
Large-scale
multimedia
streaming over the
Internet requires an
enormous amount of
server and network
resources.
Traditional
client–server
approaches allocate
a dedicated stream
from the server for
each client request,
which is expensive
and doesn’t scale
well. By using end
hosts’ huge
bandwidth and
computational
capacity, peer-to-
peer technologies
shed new light on
media streaming
applications’
development. Yet,
locating supplying
peers and content
delivery path
maintenance are two
major challenges in
this area.

A
s the bandwidth delivered to users
increases, the market expects a grow-
ing interest in networked multime-
dia streaming applications. For

example, emerging services might include on-
demand video streaming that lets clients choose
and watch favorite movies anytime; Internet
Protocol television (IPTV) that provides more
functional, interactive TV services; and digital
video libraries that store documentaries that users
can access online.

The simplest delivery technique for such appli-
cations is to allocate server and network resources
for each client request. However, because of the
heavy server load and limited network bandwidth
at the server side as well as temperamental inter-
continental links, this client–server approach
doesn’t scale well. (See the “Related Solutions in
Media Streaming” sidebar for more details.)

Peer-to-peer technologies have emerged as a
powerful and popular paradigm for many scal-
able applications, such as multicasting and file
sharing among users all over the world (for exam-
ple, see http://www.bittorrent.com).1 However,
providing streaming service over P2P networks is
still a challenging task because of their inherent
instability and unreliability. This article investi-
gates two major challenges in providing P2P
media streaming—locating supplying peers and
maintaining content delivery paths—and com-
pares the proposed approaches for tackling each
problem.

P2P media streaming
In a P2P system, cooperative peers self-organize

into an overlay network via unicast connections.
Figure 1 (page 52) demonstrates a P2P media
streaming system. Each peer, or overlay node, in an
overlay network acts as an application-layer proxy,
caching and relaying data for other peers. In this
case, routers are only required to forward unicast
packets, while end hosts take all interior and leaf
positions in the multicast tree. (Note the simple
client–server architecture is also an overlay tree
with only the video server as the interior node.)
Hence, P2P systems don’t require specialized net-
work infrastructure support.

In a P2P media streaming system, one or mul-
tiple supplying peers who have all or part of the
requested media can forward the data to the
requesting peers. In turn, the requesting peers can
become supplying peers for other requesting peers.
Because each peer contributes its own resources
(storage and network bandwidth) to the system,
the whole system’s capacity is vastly amplified
compared to the client–server architecture.

Research has shown that it’s feasible to sup-
port large-scale media streaming over the
Internet using a P2P approach,2 but such systems
still confront some design challenges:

❚ Dynamic uptime. In P2P networks, peers don’t
always stay online in the system. Supplying
peers might suddenly crash or leave ungrace-
fully. In this case, the requesting peers need to
find new supplying peers to replace the failed
ones. Therefore, the system should be robust
enough to withstand such node failures.

❚ Limited and dynamic peer bandwidth. Unlike
powerful video servers, peers have limited
bandwidth capacities. Each supplying peer
might only be able to support a few requesting
peers (or multiple supplying peers are required
to support one requesting peer). Also, the
available bandwidth of supplying peers might
fluctuate unexpectedly. Hence, the system
should be able to adaptively adjust each sup-
plying peer’s sending rate to keep the stream-
ing quality at requesting peers unaffected.

To deal with these challenges, researchers have
proposed various solutions.3,4 Some real-world
systems (such as http://www.ppstream.com or
http://www.pplive.com) have also been deployed
to provide live media streaming services using the
P2P approach.5
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In the client–server approach, say YouTube.
com, if the dedicated server is far away from the
client, the bandwidth is usually too small to
deliver the media content smoothly. This leads
to users enduring frequent pauses while the
buffer fills up. In P2P systems, on the other
hand, each supplying peer works as a server, and
clients choose a good server for the best perfor-
mance. Because supplying peers are distributed
over the network, finding a close supplying peer

with enough bandwidth is critical to the stream-
ing quality.

