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1. INTRODUCTION 

Magnetic Resonance Imaging (MRI) is a non-invasive method that is mainly based on 

the magnetic resonance of the Hydrogen nuclei, which are abundant in the human body 

[1]. MRI is widely used to study the human structure (e.g. the human brain, chest, leg, etc.) 

and to evaluate heterogeneities (e.g. tumors) [2], while it has electromagnetic RF type of 

radiation. Generally, human bodies are made of 75% water, while each molecule of the 

body’s water has two hydrogen nucleus [3]. Basically, MRI depends on the magnetic 

properties and the number of hydrogen nuclei in the displayed area, unlike radiation 

imaging, in which the contrast depends on the varying attenuation of the structures 

depicted. Thus, the large number of water molecules in the human body often results in 

high resolution images [4]. Furthermore, in various pathological conditions, the 

distribution of water is altered, as well as in other small molecules that are rich in hydrogen 

[3][4]. During an MRI, running different sequences with various weightings, results to 

different contrasts that can be chosen for the displayed area. The three primary sequences 

are a) T1-weighted, b) T2-weighted and c) Proton Density (PD) weighting [1][4]. T1 

anatomical scans usually have the best resolution and are useful for the location of 

anatomical structures, whereas T2 is useful for the detection of damaged brain areas. PD 

scan reveals the total densities of hydrogen/mm3. In contrast to Computed Tomography 

(CT), MRI intensities do not have a precise definition of the tissue, which allows images 

to have a wide range of intensity scaling, even if they originate from the same subject, or 

the same image sequence in different scanners [4]. MRI processing techniques, such as 

segmentation [5], are required to understand both normal ageing and disease progression, 

while image voltages are used as a key feature for almost all MRI processing algorithms. 
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In the image processing community, the technique of histogram matching, or else 

histogram specification, represents a way to modify image points, in order to align the 

histogram of an image with either a target histogram or a reference image histogram. Such 

methods can be a good starting point for standardizing a medical image. Histogram 

specification points to a group of image transformations that aims to get images that have 

a desired shape in their histograms1. Over the years it has been widely used as a tool of 

digital image processing and as a technique of image enhancement [5]. One image 

enhancement parameter is the intensity, which is known as a continuous random variable 

(RV) defined by its function of the probability density (PDF). The transform function to be 

found in this setting must be such that the transformed RV has the defined PDF, while 

already given a known-distributed RV [6][7].  

The required process to obtain a consistent histogram image is in accordance with the 

image optimization process, called histogram equalization. Histogram equalization is a tool 

used to process images, by adjusting the intensity distribution of the histogram, in order to 

change the contrast of the image [5]. Furthermore, the gray-levels of an image are 

distributed to the overall scale and each gray-level is given an equivalent number of pixels. 

This process results to a more balanced and better contrasting imaging, in terms of the 

human eye (Figure 1). Beyond the more pleasant display, equalized images can often make 

details more noticeable in the dark/light areas of the original images [5][6]2. Higher 

performance in image enhancement can be achieved when attention is given to the human 

visual system (HVS) [5]. The image histogram is defined based on a particular HVS model, 

so that there is an equalized histogram to the subjectively perceived image [6]. Therefore, 

such methods may produce good contrast with a minimized effort and computational time. 

Overall, the purpose of this technique is to give the resulting image a linear cumulative 

distribution function (CDF), since a linear CDF refers to the cumulative sum of all the 

possibilities within its domain (Equation 1) and is associated with a uniform resulting 

histogram3. 

