MapReduce Online

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein
UC Berkeley

Khaled Elmeleegy, Russell Sears
Yahoo! Research

Abstract

MapReduce is a popular framework for data-intensive
distributed computing of batch jobs. To simplify fault
tolerance, many implementations of MapReduce mate-
rialize the entire output of each map and reduce task
before it can be consumed. In this paper, we propose a
modified MapReduce architecture that allows data to be
pipelined between operators. This extends the MapRe-
duce programming model beyond batch processing, and
can reduce completion times and improve system utiliza-
tion for batch jobs as well. We present a modified version
of the Hadoop MapReduce framework that supports on-
line aggregation, which allows users to see “early returns”
from a job as it is being computed. Our Hadoop Online
Prototype (HOP) also supports continuous queries, which
enable MapReduce programs to be written for applica-
tions such as event monitoring and stream processing.
HOP retains the fault tolerance properties of Hadoop and
can run unmodified user-defined MapReduce programs.

1 Introduction

MapReduce has emerged as a popular way to harness
the power of large clusters of computers. MapReduce
allows programmers to think in a data-centric fashion:
they focus on applying transformations to sets of data
records, and allow the details of distributed execution,
network communication and fault tolerance to be handled
by the MapReduce framework.

MapReduce is typically applied to large batch-oriented
computations that are concerned primarily with time to
job completion. The Google MapReduce framework [6]
and open-source Hadoop system reinforce this usage
model through a batch-processing implementation strat-
egy: the entire output of each map and reduce task is
materialized to a local file before it can be consumed
by the next stage. Materialization allows for a simple
and elegant checkpoint/restart fault tolerance mechanism

that is critical in large deployments, which have a high
probability of slowdowns or failures at worker nodes.

We propose a modified MapReduce architecture in
which intermediate data is pipelined between operators,
while preserving the programming interfaces and fault
tolerance models of previous MapReduce frameworks.
To validate this design, we developed the Hadoop Online
Prototype (HOP), a pipelining version of Hadoop.'

Pipelining provides several important advantages to a
MapReduce framework, but also raises new design chal-
lenges. We highlight the potential benefits first:

* Since reducers begin processing data as soon as it is
produced by mappers, they can generate and refine
an approximation of their final answer during the
course of execution. This technique, known as on-
line aggregation [12], can provide initial estimates
of results several orders of magnitude faster than the
final results. We describe how we adapted online ag-
gregation to our pipelined MapReduce architecture
in Section 4.

* Pipelining widens the domain of problems to which
MapReduce can be applied. In Section 5, we show
how HOP can be used to support continuous queries:
MapReduce jobs that run continuously, accepting
new data as it arrives and analyzing it immediately.
This allows MapReduce to be used for applications
such as event monitoring and stream processing.

* Pipelining delivers data to downstream operators
more promptly, which can increase opportunities for
parallelism, improve utilization, and reduce response
time. A thorough performance study is a topic for
future work; however, in Section 6 we present some
initial performance results which demonstrate that
pipelining can reduce job completion times by up to
25% in some scenarios.

IThe source code for HOP can be downloaded from http://
code.google.com/p/hop/



Pipelining raises several design challenges. First,
Google’s attractively simple MapReduce fault tolerance
mechanism is predicated on the materialization of inter-
mediate state. In Section 3.3, we show that this can co-
exist with pipelining, by allowing producers to periodi-
cally ship data to consumers in parallel with their mate-
rialization. A second challenge arises from the greedy
communication implicit in pipelines, which is at odds
with batch-oriented optimizations supported by “combin-
ers”: map-side code that reduces network utilization by
performing pre-aggregation before communication. We
discuss how the HOP design addresses this issue in Sec-
tion 3.1. Finally, pipelining requires that producers and
consumers are co-scheduled intelligently; we discuss our
initial work on this issue in Section 3.4.

1.1 Structure of the Paper

In order to ground our discussion, we present an overview
of the Hadoop MapReduce architecture in Section 2. We
then develop the design of HOP’s pipelining scheme in
Section 3, keeping the focus on traditional batch process-
ing tasks. In Section 4 we show how HOP can support
online aggregation for long-running jobs and illustrate
the potential benefits of that interface for MapReduce
tasks. In Section 5 we describe our support for continu-
ous MapReduce jobs over data streams and demonstrate
an example of near-real-time cluster monitoring. We
present initial performance results in Section 6. Related
and future work are covered in Sections 7 and 8.

2 Background

In this section, we review the MapReduce programming
model and describe the salient features of Hadoop, a
popular open-source implementation of MapReduce.

2.1 Programming Model

To use MapReduce, the programmer expresses their de-
sired computation as a series of jobs. The input to a job
is an input specification that will yield key-value pairs.
Each job consists of two stages: first, a user-defined map
function is applied to each input record to produce a list
of intermediate key-value pairs. Second, a user-defined
reduce function is called once for each distinct key in
the map output and passed the list of intermediate values
associated with that key. The MapReduce framework au-
tomatically parallelizes the execution of these functions
and ensures fault tolerance.

Optionally, the user can supply a combiner function [6].
Combiners are similar to reduce functions, except that
they are not passed all the values for a given key: instead,
a combiner emits an output value that summarizes the

public interface Mapper<Kl, V1, K2, V2> {
void map (K1 key, V1 value,
OutputCollector<K2, V2> output);

void close () ;

}

Figure 1: Map function interface.

input values it was passed. Combiners are typically used
to perform map-side “pre-aggregation,” which reduces
the amount of network traffic required between the map
and reduce steps.

2.2 Hadoop Architecture

Hadoop is composed of Hadoop MapReduce, an imple-
mentation of MapReduce designed for large clusters, and
the Hadoop Distributed File System (HDFS), a file system
optimized for batch-oriented workloads such as MapRe-
duce. In most Hadoop jobs, HDFS is used to store both
the input to the map step and the output of the reduce step.
Note that HDFS is not used to store intermediate results
(e.g., the output of the map step): these are kept on each
node’s local file system.

A Hadoop installation consists of a single master node
and many worker nodes. The master, called the Job-
Tracker, is responsible for accepting jobs from clients,
dividing those jobs into fasks, and assigning those tasks
to be executed by worker nodes. Each worker runs a Task-
Tracker process that manages the execution of the tasks
currently assigned to that node. Each TaskTracker has a
fixed number of slots for executing tasks (two maps and
two reduces by default).

2.3 Map Task Execution

Each map task is assigned a portion of the input file called
a split. By default, a split contains a single HDFS block
(64MB by default), so the total number of file blocks
determines the number of map tasks.

