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Advances in Image Processing and 
Computer Vision 

Lecture 1

Many thanks to Ulas Bagci (Northwestern University)

for sharing his experience and course material 
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Introduction
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Historical data…

Nobel prizes

Roentgen (1901): Discovery of X-rays 

Hounsfield & Cormack (1979): Computed tomography

Basic
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https://en.wikipedia.org/wiki/Visual_system#/media/File:Human_visual_pathway.svg

The path of information in the 

human visual system: The visual 

stimulus from the outside world is 

captured in the sensing organ (eye), 

and then transmitted through the 

optic nerve to the brain, ending in 

the visual cortex where the 

information is processed and the 

sense of vision is realized.

Designing Imaging systems-Imaging Chain



5

Light entering the eye is refracted as it passes 

through the cornea. It then passes through the 

pupil (controlled by the iris) and is further 

refracted by the lens. The cornea and lens act 

together as a compound lens to project an 

inverted image onto the retina.

The retina is the inner membrane of the eye. 

When the eye focuses (movement through 

muscles) the light from an external object is 

depicted in the retina through the receptor cells 

that transmit neuronal signals to the brain to be 

processed.

Simplified diagram of a 

section of the eye

Designing Imaging systems-Imaging Chain

https://en.wikipedia.org/wiki/Visual_system#/media/File:Schematic_diagram_of_the_human_eye_en.svg
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EM radiation and Imaging

EM radiation types

Gamma radiation

X-ray radiation

Ultraviolet radiation

Visible radiation

Infrared radiation

Terahertz radiation

Microwave radiation

Radio waves

https://en.wikipedia.org/wiki/Electromagnetic_spectrum

Basic

Designing Imaging systems-Imaging Chain
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The projected object from an angle θ:

The problem of reconstruction can be set as the attempt 
to calculate the function μ(x, y) from projections

Reconstruction from projections
Basic
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Reconstruction from projections
Continuous rotation of the source-detector system for 
acquisition of projections from different angles.

 sincos yxR 

Radon transform of μ(x,y). 

  
x y

dxdyRyxyRg )sincos( )(x, = )( 

Basic
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Visualization and processing of medical images
Basic

DrEye
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Medical Imaging

We can see inside the human body in ways that are less 

invasive or (completely non-invasive) 

We can even see metabolic/functional/molecular activities 

which are not visible to naked eye

Image 
Processing

Image quality 
improvement

Machine 
Learning Tissue types

Image 
Understanding

Semantic description & 
content understanding
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where do radiologists interpret scans?

•Dedicated light source

•Darkened environment

•Limited distraction
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PACS (example)
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Medical Image Analysis-Need for objective and 
quantitative measurements 

Manual analysis is often accepted as surrogate of 

the truth (if biopsy or real ground truth is not 

available)

However, manual analysis is highly subjective 

because it relies on the observer’s perception.

Intra and inter-observer agreements/variabilities

It is highly tedious

Medical Image Analysis offers the technology to 

add precision and objectivity in diagnostic taks. 
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Observer Variability – Example: Liver lesion

Intra- (one week interval)

Inter-
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Medical Image Analysis-Automated

Different strategies for image analysis exist. 

However, few of them are suited for medical 

applications.

Medical Images are typically quite complex and 

require domain specific knowledge in order to 

design and implement efficient and clinically 

acceptable processing workflows. 
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Digital Images and Processing
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The digital Image

A digital image is a 2D discrete set of pixels f(x,y)

“Digital Image Processing”, Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002

Basic
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Digital Images

What computer 

sees!
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Image Types-Color

Image has three 

channels (bands), each 

channel spans a-bit 

values.

RGB, Hue-Saturation-

Brightness
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Digital Image

It can be considered as a function f, from R2 -> R :

f( x, y ) is the intensity at ( x, y ) 

Images are rectangular matrices of non-infinite size

A color image is a a vector function of three images R, 

G, B

( , )

( , ) ( , )

( , )

r x y

f x y g x y

b x y

 
 
 
  

Basic
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The digital Image

We use discrete values in images with sampling

The image can therefore be represented as a matrix with discrete, 

integer values.

The intensity at i=3, j=4 is f( 3, 4 ) = 46

j

i

3

4
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Image Types

A scalar image has integer values 

a: level (bit)

Ex. If 8 bit (a=8), image spans from 0 to 255

0 black

255 white

Ex. If 1 bit (a=1), it is binary image, 0 and 1 only.
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Types of digital Images

Binary: Each pixel has two possible 

values only, 0 (black) και 1 (white).