 
1 Source: https://en.wikipedia.org/wiki/Histogram_matching 

2 Source: https://en.wikipedia.org/wiki/Histogram_equalization 

3 Source: http://www.sci.utah.edu/~acoste/uou/Image/project1/Arthur_COSTE_Project_1_report.html 

https://en.wikipedia.org/wiki/Histogram_matching
https://en.wikipedia.org/wiki/Histogram_equalization
http://www.sci.utah.edu/~acoste/uou/Image/project1/Arthur_COSTE_Project_1_report.html


   

 

Figure 1. Histogram equalization 4 

 𝑐𝑑𝑓(𝑥) =  ∑ 𝑃(𝑘)

𝑥

𝑘=−∞

 Equation 1 

On the other hand, the normalization of an image’s intensity is an important 

preprocessing step in MRI analysis [8][9]. There are discrepancies resulting from the 

widely varying intensity scales of MRIs, while errors in the output of algorithms or in the 

estimation process are introduced to tasks of image processing (e.g. segmentation). Thus, 

intensity normalization is of high importance [9]. Histogram transformations are used by a 

wide range of intensity normalization methods, which seek to detect a histogram-based 

one-to-one representation of the intensity, in order for MRI intensities to conform in a 

specific scale [10]. 

2. STATE-OF-THE-ART  

In this section, a selection of histogram matching/specification and histogram-based 

normalization proposals and implementations from the digital image processing literature, 

were reviewed and discussed in detail. 

The first approach is the one of Chen et al. [2], where they presented a histogram 

specification method that involved the automatic selection of reference frames. Their 

approach was specialized in glioma MRIs, in order to address the issue of inconsistency 

and efficiency in the data from multiple institutions. Since glioma is described as a high-

risk/fatal type of brain tumor, the suggested approach of Chen et al. [2] is of high 

importance. Particularly, they aim to replace professionals (radiologists) in choosing the 

reference frames manually, with an automated selection of reference frames in the 

 
4 Source: https://en.wikipedia.org/wiki/Histogram_equalization 
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histogram specification process. As we mentioned before, histogram specification is an 

important tool for image enhancements, as well as an extension of histogram equalization, 

which can ease the possible difficulties that may occur in histogram equalization. In this 

approach, they present and describe various concepts that they have used. Specifically, they 

set 𝑟 = {𝑟𝑖,𝑗} to be a 𝐻𝑒𝑖𝑔ℎ𝑡 × 𝑊𝑖𝑑𝑡ℎ discrete input digital image and 𝐿 = {0, 1, 2, … , 𝐿 −

1} to represent the gray-levels of this image. They define the image histogram/gray-level 

probability density, as shown in Equation 2, where N represents the total number of the 

gray-level pixels and is defined as 𝑁 = 𝐻𝑒𝑖𝑔ℎ𝑡 × 𝑊𝑖𝑑𝑡ℎ. CDF for the reference image 𝑧 

is also defined in Equation 3, while 𝑀 represents the pixels that have a gray-level of 𝐿. In 

histogram specification, the transformation function 𝑦 is retrieved (Equation 4) and the 

original image gray-level is translated. The aim is to match the histogram of the 

transformed image to the reference histogram, but in order to maintain the original image 

details, the transformation function 𝑦 should increase in a monotonical way (Equation 5). 

In addition, Equation 6 presents the definition of the minimum value 𝑦, which allows for 

the mapped image to match a chosen histogram. 

 𝑃𝑟(𝑙) =  
𝑁𝑙

𝑁
, ∀𝑙 ∈ 𝐿 Equation 2 

 𝑣𝑧(𝑦) =  ∑ 𝑃𝑧(𝑖) =

𝑦

𝑖=0

∑
𝑀𝑖

𝑀

𝑙

𝑖=0

, ∀𝑦 ∈ 𝐿 Equation 3 

 𝑣𝑧(𝑦) = 𝑠𝑟(𝑥) Equation 4 

 𝑦 = 𝑣𝑧
−1[𝑠𝑟(𝑥)] Equation 5 

 𝑦 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑘

| 𝑠𝑟(𝑥) − 𝑣𝑧(𝑘)| Equation 6 

Furthermore, the collection of reference frames was carried out by an automated grid 

search algorithm, known as HSASR (Algorithm 1). First, the search range is constrained 

through a rough scan of a collection of intra-glioma samples, and then the reference frame 

in the histogram is chosen based on a fine search through the samples extracted from the 



   

previous scan. They performed glioma grading with the use of HSASR algorithm on two 

datasets (GliomaHPPH2018 and BraTS2017), while they also evaluated the efficiency of 

this method. 

