
Kademlia: A Peer-to-peer Information System
Based on the XOR Metric

Petar Maymounkov and David Mazières
{petar,dm}@cs.nyu.edu

http://kademlia.scs.cs.nyu.edu

Abstract

We describe a peer-to-peer system which has prov-
able consistency and performance in a fault-prone
environment. Our system routes queries and locates
nodes using a novel XOR-based metric topology that
simplifies the algorithm and facilitates our proof.
The topology has the property that every message
exchanged conveys or reinforces useful contact in-
formation. The system exploits this information to
send parallel, asynchronous query messages that tol-
erate node failures without imposing timeout delays
on users.

1 Introduction

This paper describes Kademlia, a peer-to-peer
〈key,value〉 storage and lookup system. Kadem-
lia has a number of desirable features not simulta-
neously offered by any previous peer-to-peer sys-
tem. It minimizes the number of configuration mes-
sages nodes must send to learn about each other.
Configuration information spreads automatically as
a side-effect of key lookups. Nodes have enough
knowledge and flexibility to route queries through
low-latency paths. Kademlia uses parallel, asyn-
chronous queries to avoid timeout delays from failed
nodes. The algorithm with which nodes record each
other’s existence resists certain basic denial of ser-
vice attacks. Finally, several important properties of
Kademlia can be formally proven using only weak
assumptions on uptime distributions (assumptions

This research was partially supported by National Science Foun-
dation grants CCR 0093361 and CCR 9800085.

we validate with measurements of existing peer-to-
peer systems).

Kademlia takes the basic approach of many peer-
to-peer systems. Keys are opaque, 160-bit quantities
(e.g., the SHA-1 hash of some larger data). Partici-
pating computers each have a node ID in the 160-bit
key space. 〈key,value〉 pairs are stored on nodes with
IDs “close” to the key for some notion of closeness.
Finally, a node-ID-based routing algorithm lets any-
one locate servers near a destination key.

Many of Kademlia’s benefits result from its use of
a novel XOR metric for distance between points in
the key space. XOR is symmetric, allowing Kadem-
lia participants to receive lookup queries from pre-
cisely the same distribution of nodes contained in
their routing tables. Without this property, systems
such as Chord [5] do not learn useful routing infor-
mation from queries they receive. Worse yet, be-
cause of the asymmetry of Chord’s metric, Chord
routing tables are rigid. Each entry in a Chord node’s
finger table must store the precise node proceeding
an interval in the ID space; any node actually in the
interval will be greater than some keys in the inter-
val, and thus very far from the key. Kademlia, in
contrast, can send a query to any node within an in-
terval, allowing it to select routes based on latency or
even send parallel asynchronous queries.

To locate nodes near a particular ID, Kademlia
uses a single routing algorithm from start to finish.
In contrast, other systems use one algorithm to get
near the target ID and another for the last few hops.
Of existing systems, Kademlia most resembles Pas-
try’s [1] first phase, which (though not described this
way by the authors) successively finds nodes roughly
half as far from the target ID by Kademlia’s XOR
metric. In a second phase, however, Pastry switches

1



distance metrics to the numeric difference between
IDs. It also uses the second, numeric difference met-
ric in replication. Unfortunately, nodes close by the
second metric can be quite far by the first, creating
discontinuities at particular node ID values, reduc-
ing performance, and frustrating attempts at formal
analysis of worst-case behavior.

2 System description

Each Kademlia node has a 160-bit node ID. Node
IDs are constructed as in Chord, but to simplify this
paper we assume machines just choose a random,
160-bit identifier when joining the system. Every
message a node transmits includes its node ID, per-
mitting the recipient to record the sender’s existence
if necessary.

Keys, too, are 160-bit identifiers. To publish and
find 〈key,value〉 pairs, Kademlia relies on a notion of
distance between two identifiers. Given two 160-bit
identifiers, x and y, Kademlia defines the distance
between them as their bitwise exclusive or (XOR)
interpreted as an integer, d(x, y) = x ⊕ y.