The execution of a map task is divided into two phases.

1. The map phase reads the task’s split from HDFS,
parses it into records (key/value pairs), and applies
the map function to each record.

2. After the map function has been applied to each
input record, the commit phase registers the final
output with the TaskTracker, which then informs the
JobTracker that the task has finished executing.

Figure 1 contains the interface that must be imple-
mented by user-defined map functions. After the map
function has been applied to each record in the split, the
close method is invoked.



Index file Data file

Partition 0
Offset -

Key Size
Value Size
Key Bytes

Value Bytes

Key Size
Value Size
Key Bytes

Value Bytes

Key Size
Value Size
Key Bytes

Value Bytes

Key Size
Value Size
Key Bytes

Value Bytes

Partition 1
Offset

Partition O

I_:UJ
@
Q

Q

o

Partition 1

Figure 2: Map task index and data file format (2 parti-
tion/reduce case).

The third argument to the map method specifies an
OutputCollector instance, which accumulates the output
records produced by the map function. The output of the
map step is consumed by the reduce step, so the Output-
Collector stores map output in a format that is easy for
reduce tasks to consume. Intermediate keys are assigned
to reducers by applying a partitioning function, so the Out-
putCollector applies that function to each key produced
by the map function, and stores each record and partition
number in an in-memory buffer. The OutputCollector
spills this buffer to disk when it reaches capacity.

A spill of the in-memory buffer involves first sorting
the records in the buffer by partition number and then by
key. The buffer content is written to the local file system
as an index file and a data file (Figure 2). The index file
points to the offset of each partition in the data file. The
data file contains only the records, which are sorted by
the key within each partition segment.

During the commit phase, the final output of the map
task is generated by merging all the spill files produced by
this task into a single pair of data and index files. These
files are registered with the TaskTracker before the task
completes. The TaskTracker will read these files when
servicing requests from reduce tasks.

2.4 Reduce Task Execution

The execution of a reduce task is divided into three phases.

1. The shuffle phase fetches the reduce task’s input data.
Each reduce task is assigned a partition of the key
range produced by the map step, so the reduce task
must fetch the content of this partition from every
map task’s output.

2. The sort phase groups records with the same key
together.

public interface Reducer<K2, V2, K3, V3> {
void reduce (K2 key, Iterator<vV2> values,
OutputCollector<K3,

void close () ;

Figure 3: Reduce function interface.

3. The reduce phase applies the user-defined reduce
function to each key and corresponding list of values.

In the shuffle phase, a reduce task fetches data from
each map task by issuing HTTP requests to a configurable
number of TaskTrackers at once (5 by default). The Job-
Tracker relays the location of every TaskTracker that hosts
map output to every TaskTracker that is executing a re-
duce task. Note that a reduce task cannot fetch the output
of a map task until the map has finished executing and
committed its final output to disk.

After receiving its partition from all map outputs, the
reduce task enters the sort phase. The map output for
each partition is already sorted by the reduce key. The
reduce task merges these runs together to produce a sin-
gle run that is sorted by key. The task then enters the
reduce phase, in which it invokes the user-defined reduce
function for each distinct key in sorted order, passing it
the associated list of values. The output of the reduce
function is written to a temporary location on HDFS. Af-
ter the reduce function has been applied to each key in
the reduce task’s partition, the task’s HDFS output file
is atomically renamed from its temporary location to its
final location.

In this design, the output of both map and reduce tasks
is written to disk before it can be consumed. This is par-
ticularly expensive for reduce tasks, because their output
is written to HDFS. Output materialization simplifies
fault tolerance, because it reduces the amount of state that
must be restored to consistency after a node failure. If any
task (either map or reduce) fails, the JobTracker simply
schedules a new task to perform the same work as the
failed task. Since a task never exports any data other than
its final answer, no further recovery steps are needed.

3 Pipelined MapReduce

In this section we discuss our extensions to Hadoop to sup-
port pipelining between tasks (Section 3.1) and between
jobs (Section 3.2). We describe how our design supports
fault tolerance (Section 3.3), and discuss the interaction
between pipelining and task scheduling (Section 3.4). Our
focus here is on batch-processing workloads; we discuss
online aggregation and continuous queries in Section 4
and Section 5. We defer performance results to Section 6.

V3> output);



3.1 Pipelining Within A Job

As described in Section 2.4, reduce tasks traditionally
issue HTTP requests to pull their output from each Task-
Tracker. This means that map task execution is com-
pletely decoupled from reduce task execution. To support
pipelining, we modified the map task to instead push data
to reducers as it is produced. To give an intuition for
how this works, we begin by describing a straightforward
pipelining design, and then discuss the changes we had to
make to achieve good performance.

3.1.1 Naive Pipelining

In our naive implementation, we modified Hadoop to send
data directly from map to reduce tasks. When a client
submits a new job to Hadoop, the JobTracker assigns
the map and reduce tasks associated with the job to the
available TaskTracker slots. For purposes of discussion,
we assume that there are enough free slots to assign all
the tasks for each job. We modified Hadoop so that each
reduce task contacts every map task upon initiation of
the job, and opens a TCP socket which will be used to
pipeline the output of the map function. As each map
output record is produced, the mapper determines which
partition (reduce task) the record should be sent to, and
immediately sends it via the appropriate socket.

A reduce task accepts the pipelined data it receives
from each map task and stores it in an in-memory buffer,
spilling sorted runs of the buffer to disk as needed. Once
the reduce task learns that every map task has completed,
it performs a final merge of all the sorted runs and applies
the user-defined reduce function as normal.

3.1.2 Refinements

While the algorithm described above is straightforward,
it suffers from several practical problems. First, it is
possible that there will not be enough slots available to
schedule every task in a new job. Opening a socket be-
tween every map and reduce task also requires a large
number of TCP connections. A simple tweak to the naive
design solves both problems: if a reduce task has not
yet been scheduled, any map tasks that produce records
for that partition simply write them to disk. Once the
reduce task is assigned a slot, it can then pull the records
from the map task, as in regular Hadoop. To reduce the
number of concurrent TCP connections, each reducer can
be configured to pipeline data from a bounded number
of mappers at once; the reducer will pull data from the
remaining map tasks in the traditional Hadoop manner.
Our initial pipelining implementation suffered from a
second problem: the map function was invoked by the
same thread that wrote output records to the pipeline sock-
ets. This meant that if a network I/O operation blocked

(e.g., because the reducer was over-utilized), the mapper
was prevented from doing useful work. Pipeline stalls
should not prevent a map task from making progress—
especially since, once a task has completed, it frees a
TaskTracker slot to be used for other purposes. We solved
this problem by running the map function in a separate
thread that stores its output in an in-memory buffer, and
then having another thread periodically send the contents
of the buffer to the connected reducers.