 

Algorithm 1. Algorithm HSASR’s pseudocode. Reprinted from [2]. 

The findings of the evaluation indicated that the method had some functional utility in the 

research of glioma grading and could increase the clarity of tumor intensity in the MRI. In 

conclusion, high efficiency was indicated in this approach, with a score of 0.978 in mean 

AUC, 94.13% in accuracy, 94.64% in sensitivity and 93% in specificity. Chen et al. [2] 

implied that their approach “has a slight advantage over the result of a manually selected 

reference frame and it is about 15% higher on all indicators compared with those without 

HSASR algorithm. This method can also successfully minimize multicenter data variations 

and improve the efficiency of the prediction model”. 

Coltuc et al. [6] present experimental findings of their method, which includes the 

histogram specification of the discrete counterpart failure, while they also address several 



   

image normalization and enhancement techniques. Their method consists of three main 

parts in the process of exact histogram specification, which aims to transform an image to 

obtain the exact desired histogram. The first part is the precise ordering of the image’s 

pixels, as shown in Equation 7, where a 𝑀 × 𝑁 pixels string is defined by a clear ordering 

relation (<) with the pair (𝑥𝑖, 𝑦𝑖) [7]. On the other hand, the second part includes the split 

of the ordered string in groups of pixels and the third one is the assignment of a gray-level 

to these pixels. 

𝑓(𝑥0, 𝑦0) < 𝑓(𝑥1, 𝑦1) < 𝑓(𝑥2, 𝑦2) < ⋯ <  𝑓(𝑥𝑀−1,𝑁−1, 𝑦𝑀−1,𝑁−1) Equation 7 

Exact histogram specification, as suggested by Coltuc et al. [6], can be addressed through 

the strict ordering of the image pixels and in many different ways. Their suggestion 

included the concept of imagining a family of neighborhoods around every pixel, in which 

the pixel tends to be lighter than another pixel, since its local mean is greater than the local 

mean of the other one. Thus, the actual gray-level ordering was optimized. They also refer 

to colored image histogram specification as not obvious [6], while they specify a precise 

ordering between colored pixels, through expressing the colored image in an RGB color 

space, and then proceed to process only the componence of luminance. Overall, the main 

steps of the exact histogram specification approach involve (a) the RGB to hue-saturation-

intensity (HSI) transition, (b) the ordering process, (c) the histogram specification 

implementation and (d) the transition back to RGB. Figure 2 presents the test images that 

were used to evaluate the aforementioned approach, in comparison to logarithmic and 

linear histogram specification presented in Figure 3. In conclusion, the proposed approach 

was considered to aid the tuning of histograms and in combination with the precise ordering 

that they proposed, the overall method was deemed interesting and important.



   

 
Figure 2. Original and perfectly equalized test 

images, respectively. Reprinted from [6] 

 
Figure 3. Logarithmic and linear histogram 

specified test images, respectively.  

Reprinted from [6]. 

A histogram-based normalization approach was proposed and established by Sun et 

al. [8], aiming to decrease the intensity fluctuations in scanner sensitivity that are caused 

in response to changes in scanner efficiency. They performed an experiment with subjects 

between 20-30 years old from China, in which they aimed to the development of a young 

adult brain model. They scanned each subject twice, using various display parameters in 

two separate scanners and the brain MRI images extracted (two per subject) were a total of 

22 images. The image with the lowest noise level was detected through noise assessment 

and was then classified as the reference image (high-quality), while the image with the 

higher noise level was also identified and classified as the low-quality image. The 

histogram of low-quality image was then normalized to the histogram of high-quality 

picture. The proposed normalization algorithm consists of two phases. First, they 

implemented intensity scaling (IS) for the reference image. Specifically, the reference 

image intensities were assigned a value between the high intensity region (HIR) and the 

low intensity region (LIR). In Equation 8, the prementioned application is presented, where 

𝑓 refers to the reference’s gray-level value at specific points, while 𝑓′ refers to the 

transformation of the related gray-level value. 