Locating supplying peers
Locating supplying peers is a challenge in a

P2P media streaming system because each
requesting peer must find supplying peers with
enough bandwidth and preferably low latency to
achieve a good service quality. Some common
techniques for locating supplying peers in such
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Researchers have proposed many IP-multicast-based tech-
niques such as periodic broadcasting in the last decade.1,2 In
IP multicast, routers are interior nodes in a multicast tree and
are responsible for forwarding data down the tree.3 All end
hosts are leaves in the multicast tree. This approach is highly
scalable because an infinite number of users can efficiently
share a single channel. Unfortunately, applications of these
techniques for worldwide multimedia streaming services
remain limited because of a lack of widely deployed IP-multi-
cast-capable networks.

Figure A1 depicts a simple video-on-demand (VoD) system
architecture. A video server, connected to the Internet, is the
origin of the videos. When a client wants to watch a movie, it
contacts the server, and the server delivers the requested video
to the client using a dedicated stream. In this case, even if the
server has Internet access with a bandwidth of 1 gigabit per sec-
ond (Gbps), it can only support up to approximately 3,000
clients with a streaming rate of 300 kilobits per second (Kbps).
Because IP multicasting by the server is only scoped at local net-
works, a need exists for a more scalable solution that doesn’t
rely on network-layer multicast.

Another technique for delivering multimedia worldwide is
called content delivery networks (CDN). CDN relies on a set of
geographically distributed proxies/gateways over the Internet
(for example, see http://www.akamai.com). As Figure A2
shows, streaming media is cached in the dedicated proxy
servers, which are statically deployed beforehand. These prox-
ies are connected in an overlay network. When a user requests
a streaming video, the closest proxy server, instead of the ori-
gin, handles the request. This solution can provide worldwide
streaming services; however, its deployment and maintenance
costs are too expensive for small content providers.
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Figure A. Various video delivery techniques: (1) simple unicasts and (2) a content delivery network.



systems include a centralized directory, hierar-
chical overlay structure, distributed hash table
(DHT) based approach, controlled flooding, and
gossip-based approach.

Centralized directory
The simplest and most commonly used

method for locating peers is to maintain a cen-
tralized directory of all peers in a directory serv-
er (such as http://www.ppstream.com or http://
www.pplive.com).6,7 All required peer informa-
tion, including its network address, available
bandwidth, fan-out degree, and starting point
of access (for video-on-demand [VoD] systems),
are in a directory server with a well-known IP
address. The server can also keep the global
overlay topology among peers.6,8,9 Figure 2

demonstrates the flow of control messages in
such a system.

In this system, a new requesting peer’s request
is first directed to the directory server. Upon
receiving a user request, the directory server selects
the most suitable supplying peers from the stored
peer list for the new user, according to its network
address and the requested media. For example, a
peer with large available bandwidth and a net-
work location close to the requesting peer is cho-
sen by the directory server to serve the requesting
peer. If a user wants to leave the system, he or she
must signal the directory server with a LEAVE
message to clear his or her entry in the directory.

The advantages of this approach are its easy
implementation and simple deployment. Cen-
tralization also greatly simplifies the join mech-
anism and consequently makes the join and
leave procedures quick.

However, given N peers in the system, the
directory server must maintain O(N) states,
which might overload the server when N is large.
Furthermore, if a peer is unable to send a LEAVE
message to the directory server (such as during a
node failure), its state remains in the directory.
To handle this problem, the peers must refresh
their status at the server using periodic keep-alive
(or heartbeat) messages or similar mechanisms.
Transmitting these O(N) keep-alive control mes-
sages also incurs high-bandwidth consumption
at the server.