We need1 bit/pixel therefore they are 

very economical in storage.

This representation is adequate for 

fingerprints, text documents and 

architectural designs.

https://en.wikipedia.org/wiki/Binary_image

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1

0 0 1 1 0 1 1 1 1 1

0 0 0 0 0 1 1 1 0 1

0 0 0 0 0 1 0 1 1 1

0 0 0 1 0 1 1 1 0 1

0 0 1 1 0 1 1 1 1 1
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Types of digital Images

Gray Scale: Each pixel value is a shade of gray, 

typically for the 8-bit case from 0 (black)- to 255 

(white). 

In this case of 8-bit images the range is 255-

0+1=256 shades of gray (Gray Levels or GL).

256 shades of gray are enough for the 

recognition of most physical objects.

There are certain applications however that 12bit 

or 16bit images are used (e.g. medical imaging).

https://en.wikipedia.org/wiki/Grayscale

0 256
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Types of digital Images

RGB color images: Each pixels has a color described 

by the quantity of red R, green G and blue B(μπλέ) in 

it. In essesnce each color image is comprised of 3 

matrices one for each color with range 0-255.

In total we therefore have 2553=16,777,216 different 

colors in this representation.

Since for each pixel’s value representation we need 

3x8=24bit, RGB images are also known as 24bit color 

images.
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Types of digital Images

RGB Color Images
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Medical Image Ecosystem

Juergen.Hesser@MedMa.Uni-Heidelberg.De
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Image Representation: 

Color models

RGB MODEL
Color originates as a 
combination of the three color 
bands

HSV MODEL
Color information 
originates from the H 
and S bands

Lab MODEL
Color originates as a 
combination of the A 
and B bands

Red

Green

Blue

Hue

Saturation

Value

Luminance

A

B
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RGB image Red image Green image Blue image

HSV image Hue image Saturation image Value image

LAB
i
mage L image A image B image

Membrane Specification

Nucleus/Cell Segmentation
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Image Files Format

There are different formats with advantages or 

disadvantages depending on the application.

Matlab easily loads most of them (e.g. GIF, TIFF, 

PNG), but in any case it is good to know some basic 

things.

Of the many available formats, some are designed 

for specific needs (eg transmission of images on the 

network), while others are designed e.g. for specific 

operating systems.
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2D image formats

– TIFF, JPEG, JPEG2000, GIF, BMP, PNG, raw, DICOM

3D image formats

– TIFF (stacked), DICOM (slices), raw (specific formats like 
vgi)

4D image formats  – (specific formats like vgi)

Raw format: write all pixel information into one string

BMP: bitmap – header: BMP, size x, size y – data

Image Data Format, Storage, and Communication
(DICOM)

• Digital Image Generation

• Digital Transfer/Archiving

• Post-Processing

• Cross-Vendor Compatibility

• Communication over Networks

Image Files Format
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Image processing and computer vision 

A wide categorization can be made in low, middle 

and high level processing:

Low Level Processing

Input: Image

Output: Image

Examples: Noise removal, 

contrast enhancement

Middle Level Processing

Input: Image

Output: Features

Examples : Image 

segmentations, Object 

recognition

High Level Processing

Input: Features

Output: Understanding, ΑΙ

Examples : Scene 

recognition, automated 

diagnosis

Basic
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Image 

Acquisition Image 

Restoration

Morphological 

Processing

Segmentation

Representation 

& Description
Image 

Enhancement

Object 

Recognition

Problem Domain

Example of processing workflow

Image Acquisition Image enhnancement Image segmentation Object recognition

 

Automated BIRADS tissue 

characterization and risk 

estimation

K. Marias, C.P. Behrenbruch, R.P. Highnam, S. Parbhoo, A. Seifalian and Michael Brady: "A mammographic image analysis method to detect and measure changes in breast density". 

European Journal of Radiology, Volume 52, Issue 3, December 2004, Pages 276-282.

Basic
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Basic Image Processing Concepts
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Gray-scale Images (8-bit) example code

figure(2);plot(1:256,line50,'r-')

I=imread('cameraman.gif');

figure(1), imshow(I)

line50=I(50,1:255);

line50=I(50,:);

size(line50)

Plotting a line of the image as a 1D 

signal; notice the drop in intensity as 

we go from the background to the 

dark hair of cameraman and then the 

rise in intensity again
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Digitizing the 

coordinate values is 

called sampling. 

Digitizing the 

amplitude values is 

called quantization.