We first note that XOR is a valid, albeit non-
Euclidean, metric. It is obvious that that d(x, x) = 0,
d(x, y) > 0 if x 6= y, and ∀x, y : d(x, y) = d(y, x).
XOR also offers the triangle property: d(x, y) +
d(y, z) ≥ d(x, z). The triangle property follows
from the fact that d(x, z) = d(x, y) ⊕ d(y, z) and
∀a ≥ 0, b ≥ 0 : a + b ≥ a ⊕ b.

Like Chord’s clockwise circle metric, XOR is uni-
directional. For any given point x and distance ∆ >
0, there is exactly one point y such that d(x, y) =
∆. Unidirectionality ensures that all lookups for the
same key converge along the same path, regardless
of the originating node. Thus, caching 〈key,value〉
pairs along the lookup path alleviates hot spots. Like
Pastry and unlike Chord, the XOR topology is also
symmetric (d(x, y) = d(y, x) for all x and y).

2.1 Node state

Kademlia nodes store contact information about
each other to route query messages. For each
0 ≤ i < 160, every node keeps a list of
〈IP address, UDP port, Node ID〉 triples for nodes of
distance between 2i and 2i+1 from itself. We call

2500

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000
0

Figure 1: Probability of remaining online another
hour as a function of uptime. The x axis represents
minutes. The y axis shows the the fraction of nodes
that stayed online at least x minutes that also stayed
online at least x + 60 minutes.

these lists k-buckets. Each k-bucket is kept sorted by
time last seen—least-recently seen node at the head,
most-recently seen at the tail. For small values of i,
the k-buckets will generally be empty (as no appro-
priate nodes will exist). For large values of i, the lists
can grow up to size k, where k is a system-wide repli-
cation parameter. k is chosen such that any given k
nodes are very unlikely to fail within an hour of each
other (for example k = 20).

When a Kademlia node receives any message (re-
quest or reply) from another node, it updates the
appropriate k-bucket for the sender’s node ID. If
the sending node already exists in the recipient’s k-
bucket, the recipient moves it to the tail of the list.
If the node is not already in the appropriate k-bucket
and the bucket has fewer than k entries, then the re-
cipient just inserts the new sender at the tail of the
list. If the appropriate k-bucket is full, however, then
the recipient pings the k-bucket’s least-recently seen
node to decide what to do. If the least-recently seen
node fails to respond, it is evicted from the k-bucket
and the new sender inserted at the tail. Otherwise,
if the least-recently seen node responds, it is moved
to the tail of the list, and the new sender’s contact is
discarded.

k-buckets effectively implement a least-recently
seen eviction policy, except that live nodes are never
removed from the list. This preference for old con-
tacts is driven by our analysis of Gnutella trace data
collected by Saroiu et. al. [4]. Figure 1 shows the

2



percentage of Gnutella nodes that stay online another
hour as a function of current uptime. The longer
a node has been up, the more likely it is to remain
up another hour. By keeping the oldest live contacts
around, k-buckets maximize the probability that the
nodes they contain will remain online.

A second benefit of k-buckets is that they pro-
vide resistance to certain DoS attacks. One cannot
flush nodes’ routing state by flooding the system with
new nodes. Kademlia nodes will only insert the new
nodes in the k-buckets when old nodes leave the sys-
tem.

2.2 Kademlia protocol

The Kademlia protocol consists of four RPCs: PING,
STORE, FIND NODE, and FIND VALUE. The PING

RPC probes a node to see if it is online. STORE in-
structs a node to store a 〈key, value〉 pair for later
retrieval.

FIND NODE takes a 160-bit ID as an argu-
ment. The recipient of a the RPC returns
〈IP address, UDP port, Node ID〉 triples for the k
nodes it knows about closest to the target ID. These
triples can come from a single k-bucket, or they may
come from multiple k-buckets if the closest k-bucket
is not full. In any case, the RPC recipient must return
k items (unless there are fewer than k nodes in all its
k-buckets combined, in which case it returns every
node it knows about).

