
72 communicATions of THe Acm | jANuARy 2010 | Vol. 53 | No. 1

M Ap ReDUCe is A programming model for processing
and generating large data sets.4 Users specify a
map function that processes a key/value pair to
generate a set of intermediate key/value pairs and
a reduce function that merges all intermediate
values associated with the same intermediate key.
We built a system around this programming model
in 2003 to simplify construction of the inverted
index for handling searches at Google.com. Since
then, more than 10,000 distinct programs have been
implemented using MapReduce at Google, including
algorithms for large-scale graph processing, text
processing, machine learning, and statistical machine
translation. the Hadoop open source implementation

Doi:10.1145/1629175.1629198

MapReduce advantages over parallel databases
include storage-system independence and
fine-grain fault tolerance for large jobs.

BY JeffReY DeAn AnD sAnJAY GHemAWAT

mapReduce:
A flexible
Data
Processing
Tool

I
l

l
u

s
t

r
a

t
I

o
n

 b
y

 M
a

r
I

u
s

 W
a

t
Z

contributed articles

of MapReduce has been used exten-
sively outside of Google by a number of
organizations.10,11

To help illustrate the MapReduce
programming model, consider the
problem of counting the number of
occurrences of each word in a large col-
lection of documents. The user would
write code like the following pseudo-
code:

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

The map function emits each word
plus an associated count of occurrences
(just `1' in this simple example). The re-
duce function sums together all counts
emitted for a particular word.

MapReduce automatically paral-
lelizes and executes the program on a
large cluster of commodity machines.
The runtime system takes care of the
details of partitioning the input data,
scheduling the program’s execution
across a set of machines, handling
machine failures, and managing re-
quired inter-machine communication.
MapReduce allows programmers with
no experience with parallel and dis-
tributed systems to easily utilize the re-
sources of a large distributed system. A
typical MapReduce computation pro-
cesses many terabytes of data on hun-
dreds or thousands of machines. Pro-
grammers find the system easy to use,
and more than 100,000 MapReduce
jobs are executed on Google’s clusters
every day.

compared to Parallel Databases
The query languages built into paral-
lel database systems are also used to

jANuARy 2010 | Vol. 53 | No. 1 | communicATions of THe Acm 73

74 communicATions of THe Acm | jANuARy 2010 | Vol. 53 | No. 1

contributed articles

would need to read only that sub-range
instead of scanning the entire Bigtable.
Furthermore, like Vertica and other col-
umn-store databases, we will read data
only from the columns needed for this
analysis, since Bigtable can store data
segregated by columns.

Yet another example is the process-
ing of log data within a certain date
range; see the Join task discussion in
the comparison paper, where the Ha-
doop benchmark reads through 155
million records to process the 134,000
records that fall within the date range
of interest. Nearly every logging sys-
tem we are familiar with rolls over to
a new log file periodically and embeds
the rollover time in the name of each
log file. Therefore, we can easily run a
MapReduce operation over just the log
files that may potentially overlap the
specified date range, instead of reading
all log files.

complex functions
Map and Reduce functions are often
fairly simple and have straightforward
SQL equivalents. However, in many
cases, especially for Map functions, the
function is too complicated to be ex-
pressed easily in a SQL query, as in the
following examples:

Extracting the set of outgoing links ˲

from a collection of HTML documents
and aggregating by target document;

Stitching together overlapping sat- ˲

ellite images to remove seams and to
select high-quality imagery for Google
Earth;

Generating a collection of inverted ˲

index files using a compression scheme
tuned for efficient support of Google
search queries;

Processing all road segments in the ˲

world and rendering map tile images
that display these segments for Google
Maps; and

Fault-tolerant parallel execution of ˲

programs written in higher-level lan-
guages (such as Sawzall14 and Pig Lat-
in12) across a collection of input data.