3.1.3 Granularity of Map Output

Another problem with the naive design is that it eagerly
sends each record as soon as it is produced, which pre-
vents the use of map-side combiners. Imagine a job where
the reduce key has few distinct values (e.g., gender), and
the reduce applies an aggregate function (e.g., count). As
discussed in Section 2.1, combiners allow map-side “pre-
aggregation”: by applying a reduce-like function to each
distinct key at the mapper, network traffic can often be
substantially reduced. Eagerly pipelining each record as
it is produced prevents the use of map-side combiners.

A related problem is that eager pipelining moves some
of the sorting work from the mapper to the reducer. Re-
call that in the blocking architecture, map tasks generate
sorted spill files: all the reduce task must do is merge to-
gether the pre-sorted map output for each partition. In the
naive pipelining design, map tasks send output records
in the order in which they are generated, so the reducer
must perform a full external sort. Because the number of
map tasks typically far exceeds the number of reduces [6],
moving more work to the reducer increased response time
in our experiments.

We addressed these issues by modifying the in-memory
buffer design described in Section 3.1.2. Instead of send-
ing the buffer contents to reducers directly, we wait for
the buffer to grow to a threshold size. The mapper then
applies the combiner function, sorts the output by parti-
tion and reduce key, and writes the buffer to disk using
the spill file format described in Section 2.3.

Next, we arranged for the TaskTracker at each node to
handle pipelining data to reduce tasks. Map tasks register
spill files with the TaskTracker via RPCs. If the reducers
are able to keep up with the production of map outputs and
the network is not a bottleneck, a spill file will be sent to
a reducer soon after it has been produced (in which case,
the spill file is likely still resident in the map machine’s
kernel buffer cache). However, if a reducer begins to fall
behind, the number of unsent spill files will grow.

When a map task generates a new spill file, it first
queries the TaskTracker for the number of unsent spill
files. If this number grows beyond a certain threshold
(two unsent spill files in our experiments), the map task
does not immediately register the new spill file with the



TaskTracker. Instead, the mapper will accumulate multi-
ple spill files. Once the queue of unsent spill files falls
below the threshold, the map task merges and combines
the accumulated spill files into a single file, and then re-
sumes registering its output with the TaskTracker. This
simple flow control mechanism has the effect of adap-
tively moving load from the reducer to the mapper or vice
versa, depending on which node is the current bottleneck.

A similar mechanism is also used to control how ag-
gressively the combiner function is applied. The map task
records the ratio between the input and output data sizes
whenever it invokes the combiner function. If the com-
biner is effective at reducing data volumes, the map task
accumulates more spill files (and applies the combiner
function to all of them) before registering that output with
the TaskTracker for pipelining.”

The connection between pipelining and adaptive query
processing techniques has been observed elsewhere
(e.g., [2]). The adaptive scheme outlined above is rel-
atively simple, but we believe that adapting to feedback
along pipelines has the potential to significantly improve
the utilization of MapReduce clusters.

3.2 Pipelining Between Jobs

Many practical computations cannot be expressed as a
single MapReduce job, and the outputs of higher-level
languages like Pig [20] typically involve multiple jobs. In
the traditional Hadoop architecture, the output of each job
is written to HDFS in the reduce step and then immedi-
ately read back from HDFS by the map step of the next
job. Furthermore, the JobTracker cannot schedule a con-
sumer job until the producer job has completed, because
scheduling a map task requires knowing the HDFS block
locations of the map’s input split.

In our modified version of Hadoop, the reduce tasks of
one job can optionally pipeline their output directly to the
map tasks of the next job, sidestepping the need for ex-
pensive fault-tolerant storage in HDFS for what amounts
to a temporary file. Unfortunately, the computation of
the reduce function from the previous job and the map
function of the next job cannot be overlapped: the final
result of the reduce step cannot be produced until all map
tasks have completed, which prevents effective pipelining.
However, in the next sections we describe how online
aggregation and continuous query pipelines can publish
“snapshot” outputs that can indeed pipeline between jobs.

2Qur current prototype uses a simple heuristic: if the combiner
reduces data volume by % on average, we wait until k spill files have
accumulated before registering them with the TaskTracker. A better
heuristic would also account for the computational cost of applying the

combiner function.

3.3 Fault Tolerance

Our pipelined Hadoop implementation is robust to the
failure of both map and reduce tasks. To recover from
map task failures, we added bookkeeping to the reduce
task to record which map task produced each pipelined
spill file. To simplify fault tolerance, the reducer treats
the output of a pipelined map task as “tentative” until
the JobTracker informs the reducer that the map task has
committed successfully. The reducer can merge together
spill files generated by the same uncommitted mapper,
but will not combine those spill files with the output of
other map tasks until it has been notified that the map task
has committed. Thus, if a map task fails, each reduce task
can ignore any tentative spill files produced by the failed
map attempt. The JobTracker will take care of scheduling
a new map task attempt, as in stock Hadoop.

If a reduce task fails and a new copy of the task is
started, the new reduce instance must be sent all the input
data that was sent to the failed reduce attempt. If map
tasks operated in a purely pipelined fashion and discarded
their output after sending it to a reducer, this would be
difficult. Therefore, map tasks retain their output data on
the local disk for the complete job duration. This allows
the map’s output to be reproduced if any reduce tasks fail.
For batch jobs, the key advantage of our architecture is
that reducers are not blocked waiting for the complete
output of the task to be written to disk.

Our technique for recovering from map task failure is
straightforward, but places a minor limit on the reducer’s
ability to merge spill files. To avoid this, we envision
introducing a “checkpoint” concept: as a map task runs, it
will periodically notify the JobTracker that it has reached
offset z in its input split. The JobTracker will notify any
connected reducers; map task output that was produced
before offset « can then be merged by reducers with other
map task output as normal. To avoid duplicate results,
if the map task fails, the new map task attempt resumes
reading its input at offset . This technique would also
reduce the amount of redundant work done after a map
task failure or during speculative execution of “backup”
tasks [6].