FIND VALUE behaves like FIND NODE—returning
〈IP address, UDP port, Node ID〉 triples—with one
exception. If the RPC recipient has received a STORE

RPC for the key, it just returns the stored value.
In all RPCs, the recipient must echo a 160-bit ran-

dom RPC ID, which provides some resistance to ad-
dress forgery. PINGs can also be piggy-backed on
RPC replies for the RPC recipient to obtain addi-
tional assurance of the sender’s network address.

The most important procedure a Kademlia partic-
ipant must perform is to locate the k closest nodes to
some given node ID. We call this procedure a node
lookup. Kademlia employs a recursive algorithm for
node lookups. The lookup initiator starts by picking
α nodes from its closest non-empty k-bucket (or, if
that bucket has fewer than α entries, it just takes the
α closest nodes it knows of). The initiator then sends
parallel, asynchronous FIND NODE RPCs to the α

nodes it has chosen. α is a system-wide concurrency
parameter, such as 3.

In the recursive step, the initiator resends the
FIND NODE to nodes it has learned about from pre-
vious RPCs. (This recursion can begin before all
α of the previous RPCs have returned). Of the k
nodes the initiator has heard of closest to the tar-
get, it picks α that it has not yet queried and re-
sends the FIND NODE RPC to them.1 Nodes that
fail to respond quickly are removed from consider-
ation until and unless they do respond. If a round
of FIND NODEs fails to return a node any closer
than the closest already seen, the initiator resends
the FIND NODE to all of the k closest nodes it has
not already queried. The lookup terminates when the
initiator has queried and gotten responses from the k
closest nodes it has seen. When α = 1 the lookup al-
gorithm resembles Chord’s in terms of message cost
and the latency of detecting failed nodes. However,
Kademlia can route for lower latency because it has
the flexibility of choosing any one of k nodes to for-
ward a request to.

Most operations are implemented in terms of the
above lookup procedure. To store a 〈key,value〉 pair,
a participant locates the k closest nodes to the key
and sends them STORE RPCs. Additionally, each
node re-publishes the 〈key,value〉 pairs that it has ev-
ery hour.2 This ensures persistence (as we show in
our proof sketch) of the 〈key,value〉 pair with very
high probability. Generally, we also require the orig-
inal publishers of a 〈key,value〉 pair to republish it
every 24 hours. Otherwise, all 〈key,value〉 pairs ex-
pire 24 hours after the original publishing, in order
to limit stale information in the system.

Finally, in order to sustain consistency in the
publishing-searching life-cycle of a 〈key,value〉 pair,
we require that whenever a node w observes a new
node u which is closer to some of w’s 〈key,value〉
pairs, w replicates these pairs to u without removing
them from its own database.

To find a 〈key,value〉 pair, a node starts by per-
forming a lookup to find the k nodes with IDs closest
to the key. However, value lookups use FIND VALUE

rather than FIND NODE RPCs. Moreover, the proce-
1Bucket entries and FIND replies can be augmented with

round trip time estimates for use in selecting the α nodes.
2This can be optimized to require far fewer than k

2 mes-
sages, but a description is beyond the scope of this paper.

3



dure halts immediately when any node returns the
value. For caching purposes, once a lookup suc-
ceeds, the requesting node stores the 〈key,value〉 pair
at the closest node it observed to the key that did not
return the value.

Because of the unidirectionality of the topology,
future searches for the same key are likely to hit
cached entries before querying the closest node. Dur-
ing times of high popularity for a certain key, the
system might end up caching it at many nodes. To
avoid “over-caching,” we make the expiration time
of a 〈key,value〉 pair in any node’s database exponen-
tially inversely proportional to the number of nodes
between the current node and the node whose ID is
closest to the key ID.3 While simple LRU eviction
would result in a similar lifetime distribution, there
is no natural way of choosing the cache size, since
nodes have no a priori knowledge of how many val-
ues the system will store.