Conceptually, such user defined
functions (UDFs) can be combined
with SQL queries, but the experience
reported in the comparison paper indi-
cates that UDF support is either buggy
(in DBMS-X) or missing (in Vertica).
These concerns may go away over the
long term, but for now, MapReduce is a
better framework for doing more com-

express the type of computations sup-
ported by MapReduce. A 2009 paper
by Andrew Pavlo et al. (referred to here
as the “comparison paper”13) com-
pared the performance of MapReduce
and parallel databases. It evaluated
the open source Hadoop implementa-
tion10 of the MapReduce programming
model, DBMS-X (an unidentified com-
mercial database system), and Vertica
(a column-store database system from
a company co-founded by one of the
authors of the comparison paper). Ear-
lier blog posts by some of the paper’s
authors characterized MapReduce as
“a major step backwards.”5,6 In this
article, we address several misconcep-
tions about MapReduce in these three
publications:

MapReduce cannot use indices and ˲

implies a full scan of all input data;
MapReduce input and outputs are ˲

always simple files in a file system; and
MapReduce requires the use of in- ˲

efficient textual data formats.
We also discuss other important is-

sues:
MapReduce is storage-system inde- ˲

pendent and can process data without
first requiring it to be loaded into a da-
tabase. In many cases, it is possible to
run 50 or more separate MapReduce
analyses in complete passes over the
data before it is possible to load the data
into a database and complete a single
analysis;

Complicated transformations are ˲

often easier to express in MapReduce
than in SQL; and

Many conclusions in the compari- ˲

son paper were based on implementa-
tion and evaluation shortcomings not
fundamental to the MapReduce model;
we discuss these shortcomings later in
this article.

We encourage readers to read the
original MapReduce paper4 and the
comparison paper13 for more context.

Heterogenous systems
Many production environments con-
tain a mix of storage systems. Customer
data may be stored in a relational data-
base, and user requests may be logged
to a file system. Furthermore, as such
environments evolve, data may migrate
to new storage systems. MapReduce
provides a simple model for analyzing
data in such heterogenous systems.
End users can extend MapReduce to

support a new storage system by de-
fining simple reader and writer imple-
mentations that operate on the storage
system. Examples of supported storage
systems are files stored in distributed
file systems,7 database query results,2,9
data stored in Bigtable,3 and structured
input files (such as B-trees). A single
MapReduce operation easily processes
and combines data from a variety of
storage systems.

Now consider a system in which a
parallel DBMS is used to perform all
data analysis. The input to such analy-
sis must first be copied into the parallel
DBMS. This loading phase is inconve-
nient. It may also be unacceptably slow,
especially if the data will be analyzed
only once or twice after being loaded.
For example, consider a batch-oriented
Web-crawling-and-indexing system
that fetches a set of Web pages and
generates an inverted index. It seems
awkward and inefficient to load the set
of fetched pages into a database just so
they can be read through once to gener-
ate an inverted index. Even if the cost of
loading the input into a parallel DBMS
is acceptable, we still need an appropri-
ate loading tool. Here is another place
MapReduce can be used; instead of
writing a custom loader with its own ad
hoc parallelization and fault-tolerance
support, a simple MapReduce program
can be written to load the data into the
parallel DBMS.

indices
The comparison paper incorrectly said
that MapReduce cannot take advan-
tage of pregenerated indices, leading
to skewed benchmark results in the
paper. For example, consider a large
data set partitioned into a collection
of nondistributed databases, perhaps
using a hash function. An index can
be added to each database, and the
result of running a database query us-
ing this index can be used as an input
to MapReduce. If the data is stored in
D database partitions, we will run D
database queries that will become the
D inputs to the MapReduce execution.
Indeed, some of the authors of Pavlo et
al. have pursued this approach in their
more recent work.11

Another example of the use of in-
dices is a MapReduce that reads from
Bigtable. If the data needed maps to a
sub-range of the Bigtable row space, we

contributed articles

jANuARy 2010 | Vol. 53 | No. 1 | communicATions of THe Acm 75

plicated tasks (such as those listed ear-
lier) than the selection and aggregation
that are SQL’s forte.

structured Data and schemas
Pavlo et al. did raise a good point that
schemas are helpful in allowing multi-
ple applications to share the same data.
For example, consider the following
schema from the comparison paper:

CREATE TABLE Rankings (
 pageURL VARCHAR(100)

PRIMARY KEY,
 pageRank INT,
 avgDuration INT);

The corresponding Hadoop bench-
marks in the comparison paper used
an inefficient and fragile textual for-
mat with different attributes separated
by vertical bar characters:

137|http://www.somehost.com/
 index.html|602

In contrast to ad hoc, inefficient
formats, virtually all MapReduce op-
erations at Google read and write data
in the Protocol Buffer format.8 A high-
level language describes the input and
output types, and compiler-generated
code is used to hide the details of en-
coding/decoding from application
code. The corresponding protocol buf-
fer description for the Rankings data
would be:

message Rankings {
required string pageurl = 1;
required int32 pagerank = 2;
required int32 avgduration = 3;

}

The following Map function frag-
ment processes a Rankings record:

Rankings r = new Rankings();
r.parseFrom(value);
if (r.getPagerank() > 10) { ... }

The protocol buffer framework
allows types to be upgraded (in con-
strained ways) without requiring exist-
ing applications to be changed (or even
recompiled or rebuilt). This level of
schema support has proved sufficient
for allowing thousands of Google engi-
neers to share the same evolving data
types.

Furthermore, the implementation

of protocol buffers uses an optimized
binary representation that is more
compact and much faster to encode
and decode than the textual formats
used by the Hadoop benchmarks in the
comparison paper. For example, the
automatically generated code to parse
a Rankings protocol buffer record
runs in 20 nanoseconds per record as
compared to the 1,731 nanoseconds
required per record to parse the tex-
tual input format used in the Hadoop
benchmark mentioned earlier. These
measurements were obtained on a JVM
running on a 2.4GHz Intel Core-2 Duo.
The Java code fragments used for the
benchmark runs were:

// Fragment 1: protocol buf-
fer parsing
for (int i = 0; i < numItera-
tions; i++) {

rankings.parseFrom(value);
pagerank = rankings.get-
Pagerank();

}

// Fragment 2: text for-
mat parsing (extracted from
Benchmark1.java
// from the source code
posted by Pavlo et al.)
for (int i = 0; i < numItera-
tions; i++) {

String data[] = value.to-
String().split(“\\|”);
pagerank = Integer.
valueOf(data[0]);

}

Given the factor of an 80-fold dif-
ference in this record-parsing bench-
mark, we suspect the absolute num-
bers for the Hadoop benchmarks in
the comparison paper are inflated and
cannot be used to reach conclusions
about fundamental differences in the
performance of MapReduce and paral-
lel DBMS.

fault Tolerance
The MapReduce implementation uses
a pull model for moving data between
mappers and reducers, as opposed to
a push model where mappers write di-
rectly to reducers. Pavlo et al. correctly
pointed out that the pull model can re-
sult in the creation of many small files
and many disk seeks to move data be-
tween mappers and reducers. Imple-

mapReduce is
a highly effective
and efficient
tool for large-scale
fault-tolerant
data analysis.

76 communicATions of THe Acm | jANuARy 2010 | Vol. 53 | No. 1

contributed articles

format for structured data (protocol
buffers) instead of inefficient textual
formats.

Reading unnecessary data. The com-
parison paper says, “MR is always forced
to start a query with a scan of the entire
input file.” MapReduce does not require
a full scan over the data; it requires only
an implementation of its input inter-
face to yield a set of records that match
some input specification. Examples of
input specifications are:

All records in a set of files; ˲

All records with a visit-date in the ˲

range [2000-01-15..2000-01-22]; and
All data in Bigtable table T whose ˲

“language” column is “Turkish.”
The input may require a full scan

over a set of files, as Pavlo et al. sug-
gested, but alternate implementations
are often used. For example, the input
may be a database with an index that
provides efficient filtering or an in-
dexed file structure (such as daily log
files used for efficient date-based fil-
tering of log data).

This mistaken assumption about
MapReduce affects three of the five
benchmarks in the comparison paper
(the selection, aggregation, and join
tasks) and invalidates the conclusions
in the paper about the relative perfor-
mance of MapReduce and parallel da-
tabases.

Merging results. The measurements
of Hadoop in all five benchmarks in the
comparison paper included the cost
of a final phase to merge the results of
the initial MapReduce into one file. In
practice, this merging is unnecessary,
since the next consumer of MapReduce
output is usually another MapReduce
that can easily operate over the set of
files produced by the first MapReduce,
instead of requiring a single merged in-
put. Even if the consumer is not another
MapReduce, the reducer processes in
the initial MapReduce can write directly
to a merged destination (such as a Big-
table or parallel database table).