   

 𝑓′(𝑥, 𝑦, 𝑧) =  
𝑓(𝑥, 𝑦, 𝑧) − 𝐿𝐼𝑅

𝐻𝐼𝑅 − 𝐿𝐼𝑅
 Equation 8 

Proceeding to the second phase, they implemented histogram normalization (HN). 

Particularly, this process involved the low-quality image histogram as an input picture to 

be extended, in order to suit the histogram of the reference image, such that the range of 

intensity is among LIR and HIR for the image that was normalized (Equation 9). 

 𝑔′(𝑥, 𝑦, 𝑧) =  
𝐻𝐼𝑅 − 𝐿𝐼𝑅

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

(𝑔(𝑥, 𝑦, 𝑧) − 𝑆𝑚𝑖𝑛) + 𝐿𝐼𝑅 Equation 9 

In addition, three series of experiment were conducted, where they evaluated the proposed 

method in comparison to existing intensity normalization approaches and three main 

aspects were examined. The first aspect was if the comparison accuracy of the non-rigid 

registration was increased in relation to other methods of normalization. The second aspect 

checked whether the automated segmentation of brain tissue was enhanced through 

normalization, while the third one tested if normalization can aid creating different 

normalized MRI tissue bulks that correspond to high-quality MRI bulks of the same 

subject. Overall, the results indicated that Sun’s et al. [8] approach has been shown to 

reduce the intensity variations from 7.5 to 2.5%. In conclusion, they suggest that, through 

their normalization approach, a better-quality brain model can be created [8], while the 

overall method can significantly boost the efficiency in image analysis. 

3. METHODOLOGY 

In this section, the methodologies followed and implemented are described, aiming to 

achieve MRI histogram specification. Both implementations revolved around three key 

concepts, but with different techniques followed in each one. These key concepts were: (a) 

histogram equalization (Figure 1), (b) histogram matching/specification, and (c)  histogram 

comparison for the evaluation of efficiency of all the methods that were used.  

The first methodology was implemented with the proposed approach of Coltuc et. al 

[6] followed as a reference. Specifically, the implementation of Coltuc’s et. al [6] approach 



   

was carried out by Stefano Di Martino5 and was reproduced and enhanced in this paper 

using Python 3.7 and all the necessary Python packages. In the first place, the target and 

reference images were imported. Target image was a brain MRI, while the reference image 

was an irrelevant one. These original images were processed through our implemented 

histogram equalization method, which essentially corresponds to a mapping 

transformation. First, we found the CDF of each image’s histogram and performed a 

normalization to [0, 255] (Figure 4, Figure 5). Afterwards, the minimum histogram value 

was found, and the histogram equalization equation was applied [7], as shown in Equation 

10. Furthermore, we used the masked array concept, which is provided by Numpy6, where 

all operations are conducted on non-masked elements. This process resulted to the creation 

of an informative table about each input pixel's output value, while we proceeded to the 

application of the transformation. The transformation results, as well as the resulted 

histogram equalized images, are presented in Figure 6 and Figure 7 respectively.

 
Figure 4. Histogram and CDF of histogram 

equalized target image 

 
Figure 5. Histogram and CDF of histogram 

equalized reference image

 

 ℎ(𝑣) = 𝑟𝑜𝑢𝑛𝑑 (
𝑐𝑑𝑓(𝑣) − 𝑐𝑑𝑓𝑚𝑖𝑛

(𝑀 × 𝑁) −  𝑐𝑑𝑓𝑚𝑖𝑛
× (𝐿 − 1)) Equation 10 

 
5 GitHub account: https://github.com/StefanoD 

6 Official website: https://numpy.org/ 

https://github.com/StefanoD
https://numpy.org/


   

 

 
Figure 6. Histogram Equalization histogram and CDF Results 

 
Figure 7. Histogram Equalization Resulted Image 

In the next step, the histogram equalized images were analyzed through the exact histogram 

specification method, implemented by Stefano Di Martino, in contrast to traditional 

histogram matching algorithms, which only approximate a reference histogram. Exact 

histogram specification refers to the process of finding a transformation for a specific 

image, in order for its histogram to match the reference histogram exactly. This method 

extracts the reference image’s histogram and matches the target image to the reference 