Buckets will generally be kept constantly fresh,
due to the traffic of requests traveling through nodes.
To avoid pathological cases when no traffic exists,
each node refreshes a bucket in whose range it has
not performed a node lookup within an hour. Re-
freshing means picking a random ID in the bucket’s
range and performing a node search for that ID.

To join the network, a node u must have a contact
to an already participating node w. u inserts w into
the appropriate k-bucket. u then performs a node
lookup for its own node ID. Finally, u refreshes all k-
buckets further away than its closest neighbor. Dur-
ing the refreshes, u both populates its own k-buckets
and inserts itself into other nodes’ k-buckets as nec-
essary.

3 Sketch of proof

To demonstrate proper function of our system, we
need to prove that most operations take dlog ne + c
time for some small constant c, and that a 〈key,value〉
lookup returns a key stored in the system with over-
whelming probability.

We start with some definitions. For a k-bucket
covering the distance range

[

2i, 2i+1
)

, define the in-
dex of the bucket to be i. Define the depth, h, of a

3This number can be inferred from the bucket structure of the
current node.

node to be 160 − i, where i is the smallest index of
a non-empty bucket. Define node y’s bucket height
in node x to be the index of the bucket into which x
would insert y minus the index of x’s least signifi-
cant empty bucket. Because node IDs are randomly
chosen, it follows that highly non-uniform distribu-
tions are unlikely. Thus with overwhelming proba-
bility the height of a any given node will be within a
constant of log n for a system with n nodes. More-
over, the bucket height of the closest node to an ID in
the kth-closest node will likely be within a constant
of log k.

Our next step will be to assume the invariant that
every k-bucket of every node contains at least one
contact if a node exists in the appropriate range.
Given this assumption, we show that the node lookup
procedure is correct and takes logarithmic time. Sup-
pose the closest node to the target ID has depth h. If
none of this node’s h most significant k-buckets is
empty, the lookup procedure will find a node half as
close (or rather whose distance is one bit shorter) in
each step, and thus turn up the node in h − log k
steps. If one of the node’s k-buckets is empty, it
could be the case that the target node resides in the
range of the empty bucket. In this case, the final
steps will not decrease the distance by half. How-
ever, the search will proceed exactly as though the
bit in the key corresponding to the empty bucket had
been flipped. Thus, the lookup algorithm will always
return the closest node in h − log k steps. More-
over, once the closest node is found, the concurrency
switches from α to k. The number of steps to find the
remaining k−1 closest nodes can be no more than the
bucket height of the closest node in the kth-closest
node, which is unlikely to be more than a constant
plus log k.

To prove the correctness of the invariant, first con-
sider the effects of bucket refreshing if the invariant
holds. After being refreshed, a bucket will either
contain k valid nodes or else contain every node in
its range if fewer than k exist. (This follows from
the correctness of the node lookup procedure.) New
nodes that join will also be inserted into any buckets
that are not full. Thus, the only way to violate the in-
variant is for there to exist k+1 or more nodes in the
range of a particular bucket, and for the k actually
contained in the bucket all to fail with no intervening

4



lookups or refreshes. However, k was precisely cho-
sen for the probability of simultaneous failure within
an hour (the maximum refresh time) to be small.

In practice, the probability of failure is much
smaller than the probability of k nodes leaving
within an hour, as every incoming or outgoing re-
quest updates nodes’ buckets. This results from the
symmetry of the XOR metric, because the IDs of the
nodes with which a given node communicates dur-
ing an incoming or outgoing request are distributed
exactly compatibly with the node’s bucket ranges.

Moreover, even if the invariant does fail for a sin-
gle bucket in a single node, this will only affect run-
ning time (by adding a hop to some lookups), not
correctness of node lookups. For a lookup to fail,
k nodes on a lookup path must each lose k nodes
in the same bucket with no intervening lookups or
refreshes. If the different nodes’ buckets have no
overlap, this happens with probability 2−k

2

. Other-
wise, nodes appearing in multiple other nodes’ buck-
ets will likely have longer uptimes and thus lower
probability of failure.