Sampling is 

constrained by the 

Nyquist theorem.

y Intensity Levels

“Digital Image Processing”, Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002

Sampling and quantization
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Spatial Analysis of Image- Resolution

Sampling Rate: 

Nyquist Frequency, 

Shannon Theorem
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Quantization of Image Levels – Dynamic 
Range
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Sampling and quantization

The number, b, of bits required to store an image 

with 2k intensity levels:

b = M * N * k (rows * columns * k)

The intensities (L = 2k) are evenly distributed in the 

interval [0, L - 1]

Μειώνοντας τη 

χωρική ανάλυση από 

1250 σε 72dpi

Μειώνοντας των αριθμό εντάσεων από 128 σε 4 επίπεδα 

έντασης

“Digital Image Processing”, Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002

Basic
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Image size

Image Ν×M, Gray Levels G=2κ

b = Ν×M×κ

k: pixel color information range

k

Basic

Image Type

Binary

Gray

Color
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Image files are generally large. For a 512x512 pixels binary 

image we need:

512x512pixels x 1bit / pixel = 262144bit

Dividing by 8 equals 32768bytes or 32,768Kb

For a Gray Scale image we need:

512x512pixels x 1byte / pixel = 262144bytes or 262,144Kb

For an RGB color image each pixel needs 3 bytes (RGB = 3 

tables from 0-256) so we need:

512x512pixels x 3byte / pixel = 786432bytes or 786,432Kb

Image size
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Whenever a low pass filter is applied, it may be possible to 

discard alternating pixels without much loss of information 

(down-sampling, or decimation)

If down-sampling is desired, it may be best to do some low pass

filter to avoid aliasing–Reasonable LPF to use: 1/16[1,4,6,4,1]

Down Sampling

Burt Filter
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Linear 
Interpolator 

(1D)

Bilinear 
Interpolator 

• 2D linear interpolator : use 1D linear interpolation for A and B, 
use 1D linear interpolation among A and B to get C

Image interpolation
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Interpolation – comparison 
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Image Artifacts

Noise

MRI (ex: Gaussian, )

PET / SPECT (ex: Poisson, mixed Poisson-Gaussian)

CT (ex: Gaussian) DTI,

DWI, ...

Intensity inhomogeneity

MRI

Intensity Non-Standardness

MRI

Partial Volume

MRI, PET,…



46

Image Histogram

The histogram h of Image I depicts the frequency 

of each intensity of gray g in the image

The value of the histogram h (g) for intensity g is 

equal to the number of pixels in image I that have 

intensity g.

For an 8-bit image the histogram h has g = 1..256 

frequency values ​​from 0-255.

hI (g) = number of pixels in Image I with value g-1

In Matlab an array of length n has indices from 1 to n.  In many computer 
languages, e.g. “C” or “C++” an n-element array is indexed from 0 to n-1.
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Image Histogram Code

%RGB Image Histogram

function h=histogram(I)

[R C B]=size(I);

% allocate the histogram

h=zeros(256,1,B);

% range through the intensity values

for g=0:255

h(g+1,1,:) = sum(sum(I==g)); % accumulate

end

return;

Matlab Basic
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Histogram Equalization

𝑆𝑘 = 𝑇 𝑟𝑘 = 𝐿 − 1  

𝑖=0

𝑘

𝑝𝑟 𝑟𝑖 =
𝐿 − 1

𝑀 ∙ 𝑁
 

𝑖=0

𝑘

𝑛𝑖
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Histogram Equalization: Point Operation -
Enhancement
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Brief Introduction to Imaging Modalities
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A diagram of the electromagnetic spectrum, showing various 

properties across the range of frequencies and wavelengths

EM Spectrum Properties edit - Electromagnetic spectrum - Wikipedia

https://en.wikipedia.org/wiki/Electromagnetic_spectrum#/media/File:EM_Spectrum_Properties_edit.svg
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How Radiologists Search Abnormal Patterns in 
Chest X-Rays?

Radiologists often report the following

• Size, dimension, volume

• Pattern description,

• Location,

• Interaction with Nearby structures,

• Intensity distribution

• Shape

• …

Difficulties

• Noise

• vessels can be seen as small nodules

• radiologists may miss the pattern

• patterns may not be diagnostic

• CT often required for better diagnosis

• size estimation is done manually in 2D

• Shadowing

• total lung capacity computation

Computer algorithms can 

solve/simplify these problems for 

improved healthcare
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Another Example for X-ray Imaging

Benign Malignant
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Clinical Use of US Imaging

Renal Artery Blood Flow

manual measurements?

can computer help calculating

all blood flow and identify

automatically the abnormal regions?