   

histogram by using several kernels, which calculate the average of a neighborhood, in order 

to achieve the exact matching [6][11]. Thereby a pixel can not only be sorted after its value, 

but also after its average values, in more than one neighborhood. The result of the exact 

histogram specification of the reference histogram to the target image is presented in Figure 

8, as well as the resulted image’s histogram. Pseudo-color schemes were applied to these 

specific image plots, which is a technique that maps each of the gray-levels of a black and 

white image into a specific color and can enhance the contrast of the image and allow for 

an easier visualization. 

 
Figure 8. Exact Histogram Specification Results 

The second implementation was carried out through MATLAB and Python, while it 

also includes the main three concepts (histogram equalization, histogram specification, 

histogram comparison), described above. Initially, the aforementioned target and reference 

images were imported (Figure 9), and two different MATLAB histogram equalization 

functions were applied to each image, in order to carry out the process of adjusting intensity 

values automatically. On the reference image, histeq() function7 was applied, which 

basically reinforces the contrast of the images. This is achieved through the transformation 

of the values in the intensity image or in the indexed image’s color-map, such that the 

output image’s histogram essentially relates to the given histogram. For histogram 

 
7 Official website: https://www.mathworks.com/help/images/histogram-equalization.html 

https://www.mathworks.com/help/images/histogram-equalization.html


   

equalization on the target image, adapthisteq() function8 was applied to improve the 

contrast of the gray-scale image through the transformation of the values based-on Contrast 

Limited Adaptive Histogram Equalization (CLAHE)[12]. CLAHE refers to a variation of 

an image processing technique, called adaptive histogram equalization (AHE), and 

expunges the excessive noise amplification in relatively homogenous image parts9. The 

results of MATLAB’s histogram equalization, on both target and reference images, are 

displayed in Figure 10. Furthermore, in Figure 11 and Figure 12, the computed CDFs and 

final histograms of the histogram equalized images are presented. For histogram 

specification, we used imhistmatch() function10 offered by MATLAB. This function 

adjusts the histogram of the target image aiming to match the histogram of the reference 

image. The output image extracted from the histogram matching function is shown in 

Figure 13. 

 
Figure 9. Target and reference images and their histograms 

 

 
8 Official website: https://www.mathworks.com/help/images/ref/adapthisteq.html 

9 Source: https://en.wikipedia.org/wiki/Adaptive_histogram_equalization 

10 Official website: https://www.mathworks.com/help/images/ref/imhistmatch.html 

https://www.mathworks.com/help/images/ref/adapthisteq.html
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://www.mathworks.com/help/images/ref/imhistmatch.html


   

 
Figure 10. Histogram Equalized images 

 
Figure 11. Histogram and CDF of histogram 

equalized target image 

 
Figure 12. Histogram and CDF of histogram 

equalized reference image

 
Figure 13. Histogram Matching Results 

3.1. HISTOGRAM COMPARISON 

An analysis of the methodologies’ effectiveness was conducted and presented in this 

section. Specifically, we implemented a histogram comparison method, which involved 



   

four different histogram distance-based functions. This histogram comparison method was 

used for both of our methodologies presented in Section 3. However, it was noted that the 

addition of Gaussian noise can possibly throw off these histogram comparison methods. In 

the first place, we initialized two dictionaries in our code. The first dictionary was created 

to store the histograms that would be extracted from the images in our dataset, with the 

filename set as the key and the histogram set as the value. The second dictionary was 

created to store the actual images, as well as to present the comparison results. Then, we 

extracted the histograms from the dataset, which contained all the images that will be a part 

of the comparison. Specifically, our dataset contained five images: 1) the original brain 

MRI, which was the target image, 2) an irrelevant image used as a reference for histogram 

specification, 3) the histogram equalized target MRI, 4) the histogram equalized reference 

image and 5) the histogram specified MRI. The histogram specified MRI was exported as 

a result of the histogram specification implementations, but due to the different techniques 

that were used, the output image was different in each methodology. As we mentioned 

above, in the first methodology we implemented exact histogram specification, while in 

the second one we implemented histogram matching. Following, the histogram comparison 

image (histogram specification output MRI) was then normalized and stored in the first 

dictionary. The above concludes the histogram computation process for each image in our 

dataset. The next step revolved around the comparison of the stored histograms. 