Another system weakness is that the directo-
ry server becomes a single point of failure. While
the directory server is down, users can no longer
join the system. Researchers9 have argued that
the directory server is usually also the source of
data—such as for a video server. Hence, if the
server (source) fails, it might not matter whether
the directory is down.9

Hierarchical overlay structure
Another technique for locating supplying

peers is to adaptively search over a hierarchical
overlay structure built among the system’s
peers.10–12 In this system, peers are organized into
a hierarchical overlay structure such as an over-
lay tree. A newly joined client first contacts that
overlay’s rendezvous point (usually the data
source). The rendezvous point then returns a list
of connected peers {P1, P2, ..., Pk} down one level
in the hierarchy to the new client. The new client
probes each peer in the list and finds out the
most suitable peer Px (according to the protocol’s
peer-selection criteria). Next, the new client con-
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tacts Px. Similarly, upon receiving the request, Px

replies with a list of connected peers down one
level in the hierarchy. The new client probes
each of them and selects the best one. The
process repeats until the new client reaches a
position in the structure where it can receive the
required content with good quality of service.

Peers in Nice and Zigzag systems cooperative-
ly organize themselves into a logical hierarchy of
clusters.11,12 As Figure 3 shows, clusters are man-
aged into multiple levels using distributed algo-
rithms. Each cluster has a cluster leader that’s
responsible for monitoring its cluster member-
ship and is a member of a cluster in the upper
level. Hence, some peers are cluster leaders in
multiple levels. Cluster sizes can be between k
and 3k (k is a system parameter) and are main-
tained using merge and split algorithms for
bounding the out-degree of each peer. There’s
only one cluster in the topmost level where the
source of the media resides.

To join the system, a newcomer first contacts
the rendezvous point (the leader of the topmost
cluster in Figure 3, labeled “F”). With that clus-
ter’s peer list attached in the leader’s reply, the
newcomer measures the distances between itself
and all the peers in the list. Then, it selects the
closest peer, which is a cluster leader in the lower
level. After that, the newcomer sends another
request to that leader. Again, that closest leader
replies with its cluster member list. The probing
process repeats until the new client finds its
appropriate position in the architecture. By this
successive probing, nearby peers are grouped
together, making the data transmission based on
that structure efficient.

This approach distributes the peer-manage-
ment load over all the system’s peers. For exam-
ple, in contrast to O(N) states maintained by the
central server in a directory-based scheme, each
peer in Zigzag only maintains O(log N) states. It
also eliminates the single point of failure. Because
the searching is based on the overlay structure,
the maintenance of the structure among peers is
critical to the searching performance. The con-
trol protocol for overlay maintenance hence
must be resilient to node failure.

In Nice, for instance, members in the same
cluster periodically exchange heartbeat messages
to detect member failure. However, such main-
tenance protocols can complicate the system
implementation. Because of frequent VCR-like
operations, it’s more challenging for VoD sys-
tems to maintain such a structural overlay for

peer organization and data delivery. Therefore,
this technique is more suitable for live streaming.

DHT-based approach
Another distributed approach for locating

supplying peers is based on a DHT,13,14 a common
P2P searching technique, usually for locating
nodes that store a desired object (such as a file) in
P2P networks.15,16 In DHT, each peer is assigned a
peer ID by hashing its own IP address using a
common known hash function such as SHA-1,17

and each object is also associated with a key in
the same space of peer IDs by hashing the object
itself. The peer with an ID equal to the hashed
key is responsible for storing the object’s location
(or the actual object). The primitive functions
PUT and GET are available in DHT, as in a con-
ventional hash table data structure. With an
object’s hashed key, a query for the object is rout-
ed through several nodes in the DHT to the node
responsible for storing the object. There’s a rout-
ing table maintained at each node in the DHT,
based on which peers route queries. The routing
load is also evenly distributed over all the peers
in the DHT.