3.4 Task Scheduling

The Hadoop JobTracker had to be retrofitted to support
pipelining between jobs. In regular Hadoop, job are sub-
mitted one at a time; a job that consumes the output of
one or more other jobs cannot be submitted until the pro-
ducer jobs have completed. To address this, we modified
the Hadoop job submission interface to accept a list of
jobs, where each job in the list depends on the job before
it. The client interface traverses this list, annotating each
job with the identifier of the job that it depends on. The



JobTracker looks for this annotation and co-schedules
jobs with their dependencies, giving slot preference to
“upstream” jobs over the “downstream” jobs they feed. As
we note in Section 8, there are many interesting options
for scheduling pipelines or even DAGs of such jobs that
we plan to investigate in future.

4 Online Aggregation

Although MapReduce was originally designed as a batch-
oriented system, it is often used for interactive data analy-
sis: a user submits a job to extract information from a data
set, and then waits to view the results before proceeding
with the next step in the data analysis process. This trend
has accelerated with the development of high-level query
languages that are executed as MapReduce jobs, such as
Hive [27], Pig [20], and Sawzall [23].

Traditional MapReduce implementations provide a
poor interface for interactive data analysis, because they
do not emit any output until the job has been executed
to completion. In many cases, an interactive user would
prefer a “quick and dirty” approximation over a correct an-
swer that takes much longer to compute. In the database
literature, online aggregation has been proposed to ad-
dress this problem [12], but the batch-oriented nature
of traditional MapReduce implementations makes these
techniques difficult to apply. In this section, we show how
we extended our pipelined Hadoop implementation to sup-
port online aggregation within a single job (Section 4.1)
and between multiple jobs (Section 4.2). In Section 4.3,
we evaluate online aggregation on two different data sets,
and show that it can yield an accurate approximate answer
long before the job has finished executing.

4.1 Single-Job Online Aggregation

In HOP, the data records produced by map tasks are sent
to reduce tasks shortly after each record is generated.
However, to produce the final output of the job, the reduce
function cannot be invoked until the entire output of every
map task has been produced. We can support online
aggregation by simply applying the reduce function to
the data that a reduce task has received so far. We call
the output of such an intermediate reduce operation a
snapshot.

Users would like to know how accurate a snapshot
is: that is, how closely a snapshot resembles the final
output of the job. Accuracy estimation is a hard problem
even for simple SQL queries [15], and particularly hard
for jobs where the map and reduce functions are opaque
user-defined code. Hence, we report job progress, not
accuracy: we leave it to the user (or their MapReduce
code) to correlate progress to a formal notion of accuracy.
We give a simple progress metric below.

Snapshots are computed periodically, as new data ar-
rives at each reducer. The user specifies how often snap-
shots should be computed, using the progress metric as
the unit of measure. For example, a user can request that
a snapshot be computed when 25%, 50%, and 75% of the
input has been seen. The user may also specify whether to
include data from tentative (unfinished) map tasks. This
option does not affect the fault tolerance design described
in Section 3.3. In the current prototype, each snapshot is
stored in a directory on HDFS. The name of the directory
includes the progress value associated with the snapshot.
Each reduce task runs independently, and at a different
rate. Once a reduce task has made sufficient progress, it
writes a snapshot to a temporary directory on HDFS, and
then atomically renames it to the appropriate location.

Applications can consume snapshots by polling HDFS
in a predictable location. An application knows that a
given snapshot has been completed when every reduce
task has written a file to the snapshot directory. Atomic
rename is used to avoid applications mistakenly reading
incomplete snapshot files.

Note that if there are not enough free slots to allow all
the reduce tasks in a job to be scheduled, snapshots will
not be available for reduce tasks that are still waiting to
be executed. The user can detect this situation (e.g., by
checking for the expected number of files in the HDFS
snapshot directory), so there is no risk of incorrect data,
but the usefulness of online aggregation will be reduced.
In the current prototype, we manually configured the
cluster to avoid this scenario. The system could also
be enhanced to avoid this pitfall entirely by optionally
waiting to execute an online aggregation job until there
are enough reduce slots available.

4.1.1 Progress Metric

Hadoop provides support for monitoring the progress of
task executions. As each map task executes, it is assigned
a progress score in the range [0,1], based on how much
of its input the map task has consumed. We reused this
feature to determine how much progress is represented
by the current input to a reduce task, and hence to decide
when a new snapshot should be taken.

First, we modified the spill file format depicted in Fig-
ure 2 to include the map’s current progress score. When a
partition in a spill file is sent to a reducer, the spill file’s
progress score is also included. To compute the progress
score for a snapshot, we take the average of the progress
scores associated with each spill file used to produce the
snapshot.

Note that it is possible that a map task might not have
pipelined any output to a reduce task, either because the
map task has not been scheduled yet (there are no free
TaskTracker slots), the map tasks does not produce any



output for the given reduce task, or because the reduce
task has been configured to only pipeline data from at
most k& map tasks concurrently. To account for this, we
need to scale the progress metric to reflect the portion of
the map tasks that a reduce task has pipelined data from:
if a reducer is connected to % of the total number of map
tasks in the job, we divide the average progress score by
n.

This progress metric could easily be made more sophis-
ticated: for example, an improved metric might include
the selectivity (|output|/|input|) of each map task, the
statistical distribution of the map task’s output, and the
effectiveness of each map task’s combine function, if any.
Although we have found our simple progress metric to be
sufficient for most experiments we describe below, this
clearly represents an opportunity for future work.

4.2 Multi-Job Online Aggregation

Online aggregation is particularly useful when applied
to a long-running analysis task composed of multiple
MapReduce jobs. As described in Section 3.2, our version
of Hadoop allows the output of a reduce task to be sent
directly to map tasks. This feature can be used to support
online aggregation for a sequence of jobs.

Suppose that j; and jo are two MapReduce jobs, and 7
consumes the output of j;. When j;’s reducers compute
a snapshot to perform online aggregation, that snapshot is
written to HDFS, and also sent directly to the map tasks of
j2. The map and reduce steps for j, are then computed as
normal, to produce a snapshot of j»’s output. This process
can then be continued to support online aggregation for
an arbitrarily long sequence of jobs.

Unfortunately, inter-job online aggregation has some
drawbacks. First, the output of a reduce function is not
“monotonic”: the output of a reduce function on the first
50% of the input data may not be obviously related to
the output of the reduce function on the first 25%. Thus,
as new snapshots are produced by j1, jo must be recom-
puted from scratch using the new snapshot. As with
inter-job pipelining (Section 3.2), this could be optimized
for reduce functions that are declared to be distributive or
algebraic aggregates [9].