Specifically, four distance-based histogram comparison functions were used. The first 

function used was Correlation, which computes the correlation between two histograms, 

as described in Equation 11. The second one was Chi-Square function, which applies the 

Chi-Squared distance to the histograms based on Equation 12. The third function was 

Intersection, which calculates the intersection between two histograms, as seen in Equation 

13, and finally was Bhattacharyya distance/Hellinger function, which is used to measure 

the overlap between two histograms and is described in Equation 14. For Correlation and 

Intersection, the score values are interpreted based on the higher value, which implies a 

more accurate match. On the other hand, Chi-Squared and Bhattacharyya distance methods 

are interpreted in the opposite way. In the final aspect of our histogram comparison 

implementation, we looped through the aforementioned methods, with the use of OpenCV 



   

functions11, and then we defined a third dictionary to store the comparison results, in which 

the filenames were set as the key, and the similarity score of these methods were set as a 

value. 

 𝑑(𝐻1, 𝐻2) =
∑ (𝐻1(𝐼)−𝐻1̅̅ ̅̅𝐼 )(𝐻2(𝐼)−𝐻2̅̅ ̅̅ )

√∑ (𝐻1(𝐼)−𝐻1)̅̅ ̅̅ ̅
𝐼

2
∑ (𝐻2(𝐼)−𝐻2)̅̅ ̅̅ ̅

𝐼
2
  Equation 11 

 
𝑑(𝐻1, 𝐻2) = ∑

(𝐻1(𝐼) − 𝐻2(𝐼))2

𝐻1(𝐼)
𝐼

 Equation 12 

 𝑑(𝐻1, 𝐻2) =  ∑ min (𝐻1(𝐼), 𝐻2(𝐼))

𝐼

  Equation 13 

 

𝑑(𝐻1, 𝐻2) =  
√

1 −
1

√𝐻1
̅̅̅̅ 𝐻2𝑁2̅̅ ̅̅ ̅̅ ̅

∑ √𝐻1(𝐼) × 𝐻2(𝐼)

𝐼

 Equation 14 

4. RESULTS 

The results of the histogram comparison method described above (Section 3.1), which 

was based on four different histogram distance-based functions, are presented in this 

section. Both of our proposed implementations went through histogram comparison, 

aiming to analyze their efficiency in histogram specification. The histogram specification 

output image (HMres.tif) was compared to all the images in our dataset, based on histogram 

similarities. First, for the initial (Python) implementation, Correlation function revealed 

that the compared image’s histogram scored 0.93 in similarity (Figure 14), in comparison 

to the histogram of the histogram equalized reference image (HErefer.tif). On the other 

hand, when compared to the equalized target image (HEtarget.tif) and the original target 

image (Fig1.tif), Correlation function indicated a score of 0.63. Finally, for the original 

reference image (Fig2.tif), Correlation score reached 0.47 in histogram similarity. As we 

mentioned before, in Chi-Squared function the lower the score the higher the similarity. 

Thus, in this case, Chi-Squared results revealed that the higher histogram similarity score 

 
11 Official website: https://opencv.org/ 

https://opencv.org/


   

was reached with the histogram equalized reference image, with a score value of 0.45, 

while the second lower score was with the equalized target image with a value of 3.39. The 

lowest histogram similarities occurred when compared to the original images (target and 

reference), with score values of 1.72 and 3.51 respectively (Figure 15). Proceeding to 

Intersection, which is interpreted like Correlation function, the results once more indicated 

that the histogram equalized reference image was the most similar with a score value of 

2.30, while the histogram of the original reference image was the least similar by reaching 

a value of 0.95 similarity (Figure 16). A slight variation was noted in the pattern of the 

distance-based functions’ results, specifically in Intersection, where the original target 

image was placed higher in similarity than the histogram equalized target image. Finally, 

the implementation of Bhattacharyya/Hellinger, which is interpreted like Chi-Squared 

function, also confirmed that the highest histogram similarity was found in the histogram 

equalized reference image, while the results were respective to the ones presented by 

Correlation and Chi-Squared functions (Figure 17). 