Data loading. The DBMS measure-
ments in the comparison paper dem-
onstrated the high cost of loading
input data into a database before it
is analyzed. For many of the bench-
marks in the comparison paper, the
time needed to load the input data into
a parallel database is five to 50 times
the time needed to analyze the data via
Hadoop. Put another way, for some of

mentation tricks like batching, sorting,
and grouping of intermediate data and
smart scheduling of reads are used by
Google’s MapReduce implementation
to mitigate these costs.

MapReduce implementations tend
not to use a push model due to the
fault-tolerance properties required
by Google’s developers. Most MapRe-
duce executions over large data sets
encounter at least a few failures; apart
from hardware and software problems,
Google’s cluster scheduling system can
preempt MapReduce tasks by killing
them to make room for higher-priority
tasks. In a push model, failure of a re-
ducer would force re-execution of all
Map tasks.

We suspect that as data sets grow
larger, analyses will require more
computation, and fault tolerance will
become more important. There are al-
ready more than a dozen distinct data
sets at Google more than 1PB in size
and dozens more hundreds of TBs
in size that are processed daily using
MapReduce. Outside of Google, many
users listed on the Hadoop users list11
are handling data sets of multiple hun-
dreds of terabytes or more. Clearly, as
data sets continue to grow, more users
will need a fault-tolerant system like
MapReduce that can be used to process
these large data sets efficiently and ef-
fectively.

Performance
Pavlo et al. compared the performance
of the Hadoop MapReduce implemen-
tation to two database implementa-
tions; here, we discuss the performance
differences of the various systems:

Engineering considerations. Startup
overhead and sequential scanning
speed are indicators of maturity of im-
plementation and engineering trade-
offs, not fundamental differences in
programming models. These differ-
ences are certainly important but can
be addressed in a variety of ways. For
example, startup overhead can be ad-
dressed by keeping worker processes
live, waiting for the next MapReduce in-
vocation, an optimization added more
than a year ago to Google’s MapReduce
implementation.

Google has also addressed sequen-
tial scanning performance with a variety
of performance optimizations by, for ex-
ample, using efficient binary-encoding

ACM
Transactions on

Accessible
Computing

◆ ◆ ◆ ◆ ◆

This quarterly publication is a
quarterly journal that publishes
refereed articles addressing issues
of computing as it impacts the
lives of people with disabilities.
The journal will be of particular
interest to SIGACCESS members
and delegrates to its affiliated
conference (i.e., ASSETS), as well
as other international accessibility
conferences.

◆ ◆ ◆ ◆ ◆

www.acm.org/taccess
www.acm.org/subscribe

CACM_TACCESS_one-third_page_vertical:Layout 1 6/9/09 1:04 PM Page 1

contributed articles

jANuARy 2010 | Vol. 53 | No. 1 | communicATions of THe Acm 77

the benchmarks, starting with data in a
collection of files on disk, it is possible
to run 50 separate MapReduce analy-
ses over the data before it is possible to
load the data into a database and com-
plete a single analysis. Long load times
may not matter if many queries will be
run on the data after loading, but this
is often not the case; data sets are often
generated, processed once or twice,
and then discarded. For example, the
Web-search index-building system de-
scribed in the MapReduce paper4 is a
sequence of MapReduce phases where
the output of most phases is consumed
by one or two subsequent MapReduce
phases.

conclusion
The conclusions about performance
in the comparison paper were based
on flawed assumptions about MapRe-
duce and overstated the benefit of par-
allel database systems. In our experi-
ence, MapReduce is a highly effective
and efficient tool for large-scale fault-
tolerant data analysis. However, a few
useful lessons can be drawn from this
discussion:

Startup latency. MapReduce imple-
mentations should strive to reduce
startup latency by using techniques like
worker processes that are reused across
different invocations;

Data shuffling. Careful attention
must be paid to the implementation of
the data-shuffling phase to avoid gen-
erating O(M*R) seeks in a MapReduce
with M map tasks and R reduce tasks;

Textual formats. MapReduce users
should avoid using inefficient textual
formats;

Natural indices. MapReduce users
should take advantage of natural in-
dices (such as timestamps in log file
names) whenever possible; and

Unmerged output. Most MapReduce
output should be left unmerged, since
there is no benefit to merging if the
next consumer is another MapReduce
program.