To support fault tolerance for multi-job online aggrega-
tion, we consider three cases. Tasks that fail in j; recover
as described in Section 3.3. If a task in jo fails, the system
simply restarts the failed task. Since subsequent snapshots
produced by j; are taken from a superset of the mapper
output in j1, the next snapshot received by the restarted
reduce task in jo will have a higher progress score. To
handle failures in ji, tasks in jo cache the most recent
snapshot received by j1, and replace it when they receive
a new snapshot with a higher progress metric. If tasks
from both jobs fail, a new task in jo recovers the most
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Figure 4: Top-100 query over 5.5GB of Wikipedia article
text. The vertical lines describe the increasing accuracy of
the approximate answers produced by online aggregation.

recent snapshot from j; that was stored in HDFS and then
wait for snapshots with a higher progress score.

4.3 Evaluation

To evaluate the effectiveness of online aggregation, we
performed two experiments on Amazon EC2 using differ-
ent data sets and query workloads. In our first experiment,
we wrote a “Top-K” query using two MapReduce jobs:
the first job counts the frequency of each word and the
second job selects the K most frequent words. We ran
this workload on 5.5GB of Wikipedia article text stored
in HDFS, using a 128MB block size. We used a 60-node
EC2 cluster; each node was a “high-CPU medium” EC2
instance with 1.7GB of RAM and 2 virtual cores. A vir-
tual core is the equivalent of a 2007-era 2.5Ghz Intel Xeon
processor. A single EC2 node executed the Hadoop Job-
Tracker and the HDFS NameNode, while the remaining
nodes served as slaves for running the TaskTrackers and
HDFS DataNodes.

Figure 4 shows the results of inter-job online aggrega-
tion for a Top-100 query. Our accuracy metric for this
experiment is post-hoc — we note the time at which the
Top-K words in the snapshot are the Top- K words in the
final result. Although the final result for this job did not
appear until nearly the end, we did observe the Top-5, 10,
and 20 values at the times indicated in the graph. The
Wikipedia data set was biased toward these Top-K words
(e.g., “the”, “is”, etc.), which remained in their correct
position throughout the lifetime of the job.

4.3.1 Approximation Metrics

In our second experiment, we considered the effectiveness
of the job progress metric described in Section 4.1.1. Un-
surprisingly, this metric can be inaccurate when it is used
to estimate the accuracy of the approximate answers pro-
duced by online aggregation. In this experiment, we com-
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Figure 5: Comparison of two approximation metrics. Figure (a) shows the relative error for each approximation metric
over the runtime of the job, averaged over all groups. Figure (b) compares an example approximate answer produced by
each metric with the final answer, for each language and for a single hour.

pared the job progress metric with a simple user-defined
metric that leverages knowledge of the query and data
set. HOP allows such metrics, although developing such
a custom metric imposes more burden on the programmer
than using the generic progress-based metric.

We used a data set containing seven months of hourly
page view statistics for more than 2.5 million Wikipedia
articles [26]. This constituted 320GB of compressed data
(1TB uncompressed), divided into 5066 compressed files.
We stored the data set on HDFS and assigned a single
map task to each file, which was decompressed before the
map function was applied.

We wrote a MapReduce job to count the total number of
page views for each language and each hour of the day. In
other words, our query grouped by language and hour of
day, and summed the number of page views that occurred
in each group. To enable more accurate approximate
answers, we modified the map function to include the
fraction of a given hour that each record represents. The
reduce function summed these fractions for a given hour,
which equated to one for all records from a single map
task. Since the total number of hours was known ahead
of time, we could use the result of this sum over all map
outputs to determine the total fraction of each hour that
had been sampled. We call this user-defined metric the
“sample fraction.”

To compute approximate answers, each intermediate re-
sult was scaled up using two different metrics: the generic
metric based on job progress and the sample fraction de-
scribed above. Figure 5a reports the relative error of the
two metrics, averaged over all groups. Figure 5b shows
an example approximate answer for a single hour using
both metrics (computed two minutes into the job runtime).
This figure also contains the final answer for comparison.
Both results indicate that the sample fraction metric pro-

vides a much more accurate approximate answer for this
query than the progress-based metric.

Job progress is clearly the wrong metric to use for ap-
proximating the final answer of this query. The primary
reason is that it is too coarse of a metric. Each interme-
diate result was computed from some fraction of each
hour. However, the job progress assumes that this fraction
is uniform across all hours, when in fact we could have
received much more of one hour and much less of another.
This assumption of uniformity in the job progress resulted
in a significant approximation error. By contrast, the sam-
ple fraction scales the approximate answer for each group
according to the actual fraction of data seen for that group,
yielding much more accurate approximations.

5 Continuous Queries

MapReduce is often used to analyze streams of constantly-
arriving data, such as URL access logs [6] and system
console logs [30]. Because of traditional constraints on
MapReduce, this is done in large batches that can only
provide periodic views of activity. This introduces sig-
nificant latency into a data analysis process that ideally
should run in near-real time. It is also potentially inef-
ficient: each new MapReduce job does not have access
to the computational state of the last analysis run, so this
state must be recomputed from scratch. The programmer
can manually save the state of each job and then reload it
for the next analysis operation, but this is labor-intensive.

Our pipelined version of Hadoop allows an alternative
architecture: MapReduce jobs that run continuously, ac-
cepting new data as it becomes available and analyzing it
immediately. This allows for near-real-time analysis of
data streams, and thus allows the MapReduce program-
ming model to be applied to domains such as environment



monitoring and real-time fraud detection.

In this section, we describe how HOP supports contin-
uous MapReduce jobs, and how we used this feature to
implement a rudimentary cluster monitoring tool.

5.1 Continuous MapReduce Jobs

A bare-bones implementation of continuous MapReduce
jobs is easy to implement using pipelining. No changes
are needed to implement continuous map tasks: map
output is already delivered to the appropriate reduce task
shortly after it is generated. We added an optional “flush”
API that allows map functions to force their current output
to reduce tasks. When a reduce task is unable to accept
such data, the mapper framework stores it locally and
sends it at a later time. With proper scheduling of reducers,
this API allows a map task to ensure that an output record
is promptly sent to the appropriate reducer.

To support continuous reduce tasks, the user-defined
reduce function must be periodically invoked on the map
output available at that reducer. Applications will have
different requirements for how frequently the reduce func-
tion should be invoked; possible choices include periods
based on wall-clock time, logical time (e.g., the value of a
field in the map task output), and the number of input rows
delivered to the reducer. The output of the reduce func-
tion can be written to HDFS, as in our implementation of
online aggregation. However, other choices are possible;
our prototype system monitoring application (described
below) sends an alert via email if an anomalous situation
is detected.