(See Next Lecture, afternoon)

stenosis is seen

eca: external carotid artery

cca: common carotid artery

ica: internal carotid artery
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Remark: 3D View Terminology
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3D Images

x

y

z

I: Image

I(x,y,z) denotes intensity value at pixel location x,y,z
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Clinical Use of CT Imaging

Standard imaging technique in many organs, 

particularly gold standard for lung imaging

Fast

Radiation exposure

Often used in surgery rooms

Show anatomy and pathology

Intensity values are (more-or-less) fixed, read as 

HU (Hounsfield Unit)
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Diffusion Weighted Imaging (DWI)

Glioblastoma Tumor
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Clinical Use: Example

rectal tumor
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fMRI Settings

Active Regions
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Clinical Use of PET: Example
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Shallow Comparison of Imaging Methods

Chest Abdomen Head/Neck
Cardiovasc

ular

Skeletal/mu

scular

CT
gold 

standard

Need 

contrast for 

excellency, 

widely used

Good for 

trauma

Gold 

standard

Gold 

standard

US

no use 

except heart 

or Perfusion

Problems 

with gas
Poor Poor Elastography

Nuclear

Extensive 

use in heart 

and therapy 

in lung

CT or MRI is 

merged
PET Perfusion bone marrow

MRI

growing 

cardiac 

applications

Increased 

role of MRI

Gold 

standard

Will replace 

ct in near 

future

Excellent
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Software to Use, and Coding Standards

Free software (with GUI) you can use for analysis of 
medical images

ITKSnap, Slicer, MITK, ImageJ/Fiji, MIPAV, Osirix, FSL, SPL, 
Mango, and many others can be found in IdoImaging.com and 
NITRC website.

Preference: Slicer, ITKSnap, ImageJ/Fiji

Coding (self): ITK/VTK libraries will be used
C/C++ and Python can be used to call libraries

SimpleITK with Python is simpler

Octave is a good environment for starters

Image Format
DICOM

Analyze (.img/hdr)

Nifti

…
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Medical Image
Preprocessing & Enhancement: 

Spatial Domain
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Linear signal processing

– Image reconstruction (tomography, MRI)

– Image enhancement

– Noise and Artifact Reduction

– Edge Detection

Non-linear signal processing

– Non-linear, adaptive filters

Tube enhancing filters

– Quantization and Down Sampling

– Segmentation and beyond

Image Processing Areas
Application of signal processing to medical imaging:
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Image Filtering

Purpose: To suppress unwanted (non-object) info.

To enhance wanted (object) information.

Enhancive: For enhancing edges, regions.

For intensity scale standardization.

For correcting background variation.

Suppressive: Mainly for suppressing random noise.
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Inappropriate use of Enhancement Methods

Enhancement methods themselves may 

increase noise while improving contrast!

They may eliminate small details and 

edge sharpness while removing noise

They may produce artifacts in general.
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Smoothing MRI

Credit to:
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Spatial resolution

determines the smallest structure that can be represented 

in a digital image.

Contrast resolution

Local change in brightness and defined as the ratio 

between average brightness of an object and background 

is an indirect measure of the perceptibility of structures. 

The number of intensity levels has an influence on the 

likelihood with which two neighboring structures with 

similar but not equal appearance will be represented by 

different intensities.
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Another method for measuring contrast 

RMS (root mean square) contrast:

The measure takes all pixels into account instead of 

just the pixels with maximum and minimum intensity 

values (M and N are size of the image, avg means 

mean operation over the entire image I).
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Image Artifacts

Noise

MRI  (ex: Gaussian, )

PET / SPECT (ex: Poisson, mixed Poisson-Gaussian)

CT (ex: Gaussian)

DTI, DWI, ...

Intensity inhomogeneity

MRI

Intensity Non-Standardness

MRI

Partial Volume

MRI, PET,…
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Image Artifacts

Noise

MRI  (ex: Gaussian, )

PET / SPECT (ex: Poisson, mixed Poisson-Gaussian)

CT (ex: Gaussian)

DTI, DWI, ...

Intensity inhomogeneity

MRI

Intensity Non-Standardness

MRI

Partial Volume

MRI, PET,…
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Noise

Noise is corrupting the image information, and it is 

unwanted.

Signal independent noise

g = f + n

Gaussian

Signal dependent noise

g = f*n

Poisson

Often, medical images are considered to have 

Gaussian noise, however PET/SPECT images 

have mixed Poisson/Gaussian, and MRI have 

Rician type noise. 
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Noise Suppression

Higher noise, higher contrast Lower noise, lower contrast

For best results, we need lower noise and higher contrast.