 
Figure 14. Scores of the Correlation function in implementation #1 

 
Figure 15. Scores of the Chi-Squared function in implementation #1 



   

 
Figure 16. Scores of the Intersection function in implementation #1 

 
Figure 17. Scores of the Bhattacharyya/Hellinger distance function in implementation #1 

Histogram comparison was conducted for the MATLAB implementation as well, 

where the extracted histogram matched image was a different one, due to the differences 

in the techniques used in each implementation. In terms of the histogram comparison of 

the images extracted and used in the second (MATLAB) implementation, Correlation 

function indicated that the histogram equalized reference image was the most similar to the 

histogram matched image (Figure 18). Overall, the same results were extracted through all 

four of the distance-based histogram comparison functions that were used. They all 

confirmed that the highest similarity was found in the histogram equalized reference image 

that was used as the reference in the histogram matching process (Figure 20 & Figure 21). 

Images that had lower similarity scores mostly retained the same similarity results, besides 

some slight variations in Chi-Squared function, which determined that the least similar 

image was the histogram equalized target image (Figure 19), instead of the original target 

image (Figure 18, Figure 20 & Figure 21). 



   

 
Figure 18. Scores of the Correlation function in implementation #2 

 
Figure 19. Scores of the Chi-Squared function in implementation #2 

 
Figure 20. Scores of the Intersection function in implementation #2 

 
Figure 21. Scores of the Bhattacharyya/Hellinger distance function in implementation #2 

5. DISCUSSION 

The methodologies proposed in this paper consisted of three main components that 

were implemented in different ways. The first one, which refers to image’s histogram 

equalization, was implemented to adjust the contrast of the image by using its histogram, 

while aiming to retain most of the information. Overall, the results of the histogram 



   

equalization process on both methodologies revealed that the contrast was successfully 

adjusted, and the resulted images were clearly enhanced in terms of lighting conditions. 

Although histogram equalization was successfully implemented in both methodologies, 

there were differences in lighting and intensity between the output of MATLAB’s default 

histogram equalization functions and the one we created in Python through mapping 

transformation. The second component describes histogram matching/specification. In 

Python implementation, an exact histogram specification method was implemented 

through the concept of an ordering relationship and involved a quite direct ordering of the 

pixels related to the image. After this ordering process, pixels were automatically divided 

into groups and were set to a specific gray-level. This ordering approach, established by 

Coltuc et al. [6] and implemented by Stefano Di Martino12, complies with the natural 

ordering, which allows for the image’s information to be mostly retained. Specifically, 

Coltuc et al. [6] stated that through their approach “An ill-posed problem, exact histogram 

specification, is solved”. In MATLAB implementation, we used the default histogram 

matching function and generated a histogram-matched output image through relating target 

and reference histograms with the default number of bins (default = 64). Finally, a common 

histogram comparison approach, which involved four different distance functions, was 

implemented for both approaches to compare the histograms of the images contained in 

our dataset and measure their similarity. Similarity scores, in all four implemented 

functions, indicated a high similarity between the histograms of the compared image and 

the reference image, which was histogram equalized before histogram specification. On 

the other hand, the comparison revealed lower similarity scores, when the histogram of the 

compared image was contrasted to the histograms of the original images. In conclusion, 

the proposed approaches of histogram equalization, followed by (exact/not exact) 

histogram specification and ordering, and distance-based histogram comparison appears 

encouraging and relevant to the image processing world. Furthermore, it can be useful for 

medical image enhancement use cases (e.g. X-Rays enhancement and analysis), as well as 

for other image processing tasks, through some future modifications. 

 
12 GitHub account: https://github.com/StefanoD 

https://github.com/StefanoD
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