MapReduce provides many signifi-
cant advantages over parallel data-
bases. First and foremost, it provides
fine-grain fault tolerance for large
jobs; failure in the middle of a multi-
hour execution does not require re-
starting the job from scratch. Second,
MapReduce is very useful for handling
data processing and data loading in a

heterogenous system with many dif-
ferent storage systems. Third, MapRe-
duce provides a good framework for
the execution of more complicated
functions than are supported directly
in SQL.

References
1. abouzeid, a., bajda-Pawlikowski, K., abadi, d.J.,

silberschatz, a., and rasin, a. Hadoopdb: an
architectural hybrid of Mapreduce and dbMs
technologies for analytical workloads. In Proceedings
of the Conference on Very Large Databases (lyon,
France, 2009); http://db.cs.yale.edu/hadoopdb/

2. aster data systems, Inc. In-Database MapReduce
for Rich Analytics; http://www.asterdata.com/product/
mapreduce.php.

3. Chang, F., dean, J., Ghemawat, s., Hsieh, W.C.,
Wallach, d.a., burrows, M., Chandra, t., Fikes, a.,
and Gruber, r.e. bigtable: a distributed storage
system for structured data. In Proceedings of the
Seventh Symposium on Operating System Design
and Implementation (seattle, Wa, nov. 6–8). usenix
association, 2006; http://labs.google.com/papers/
bigtable.html

4. dean, J. and Ghemawat, s. Mapreduce: simplified
data processing on large clusters. In Proceedings of
the Sixth Symposium on Operating System Design and
Implementation (san Francisco, Ca, dec. 6–8). usenix
association, 2004; http://labs.google.com/papers/
mapreduce.html

5. dewitt, d. and stonebraker, M. Mapreduce: a Major
step backwards blogpost; http://databasecolumn.
vertica.com/database-innovation/mapreduce-a-major-
step-backwards/

6. dewitt, d. and stonebraker, M. Mapreduce II
blogpost; http://databasecolumn.vertica.com/
database-innovation/mapreduce-ii/

7. Ghemawat, s., Gobioff, H., and leung, s.-t. the
Google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (lake
George, ny, oct. 19–22). aCM Press, new york, 2003;
http://labs.google.com/papers/gfs.html

8. Google. Protocol buffers: Google’s data Interchange
Format. documentation and open source release;
http://code.google.com/p/protobuf/

9. Greenplum. Greenplum Mapreduce: bringing next-
Generation analytics technology to the enterprise;
http://www.greenplum.com/resources/mapreduce/

10. Hadoop. documentation and open source release;
http://hadoop.apache.org/core/

11. Hadoop. users list; http://wiki.apache.org/hadoop/
Poweredby

12. olston, C., reed, b., srivastava, u., Kumar, r., and
tomkins, a. Pig latin: a not-so-foreign language for
data processing. In Proceedings of the ACM SIGMOD
2008 International Conference on Management of
Data (auckland, new Zealand, June 2008); http://
hadoop.apache.org/pig/

13. Pavlo, a., Paulson, e., rasin, a., abadi, d.J., deWitt,
d.J., Madden, s., and stonebraker, M. a comparison
of approaches to large-scale data analysis. In
Proceedings of the 2009 ACM SIGMOD International
Conference (Providence, rI, June 29–July 2). aCM
Press, new york, 2009; http://database.cs.brown.edu/
projects/mapreduce-vs-dbms/

14. Pike, r., dorward, s., Griesemer, r., and Quinlan, s.
Interpreting the data: Parallel analysis with sawzall.
Scientific Programming Journal, Special Issue on
Grids and Worldwide Computing Programming Models
and Infrastructure 13, 4, 227–298. http://labs.google.
com/papers/sawzall.html

Jeffrey Dean (jeff@google.com) is a Google Fellow in
the systems Infrastructure Group of Google, Mountain
View, Ca.

Sanjay Ghemawat (sanjay@google.com) is a Google
Fellow in the systems Infrastructure Group of Google,
Mountain View, Ca.

© 2010 aCM 0001-0782/10/0100 $10.00

mapReduce
provides fine-grain
fault tolerance
for large jobs;
failure in the middle
of a multi-hour
execution does
not require
restarting the job
from scratch.