75

How to measure for evaluating noise removal 
algorithms?

SNR (signal-to-noise ratio): basic measure of image 

quality

SNR in an image is simply determined by averaging 

signal intensity within similar-sized regions of interest 

(ROIs) inside and outside the sample (background).
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SNR (S/N) (of normal brain) and CNR (C/N) of multiple sclerosis plaques to 

normal brain on spin-density and T1 magnetic resonance images.



77

Basic Filters
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Spatial domain filtering 

The term ‘spatial’ field refers to the image itself, and image 

filtering methods in this category are based on the direct 

manipulation of pixels in an image.

Two main categories of processing are intensity 

transformations and spatial filtering.

Intensity transformations operate on individual pixels of an 

image, mainly for the purpose of adjusting the contrast and 

thresholding of the image.

Spatial filtering involves performing tasks such as 

sharpening the image, working in a neighborhood of each 

pixel in the image.

Basic
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Spatial domain filtering 

Spatial filtering operations can be described by the general 
relation:

g(x,y)=T [f(x,y)]

The input image is f (x, y) while the output image is g (x, y) 
which is obtained through the operator T which is defined in 
the neighborhood of point (x, y) in one or more images (π .x. 
average for noise removal).

Basic
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Convolution

Convolution is a filtering operation, 

expresses the amount of overlap of one 

function as it is shifted over another function

Convolution and correlation are similar but 

we’ll explain the difference!
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Χωρικό Φιλτράρισμα

Spatial filtering: Sliding 

window masks
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Χωρικό Φιλτράρισμα

Filter: Moving window 

operation

( , ) ( , ) ( , )
a b

s a t b

g x y h s t f x s y t
 

   

or in the convolution form

where x, y, s, t are integers 

and h(s,t) is the filter
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Spatial domain filtering through correlation-
convolution

Linear spatial filtering principle:

(x - 1, y - 1) (x - 1, y) (x - 1, y + 1)

(x, y - 1) (x,y) (x, y + 1)

(x + 1, y - 1) (x + 1, y) (x + 1, y + 1)

w(- 1,  - 1) w(- 1, 0) w(- 1, 1)

w(0, - 1) w(0,0) w(0, 1)

w( 1,  - 1) w(1, 0) w( 1, 1)

Εικόνα f

Filter 

Elements

Image Pixels 

that will be 

filtered

y →

x
  →
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Spatial domain filtering

Linear spatial filtering principle:

f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1)

f(x, y - 1) f(x,y) f(x, y + 1)

f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1)

w(- 1,  - 1) w(- 1, 0) w(- 1, 1)

w(0, - 1) w(0,0) w(0, 1)

w( 1,  - 1) w(1, 0) w( 1, 1)

Basic
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Spatial domain filtering

Linear spatial filtering principle through correlation-convolution:

g(x, y) = w(-1, -1) f(x - 1, y - 1)+ w(-1, 0) f(x - 1, y) + w(-1, 1)f(x - 1, y+1) +

w(0, -1) f(x, y - 1) + w(0, 0) f(x, y) + w(0, 1) f(x , y+1) +

w(1,-1) f(x+1, y - 1) + w(1, 0) f(x+1, y) + w(1, 1) f(x +1, y+1) 

f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1)

f(x, y - 1) f(x,y) f(x, y + 1)

f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1)

w(- 1,  - 1) w(- 1, 0) w(- 1, 1)

w(0, - 1) w(0,0) w(0, 1)

w( 1,  - 1) w(1, 0) w( 1, 1)

Basic
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Spatial domain filtering

The simplified relationship for applying a filter to a 3x3 pixel neighborhood:

And generalizing about mxn dimension filters:

p1 p2 p3

p4 p5 p6

p7 p8 p9

w1 w2 w3

w4 w5 w6

w7 w8 w9

Basic

g(x, y) =  𝑘=1
𝑚𝑛 𝑤𝑘𝑝𝑘
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Spatial Filtering: Correlation/Convolution

In order to have convolution the mask w must be rotated 180º:

Correlation and convolution are close concepts and are used for linear filtering.

Correlation is what we described in the previous slides where we move the 

filter mask over the image and calculate the sum of the products in each 

position.