In our current implementation, the number of map and
reduce tasks is fixed, and must be configured by the user.
This is clearly problematic: manual configuration is error-
prone, and many stream processing applications exhibit
“bursty” traffic patterns, in which peak load far exceeds
average load. In the future, we plan to add support for
elastic scaleup/scaledown of map and reduce tasks in
response to variations in load.

5.1.1 Fault Tolerance

In the checkpoint/restart fault-tolerance model used by
Hadoop, mappers retain their output until the end of the
job to facilitate fast recovery from reducer failures. In a
continuous query context, this is infeasible, since map-
per history is in principle unbounded. However, many
continuous reduce functions (e.g., 30-second moving av-
erage) only require a suffix of the map output stream. This
common case can be supported easily, by extending the
JobTracker interface to capture a rolling notion of reducer
consumption. Map-side spill files are maintained in a ring
buffer with unique IDs for spill files over time. When a
reducer commits an output to HDFS, it informs the Job-

Tracker about the run of map output records it no longer
needs, identifying the run by spill file IDs and offsets
within those files. The JobTracker can then tell mappers
to garbage collect the appropriate data.

In principle, complex reducers may depend on very
long (or infinite) histories of map records to accurately
reconstruct their internal state. In that case, deleting spill
files from the map-side ring buffer will result in poten-
tially inaccurate recovery after faults. Such scenarios
can be handled by having reducers checkpoint internal
state to HDFS, along with markers for the mapper oft-
sets at which the internal state was checkpointed. The
MapReduce framework can be extended with APIs to help
with state serialization and offset management, but it still
presents a programming burden on the user to correctly
identify the sensitive internal state. That burden can be
avoided by more heavyweight process-pair techniques
for fault tolerance, but those are quite complex and use
significant resources [24]. In our work to date we have
focused on cases where reducers can be recovered from a
reasonable-sized history at the mappers, favoring minor
extensions to the simple fault-tolerance approach used in
Hadoop.

5.2 Prototype Monitoring System

Our monitoring system is composed of agents that run on
each monitored machine and record statistics of interest
(e.g., load average, I/0 operations per second, etc.). Each
agent is implemented as a continuous map task: rather
than reading from HDFS, the map task instead reads from
various system-local data streams (e.g., /proc).

Each agent forwards statistics to an aggregator that is
implemented as a continuous reduce task. The aggregator
records how agent-local statistics evolve over time (e.g.,
by computing windowed-averages), and compares statis-
tics between agents to detect anomalous behavior. Each
aggregator monitors the agents that report to it, but might
also report statistical summaries to another “upstream”
aggregator. For example, the system might be configured
to have an aggregator for each rack and then a second
level of aggregators that compare statistics between racks
to analyze datacenter-wide behavior.

5.3 Evaluation

To validate our prototype system monitoring tool, we con-
structed a scenario in which one member of a MapReduce
cluster begins thrashing during the execution of a job. Our
goal was to test how quickly our monitoring system would
detect this behavior. The basic mechanism is similar to an
alert system one of the authors implemented at an Internet
search company.
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Figure 6: Number of pages swapped over time on the
thrashing host, as reported by vmstat. The vertical
line indicates the time at which the alert was sent by the
monitoring system.

We used a simple load metric (a linear combination of
CPU utilization, paging, and swap activity). The continu-
ous reduce function maintains windows over samples of
this metric: at regular intervals, it compares the 20 second
moving average of the load metric for each host to the
120 second moving average of all the hosts in the cluster
except that host. If the given host’s load metric is more
than two standard deviations above the global average, it
is considered an outlier and a tentative alert is issued. To
dampen false positives in “bursty” load scenarios, we do
not issue an alert until we have received 10 tentative alerts
within a time window.

We deployed this system on an EC2 cluster consisting
of 7 “large” nodes (large nodes were chosen because EC2
allocates an entire physical host machine to them). We
ran a wordcount job on the 5.5GB Wikipedia data set,
using 5 map tasks and 2 reduce tasks (1 task per host).
After the job had been running for about 10 seconds, we
selected a node running a task and launched a program
that induced thrashing.

We report detection latency in Figure 6. The vertical
bar indicates the time at which the monitoring tool fired a
(non-tentative) alert. The thrashing host was detected very
rapidly—notably faster than the 5-second TaskTracker-
JobTracker heartbeat cycle that is used to detect straggler
tasks in stock Hadoop. We envision using these alerts
to do early detection of stragglers within a MapReduce
job: HOP could make scheduling decisions for a job by
running a secondary continuous monitoring query. Com-
pared to out-of-band monitoring tools, this economy of
mechanism—reusing the MapReduce infrastructure for
reflective monitoring—has benefits in software mainte-
nance and system management.

6 Performance Evaluation

A thorough performance comparison between pipelining
and blocking is beyond the scope of this paper. In this
section, we instead demonstrate that pipelining can reduce
job completion times in some configurations.

We report performance using both large (512MB) and
small (32MB) HDFS block sizes using a single workload
(a wordcount job over randomly-generated text). Since
the words were generated using a uniform distribution,
map-side combiners were ineffective for this workload.
We performed all experiments using relatively small clus-
ters of Amazon EC2 nodes. We also did not consider
performance in an environment where multiple concur-
rent jobs are executing simultaneously.

6.1 Background and Configuration

Before diving into the performance experiments, it is im-
portant to further describe the division of labor in a HOP
job, which is broken into task phases. A map task consists
of two work phases: map and sort. The majority of work
is performed in the map phase, where the map function
is applied to each record in the input and subsequently
sent to an output buffer. Once the entire input has been
processed, the map task enters the sort phase, where a
final merge sort of all intermediate spill files is performed
before registering the final output with the TaskTracker.
The progress reported by a map task corresponds to the
map phase only.

A reduce task in HOP is divided into three work phases:
shuffle, reduce, and commit. In the shuffle phase, reduce
tasks receive their portion of the output from each map.
In HOP, the shuffle phase consumes 75% of the overall
reduce task progress while the remaining 25% is allocated
to the reduce and commit phase.> In the shuffle phase,
reduce tasks periodically perform a merge sort on the
already received map output. These intermediate merge
sorts decrease the amount of sorting work performed at
the end of the shuffle phase. After receiving its portion of
data from all map tasks, the reduce task performs a final
merge sort and enters the reduce phase.