Now we look at a 〈key,value〉 pair’s recovery.
When a 〈key,value〉 pair is published, it is popu-
lated at the k nodes, closest to the key. It is also
re-published every hour. Since even new nodes (the
least reliable) have probability 1/2 of lasting one
hour, after one hour the 〈key,value〉 pair will still be
present on one of the k nodes closest to the key with
probability 1 − 2−k. This property is not violated
by the insertion of new nodes that are close to the
key, because as soon as such nodes are inserted, they
contact their closest nodes in order to fill their buck-
ets and thereby receive any nearby 〈key,value〉 pairs
they should store. Of course, if the k closest nodes
to a key fail and the 〈key,value〉 pair has not been
cached elsewhere, Kademlia will lose the pair.

4 Discussion

The XOR-topology-based routing that we use very
much resembles the first step in the routing algo-
rithms of Pastry [1], Tapestry [2], and Plaxton’s dis-
tributed search algorithm [3]. All three of these,
however, run into problems when they choose to ap-
proach the target node b bits at a time (for acceler-
ation purposes). Without the XOR topology, there

is a need for an additional algorithmic structure for
discovering the target within the nodes that share the
same prefix but differ in the next b-bit digit. All three
algorithms resolve this problem in different ways,
each with its own drawbacks; they all require sec-
ondary routing tables of size O(2b) in addition to
the main tables of size O(2b log2b n). This increases
the cost of bootstrapping and maintenance, compli-
cates the protocols, and for Pastry and Tapestry pre-
vents a formal analysis of correctness and consis-
tency. Plaxton has a proof, but the system is less
geared for highly faulty environments like peer-to-
peer networks.

Kademlia, in contrast, can easily be optimized
with a base other than 2. We configure our bucket
table so as to approach the target b bits per hop. This
requires having one bucket for each range of nodes
at a distance [j2160−(i+1)b, (j + 1)2160−(i+1)b] from
us, for each 0 < j < 2b and 0 ≤ i < 160/b, which
amounts to expected no more than (2b − 1) log2b n
buckets with actual entries. The implementation cur-
rently uses b = 5.

5 Summary

With its novel XOR-based metric topology, Kadem-
lia is the first peer-to-peer system to combine
provable consistency and performance, latency-
minimizing routing, and a symmetric, unidirectional
topology. Kademlia furthermore introduces a con-
currency parameter, α, that lets people trade a con-
stant factor in bandwidth for asynchronous lowest-
latency hop selection and delay-free fault recovery.
Finally, Kademlia is the first peer-to-peer system to
exploit the fact that node failures are inversely related
to uptime.

References

[1] A. Rowstron and P. Druschel. Pastry:
Scalable, distributed object location and
routing for large-scale peer-to-peer sys-
tems. Accepted for Middleware, 2001, 2001.
http://research.microsoft.com/ãntr/pastry/.

[2] Ben Y. Zhao, John Kubiatowicz, and Anthony
Joseph. Tapestry: an infrastructure for fault-

5



tolerant wide-area location and routing. Techni-
cal Report UCB/CSD-01-1141, U.C. Berkeley,
April 2001.

[3] Andréa W. Richa C. Greg Plaxton, Rajmo-
han Rajaraman. Accessing nearby copies of
replicated objects in a distributed environment.
In Proceedings of the ACM SPAA, pages 311–
320, June 1997.

[4] Stefan Saroiu, P. Krishna Gummadi and Steven
D. Gribble. A Measurement Study of Peer-to-
Peer File Sharing Systems. Technical Report
UW-CSE-01-06-02, University of Washington,
Department of Computer Science and Engineer-
ing, July 2001.

[5] Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the
ACM SIGCOMM ’01 Conference, San Diego,
California, August 2001.

6