The convolution is done in the same way but the filter mask needs to be 

rotated  180 °. So we do that before but in the relation g(x, y) =  𝑘=1
𝑚𝑛 𝑤𝑘𝑝𝑘

where w1 was swapped with w9, w2 with w8 etc. If the filter is symmetrical, 

convolution is identical with correlation.

p1 p2 p3

p4 p5 p6

p7 p8 p9

w1 w2 w3

w4 w5 w6

w7 w8 w9

Basic

w9 w8 w7

w6 w5 w4

w3 w2 w1
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Common Filters

mean FILTER

median FILTER and ranked filters

GAUSS filters

Basic
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1 6 3 2 9

2 11 3 10 0

5 10 6 9 7

3 1 0 2 8

4 4 2 9 10

0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

• f(x,y)=f(2,2)=11

• New Value g(x,y)=T[f(x,y)] = 11/9 + 61/9 + 31/9 + 21/9 + 111/9 + 31/9

+ 51/9 + 101/9 + 61/9 = 47/9 = 5.222

5

Basic

Filtering Example 

Initial Image: Filtered Image (3x3

smoothing filter)

(x,y)
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1 6 3 2 9

2 11 3 10 0

5 10 6 9 7

3 1 0 2 8

4 4 2 9 10

0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

• New Value = 11/9 + 61/9 + 31/9 + 21/9 + 111/9 + 31/9

+ 51/9 + 101/9 + 61/9 = 47/9 = 5.222

5

BasicBasic

Filtering Example 

Initial Image: Filtered Image (3x3

smoothing filter)
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1 6 3 2 9

2 11 3 10 0

5 10 6 9 7

3 1 0 2 8

4 4 2 9 10

0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

• New Value= 61/9 + 31/9 + 21/9 + 111/9 + 31/9 + 101/9

+ 101/9 + 61/9 + 91/9 = 60/9 = 6.667

5 7

Basic

Filtering Example 

Initial Image: Filtered Image (3x3

smoothing filter)
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1 6 3 2 9

2 11 3 10 0

5 10 6 9 7

3 1 0 2 8

4 4 2 9 10

0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0

5 7 5

5

5

5 6

64

BasicBasic

Filtering Example 

Initial Image: Filtered Image (3x3

smoothing filter)
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Sliding Window: 
Moving average 

mean FILTER
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mean FILTER

The function of the average value filter is to 

replace the brightness in each pixel with the 

average brightness in a neighborhood.

They are lowpass filters since we replace the 

value of the pixel with the average value of its 

neighborhood, at which time we gradually reduce 

abrupt changes in the intensity of the pixels.

While we reduce random noise, we usually lose 

sharpness at the edges of the image (edge 

​​blurring).
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mean FILTER

The function of the average value filter is to 

replace the brightness in each pixel with the 

average brightness in a neighborhood.

If N is the neighborhood of the pixel (i, j) of an 

image I, then the value of the pixel (i, j) is replaced 

by :

I’(x,y)=  𝑥,𝑦 ∈𝑁 𝐼(𝑥, 𝑦)

where M the number of pixels of the neighborhood 

N.

Basic
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mean FILTER

The neighborhood N is usually defined for each

processing and usually corresponds to square 

masks.

So for a radius equal to one we have essentially a 

neighborhood of dimensions 3 × 3.

An average 3 × 3 filter can be practically 

implemented with a mask of the form:

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

1 1 1

1 1 1

1 1 1

ή    1/9

Basic
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mean FILTER

The mean value filter can be considered as a low 

pass filter.

If we want to emphasize the contribution of the 

pixels depending on their distance, then we can 

use smoothing masks such as the following

1 2 1

2 4 2

1 2 1

1/16

Basic
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mean FILTER

In its general form for linear filtering mean filtering 

smoothing of an MxN image with filter m x n is 

given by the relation:

g(x,y)=
 𝑠=−𝑎
𝑎  𝑡=−𝑏

𝑏 𝑤 𝑠,𝑡 𝑓(𝑥+𝑠,𝑦+𝑡)

 𝑠=−𝑎
𝑎  𝑡=−𝑏

𝑏 𝑤 𝑠,𝑡

Basic
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Filtering Operation (Spatial Domain)

111

111

111

],[g 

Example: Box Filtering 

(smoothing)

What does it do?

• Replaces each pixel with an 

average of its neighborhood

• Achieve smoothing effect 

(remove sharp features)
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f
111

111

111],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk



Filtering Operation (Spatial Domain)
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median filtering

Median filtering is used to smoothing the edges 

and reduce the noise of an image.

Filtering with a medium value filter is a non-linear 

technique. The median value of a set A is equal to 

the mean value of the set.

Specifically, if

Α={α1,α2,α3,..,αn}

Is a set with ordered values α1≤ α2≤…≤αn ∈ R.