By pushing work from map tasks to reduce tasks more
aggressively, pipelining can enable better overlapping of
map and reduce computation, especially when the node
on which a reduce task is scheduled would otherwise be
underutilized. However, when reduce tasks are already the
bottleneck, pipelining offers fewer performance benefits,
and may even hurt performance by placing additional load
on the reduce nodes.

3The stock version of Hadoop divides the reduce progress evenly
among the three phases. We deviated from this approach because we
wanted to focus more on the progress during the shuffle phase.
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Figure 7: CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 5 reduce
tasks (512MB block size). The total job runtimes were 561 seconds for blocking and 462 seconds for pipelining.
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Figure 8: CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 20 reduce
tasks (512MB block size). The total job runtimes were 361 seconds for blocking and 290 seconds for pipelining.

The sort phase in the map task minimizes the merging
work that reduce tasks must perform at the end of the
shuffle phase. When pipelining is enabled, the sort phase
is avoided since map tasks have already sent some fraction
of the spill files to concurrently running reduce tasks.
Therefore, pipelining increases the merging workload
placed on the reducer. The adaptive pipelining scheme
described in Section 3.1.3 attempts to ensure that reduce
tasks are not overwhelmed with additional load.

We used two Amazon EC2 clusters depending on the
size of the experiment: “small” jobs used 10 worker nodes,
while “large” jobs used 20. Each node was an “extra large”
EC2 instances with 15GB of memory and four virtual
cores.

6.2 Small Job Results

Our first experiment focused on the performance of small
jobs in an underutilized cluster. We ran a 10GB word-
count with a 512MB block size, yielding 20 map tasks.
We used 10 worker nodes and configured each worker
to execute at most two map and two reduce tasks simul-
taneously. We ran several experiments to compare the

performance of blocking and pipelining using different
numbers of reduce tasks.

Figure 7 reports the results with five reduce tasks. A
plateau can be seen at 75% progress for both blocking
and pipelining. At this point in the job, all reduce tasks
have completed the shuffle phase; the plateau is caused by
the time taken to perform a final merge of all map output
before entering the reduce phase. Notice that the plateau
for the pipelining case is shorter. With pipelining, reduce
tasks receive map outputs earlier and can begin sorting
earlier, thereby reducing the time required for the final
merge.

Figure 8 reports the results with twenty reduce tasks.
Using more reduce tasks decreases the amount of merging
that any one reduce task must perform, which reduces the
duration of the plateau at 75% progress. In the blocking
case, the plateau is practically gone.

Note that in both experiments, the map phase finishes
faster with blocking than with pipelining. This is because
pipelining allows reduce tasks to begin executing more
quickly; hence, the reduce tasks compete for resources
with the map tasks, causing the map phase to take slightly
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Figure 9: CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 1 reduce
task (512MB block size). The total job runtimes were 29 minutes for blocking and 34 minutes for pipelining.
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Figure 10: CDF of map and reduce task completion times for a 100GB wordcount job using 240 map tasks and 60
reduce tasks (512MB block size). The total job runtimes were 48 minutes for blocking and 36 minutes for pipelining.

longer. In this case, the increase in map duration is out-
weighed by the increase in cluster utilization, resulting in
shorter job completion times: pipelining reduced comple-
tion time by 17.7% with 5 reducers and by 19.7% with 20
reducers.

Figure 9 describes an experiment in which we ran a
10GB wordcount job using a single reduce task. This
caused job completion times to increase dramatically for
both pipelining and blocking, because of the extreme
load placed on the reduce node. Pipelining delayed job
completion by ~17%, which suggests that our simple
adaptive flow control scheme (Section 3.1.3) was unable
to move load back to the map tasks aggressively enough.

6.3 Large Job Results

Our second set of experiments focused on the perfor-
mance of somewhat larger jobs. We increased the input
size to 100GB (from 10GB) and the number of worker
nodes to 20 (from 10). Each worker was configured to
execute at most four map and three reduce tasks, which
meant that at most 80 map and 60 reduce tasks could

execute at once. We conducted two sets of experimental
runs, each run comparing blocking to pipelining using
either large (512MB) or small (32MB) block sizes. We
were interested in blocking performance with small block
sizes because blocking can effectively emulate pipelining
if the block size is small enough.

Figure 10 reports the performance of a 100GB word-
count job with 512MB blocks, which resulted in 240 map
tasks, scheduled in three waves of 80 tasks each. The
60 reduce tasks were coscheduled with the first wave of
map tasks. In the blocking case, the reduce tasks began
working as soon as they received the output of the first
wave, which is why the reduce progress begins to climb
around four minutes (well before the completion of all
maps). Pipelining was able to achieve significantly better
cluster utilization, and hence reduced job completion time
by ~25%.

Figure 11 reports the performance of blocking and
pipelining using 32MB blocks. While the performance of
pipelining remained similar, the performance of blocking
improved considerably, but still trailed somewhat behind
pipelining. Using block sizes smaller than 32MB did
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not yield a significant performance improvement in our
experiments.

7 Related Work

The work in this paper relates to literature on parallel
dataflow frameworks, online aggregation, and continuous
query processing.

7.1 Parallel Dataflow

Dean and Ghemawat’s paper on Google’s MapReduce [6]
has become a standard reference, and forms the basis of
the open-source Hadoop implementation. As noted in Sec-
tion 1, the Google MapReduce design targets very large
clusters where the probability of worker failure or slow-
down is high. This led to their elegant checkpoint/restart
approach to fault tolerance, and their lack of pipelining.
Our work extends the Google design to accommodate
pipelining without significant modification to their core
programming model or fault tolerance mechanisms.

Dryad [13] is a data-parallel programming model and
runtime that is often compared to MapReduce, supporting
a more general model of acyclic dataflow graphs. Like
MapReduce, Dryad puts disk materialization steps be-
tween dataflow stages by default, breaking pipelines. The
Dryad paper describes support for optionally “encapsulat-
ing” multiple asynchronous stages into a single process
so they can pipeline, but this requires a more complicated
programming interface. The Dryad paper explicitly men-
tions that the system is targeted at batch processing, and
not at scenarios like continuous queries.

It has been noted that parallel database systems have
long provided partitioned dataflow frameworks [21],
and recent commercial databases have begun to offer
MapReduce programming models on top of those frame-
works [5, 10]. Most parallel database systems can pro-

vide pipelined execution akin to our work here, but they
use a more tightly coupled iterator and Exchange model
that keeps producers and consumers rate-matched via
queues, spreading the work of each dataflow stage across
all nodes in the cluster [8]. This provides less schedul-
ing flexibility than MapReduce and typically offers no
tolerance to mid-query worker faults. Yang et al. re-
cently proposed a scheme to add support for mid-query
fault tolerance to traditional parallel databases, using a
middleware-based approach that shares some similarities
with MapReduce [31].