SplitStream is a P2P live video streaming sys-
tem. It organizes its peers into multiple overlay
multicast trees.14 To achieve better forwarding
load balancing among nodes, SplitStream assigns
each node to be an internal node at most in one
overlay tree and leaf nodes in all other trees. It
uses Pastry, a DHT protocol, to locate parents and
assign positions of nodes in each tree.16

SplitStream splits the content into multiple
stripes. Each of the stripes has an identifier stripe
ID starting with a different digit. Each stripe is
multicast in its own designated tree. All interior
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nodes of a designated tree must have node IDs
sharing the same prefix with the associated stripe
ID. Thus, these interior nodes are restricted to
becoming leaf nodes in other overlay trees.

A node’s parent in a tree is the first node in
the routing path from that node to the node with
a node ID equal to the tree’s stripe ID. Hence, the
DHT routing protocol (Pastry) intrinsically deter-
mines the locations of each node’s parents in
SplitStream. The multicast tree is then implicitly
constructed by merging the paths from all the
nodes to the root. This algorithm can potentially
violate the degree bounds of interior nodes, and
SplitStream applies several heuristic methods to
redistribute the data-forwarding load among
nodes. Using DHT protocol to locate supplying
peers takes advantage of well-developed DHT
protocols, which are scalable and offer good
load balancing.

Related work15,16 has proven that query mes-
sages are routed through only O(log N) nodes for
each lookup, and each node only needs to main-
tain O(log N) states in its routing table. Also, the
load of routing requests is evenly distributed over
all the peers in the network. Furthermore, using a
well-developed DHT protocol simplifies the sys-
tem’s design and implementation. The system
then can focus on the media streaming func-
tionalities and needn’t deal with the complicat-
ed peer management.

Other approaches and comparisons
Several other approaches exist for locating

supplying peers. In GnuStream, locating supply-
ing peers is based on a P2P search system called
Gnutella.18 Gnutella’s searching process is based
on controlled flooding of the query over the
overlay mesh built among the system’s peers.
The query from the requesting peer is sent to all
its neighboring peers. Upon receiving the query,
the peer rebroadcasts the query to all its neigh-
bors except the one that sent the query.

The query message is associated with a time-
to-live (TTL) value. Each broadcasting by a peer
decreases the TTL by one. This query broadcast-
ing continues until the TTL becomes zero. The
peers who receive the query and possess the
requested object will reply with the query’s ori-
gin, indicating the requested object’s presence.
Depending on the degree of connectivity among
peers, the flooding of queries can generate a lot
of network traffic. Besides, objects located out of
the search scope (which the TTL determines)
wouldn’t be found in the system.

In the CoolStreaming system, a node needs to
search for peers called partners, which the node
collaborates with to download the requested live
streaming media.19 Each CoolStreaming node
keeps a partial list of active peers, of size O(log N)
in the system. A newly arrived node first contacts
the server, which redirects the new node to a ran-
domly selected peer from its partial membership
list. The list of partners is then obtained from the
selected peer. To maintain a partial list at each
node, the system employs a distributed gossip-
based membership management protocol called
the Scalable Membership Protocol (SCAMP).20

The protocol is highly scalable and provides a
uniform partial view at each node. To accommo-
date overlay dynamics, each node periodically
exchanges membership messages with neighbors
to announce its existence. Because this technique
doesn’t differentiate users at various play points
of the media, it’s only applicable for live media
streaming systems.

Hierarchical overlay structure, DHT-based, con-
trolled flooding, and gossip-based approaches are
more scalable than a centralized directory in terms
of the number of states they must maintain on the
server. However, a centralized directory is the eas-
iest to implement and can respond to requests
quickly. Therefore, most systems assume using a
centralized directory to locate peers. Table 1 sum-
marizes the properties of the aforementioned
approaches for locating supplying peers.

Content delivery path maintenance
In P2P multimedia streaming, the audio or

video stream consists of small data blocks. Each
block has a numerical sequence number, which
receivers can use to correctly reorder blocks for
playback. Because there’s a playback deadline for
each block, data delivery must be timely. Due to
the dynamic nature of end-host uptime and lim-
ited bandwidth, it’s challenging to provide robust
and scalable transmission in such systems.