Basic
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The median of Α is equal to

Properties: 

median(k+Α) = k+median(Α)

median(k.Α) = k.median(Α)

median(Α+Β)≠median(Α)+ median(Β) μη γραμμικότητα!

median filtering
Basic

odd

even
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median filtering examples

For example median{4,3,5,8,2}

n=5 (odd) median{2,3,4,5,8}= α (5+1)/2= α3= 4

median{4,3‚5‚8‚2,6}

n=6 (even) median{2,3,4,5,6,8}=
1

2
{𝛼𝑛
2
+𝛼𝑛
2
+1

}= 

1

2
{𝛼3+𝛼4}= 4.5

Basic
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Median Filtering (Details)

[8    8     8     8    8     8     8    8    255]

median
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Gaussian Filtering

They are image blurring filters that use the Gaussian function 

(which expresses the normal distribution in statistics) to 

calculate the filter coefficients to transform each pixel:

Where x, y are the distances from the beginning of the axes 

and σ is the standard deviation of the Gauss distribution.

In the 2 dimensions this equation gives a surface whose 

contours are concentric circles with Gaussian distribution from 

the central point.

𝐺 𝑥, 𝑦 =
1

2𝜋𝜎2
𝑒−
𝑥2+𝑦2

2𝜎2

Basic

𝐺(𝑖, 𝑗)

𝑐
𝐺 𝑖, 𝑗 =

1

2𝜋𝜎2
𝑒−
𝑖2+𝑗2

2𝜎2
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Gaussian Filtering

With the constant c, choosing a value for σ2, we 

can compute it in an n × n window to get a mask 

for which the value in [0,0] is 1.

Basic
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Noise suppression: Image Filtering

Enhance or restore data by removing noise 

without significantly blurring the structures in the 

images.

Literature is vast! We will cover only a few of them.

Gaussian Filtering: 
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Noise suppression: Image Filtering

Enhance or restore data by removing noise 

without significantly blurring the structures in the 

images.

Literature is vast! We will cover only a few of them.

Gaussian Filtering: 



109

Noise suppression: Image Filtering

Gaussian Filtering: 

fF is a Gaussian weighted average of f in a 

neighborhood of N of voxel v

109
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Noise suppression: Image Filtering

Enhance or restore data by removing noise 

without significantly blurring the structures in the 

images.

Literature is vast! We will cover only a few of them.

Median Filtering: 

fF is median intensity in a neighborhood of voxel v.
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Filtering X-ray

a. Radiography of the skull, b. low-pass filter with a Gaussian filter (std=15, 20 x 

20), c. high-pass Filter obtained from subtracting b from a.
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Remark: Why Gaussian Assumption?

Most common natural model

Smooth function, it has infinite number of derivatives

It is Symmetric 

Fourier Transform of Gaussian is Gaussian.

Convolution of a  Gaussian with itself is a Gaussian.

Gaussian is separable; 2D convolution can be 
performed by two 1-D convolutions

There are cells in eye that perform Gaussian 
filtering.
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Composite Filters: Unsharp Masking
Lower Noise, Higher Contrast

histogram histogram
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Unsharp Masking

Not only noise removal, but edge enhancement is 

necessary!
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Unsharp Masking

Not only noise removal, but edge enhancement is 

necessary!

Reminder: Edges are located in high frequency of 

the images!

115

Smoothed image

(low pass)

Edge enhanced image

(high pass)
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Hand X-ray Unsharp Masking (alpha=0.5)

Original Image Enhanced Image
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Unsharp Masking: Example CT (head, axial)

Original CT Data Filtered CT 

Data
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An automatic method for spatially varying contrast 

adjustment

Homomorphic filtering   -Adaptive 

Filtering
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Βελτιστοποίηση Εικόνας

Homomorphic Enhancement of Angiography
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MIP of MRA data after fi1lt7e7ri

Adaptive Filtering: Example head MRA

MIP of MRA data before filtering
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Adaptive Filtering: Example brain MRI

Original brain MRI Enhanced brain MRI

Note the improved contrast between brain and CSF (cerebrospinal fluid)
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Adaptive Filtering: Example brain MRI
(zoomed)

Note the improved contrast between brain and CSF (cerebrospin
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189
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Adaptive Filtering: Example brain MRI

Original brain MRI Enhanced brain MRI

Note the improved contrast between brain and CSF (cerebrospinal fluid)
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Adaptive Filtering: Example brain MRI 
(zoomed)

Enhanced brain MRI

Note the improved contrast between brain and CSF (cerebrospinal fluid)
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Edges and edge detection
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Edges

Discontinuities in images are features that are 

often useful for initializing an image analysis 

procedure.

