex(?name,"~Grigoris").




SPARQL Queries — Library (2/2)

* Write a SPARQL query that for each book that is written by its author, it o
creates a statement of the form: &
?2author book:authorOf ?book S

@

PREFIX library: <http://example.org/library#> a

PREFIX book: <http://example.org/booki#>

CONSTRUCT {?author book:authorOf ?book.}
WHERE {

?book a library:Book.

?book book:writtenBy ?author.




Exercise 2

Write a SPARQL query that checks whether there is any country that
borders France.

Write a SPARQL query that checks whether there is any country with
population that is over 20000000.

Write a SPARQL query that for each country that borders with France, it
creates a statement of the form:
countries:France geo:borders ?country

i
o
S
o
wn
=
o
©
O
©
©
o

Write a SPARQL query that for each country that its population is less
than 1000000, it creates a statement of the form:

?country geo:size geo:small.




Exercise 2 - Solution

* Write a SPARQL query that checks whether there is any country that o

borders France. &
©

PREFIX geo: <http://www.geography.org/schema.rdf#> §

PREFIX countries: <http://example.org/countries#> n

PREFIX cities: <http://example.org/cities#>

ASK

WHERE {

?country a geo:Country.
?country geo:borders countries:France.




Exercise 2 - Solution

* Write a SPARQL query that checks whether there is any country with o
population that is over 20000000. &

PREFIX geo: <http://www.geography.org/schema.rdf#> %

PREFIX countries: <http://example.org/countries#> n

PREFIX cities: <http://example.org/cities#>

ASK

WHERE {

?country a geo:Country.
?country geo:population ?population.
FILTER (?population>20000000).




Exercise 2 - Solution

* Write a SPARQL query that for each country that borders France, it o
creates a statement of the form: &
countries:France geo:borders ?country é

PREFIX geo: <http://www.geography.org/schema.rdf#> &

PREFIX countries: <http://example.org/countries#>

PREFIX cities: <http://example.org/cities#>

CONSTRUCT {countries:France geo:borders ?country.}
WHERE {

?country a geo:Country.

?country geo:borders countries:France.




Exercise 2 - Solution

* Write a SPARQL query that for each country that its population is less o
than 1000000, it creates a statement of the form: &
?country geo:size "small". é

PREFIX geo: <http://www.geography.org/schema.rdf#> &

PREFIX countries: <http://example.org/countries#>

PREFIX cities: <http://example.org/cities#>

CONSTRUCT {?country geo:size geo:small.}
WHERE {
?country a geo:Country.
?country geo:population ?population.
FILTER (?population<1000000) .




	Slide 1: Practical on SPARQL 
	Slide 2: RDF Dataset - Library
	Slide 3: RDF Dataset - Library (cont’d)
	Slide 4: SPARQL Queries – Library (1/16)
	Slide 5: SPARQL Queries – Library (2/16)
	Slide 6: SPARQL Queries – Library (3/16)
	Slide 7: SPARQL Queries – Library (4/16)
	Slide 8: SPARQL Queries – Library (5/16)
	Slide 9: SPARQL Queries – Library (6/16)
	Slide 10: SPARQL Queries – Library (7/16)
	Slide 11: SPARQL Queries – Library (8/16)
	Slide 12: SPARQL Queries – Library (9/16)
	Slide 13: SPARQL Queries – Library (10/16)
	Slide 14: SPARQL Queries – Library (11/16)
	Slide 15: SPARQL Queries – Library (12/16)
	Slide 16: SPARQL Queries – Library (13/16)
	Slide 17: SPARQL Queries – Library (14/16)
	Slide 18: SPARQL Queries – Library (15/16)
	Slide 19: SPARQL Queries – Library (16/16)
	Slide 20: RDF Dataset - Geography
	Slide 21: RDF Dataset - Geography (cont’d)
	Slide 22: Exercise 1
	Slide 23: Exercise 1 (cont’d)
	Slide 24: Exercise 1 - Solution
	Slide 25: Exercise 1 - Solution
	Slide 26: Exercise 1 - Solution
	Slide 27: Exercise 1 - Solution
	Slide 28: Exercise 1 - Solution
	Slide 29: Exercise 1 - Solution
	Slide 30: Exercise 1 - Solution
	Slide 31: Exercise 1 - Solution
	Slide 32: Exercise 1 - Solution
	Slide 33: Exercise 1 - Solution
	Slide 34: Exercise 1 - Solution
	Slide 35: Exercise 1 - Solution
	Slide 36: Exercise 1 - Solution
	Slide 37: Exercise 1 - Solution
	Slide 38: Exercise 1 - Solution
	Slide 39: Exercise 1 - Solution
	Slide 40: Exercise 1 - Solution
	Slide 41: SPARQL Queries – Library (1/2)
	Slide 42: SPARQL Queries – Library (2/2)
	Slide 43: Exercise 2
	Slide 44: Exercise 2 - Solution
	Slide 45: Exercise 2 - Solution
	Slide 46: Exercise 2 - Solution
	Slide 47: Exercise 2 - Solution