Tree-based multicast
The most intuitive and common way to deliv-

er multimedia content to a large group of peers
is to build a single multicast tree, in which all
interior nodes and leaf nodes are the peers.13,21 As
Figure 4a shows, an interior node must forward
data to other nodes, while a leaf node doesn’t
need to forward any received data. An overlay
tree among peers can be constructed in either a
centralized or distributed manner.

One of the issues in overlay tree construction
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is to make sure the tree is loop free. It’s easier for
a central server to construct a loop-free overlay
tree because the central server knows all the peer
connections.9 In contrast, maintaining a distrib-
uted overlay tree requires a careful control pro-
tocol design.21

One example, oStream, is a P2P on-demand
media streaming system.21 The authors developed
a temporal dependency model; with a buffer on
each client, content recently received and
buffered at a client Ci can be used to serve anoth-
er client Cj if Cj’s requested media is within Ci’s
buffer. Ci is the predecessor of Cj, and Cj is the suc-
cessor of Ci. Based on this model, the system con-
structs a directed graph called a media distribution
graph, in which each edge is defined from a pre-
decessor to its successor with that edge’s trans-
mission cost. Then, the minimal spanning
tree—called a media distribution tree (MDT)—on
the MDG can be found by the system using the
minimal spanning tree algorithm to minimize the
overall transmission cost. The system can set the
transmission cost on each edge to be the latency
of the corresponding link to minimize the over-
all latency of the multicast tree.

Figure 5 (next page) illustrates an example
where S is the video server (media source) that can
handle all the client requests. With a larger buffer
size, a client can also serve more clients. R2 can

serve R3 and R4 because its buffer is large enough,
but R2’s buffer doesn’t contain the period of media
from o3 to o2. In this case, R3 and R4 can first obtain
from the server S, the periods o3 to o2 and o4 to o2,
respectively, and then switch their parents to R2.

This technique, well-known in IP-multicast-
based solutions, is called patching.22 Creating and
maintaining a shortest-path multicast tree pro-
vides an optimized architecture for real-time con-
tent delivery.

Still, a tree structure suffers from several dis-
advantages:

❚ It isn’t fair. All the leaf nodes don’t need to for-
ward data, but interior nodes are required to
forward data to at least two children nodes
(otherwise, the data paths become long). The
number of leaf nodes increases much faster
than the number of interior nodes. Because
only the interior nodes carry the forwarding
load, the system load distribution becomes
unbalanced.

❚ It’s fragile and prone to severe service disruption.
Each node is connected to its only parent with
a single link. If the parent suddenly halts or
the link is broken because of congestion, the
child node and all its descendants immedi-
ately suffer from data shortage (that is, a

Table 1. Comparisons between various approaches for locating supplying peers.

Single Point Search
Approach Scalability of Failure  Guarantee Server States Peer States Implementation 
Centralized directory Low ✓ ✓ O(N) O(1) Simplest  

Hierarchical overlay structure High ✗ ✓ O(1) O(log N) Most difficult

DHT based High ✗ ✓ O(1) O(log N) Medium

Controlled flooding Medium ✗ ✗ O(1) O(1) Medium  

Gossip based High ✗ ✓ O(log N) O(log N) Medium

Video
server

Video
server

(a) (b)

Figure 4. Tree-based

overlay multicast. 

(a) Single tree. 

(b) Multiple trees.
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buffer underflow) and a recovery scheme
becomes necessary.

❚ An interior node might not be able to offer high-
bandwidth video streaming to its children because
of its limited bandwidth. Furthermore, band-
width is guaranteed to be monotonically
decreasing as it goes down the tree; therefore,
a node many hops away from the source
might not receive enough bandwidth even
though its parent has large outgoing band-
width. Besides, for interactive VoD systems,
it’s even more challenging to maintain the
overlay tree due to frequent VCR operations.
Hence, supporting efficient interactive VoD
streaming in P2P networks is still an active
research topic.