Edges are important information for understanding 

an image; by moving “non-edge” data we also 

simplify the data.

Edges     rate of change

Rate of change  differentiation

Differentiation  difference in digital domain
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Edges

Discontinuities in images are features that are 

often useful for initializing an image analysis 

procedure.

Edges are important information for understanding 

an image; by moving “non-edge” data we also 

simplify the data.

Edges     rate of change

Rate of change  differentiation

Differentiation  difference in digital domain

• Goal: Identify sudden 

changes (discontinuities) in 

an image

– Most semantic and shape 

information from the image 

can be encoded in the edges

– More compact than pixels

– Marks the border of an object
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Characterizing Edges

An edge is a place of rapid change in the image 

intensity function

129

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative
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Laplacian Mask

𝛻2𝑓 𝑥, 𝑦 =
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
=

=𝒇 𝒙 + 𝟏, 𝒚 + 𝒇 𝒙 − 𝟏, 𝒚 + 𝒇 𝒙, 𝒚 − 𝟏 + 𝒇 𝒙, 𝒚 + 𝟏 − 𝟒𝒇 𝒙, 𝒚

f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1)

f(x, y - 1) f(x,y) f(x, y + 1)

f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1)

0 1 0

1 -4 1

0 1 0
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Laplacian Mask (isotropic)

𝛻2𝑓 𝑥, 𝑦 =
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
=

=𝒇 𝒙 + 𝟏, 𝒚 + 𝒇 𝒙 − 𝟏, 𝒚 + 𝒇 𝒙, 𝒚 − 𝟏 + 𝒇 𝒙, 𝒚 + 𝟏 + 𝒇 𝒙 + 𝟏, 𝒚 + 𝟏 + 𝒇 𝒙 − 𝟏, 𝒚 − 𝟏 + 𝒇 𝒙 + 𝟏, 𝒚 − 𝟏 + 𝒇(𝒙 − 𝟏, 𝒚 + 𝟏) − 𝟖𝒇 𝒙, 𝒚

1 1 1

1 -8 1

1 1 1

f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1)

f(x, y - 1) f(x,y) f(x, y + 1)

f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1)

All the mask coefficients sum to zero, as 

expected of a derivative operator.
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Gradient of Image (first derivative)

gradient image:𝑀 𝑥, 𝑦 = 𝑚𝑎𝑔 𝛻𝑓 = 𝑔𝑥
2 + 𝑔𝑦

2 ≈ 𝑔𝑥 + 𝑔𝑦

𝒈𝒙 = 𝒇 𝒙 + 𝟏, 𝒚 − 𝟏 + 𝟐𝒇 𝒙 + 𝟏, 𝒚 + 𝒇 𝒙 + 𝟏, 𝒚 + 𝟏 − 𝒇(𝒙 − 𝟏, 𝒚 − 𝟏) + 𝟐𝒇(𝒙 − 𝟏, 𝒚) + 𝒇(𝒙 − 𝟏, 𝒚 + 𝟏)

f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1)

f(x, y - 1) f(x,y) f(x, y + 1)

f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1)

-1 -2 -1

0 0 0

1 2 1

Sobel operator 𝑔𝑥
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gradient image:𝑀 𝑥, 𝑦 = 𝑚𝑎𝑔 𝛻𝑓 = 𝑔𝑥
2 + 𝑔𝑦

2 ≈ 𝑔𝑥 + 𝑔𝑦

𝒈𝒚 = 𝒇 𝒙 − 𝟏, 𝒚 + 𝟏 + 𝟐𝒇 𝒙, 𝒚 + 𝟏 + 𝒇 𝒙 + 𝟏, 𝒚 + 𝟏 − 𝒇 𝒙 − 𝟏, 𝒚 − 𝟏 − 𝟐𝒇 𝒙, 𝒚 − 𝟏 − 𝒇(𝒙 + 𝟏, 𝒚 − 𝟏)

f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1)

f(x, y - 1) f(x,y) f(x, y + 1)

f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1)

-1 0 1

-2 0 2

-1 0 1

Sobel operator 𝑔𝑦

Gradient of Image (first derivative)
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Laplacian: Difference of Gaussians

134

Gaussian Derivative of Gaussian

in x direction

(gradient)

Derivative of Gaussian

in y direction

(gradient)

Laplacian of

Gaussian
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Difference of Gaussians ~ Laplacian

135
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Thank you for your attention!
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