Logothetis and Yocum describe a MapReduce inter-
face over a continuous query system called Mortar that
is similar in some ways to our work [16]. Like HOP,
their mappers push data to reducers in a pipelined fashion.
They focus on specific issues in efficient stream query pro-
cessing, including minimization of work for aggregates
in overlapping windows via special reducer APIs. They
are not built on Hadoop, and explicitly sidestep issues in
fault tolerance.

Hadoop Streaming is part of the Hadoop distribution,
and allows map and reduce functions to be expressed
as UNIX shell command lines. It does not stream data
through map and reduce phases in a pipelined fashion.

7.2 Online Aggregation

Online aggregation was originally proposed in the con-
text of simple single-table SQL queries involving “Group
By” aggregations, a workload quite similar to MapRe-
duce [12]. The focus of the initial work was on providing
not only “early returns” to these SQL queries, but also sta-
tistically robust estimators and confidence interval metrics
for the final result based on random sampling. These sta-
tistical matters do not generalize to arbitrary MapReduce
jobs, though our framework can support those that have
been developed. Subsequently, online aggregation was ex-
tended to handle join queries (via the Ripple Join method),



and the CONTROL project generalized the idea of online
query processing to provide interactivity for data cleaning,
data mining, and data visualization tasks [11]. That work
was targeted at single-processor systems. Luo et al. devel-
oped a partitioned-parallel variant of Ripple Join, without
statistical guarantees on approximate answers [17].

In recent years, this topic has seen renewed interest,
starting with Jermaine et al.’s work on the DBO sys-
tem [15]. That effort includes more disk-conscious online
join algorithms, as well as techniques for maintaining
randomly-shuffled files to remove any potential for sta-
tistical bias in scans [14]. Wu et al. describe a system
for peer-to-peer online aggregation in a distributed hash
table context [29]. The open programmability and fault-
tolerance of MapReduce are not addressed significantly
in prior work on online aggregation.

An alternative to online aggregation combines precom-
putation with sampling, storing fixed samples and sum-
maries to provide small storage footprints and interactive
performance [7]. An advantage of these techniques is that
they are compatible with both pipelining and blocking
models of MapReduce. The downside of these techniques
is that they do not allow users to choose the query stop-
ping points or time/accuracy trade-offs dynamically [11].

7.3 Continuous Queries

In the last decade there was a great deal of work in the
database research community on the topic of continuous
queries over data streams, including systems such as Bo-
realis [1], STREAM [18], and Telegraph [4]. Of these,
Borealis and Telegraph [24] studied fault tolerance and
load balancing across machines. In the Borealis context
this was done for pipelined dataflows, but without parti-
tioned parallelism: each stage (‘“operator”) of the pipeline
runs serially on a different machine in the wide area, and
fault tolerance deals with failures of entire operators [3].
SBON [22] is an overlay network that can be integrated
with Borealis, which handles “operator placement” opti-
mizations for these wide-area pipelined dataflows.
Telegraph’s FLuX operator [24, 25] is the only work to
our knowledge that addresses mid-stream fault-tolerance
for dataflows that are both pipelined and partitioned in
the style of HOP. FLuX (“Fault-tolerant, Load-balanced
eXchange”) is a dataflow operator that encapsulates the
shuffling done between stages such as map and reduce. It
provides load-balancing interfaces that can migrate oper-
ator state (e.g., reducer state) between nodes, while han-
dling scheduling policy and changes to data-routing poli-
cies [25]. For fault tolerance, FLuX develops a solution
based on process pairs [24], which work redundantly to
ensure that operator state is always being maintained live
on multiple nodes. This removes any burden on the con-
tinuous query programmer of the sort we describe in Sec-

tion 5. On the other hand, the FLuX protocol is far more
complex and resource-intensive than our pipelined adap-
tation of Google’s checkpoint/restart tolerance model.

8 Conclusion and Future Work

MapReduce has proven to be a popular model for large-
scale parallel programming. Our Hadoop Online Pro-
totype extends the applicability of the model to pipelin-
ing behaviors, while preserving the simple programming
model and fault tolerance of a full-featured MapReduce
framework. This provides significant new functionality,
including “early returns” on long-running jobs via online
aggregation, and continuous queries over streaming data.
We also demonstrate benefits for batch processing: by
pipelining both within and across jobs, HOP can reduce
the time to job completion.

In considering future work, scheduling is a topic that
arises immediately. Stock Hadoop already has many de-
grees of freedom in scheduling batch tasks across ma-
chines and time, and the introduction of pipelining in
HOP only increases this design space. First, pipeline par-
allelism is a new option for improving performance of
MapReduce jobs, but needs to be integrated intelligently
with both intra-task partition parallelism and speculative
redundant execution for “straggler” handling. Second, the
ability to schedule deep pipelines with direct communica-
tion between reduces and maps (bypassing the distributed
file system) opens up new opportunities and challenges in
carefully co-locating tasks from different jobs, to avoid
communication when possible.

Olston and colleagues have noted that MapReduce
systems—unlike traditional databases—employ “model-
light” optimization approaches that gather and react to
performance information during runtime [19]. The con-
tinuous query facilities of HOP enable powerful intro-
spective programming interfaces for this: a full-featured
MapReduce interface can be used to script performance
monitoring tasks that gather system-wide information in
near-real-time, enabling tight feedback loops for schedul-
ing and dataflow optimization. This is a topic we plan to
explore, including opportunistic methods to do monitor-
ing work with minimal interference to outstanding jobs,
as well as dynamic approaches to continuous optimization
in the spirit of earlier work like Eddies [2] and FLuX [25].

As a more long-term agenda, we want to explore using
MapReduce-style programming for even more interac-
tive applications. As a first step, we hope to revisit in-
teractive data processing in the spirit of the CONTROL
work [11], with an eye toward improved scalability via
parallelism. More aggressively, we are considering the
idea of bridging the gap between MapReduce dataflow
programming and lightweight event-flow programming
models like SEDA [28]. Our HOP implementation’s roots



in Hadoop make it unlikely to compete with something
like SEDA in terms of raw performance. However, it
would be interesting to translate ideas across these two
traditionally separate programming models, perhaps with
an eye toward building a new and more general-purpose
framework for programming in architectures like cloud
computing and many-core.
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