Due to these weaknesses, the tree-based mul-
ticast approach is only suitable to small group
streaming applications such as videoconferenc-
ing or multiparty gaming.

Multiple trees
To circumvent the drawbacks of single multi-

cast tree systems, researchers have proposed
building multiple overlay trees for delivering
multimedia content to users.8,14 For example, in
Figure 4a, the multicast is accomplished by the
peers using a single overlay tree in which each
interior node forwards data to two children
nodes. An interior node’s forwarding load is two.
(The leaf nodes don’t forward any data.)

On the other hand, as Figure 4b shows, the
video server splits the video stream into two
equal-sized substreams, and each substream is

delivered along a distinct overlay tree. Because
each node forwards at most two substreams, a
node’s maximum forwarding load in this system
is only one (or 1/2 � 2). This approach distributes
the forwarding load among nodes and exploits
the bandwidth of the links among end hosts,
which is unused in the single tree approach.
Therefore, the system can deliver streaming
media at a higher bit rate (or higher quality) and
the system’s throughput increases. 

The CoopNet system forms multiple trees at
the central server,8 which adds a new node to one
tree in which the node is going to be an interior
node. The server chooses that tree either ran-
domly among all the trees or deterministically
according to the algorithm. In the deterministic
case, the server picks the tree with the least num-
ber of interior nodes to balance the numbers of
interior nodes across different trees. After that,
the nodes will be added as leaf nodes in all the
remaining trees.

SplitStream also manages the nodes into mul-
tiple interior-node-disjoint trees—that is, a node can
be an interior node in at most one tree—but in a
distributed manner with the assistance of the
Pastry DHT protocol.14,16 With the use of multi-
ple description coding (MDC), a node departure
only causes the loss of a single description (out
of M encoded descriptions) on average because
the departed node is likely a leaf node in most
trees.23,24 Because MDC allows decoding of any
received subset of the M descriptions, the node
can still decode the media even if a few descrip-
tions are lost. Therefore, the system becomes
more resilient to node failure.

In addition, the ability to decode an arbitrary
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subset of descriptions means peers can join more
trees to obtain more descriptions if they have
more bandwidth. Using this approach, band-
width heterogeneity among peers can be addressed
if peers are free to join any number of system trees.
However, a node must wait for all required descrip-
tions to arrive before decoding. As a result, the
delivery delay is the maximum delay among all the
overlay path delays from the source to the node.

The major drawback of this design is that it’s
hard to optimize all the trees at the same time
(even in a centralized approach) because each
node takes part in all the trees.

Pull-based gossiping
As opposed to tree-based approaches, gossip

protocols (also known as epidemic protocols) don’t
rely on any regular overlay structure to deliver data
to a user group.6,19 In traditional gossip protocols,
a node randomly picks a subset of target nodes and
sends recently received data to them. At the same
time, the node receives data from other nodes. The
random choice of gossip targets provides resilience
to random failures. Research has shown that tak-
ing the number of target nodes of the order of the
system size’s logarithm is necessary for group
members to receive the disseminated data with a
high probability.20 (More specifically, if there are N
nodes and each node gossips to log(N) + k other
nodes, where k is a constant, the probability that
everyone gets the data converges to .)

For high-bandwidth media streaming applica-
tions, however, this kind of push-based gossiping
isn’t suitable because of the excessive data dupli-
cation in the random dissemination process.
Instead, a pull-based gossip protocol is adopted for
P2P media streaming.

In this system, peers periodically exchange data
availability information with their neighbors.
Upon receiving the data availability information
from a peer x, a peer y chooses the data segments it
doesn’t possess and sends a request indicating the
demanded data segments to x. Then, x delivers the
requested data segments to y. This pull-based
approach greatly reduces the redundancy in data
delivery led by push-based gossip protocols.

There have also been other proposals for
conquering the data-redundancy problem. For
example, the erasure coding scheme used in
PeerStreaming applies forward error correction
(FEC) to make the probability of data duplication
extremely low.25

Another solution is to allow re-encoding by
intermediate nodes. This technique—used by the

rStream system26—is called network coding.27

There, intermediate nodes decode the encoded
data blocks and recode them into another set of
blocks before sending them out. This scheme
greatly reduces the chance of getting the same
encoded block from the network.

CoolStreaming employs pull-based gossiping
for live media streaming.19 In this system, the
video stream is divided into segments of uniform
length, and the availability of the segments in a
node’s buffer is represented by a buffer map
(BM). Each node continuously exchanges its BM
with other peers (or partners). Upon the receipt
of BMs from multiple partners, the node assigns
the requested data segments to each of the part-
ners according to their data availability and avail-
able uploading bandwidth. Research has also
shown that the average overlay path length from
the source to a node is O(log N).19 This preserves
the media data’s freshness, which is crucial to a
live media streaming application.

Hybrid Overlay Network (HON) combines the
gossip protocol with an overlay tree for provid-
ing P2P VoD streaming.6 Different from live
streaming, partners in this case are the peers with
their buffered content partially overlapped.
Therefore, among the potential partners, each
node continuously exchanges segment availabil-
ity information with random targets. Apart from
the gossip-dissemination protocol, the system
also builds an overlay tree according to their play
points such that the parent node’s play point is
before the children nodes’ play points. Therefore,
a parent node should obtain and play data seg-
ments before its children nodes do. When a seg-
ment isn’t available at a node for playback within
a time threshold (that is, the roundtrip time
between the node and its parent plus the seg-
ment transmission time), the node contacts its
tree parent to fetch the segment. The data deliv-
ery over the overlay tree complements the gossip
protocol and works as the last resort to retrieve
the missing video segments.

The gossip protocol lets each peer in the system
retrieve data from multiple parents and, at the
same time, serve multiple children. Compared to
tree-based protocols, this approach greatly
improves resource utilization and load balancing.
In addition, the service’s stability is also enhanced
because of the redundancy of service providers.

Unfortunately, because of the partner selec-
tion process’s randomized nature, the quality of
overlay delivery paths such as bandwidth and
delay can’t be optimized or even guaranteed. 
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Comparisons
Among the three aforementioned approaches,

single tree multicast is the only one that allows
easy optimization for latency or other metrics,
especially in a centralized approach. It’s hard to
guarantee low latency in gossip-based systems or
to optimize multiple trees at the same time. While
an overlay tree is fragile, multiple trees and gos-
sip protocols are resilient to node/link failure. For
load balancing, a single tree clearly isn’t as good
as the other approaches. Both multiple trees and
gossip-based approaches can achieve a high trans-
mission rate, but a single overlay tree’s bandwidth
monotonically decreases along the tree from the
root to leaves. The ease of implementation is the
advantage of single tree and gossip-based
approaches. However, coordination among mul-
tiple overlay trees is difficult.

Table 2 further compares the various content
delivery path maintenance approaches.

Conclusion
In this article, we focused only on two research

issues related to media streaming. Others include
resilience to node/link failure, preventing free rid-
ing and providing incentive mechanism, provi-
sioning efficient user interactivity for VoD service,
and offering services to users in networks behind
network address translators (NATs) and firewalls.
These issues are still active research topics.

As high-bandwidth wireless access becomes
available everywhere, there will be a great demand
on streaming applications such as news on
demand through mobile devices. The techniques
used in P2P media streaming could be applied in
the wireless environment. However, unlike the
Internet, connections in wireless networks are
even more dynamic and unstable. Efforts are
needed to cope with the challenges. MM
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